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In this paper, we present a model which attempts to unify a new dark sector force with a local SUð3Þ
flavor symmetry. Dark matter (DM) and its potential interactions with the Standard Model (SM) continue to
present a rich framework for model building. In the case of thermal DM of a mass between a fewMeVand a
few GeV, a compelling and much-explored framework is that of a dark photon/vector portal, which posits a
new Uð1Þ “dark photon” which only couples to the SM via small kinetic mixing (KM) with the SM
hypercharge. This mixing can be mediated at the one-loop level by portal matter (PM) fields which are
charged under both the dark Uð1Þ and the SM gauge group. In earlier work, one of the authors has noted
that models with appropriate portal matter content to produce finite and calculable kinetic mixing can arise
from nonminimal dark sectors, in which the dark Uð1Þ is a subgroup of a larger gauge symmetry under
which SM particles might have nontrivial representations. We expand on this idea here by constructing a
model in which in which the dark Uð1Þ is unified with another popular extension to the SM gauge group, a
local SUð3Þ flavor symmetry. The full dark/flavor symmetry group is SUð4ÞF ×Uð1ÞF, incorporating the
local SUð3Þ flavor symmetry with PM appearing as a vectorlike “fourth generation” to supplement the
three generations of the SM. To ensure finite contributions to KM, the SM gauge group is arranged into
Pati-Salam multiplets. The new extended dark gauge group presents a variety of interesting experimental
signatures, including nontrivial consequences of the flavor symmetry being unified with the dark sector.

DOI: 10.1103/PhysRevD.105.015032

I. INTRODUCTION

In spite of composing roughly 80% of the matter in the
universe, the precise identity of dark matter (DM) remains
undetermined. Models to produce the appropriate abun-
dance of DM, however, strongly suggest that it is subject to
interactions other than gravity, and null results (thus far) in
searches for historically favored DM candidates such as
axions [1,2] and WIMPs [3] have led to a proliferation of
new ideas on the identity, production mechanisms, and
experimental signatures of DM [4,5]. In this work, we will
be exploring one of the more recently popular DM models,
that of a kinetic mixing/vector portal [6,7]. In these setups,
interaction between the Standard Model (SM) fields and the
DM is mediated by a massive vector dark photon AD,
associated with a broken dark gauge groupUð1ÞD. The DM
particle is uncharged under the SM gauge group, but
possesses nonzero Uð1ÞD charge, while the SM fields

are just the opposite: Charged under the SM group, but
not under Uð1ÞD. Small couplings between the dark
photon and the SM fields occur due to kinetic mixing
(KM) between Uð1ÞD and Uð1ÞY , which after electroweak
symmetry breaking ultimately give every SM particle a
coupling to AD of eϵQ, where e is the electromagnetic
coupling constant, Q is the electric charge of a given
particle, and ϵ is a small value which parametrizes the
strength of the kinetic mixing. The simplest realizations of
these models present a rich phenomenology with a
remarkably simple setup: The only parameters the DM
and dark photon masses (as well as potentially the mass of
a scalar associated with Uð1ÞD breaking), the Uð1ÞD
gauge coupling, and the KM parameter ϵ. However, these
minimal setups leave little framework for addressing a
number of questions: What is the origin of the small KM
parameter ϵ? Is Uð1ÞD the only dark sector gauge group,
or is it embedded in some larger gauge symmetry? Could
the dark sector gauge forces be connected in some way to
other ongoing questions in particle physics?
In the region of parameter space where DM and the dark

photon have masses ranging between ∼a few MeV to ∼a
few GeV, the favored value of ϵ generally lies in the range
of ϵ ∼ 10−ð3−5Þ [8,9], which can in turn suggest that the KM
can arise from a simple one-loop vacuum polarizationlike
diagram featuring “portal matter” fields charged under both
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Uð1ÞY and Uð1ÞD [7]. The kinetic mixing parameter then
has the dependence

ϵ ∝
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where the sum over i denotes a sum over all fermions (a
nearly identical expression arising from complex scalar
loops also occurs, differing only in the omitted proportion-
ality constant in front of the sum), QYi

denotes the
hypercharge of particle i, QDi

denotes its Uð1ÞD charge,
and μ is a renormalization scale. The sum in Eq. (1) is finite
and calculable when

P
i QDi

QYi
¼ 0. In two previous

works by one of our authors [10,11], henceforth referred
to as I and II, respectively, the theory and phenomenology
of these portal matter fields was explored. In I, it was
argued that fermionic portal matter fields must be vectorlike
in order to avoid constraints due to gauge anomalies and
precision electroweak measurements. Additionally, in order
to ensure that the fields are unstable (and hence conform to
cosmological constraints), they should only appear in the
same representations under the SM gauge group as SM
particles. In short, portal matter fermions should be vector-
like copies of SM fields [12], a possibility rarely explored
in the literature [13]. The discussion in I limited itself to the
simplest possible constructions, in which a pair of such
vectorlike fermions, with opposite dark charges, generate
finite KM through a small mass splitting between them.
Although this setup provided for interesting phenomenol-
ogy, the inclusion of portal matter fields which satisfied the
condition

P
i QDi

QYi
¼ 0 was ultimately ad hoc: In spite

of the critical importance that this cancellation had to the
model, it did not happen “naturally.” Furthermore, the
Uð1ÞD itself was still minimal—the potentially new effects
arising from a nonminimal set of dark gauge symmetries in
which Uð1ÞD could be embedded, such as the possibility
that the SM fields were nontrivially charged under some
part of the extended gauge group orthogonal to Uð1ÞD,
were not explored. II began the process of addressing both
of these questions. First, it was noted that the required
cancellation to render Eq. (1) finite would naturally occur
when the portal matter was placed in the vectorlike
representation 5þ 5̄ of SUð5Þ, which would then be
broken down to the SM gauge group. Inspired by E6

theories in which the 27 of E6 breaks down to a ð5̄; 2Þ þ
ð1; 2Þ þ ð5; 1Þ þ ð10; 1Þ of SUð5Þ × SUð2Þ (allowing for
the complete SM to be contained in a 5̄þ 10, with a
vectorlike set of portal fields in 5̄þ 5), II then developed a
model based on a gauge group SUð5Þ × SUð2ÞI × Uð1ÞYI

.
This setup exhibited a number of intriguing properties.
For example, the extended dark gauge sector led to new
heavy gauge bosons associated with the dark sector but
coupled to the SM, as well as nonstandard dark photon
couplings emerging from mass mixing with SM gauge

bosons (the latter a consequence of the dark group Uð1ÞD
itself only emerging as a combination of SUð2ÞI and
Uð1ÞYI

generators). The model in II also exhibited poten-
tially interesting flavor physics behavior, including flavor-
changing neutral currents and flavor-dependent couplings
of new gauge bosons to SM fermions. However, the setup
as written had comparatively little underlying theoretical
structure for the shape and magnitudes that these effects
might take.
We wish now to expand on the work of II, and in

particular the flavor physics questions it raised, by con-
sidering the following: If the extended gauge group con-
taining Uð1ÞD can include groups under which the SM
particles are nontrivial representations, might we create a
model in which the dark photon gauge symmetry Uð1ÞD
might be unified, either partially or completely, with some
sort of flavor symmetry? With that goal in mind, we
develop a specific model: First, we extend the SM to a
Pati-Salam symmetry SUð4Þc × SUð2ÞL × SUð2ÞR [14],
which, as a semisimple group, we shall prove in Sec. II A
will guarantee that KM from contributions of the form of
Eq. (1) will remain finite and calculable. For our “dark
sector,” in which the dark photon Uð1ÞD shall be
embedded, we choose the SUð4ÞF × Uð1ÞF group. We
shall see that this group is large enough to contain both a
Uð1ÞD under which the SM fields can remain uncharged,
and an embedded SUð3ÞF group describing quark flavor.
Multiplets containing the SM fields then are placed in
fundamental (and antifundamental) representations of the
SUð4ÞF group, with the three SM generations forming
triplets (and antitriplets) under SUð3ÞF and portal matter
fields representing a “fourth generation” that are singlets
under SUð3ÞF. From this outline, we create a phenomeno-
logically realistic theory in which an SUð3ÞF flavor
symmetry is partially unified with a vector portal for DM.
Our paper is laid out as follows: In Sec. II, we discuss the

field content of the model and the masses of any new exotic
particles we require. In addition to explicitly computing the
masses and mixings of all phenomenologically relevant
new fermions and gauge bosons, we comment qualitatively
on several important aspects of the scalar sector, since a
rigorous treatment of this sector of the model is complex
enough to lie beyond the scope of the present work. In this
section, we also note that while the UV model is enor-
mously complicated, containing a variety of new heavy
fermions, the overwhelming majority of the new particles
introduced will have a high enough mass scale to have very
little phenomenological relevance. As such, while we make
brief comments about the model at the high scale, we shall
focus the majority of the paper on the comparatively few
new particles which are light enough to have observable
effects in the present generation of experiments. In Sec. III,
we establish several important phenomenological tools
required for our later analysis: In particular, we explicitly
determine the couplings of the model’s fermions to both the
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new gauge bosons and to the SM gauge bosons and the
Higgs, and determine what a “natural” range for our model’s
parameters might be. In this section, we also explicitly
compute the magnitude of the KM effect, i.e., ϵ in the model,
and comment briefly on how it constrains our parameter
space. In Sec. IV, we compute the phenomenologically
significant flavor-changing neutral currents appearing in the
model, and compare them with existing experimental con-
straints. In Sec. V, we offer a brief survey of the phenom-
enology of the new fields that may be produced at collider
experiments, in particular focusing on how our model here
differs from the results seen in I and II. Finally, Sec. VI
summarizes our results and discusses possible avenues with
which this work might be expounded upon.

II. MODEL SETUP

In this section, we shall outline the components of our
model and demonstrate how realistic flavor structure, at least
in the highly constrained quark sector, may be effected. It
should be noted that in order to attain the observed quark
masses and CKM mixings, the model presented here is
exceedingly complicated and requires prodigious fine-
tuning. However, this finely tuned sector of the model is
associated with the new SUð3ÞF flavor symmetry, which
generally must be broken at multi-TeV scales. At energies
which may be probed experimentally, we shall find that the
model is mostly agnostic to the particulars of how the
SUð3ÞF symmetry is broken. In the interest of completeness,
then, we present a construction of our model in which the
SUð3ÞF symmetry is broken in a manner consistent with the
observed quark masses and CKM parameters, but we note
that the behavior of the model is in most cases insensitive to
the specifics of the model in the multi-TeV regime. When we
discuss the phenomenology of the model in later sections,
we shall explicitly note when the results may be sensitive to
modifications of the multi-TeV sector of the theory.

A. Fermion content

To begin our construction, it is useful to make several
assumptions. First, to ensure that our fermions will always
produce a finite and calculable kinetic mixing between SM
hypercharge and any new Uð1Þ’s appearing in our model,
we will restrict our efforts to theories where the gauge
group can be written G × GP, where GP is an arbitrary gauge
group containing a dark Uð1Þ symmetry, and G is some
semisimple group containing the SM. Our inclusion of the
condition that G is semisimple now guarantees that once G
is broken down to a group which includesUð1Þ factors, any
kinetic mixing between these Uð1Þ factors and any Uð1Þ
contained in GP generated by one-loop contributions of the
form of Eq. (1) will be finite.
We can prove this claim of finiteness straightforwardly:

To start, we consider a field in the representation R1 ×R2

of G × GP. Then, consider an arbitrary Uð1Þ embedded in

G, the generator for which we will call TY , and an arbitrary
Uð1Þ embedded in GP, the generator for which we will
call TP. We can demonstrate that for any representation
R1 ×R2 of G × GP, the loop-level contribution to the
kinetic mixing between the two Uð1Þ groups is finite
and calculable. We know from Eq. (1) that this contribution
to the KM coefficient ϵ will be finite and calculable as long
as the trace Tr½TYTP� ¼ 0, where the generators TY and TP
are given for the representation R1 ×R2. However, since
this representation is a direct product, this trace is simply
Tr½TY � × Tr½TP�. For a semisimple group, the trace Tr½TY �
is always zero for any Uð1Þ generator and any representa-
tion. As as a result, Tr½TYTP� ¼ 0 × Tr½TP� ¼ 0, and the
contribution of any representation under G × GP to KMwill
always be finite and calculable for semisimple G.1

For our purposes, we shall select (as mentioned in
the Introduction) the Pati-Salam gauge group SUð4Þc ×
SUð2ÞL × SUð2ÞR as our semisimple group G [14]. To
ensure that any new exotic fermions occur in representa-
tions that will quickly decay into SM fields, we then
assume that all fermions in our model occur in the tradi-
tional Pati-Salam multiplets (4; 2; 1) and ð4̄; 1; 2Þ, or their
conjugate representations.2 As our work above for a general
G would suggest, it is straightforward to see that each of
these multiplets has Tr½YSM� ¼ 0, and hence, if we only
introduce new matter in these representations, then regard-
less of its transformation properties under GP, the new
fermions will invariably produce a finite and calculable
kinetic mixing between the SM hypercharge and any new
Uð1Þ ⊂ GP. Dark matter, if we wish it to be fermionic, can
then be introduced as a Pati-Salam singlet (or collection
of such singlets) or as the SM singlet component of a
(4; 1; 2) multiplet, with some nontrivial charge under
Uð1ÞD. For the sake of brevity, we shall employ some
further simplifying notation: We shall denote the groups
SUðNÞA × SUðMÞB ×… ×Uð1ÞC by NAMB…1C, so that,
for example, GPS ¼ 4c2L2R, and the SM gauge group
SUð3Þc × SUð2ÞL ×Uð1ÞY is simply written 3c2L1Y .

1There are two caveats worth mentioning here: First, this
works equally well assuming GP, rather than G, is semisimple,
however, given the large number of extensions of the SM gauge
group to a semisimple one (Pati-Salam, trinification, and all GUT
models), we have elected here to restrict our attention to the
scenario where G is semisimple. Second, we note that in the high-
energy theory, the absence of an independent Uð1Þ factor in G
(since Uð1Þ is not simple) means that KM arising from vacuum
polarization diagrams as described in the Introduction are
forbidden by gauge invariance. However, we note that these
terms still arise via effective operators featuring the insertion of
scalar vevs when these gauge symmetries are broken—we shall
argue in Sec. III C that this does not vitiate our KM calculation
there, at least for the purposes of evaluating the magnitude of the
mixing.

2This is not strictly necessary, since there exist other Pati-
Salam representations that contain only fields with SM-like
quantum numbers. However, we shall stick to the familiar
canonical choices for simplicity.
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Our choice of GP is then further restricted by our
requirement that the model incorporate three generations
of the usual SM fermion fields, all of which must be
uncharged under Uð1ÞD. A simple method of accomplishing
this is to assume that GP contains an SUð3Þ flavor symmetry,
SUð3ÞF, the generators of which are orthogonal to the
generators of the Uð1ÞD symmetry. That is, we can decom-
pose GP → SUð3ÞF × G0

P, with G0
P ⊃ Uð1ÞD. Then, if we

can find a model which gives the complete set of SM
fermions in fundamental or antifundamental representations
of SUð3ÞF with zero charge under Uð1ÞD, we’ll have
recreated all three generations of the SM. The sole remaining
requirement is that all other additional fermions in the model
be vectorlike once G0

P is broken down to Uð1ÞD, leaving the
SM as the only “light” chiral matter content.
Precisely this sort of construction can be arranged if we

take, e.g., GP ¼ SUð4ÞF ×Uð1ÞF ¼ 4F1F, and write the
matter content of our theory in terms of left-handed
multiplets (not to be confused with the SUð2ÞL gauge
group) of the form 4c2L2R4F1F as

ð4; 2; 1; 4;−1=4Þ þ ð4̄; 1; 2; 4̄;þ1=4Þ þ ð4̄; 2; 1; 1;þ1Þ
þ ð4; 1; 2; 1;−1Þ: ð2Þ

By breaking 4F1F → 3F1F01F → 3F1D, we can then
decompose this field content into

ð4; 2; 1; 3; 0Þ þ ð4̄; 1; 2; 3̄; 0Þ þ ð4; 2; 1; 1;−1Þ
þ ð4̄; 2; 1; 1;þ1Þ þ ð4; 1; 2; 1;−1Þ þ ð4̄; 1; 2; 1;þ1Þ;

ð3Þ
where multiplets are now labeled according to 4c2L2R3F1D.
As is readily apparent from Eq. (3), all of our criteria are
satisfied: The SM is contained in a chiral SUð3ÞF triplet
and an antitriplet, which only gain mass at the scale of
electroweak symmetry breaking, while all additional fields,
which might serve as portal matter to contribute to kinetic
mixing, are vectorlike and therefore able to obtain far larger
masses. Inspection of Eq. (2) also shows this model to be
anomaly-free.
In order to effect realistic flavor mixing within this

setup, we finally introduce additional vectorlike multiplets
to act as seesaw partners to the SM fermions, analogous to
the treatment of the charged leptons and quarks in the
model construction of [15]. Specifically, we find that
adding a vectorlike multiplet in the ð4; 1; 2; 4;−1=4Þ þ
ð4̄; 1; 2; 4̄;þ1=4Þ representation to the matter content
of Eq. (2) allows us, with appropriate selections for the
model’s scalar content, to exhibit the observed mass hier-
archy for quarks and charged leptons, as well as the SM
CKM matrix. We also note that in order to ensure the
existence of light, SM-like fermions, certain mass terms will
have to be forbidden by imposing a discrete Z2 symmetry on
our model, discussed in detail in Section II C. Our final
matter content can then be written as

ð4;2;1;4;−1=4Þþ ð4̄;1;2; 4̄;þ1=4Þþ ð4̄;2;1;1;þ1Þ
þ ð4;1;2;1;−1Þþ ð4;1;2;4;−1=4Þþ ð4̄;1;2; 4̄;þ1=4Þ:

ð4Þ

For convenience, we have listed this matter content, labeled
by Pati-Salam and SM multiplets, in Table I. We have also
labeled the various multiplets in Table I based on their SM
quantum numbers and their role in the theory: qL, dcR, and u

c
R

represent (up to small mass mixing with vectorlike fermions)
SUð2ÞL doublet, downlike SUð2ÞL singlet, and uplike
SUð2ÞL singlet quarks, respectively, while lL, ecR, and νcR
represent the same for SUð2ÞL doublet leptons, charged
SUð2ÞL singlet leptons, and sterile neutrinos respectively.

TABLE I. The fermion content of the model, grouped by their
representation under 4c2L2R4F1F.

Fermion
4c2L2R4F1F
multiplet

SM
label SUð3Þc Y=2 SUð3ÞF Uð1ÞD

Ψa ð4; 2; 1; 4;−1=4Þ qL 3 þ1=6 3 0
lL 1 −1=2 3 0
QL 3 þ1=6 1 −1
LL 1 −1=2 1 −1

Ψb ð4̄; 2; 1; 1;þ1Þ Qc
R 3̄ −1=6 1 þ1

Lc
R 1 þ1=2 1 þ1

Ψc ð4̄; 1; 2; 4̄;þ1=4Þ dcR 3̄ þ1=3 3̄ 0
ucR 3̄ −2=3 3̄ 0
ecR 1 þ1 3̄ 0
νcR 1 0 3̄ 0

ðD1ÞcR 3̄ þ1=3 1 þ1

ðU1ÞcR 3̄ −2=3 1 þ1

ðE1ÞcR 1 þ1 1 þ1

ðN1ÞcR 1 0 1 þ1

Ψd ð4; 1; 2; 1;−1Þ ðD1ÞL 3 −1=3 1 −1
ðU1ÞL 3 þ2=3 1 −1
ðE1ÞL 1 −1 1 −1
ðN1ÞL 1 0 1 −1

Ψe ð4; 1; 2; 4;−1=4Þ ðD2ÞL 3 −1=3 3 0
ðU2ÞL 3 þ2=3 3 0
ðE2ÞL 1 −1 3 0
ðN2ÞL 1 0 3 0
ðD3ÞL 3 −1=3 1 −1
ðU3ÞL 3 þ2=3 1 −1
ðE3ÞL 1 −1 1 −1
ðN3ÞL 1 0 1 −1

Ψf ð4̄; 1; 2; 4̄;þ1=4Þ ðD2ÞcR 3̄ þ1=3 3̄ 0
ðU2ÞcR 3̄ −2=3 3̄ 0
ðE2ÞcR 1 þ1 3̄ 0
ðN2ÞcR 1 0 3̄ 0
ðD3ÞcR 3̄ þ1=3 1 þ1

ðU3ÞcR 3̄ −2=3 1 þ1

ðE3ÞcR 1 þ1 1 þ1

ðN3ÞcR 1 0 1 þ1
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The multiplets labeled by capitalized letters represent (again
up to small mass mixing) the new vectorlike particles in the
theory, which act as portal matter and serve as seesaw
partners to the SM states.
The addition of the new vectorlike states in Eq. (4),

however, raises two issues that warrant some discussion.
First, we note that these extra states vitiate any discrete left-
right symmetry that previously existed in the model, and
which is frequently assumed in Pati-Salam constructions.
Our selection here is ultimately one of convenience: The
additional vectorlike fields represent the minimal additions
we need to effect the observed SM flavor structure, at least
via the method outlined in Sec. II C. In principle, nothing
prevents us from adding a corresponding vectorlike SUð2ÞL
multiplet to restore the left-right discrete symmetry. In
practice, however, the addition of these states significantly
complicates the numerical structure of the model, so for our
purposes here we simply include the extra SUð2ÞR vector-
like multiplet. If we wish to maintain a left-right discrete
symmetry, we can assume that the particles of the corre-
sponding SUð2ÞL vectorlike multiplet are significantly
more massive than those of the SUð2ÞR multiplet, and
therefore do not have a significant numerical effect on the
theory at low energy. We also note that even if we were to
include an SUð2ÞL multiplet with similar particle masses to
those of its SUð2ÞR counterpart, the effect on low-energy
phenomenology would be minimal; we shall see in
Sec. II C that the natural masses of the particles in the
extra vectorlike multiplets are so high that only one of these
vectorlike particles, acting as a seesaw partner to the top
quark, will be accessible at the LHC or any likely future
planned colliders. We therefore can determine that the
effect of adding an extra vectorlike multiplet to the theory
to restore left-right symmetry would, even if the masses of
the particles in the multiplet were comparable, likely only
result in the introduction of a single additional particle, a
vectorlike SUð2ÞL doublet quark, at accessible energies.
Given the substantial increase in numerical complexity
coupled with relatively limited phenomenological impact,
we leave an exploration of the strict enforcement of discrete
left-right symmetry in this model to future work.
We also note that the fermion content of Eq. (4) pushes

us over the constraint for asymptotically free QCD: If the
Pati-Salam SUð4Þc symmetry is broken down to the SM
QCD at a higher scale than any of these fermions acquire
mass, then the theory has 18 flavors, while QCD only
remains asymptotically free for 16 or fewer flavors. While
we wish to focus our efforts on the low-energy implications
of this model, rather than the complexities associated with
its full UV completion, the abandonment of asymptotic
freedom does merit some justification. We might note that
as long as we do not introduce any further colored fermions
(as we would need to in order to, for example, enforce a
discrete left-right symmetry), the matter content of Eq. (4)
should result in a confined SUð4Þc theory (even accounting

for the existence of an SUð4Þc adjoint scalar to break this
symmetry). In fact, using the rough order-of-magnitude
estimates for the various fermionic masses in the theory
given in Sec. II C, we find that αs remains comfortably
perturbative even if SUð4Þc is broken as high as the Planck
scale, due to the fact that a number of fermion fields must
have masses in the high multi-TeV range in order to recreate
the observed fermion mass hierarchy. Given that the Pati-
Salam symmetry is generally broken at significantly sub-
Planckian energies [16–18], we can safely assume that for
this construction, our abandonment of asymptotic freedom
does not present a severe difficulty. For more general cases,
we also note that it has been conjectured that it is not
unreasonable to abandon asymptotic freedom at some
intermediate scales, such as the TeV-scale, in exchange
for asymptotic safety, where a UV interacting fixed point is
reinstated by physics at some high energy before the Planck
scale [19]. As our discussion in this paper is limited to
physics well below the Planck scale, we will not conjecture
as to how this asymptotic freedom is restored, and only note
that such a restoration may be possible, even in setups with
an even greater number of excess fermions than the minimal
construction we employ here.

B. Scalar content

In order to break the gauge symmetry in ourmodel from its
original GUT-scale 4c2L2R4F1F to the SM gauge group, and
then down to 3c1em, as well as generate the appropriate
spectrum for SM fermions, we must posit the existence of a
significant number of scalar fields. For simplicity, we shall
assume that the Pati-Salam symmetries SUð4Þc and SUð2ÞR
are broken at some exceedingly high scale (or scales). We
shall see that this is not in fact an unreasonable assumption—
if we were to assume a discrete left-right symmetry, for
example, renormalization group running of the SUð2ÞL and
SUð2ÞR in a minimal Pati-Salam model suggests symmetry
breaking around ∼1013−14 GeV [16–18], while the highest
scales we shall require for breaking the SUð4ÞF × Uð1ÞF
symmetry and reproducing the fermion spectra and mixings
will not exceed Oð108−9 GeVÞ. Assuming the Pati-Salam
symmetry is broken, then, we are now left with the need for
scalars which break the SUð4ÞF × Uð1ÞF symmetry down to
a darkUð1Þ, whichwe shall callUð1ÞD, which is then broken
entirely at some low scale at roughlyOð0.1–1 GeVÞ, as well
as some scalar content to perform the role of the SM Higgs,
breaking 2L1Y → 1em. To accomplish these tasks, we posit 5
Higgs scalars, given in the 4c2L2R4F1F representations as

ΦA ∼ ð1; 1; 1; 15; 0Þ;
ΦB ∼ ð1; 1; 3; 15; 0Þ;
ΦS ∼ ð1; 1; 1; 1; 0Þ;
ΦP ∼ ð1; 1; 1; 4;þ3=4Þ;
H ∼ ð1; 2; 2; 1; 0Þ: ð5Þ
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For convenience, we have listed these scalars, along with
rough orders of magnitude for their vacuum expectation
values necessary to achieve the observed SM quark mass
spectrum (which we shall derive in Sec. II C), in Table II.
The scalar content that we have selected here can be easily
deduced from phenomenological considerations: The sca-
lars ΦA, ΦB, ΦS, and H are all immediately required for a
treatment of the quark masses analogous to that of [15],
generalized to treat our larger model. In [15], the masses
and mixings of the quarks and leptons are reproduced with
the aid of a traditional SM Higgs doublet, two SUð3ÞF
adjoint scalars, and a singlet. To adapt the construction of
that work to the present scenario, we require that the
SUð3ÞF adjoints in that work are promoted to SUð4ÞF
adjoints, that one of the two SUð4ÞF adjoints also be a
triplet of SUð2ÞR in order to effect the large discrepancy
between uplike and downlike quark masses (and the
nontrivial CKM matrix) without relying on renormaliza-
tion group evolution, and that the scalar H containing
the SM Higgs field is promoted to a bidoublet under
SUð2ÞL × SUð2ÞR. It is useful to note that the scalar content
of Eq. (5) does not contain any scalars that are charged
under both Uð1ÞY and Uð1ÞF. Loop-level kinetic mixing
between these two Uð1Þ symmetries, then, such as that
mediated by the fermion content in our model, does NOT
occur in the scalar sector. In the scalar content of Table II,
the addition of the singlet ΦS may seem superfluous, and
so merits some further clarification. As we shall see in
Sec. II C, themost general set of Yukawa couplings that can
be written with the contents of Tables I and II does not
reproduce the fermion spectrum accurately. In order to
forbid undesirable Yukawa terms, the authors of [15]
impose a Z2 parity under which certain fermion fields
are odd and others are even. However, in both this work and
[15], this Z2 parity forbids one mass term that is still
necessary for the recreation of realistic fermion masses,
and so this term is reintroduced with the Z2-odd scalar ΦS.
It is helpful here to use the labeling of Table II to

illustrate the rough pattern of symmetry breaking from the
scale where the Pati-Salam group is broken down to the SM
group 3c2L1Y down to the scale where the dark photon

gauge symmetry Uð1ÞD is broken—or in other words, how
the SUð4ÞF ×Uð1ÞF symmetry is broken.

SUð4ÞF×Uð1ÞF⟶
hA;Bi

Uð1Þ0F×Uð1ÞF⟶
vP Uð1ÞD⟶

γ⃗A;B;P
Nothing:

ð6Þ

In Eq. (6), we have simply listed how the various vev terms
from Table II break the SUð4ÞF ×Uð1ÞF symmetry down,
arranged by the rough scale at which each breaking occurs.
Consulting Table II, we can see that SUð4ÞF is broken by
hAi and hBi down to Uð1Þ0F at a series of scales spanning
between ∼109 GeV and 103 GeV (in practice, we shall that
this symmetry breaking usually completes at a substantially
higher scale than 103 GeV), while vP then breaks Uð1Þ0F ×
Uð1ÞF down toUð1ÞD at a scale of roughly 103−4 GeV, and
finally the small vevs ⃗γA;B;P break Uð1ÞD entirely at a scale
of ∼0.1–1 GeV. The contents of Table II highlights two
notable characteristics of our vev arrangements. First, there
exist substantial hierarchies between the various vev scales
in the model, the values of which span nine orders of
magnitude. As we will see in Sec. II C, these hierarchies are
necessary to recreate the observed hierarchy in SM quark
masses, as well as ensure that the dark photon remains
at roughly the scale of ∼1 GeV. Due to the significant
complexity of the scalar sector here, with numerous
possible potential terms, a detailed exploration on the
naturalness of these hierarchies is beyond the scope of
this paper, however it is clear that any potential which
might produce these vevs is likely quite finely tuned.
The second notable characteristic of our vevs evinced in

Table II is that the vacuum expectation values of certain
components of the scalar fields are exceedingly large
(we remind the reader that even the largest scales here,
∼109 GeV, are still well below what we can anticipate for
the breaking of the symmetries SUð4Þc and SUð2ÞR, which
as noted before we assume to be ∼1013−14 GeV). As a
result, we can anticipate (and, in Secs. II C and II D, prove)
that much of the new physics which shall arise in this model
appears at scales far in excess of what can be directly
probed in the foreseeable future. The task left to us is

TABLE II. The scalars introduced to break the 4F1F flavor symmetry and provide masses to the fermions. Here,
hAi and hBi are 3 × 3 Hermitian matrices, γ⃗A;B;P are 3-component complex vectors, and vP, vS, and vEW are simply
real vevs, with v ≈ 246 GeV being the SM Higgs vev. In the definition of ΦB ’s vev, σ3 denotes the third Pauli
matrix.

Scalar SUð2ÞL SUð2ÞR SUð4ÞF Uð1ÞF hΦi
ΦA 1 1 15 0 ðhAi

γ⃗†A

γ⃗A
−Tr½hAi�Þ ∼ ð103−109 GeV

0.1–1 GeV
0.1–1 GeV
109 GeV Þ

ΦB 1 3 15 0 σ3
2
⊗ ðhBi

γ⃗†B

γ⃗B
−Tr½hBi�Þ ∼ ð103−109 GeV

0.1–1 GeV
0.1–1 GeV
109 GeV Þ

ΦP 1 1 4 þ3=4 ðγ⃗P; vPÞ ∼ ð0.1–1 GeV; 103–104 GeVÞ
ΦS 1 1 1 0 vS ∼ 103–104 GeV
H 2 2 1 0 vffiffi

2
p ðcos β

0
0

sin βÞ
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therefore identifying the elements of our model construction
that yield new physics at scales that we do expect to be
probed in the near future. As with the problem of quanti-
tatively evaluating the vev arrangement’s tuning, performing
this task in detail is far beyond the scope of the present work,
given the large number of multiplets and the resulting high
degree of complexity for the scalar potential.
We can, however, briefly comment on some of the

scalars that will likely be relevant at accessible energies.
First, we note that if the left-right symmetry breaking scale
is quite high (as we have already assumed), the SM Higgs
field is well-approximated as the sole element of the
bidoublet H that achieves a nonzero vev, so that

H ¼
�
ϕ0
1 ϕþ

2

ϕ−
1 −ϕ0�

2

�
; hHi ¼ vffiffiffi

2
p
�
cos β 0

0 sin β

�
;

hSM ≈ ϕ0
1 cos β þ ϕ0

2 sin β; ð7Þ

where hSM denotes the real scalar identified with the SM
Higgs boson, and v ≈ 246 GeV is the SM Higgs vev. In
immediate analogy with conventional left-right symmetric
models, additional physical scalars associated with the
bidoubletH will all have masses at approximately the scale
of SUð2ÞR breaking [20–22], and hence given our assump-
tions be unobservable at present or immediately foreseeable
experiments. Finally, we note that to ensure perturbativity
for the Yukawa couplings of the heavy scalars arising from
the bidoublet, again in analogy with well-known left-right
symmetric model building principles, we must also require
that tan β ≲ 0.8 [21].3

Apart from the SM Higgs, there is only one other scalar
that we shall consider here. Specifically, given the excep-
tionally low scale at which the symmetry Uð1ÞD is broken
in comparison to the other scales of the theory, we
anticipate that some combination of the scalars described
in this section will emerge as a physical “dark Higgs”
boson of mass ∼Oðjγ⃗P;A;BjÞ, as the physical counterpart to
the combination of Goldstone bosons which become the
longitudinal component of AD− such a scalar appears in, for
example, the discussions of I and II. Because the precise
structure of the scalar sector is too complex to be able to
probe in detail in this work, we instead shall simply deduce
the contribution of this scalar to relevant processes (in
particular, in Secs. VA and V B when discussing the decay

processes of heavy exotic fermions) via the equivalence
theorem [23] where applicable, and comment briefly upon
the potential effect of these scalars where such a quanti-
tative treatment fails.

C. Fermion spectrum

In order to determine the structure of the model’s scalar
vevs, we turn to the CKM mixing matrix and the spectrum
of SM quark masses for guidance. In order to recreate the
observed flavor structure of the SM, we present a con-
struction based heavily on that of [15]. In the unbroken
theory, we shall write the Yukawa sector of the model as

LY ¼ −yH cos αΨT
f iσ2HΨa − yH sin αΨT

f iσ2H̃Ψa

− yP1ΨT
b iσ2Φ

†
PΨa − yP2ΨT

c iσ2ΦPΨd

− yAΨT
f iσ2ΦAΨe − yBΨT

f iσ2ΦBΨe −MΨT
f iσ2Ψe

− ySΨT
c iσ2ΦSΨe þ H:c: ð8Þ

Here, H̃ ≡ σ2H�σ2, σ2 is the second Pauli matrix, α is an
arbitrary real angle between −π and π, andM is an arbitrary
mass term not forbidden by any symmetries. For simplicity,
we assume that all Yukawa coupling parameters here are
real, as would be the case in a model with no explicit CP
violation. The expression in Eq. (8) is not, a priori, the
most general set of Yukawa couplings that can be written
with the scalar and fermion content of Tables I and II.
However as mentioned in Sec. II B, any additional terms
can be easily eliminated by imposing a discrete Z2

symmetry. Specifically, we outline our parity assignments
for the fermions and scalars in Table III.
Following the parity assignments of Table III, Eq. (8)

becomes the most general set of Yukawa couplings that we
can construct. We can now write the up- and downlike
quark mass matrices explicitly by referencing Tables I
and II. The mass terms for the up- and downlike quarks take
the form

ŪRMuUL;

D̄RMdDL; ð9Þ

where

TABLE III. The parity of the model’s fermion and scalar fields
under Z2, in order to ensure that Eq. (8) is the most general set of
Yukawa couplings that we can write.

Z2 parity Fermions Scalars

þ Ψa, Ψb, Ψe, Ψf H, ΦP, ΦA, ΦB

− Ψc, Ψd ΦS

3This specifically stems from the fact that the heavy doublet’s
Yukawa coupling to SM quarks is enhanced by secð2βÞ, so
having tan β overly close to 1 will result in an unacceptably large
magnitude of heavy scalar couplings to the third-generation
quarks. In principle, one might accommodate this bound by
having tan β ≳ 1.2, but this is identical to simply choosing an
appropriate tan β ≲ 0.8 and changing the Yukawa coupling
parameters, in particular the angle α, in the Yukawa action given
in Eq. (8).
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UR ≡ ðūR; ðŪ2ÞR; Q̄u
R; ðŪ1ÞR; ðŪ3ÞRÞ;

UL ≡ ðuL; ðU2ÞL;Qu
L; ðU1ÞL; ðU3ÞLÞ;

DR ≡ ðd̄R; ðD̄2ÞR; Q̄d
R; ðD̄1ÞR; ðD̄3ÞRÞ;

DL ≡ ðdL; ðD2ÞL;Qd
L; ðD1ÞL; ðD3ÞLÞ: ð10Þ

Here, QuðdÞ
L;R denotes the up(down)like component of the

SUð2ÞL doublet QL;R. We also remind the reader that uL;R
and ðU2ÞL;R are triplets of SUð3ÞF, and therefore have three

components in flavor space, in contrast to Qu;d
L;R, ðU1ÞL;R,

and ðU3ÞL;R, which each have only one. So, UL;R and DL;R

are both 9-component vectors in flavor space, where we
have grouped the SUð3ÞF triplets uL;R and ðU2ÞL;R together
in the first 6 components, leaving the last 3 components for
the SUð3ÞF singlets. Notably, the SUð3ÞF triplets are all
uncharged under Uð1ÞD, while the SUð3ÞF singlets all
possess a common nonzero charge under this symmetry.
The mass matrices Mu;d are then given by

Mu ¼

0
BBBBBBBB@

03×3 ySvS13×3 03×1 yP2γ⃗P 03×1
yuvffiffi
2

p 13×3 Mu þM13×3 03×1 03×1 γ⃗u

yP1γ⃗
†
P 01×3 yP1vP 0 0

01×3 01×3 0 yP2vP ySvS

01×3 γ⃗†u
yuvffiffi
2

p 0 −Tr½Mu� þM

1
CCCCCCCCA
;

Md ¼

0
BBBBBBBB@

03×3 ySvS13×3 03×1 yP2γ⃗P 03×1
ydvffiffi
2

p 13×3 Md þM13×3 03×1 03×1 γ⃗d

yP1γ⃗
†
P 01×3 yP1vP 0 0

01×3 01×3 0 yP2vP ySvS

01×3 γ⃗†d
ydvffiffi
2

p 0 −Tr½Md� þM

1
CCCCCCCCA
;

Mu ≡ yAhAi þ yBhBi; Md ≡ yAhAi − yBhBi;
γ⃗u ≡ yAγ⃗A þ yBγ⃗B; γ⃗d ≡ yAγ⃗A − yBγ⃗B:

yu ≡ yH cosðα − βÞ; yd ≡ yH sinðαþ βÞ; ð11Þ

where we remind the reader that v, β, vS, vP, γ⃗P;A;B, hAi, and hBi are defined in Table II, while all remaining parameters here
appear in Eq. (8). In general, we can exploit SUð4ÞF gauge freedom to renderMu orMd diagonal, and eliminate either γ⃗u (if
we diagonalizeMu) or γ⃗d (if we diagonalizeMd). This corresponds to moving to a basis in which either the combination of
ΦA and ΦB vevs which couple to the uplike or downlike quarks are diagonal. Although we shall find it most convenient to
work in a basis in whichMu is diagonal and γ⃗u ¼ 0, for now we will make no such choice, so that our analytical results for
the uplike quarks will apply straightforwardly to the downlike sector as well. Continuing our analysis, the matricesMu and
Md can be bidiagonalized as usual to produce mass eigenstates. That is, there exist unitary matrices Uu;d

L;R such that

ðUu
LÞ†M†

uMuUu
L ¼ ðUu

RÞ†MuM
†
uUu

R ¼ diagðm2
u1; m

2
u2; m

2
u3;M

2
u1;M

2
u2;M

2
u3; ðmu

P1Þ2; ðmu
P2Þ2; ðmu

P3Þ2Þ; ð12Þ

where themui denotes the mass of the ith-generation uplike SM quark,Mui is the mass of the (also uncharged underUð1ÞD)
heavy vectorlike partner to this quark, and mu

P1;2;3 denote the masses of the three portal matter fields which are charged
under Uð1ÞD. An analogous expression holds for Md. As an example, we shall now determine the matrices Uu

L;R, with a
completely analogous treatment holding for the determination of Ud

L;R.
We start by determining Uu

L. To begin, we find it useful to define

u≡Mu þM13×3; uD ¼ diagðu1; u2; u3Þ ¼ W†
uuWu; Xu ≡ −Tr½Mu� þM; ð13Þ

where uD is the diagonalized form of u andWu is a 3 × 3 unitary matrix. Then, we may write (dropping terms of Oðγ⃗2P;uÞ,
which shall be significantly smaller than the other mass scales occurring in the matrix)
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M†
uMu ¼

0
BBBBBBBBB@

y2uv2u
2

13×3
yuvffiffi
2

p u y2P1vPγ⃗P 03×1
yuvffiffi
2

p γ⃗u
yuvffiffi
2

p u u2 þ y2Sv
2
S13×3

yuvffiffi
2

p γ⃗u yP2ySvSγ⃗P ðuþ Xu13×3Þ · γ⃗u
y2P1vPγ⃗

†
P

yuvffiffi
2

p γ⃗†u y2P1v
2
P þ y2uv2

2
0 yuvffiffi

2
p Xu

01×3 yP2ySvSγ⃗
†
P 0 y2P2v

2
P yP2vPySvS

yuvffiffi
2

p γ⃗†u γ⃗†u · ðuþ Xu13×3Þ yuvffiffi
2

p Xu yP2vPySvS y2Sv
2
S þ X2

u

1
CCCCCCCCCA
: ð14Þ

To derive expressions for the mass eigenvectors here, it is
easiest to split the problem into two basic parts. First, we
shall determine the unitary matrix ðUu

LÞ0 which diagonal-
izes the matrix of Eq. (14) in the limit where all components
of γ⃗P;u are zero, that is, in the absence of all mixing between
the fields with no charge under Uð1ÞD [namely, uL, and
ðU2ÞL, the first six rows/columns of Eq. (14)] and those
with nonvanishing Uð1ÞD charge (Qu

L,ðU1ÞL, and ðU3ÞL,
the last three rows/columns). With this diagonalization
done, we can then determine the effects of γ⃗P;u as small
perturbations, in a rotation matrix ðUu

LÞγ . The matrix which
diagonalizes Eq. (14) is then simply given as

Uu
L ≈ ðUu

LÞ0ðUu
LÞγ: ð15Þ

We now begin with our determination of ðUu
LÞ0. Since there

is no mixing between the Uð1ÞD-charged and Uð1ÞD-
uncharged fermions in this limit, we shall treat the two

separately. We start with the mass matrix for the fermions
with no Uð1ÞD charge, which takes the form,

 y2uv2

2
13×3

yuvffiffi
2

p u
yuvffiffi
2

p u u2 þ y2Sv
2
S

!
: ð16Þ

We can break this matrix down into three 2 × 2matrices via
rotation by the unitary block matrix

�
13×3 03×3
03×3 Wu

�
; ð17Þ

where we recall that W†
uuWu ¼ diagðu1; u2; u3Þ. Then,

each 2 × 2 matrix can be easily diagonalized, yielding
(assuming that v ≪ vS; ui)

diagðm2
ui;M

2
uiÞ ¼

�
cosðρui Þ sinðρui Þ
− sinðρui Þ cosðρui Þ

�� y2uv2

2
yuvffiffi
2

p ui
yuvffiffi
2

p ui u2i þ y2Sv
2
S

��
cosðρui Þ − sinðρui Þ
sinðρui Þ cosðρui Þ

�

cosðρui Þ ≈ 1 −
1

2

m2
ui

M2
ui

�
M2

ui − y2Sv
2
S

y2Sv
2
S

�
; sinðρui Þ ≈ −sgnðyuuiÞ

mui

Mui

�
M2

ui − y2Sv
2
S

y2Sv
2
S

�
1=2

;

m2
ui ≈

y2uv2

2

y2Sv
2
S

ðu2i þ y2Sv
2
SÞ
; M2

ui ≈ u2i þ y2Sv
2
S ð18Þ

Having diagonalized the mass matrix for the left-handed
quarks with no charge under Uð1ÞD, we next turn our
attention to the left-handed fields which are charged under
Uð1ÞD. In the case of the uplike quark sector, these are Qu

L,
ðU1ÞL, and ðU3ÞL. From Eq. (14), we see that the mass
matrix for these fields is

0
BB@

y2P1v
2
P þ y2uv2

2
0 yuvffiffi

2
p Xu

0 y2P2v
2
P ðySvSÞðyP2vPÞ

yuvffiffi
2

p Xu ðySvSÞðyP2vPÞ y2Sv
2
S þ X2

u

1
CCA:

ð19Þ

In the absence of extreme fine-tuning, we shall see that
natural Yukawa couplings yield Xu at roughly the scale
Xu ∼ 105ySvS, so we can assume that vS, vP ≪ Xu. Any
mixing between the three fields of Eq. (19), then, is
exceedingly small and may be treated perturbatively.
Dropping terms of Oðv2P=X2

u; v2S=X
2
u; v2=X2

uÞ, the mass
matrix of Eq. (19) can be diagonalized by a rotation by
the matrix

WP
L ≡

0
BB@

1 αL12 αL13
−αL12 1 αL23
−αL13 −αL23 1

1
CCA; ð20Þ
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where

αL12 ≡ ðyuvÞðySvSÞðyP2vPÞffiffiffi
2

p
Xuðy2P1 − y2P2Þv2P

; αL13 ≡ yuvffiffiffi
2

p
Xu

; αL23 ≡ ðySvSÞðyP2vPÞ
X2
u

: ð21Þ

In the end, we arrive at

diagððmu
P1Þ2; ðmu

P2Þ2; ðmu
P3Þ2Þ ¼ WP†

L

0
BB@

y2P1v
2
P þ y2uv2

2
0 yuvffiffi

2
p Xu

0 y2P2v
2
P ðySvSÞðyP2vPÞ

yuvffiffi
2

p Xu ðySvSÞðyP2vPÞ y2Sv
2
S þ X2

u

1
CCAWP

L;

ðmu
P1Þ2 ≡ y2P1v

2
P; ðmu

P2Þ2 ≡ y2P2v
2
P; ðmu

P3Þ2 ≡ X2
u: ð22Þ

We can now apply the combined rotations of Eqs. (17), (18), and (20) in order to arrive at the full rotation matrix ðUu
LÞ0.

The combined rotation matrix is

ðUu
LÞ0 ≡

0
BBBBBB@

Wucuρ −Wusuρ 03×1 03×1 03×1
Wusuρ Wucuρ 03×1 03×1 03×1

01×3 01×3 1 αL12 αL13
01×3 01×3 −αL12 1 αL23
01×3 01×3 −αL13 −αL23 1

1
CCCCCCA
;

cuρ ≡ diagðcosðρu1Þ; cosðρu2Þ; cosðρu3ÞÞ; suρ ≡ diagðsinðρu1Þ; sinðρu2Þ; sinðρu3ÞÞ; ð23Þ

where we remind the reader that Wu is defined in Eq. (13), ρu1 , ρ
u
2 , and ρu3 are given in Eq. (18), and the variables αLij are

defined in Eq. (21). The mass matrix of Eq. (14) then takes the form

ðUu
LÞ†0M†

uMuðUu
LÞ0 ¼ diagðm2

u;m2
c; m2

t ;M2
u;M2

c;M2
t ; ðmu

P1Þ2; ðmu
P2Þ2; ðmu

P3Þ2Þ þOðγ⃗u; γ⃗PÞ: ð24Þ

It is now straightforward to determine the perturbed eigenvectors of the matrix in Eq. (24) up to Oðγ⃗u; γ⃗PÞ. Once the dust
settles, we have

ðUu
LÞγ ≈

0
BBBBBBBB@

13×3 03×3 Δ⃗u
P1L Δ⃗u

P2L Δ⃗u
P3L

03×3 13×3 Δ⃗U
P1L Δ⃗U

P2L Δ⃗U
P3L

−Δ⃗u†
P1L −Δ⃗U†

P1L 1 0 0

−Δ⃗u†
P2L −Δ⃗U†

P2L 0 1 0

−Δ⃗u†
P3L −Δ⃗U†

P3L 0 0 1

1
CCCCCCCCA
; ð25Þ

where

ðΔ⃗u
P1LÞi ¼

ððy2P1vPcuρ − αL12yP2ySvSs
u
ρÞW†

uγ⃗P þ ðyuvffiffi
2

p suρ − αL13ðyuvffiffi2p cuρ þ uDsuρ þ XusuρÞÞW†
uγ⃗uÞi

m2
P1 −m2

ui
;

ðΔ⃗u
P2LÞi ¼

ððαL12y2P1vPcuρ þ yP2ySvSsuρÞW†
uγ⃗P þ ðαL12 yuvffiffi

2
p suρ − αL23ðyuvffiffi2p cuρ þ uDsuρ þ XusuρÞÞW†

uγ⃗uÞi
m2

P2 −m2
ui

ðΔ⃗u
P3LÞi ¼

ððαL13y2P1vPcuρ þ αL23yP2ySvSs
u
ρÞW†

uγ⃗P þ ðαL13 yuvffiffi
2

p suρ þ yuvffiffi
2

p cuρ þ uDsuρ þ XusuρÞW†
uγ⃗uÞi

m2
P3 −m2

ui

ðΔ⃗U
P1LÞi ¼

ðð−y2P1vPsuρ − αL12yP2ySvSc
u
ρÞW†

uγ⃗P þ ðyuvffiffi
2

p cuρ − αL13ðuDcuρ þ Xucuρ −
yuvffiffi
2

p suρÞÞW†
uγ⃗uÞi

ðmu
P1Þ2 −M2

ui
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ðΔ⃗U
P2LÞi ¼

ðð−αL12y2P1vPsuρ þ yP2ySvScuρÞW†
uγ⃗P þ ðαL12 yuvffiffi

2
p cuρ − αL23ðuDcuρ þ Xucuρ −

yuvffiffi
2

p suρÞÞW†
uγ⃗uÞi

ðmu
P2Þ2 −M2

ui
;

ðΔ⃗u
P3LÞi ¼

ðð−αL13y2P1vPsuρ þ αL23yP2ySvSc
u
ρÞW†

uγ⃗P þ ðαL13 yuvffiffi
2

p cuρ þ uDcuρ þ Xucuρ −
yuvffiffi
2

p suρÞW†
uγ⃗uÞi

ðmu
P3Þ2 −M2

ui
; ð26Þ

where uD is the diagonalized form of u discussed in Eq. (13).

The lengthy expressions of Eq. (26), while extremely
cumbersome in their full form, can be dramatically sim-
plified by examining the numerical hierarchies between
various parameters, and dropping all but the numerically
dominant contributions to each expression. To get a better
sense of the numerics of the system, we begin by exploring
the SUð3ÞF triplet sector, containing the SM quarks and
their heavy partners. Examining Eq. (18), we note that the
expressions formui andMui only hold here up toOðv2=v2SÞ.
To maintain numerical accuracy, we then assume that
ySvS ≳ 1 TeV–given that v ∼ 246 GeV, this will ensure
that the expressions given here are accurate to within a
few percent. This also ensures that there is a significant
hierarchy between mui and Mui, as can be seen from the
relation m2

ui=M
2
ui ¼ 2m4

ui=ðy2Sv2Sy2uv2Þ (which holds
exactly in the limit that γ⃗u;P → 0). If ySvS were much
smaller than 1 TeV, the heavy counterpart of the top quark
would have roughly the same mass as the SM top, and be
subject to extremely severe constraints from direct pro-
duction searches at the LHC and from modifications to
top quark couplings; the former limit the mass of such a
vectorlike quark to ≳1.3–1.5 TeV, due to null results in
searches for pair production [24]. We can also use the
relation M2

ui ¼ ðySvSÞ2ðyuvÞ2=ð2m2
uiÞ, and its trivially

analogous expression for downlike quarks, to derive
approximate estimates of the masses of the various heavy
quark partners.
Assuming that we want to reproduce the SM quark

masses at the scale of ∼1 TeV, roughly the scale at which
the lightest heavy partner quark, the top partner, will be
integrated out,4 we arrive at

muð1 TeVÞ ¼ 1.07 MeV; Mu ∼ ð2 × 105ÞySvS;
mcð1 TeVÞ ¼ 532 MeV; Mc ∼ 300ySvS;

mtð1 TeVÞ ¼ 144 GeV; Mt ∼ ySvS;

mdð1 TeVÞ ¼ 2.28 MeV; Md ∼ ð8 × 104ÞySvS;
msð1 TeVÞ ¼ 46.5 MeV; Ms ∼ ð4 × 104ÞySvS;
mbð1 TeVÞ ¼ 2.40 GeV; Mb ∼ 70ySvS: ð27Þ

Given these estimates, and assuming ySvS ≳ 1 TeV, only the
heavypartner to the topquark,with amassMt, can reasonably
be expected to be experimentally directly observable in the
foreseeable future. We do, however, note that Eq. (27)
assumes that the uplike and downlike Yukawa couplings to
the SM Higgs, that is, yH cosðα − βÞ and yH sinðαþ βÞ are
both roughly of Oð1Þ. While this may be expected from
naturalness, it is far from the only feasible scenario. If, for
example, yH sinðαþ βÞ ∼Oð10−2Þ, equivalent to a value
arising in a number of multi-Higgs doublet scenarios which
seek to explain the mass hierarchy between the top and b
quark, we might expect that Mb ∼Mt, and hence the heavy
partner of thebmay also play a significant phenomenological
role. In this case, we would expect significant additional
constraints arising from both direct production of the b
partner at the LHC and possibly significant modifications
to the SM Zbb coupling. For the sake of simplicity, however,
we leave a detailed exploration of the effects of a lighter b
partner within this model to future work.
Meanwhile, in the mass matrix of Eq. (19), we note

that Xu ¼ −Tr½Mu� þM should, in the absence of extreme
fine tuning, be roughly the same order of magnitude as
the largest eigenvalue of the matrix u. We have established,
however, that this eigenvalue is approximately ∼105×ySvS.
The mass mu

P3 ≈ jXuj will naturally be extremely large, on
the order of ∼108 GeV.
Our expressions in Eq. (26) can then be dramatically

simplified by merely assuming that the extremely heavy
particles (the fermion with mass ≈jXuj and the heavy
partners of the up and charm quarks) are virtually entirely
decoupled from the lower mass fields (the SM quarks, the
fermions with masses ∼vP, and the heavy partner to the
top quark)—in practice, this involves taking the limits
where ju1;2j; jXuj;Mu1;u2 → ∞ in the expressions of
Eq. (26). This permits us to write

4A technically more correct procedure (albeit one that still
ignores the running of the CKM matrix) would be for each SM
quark’s mass to be determined near the scale of the mass of its
specific partner, so the model would reproduce the mass mu run
up to ∼109 GeV, mc near ∼106 GeV, mt near 1 TeV, etc.
However, due to the additional quarks in the model, this
computation would be substantially more complicated than our
treatment here, and the numerical changes to the results would be
minimal, especially given the fact that the most pronounced
discrepancies with our calculation would arise in the least certain
quark masses, mu and md.
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Δ⃗u
P1L ≈

W†
uγ⃗P
vP

;

ðΔ⃗u
P2LÞ3 ≈ −sgnðyuysyP2u3Þ

mt

Mt

ðM2
t − y2Sv

2
SÞ1=2

mu
P2

ðW†
uγ⃗PÞ3
vP

ðΔ⃗U
P1LÞ3 ≈ sgnðyuu3Þ

mt

Mt

�
M2

t − y2Sv
2
S

y2Sv
2
S

�
1=2

×
ðmu

P1Þ2
ððmP1Þ2 −M2

t Þ
ðW†

uγ⃗PÞ3
vP

ðΔ⃗U
P2LÞ3 ≈ sgnðyP2Þ

ySvSmu
P2

ðmu
P2Þ2 −M2

t

ðW†
uγ⃗PÞ3
vP

; ð28Þ

where the rest of the Δ⃗ terms are either negligibly small or
parametrize mixing between the extremely heavy states.
The expressions in Eq. (28) already provide some useful
information: In particular, in the limit where the super-
heavy states decouple the mixing of the phenomenologi-
cally accessible states is independent of γ⃗u, the parameter
corresponding to the Uð1ÞD-breaking components of the
scalar vevs hΦAi and hΦBi. Additionally, there exists a
suppression factor of mt=Mt in front of ðΔ⃗u

P2LÞ3 and
ðΔ⃗U

P1LÞ3, corresponding to the mixing between the top
quark and the mu

P2 state, and the mixing between the heavy
top partner and the mu

P1 state, respectively—these cou-
plings between SUð3ÞF triplet and singlet states only arise
due to mixing between the top quark and its heavy partner,
and therefore vanish in the limit where the top partner
decouples from the SM.
Armed with Eq. (28), it is not difficult to extract a

complete expression for Uu
L, or at least the components

of this rotation matrix that are relevant for the

phenomenologically accessible particles. Taking the same
decoupling limit in the expression for the diagonalization
matrix ðUu

LÞ0 in Eq. (23) (which here corresponds to letting
ρu1;2, α

L
ij → 0), we can use Eqs. (15), (23), (25), and (28) in

order to extract the approximate mass eigenvectors for each
left-handed uplike (and, through trivial generalization,
downlike) quark with a phenomenologically accessible
mass. Truncating our 9-dimensional flavor-space quark
vectors to omit the super-heavy particles, we can write
these vectors as

ðŪRÞdec ≡ ðūR; T̄R; Q̄u
R; ðŪ1ÞRÞ;

ðULÞdec ≡ ðuL; TL;Qu
L; ðU1ÞLÞ;

ðD̄RÞdec ≡ ðd̄R; Q̄d
R; ðD̄1ÞRÞ;

ðDLÞdec ≡ ðdL;Qd
L; ðD1ÞLÞ: ð29Þ

Notably, the above truncation in the uplike sector, in which
the top quark’s heavy partner is retained, is much easier in a
basis in which Wu ¼ 13×3. Otherwise, as we can see from
Eq. (10), the top partner will be represented by a nontrivial
combination of the elements of the SUð3ÞF triplets ðU2ÞL
and ðU2ÞR, which would require retaining rows and
columns of Uu

L;R that correspond to heavy states until a
rotation into a basis in which Wu ¼ 13×3 could be
performed. Therefore, for the following expressions, we
have assumed that Wu ¼ 13×3; as we mentioned at the
beginning of this section, it is always possible to use
SUð4ÞF freedom to work in such a basis from the beginning
of our analysis. Using Eqs. (23) and (25), we can write the
truncated uplike quark rotation matrix as

Uu
L ≈

0
BBBBBBBBBBBBBBB@

1 0 0 0
ðγ⃗PÞ1
vP

0

0 1 0 0
ðγ⃗PÞ2
vP

0

0 0 1 r mt
Mt

ðγ⃗PÞ3
vP

rq
�

z3P2
1−z2P2

�
mt
Mt

ðγ⃗PÞ3
vP

0 0 −r mt
Mt

1 r
�

z2P1
1−z2P1

�
mt
Mt

ðγ⃗PÞ3
vP

q
�

zP2
1−z2P2

�
ðγ⃗PÞ3
vP

− ðγ⃗PÞ�1
vP

− ðγ⃗PÞ�2
vP

− ðγ⃗PÞ�3
vP

−r
�

1
1−z2P1

�
mt
Mt

ðγ⃗PÞ�3
vP

1 0

0 0 rqzP2
mt
Mt

ðγ⃗PÞ�3
vP

− qzP2
1−z2P2

ðγ⃗PÞ�3
vP

0 1

1
CCCCCCCCCCCCCCCA

r≡ sgnðyuu3Þ
�
M2

t − y2Sv
2
S

y2Sv
2
S

�
1=2

; q≡ ySvS
Mt

; zP1 ≡ sgnðyP2Þ
Mt

mu
P1

; zP2 ≡ sgnðyP2Þ
Mt

mu
P2

; ð30Þ

where we have dropped terms of Oðm2
t =M2

t Þ and higher. Note that each of the variables r, q, zP1, and zP2 are all Oð1Þ
parameters, if we assume that the portal scale vP is close to the heavy top partner mass scale vS. The result for the downlike
quarks is dramatically simpler, since we assume that the heavy b quark partner, unlike the top partner, is too massive to be
phenomenologically relevant. In this case, we simply have
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Ud
L ≈

0
B@

Wd
γ⃗P
vP

03×1

− γ⃗†PWd

vP
1 0

01×3 0 1

1
CA: ð31Þ

Having determined the relevant components of the left-handed rotation matrix Uu
L, we can follow an analogous procedure

for the right-handed rotation matrix Uu
R identified in Eq. (12). For the sake of brevity, we shall simply summarize the results

here. The right-handed fermion mass matrix is given (up to Oðγ⃗P;uÞ) by

MuM
†
u ¼

0
BBBBBBBBB@

y2Sv
2
S13×3 ySvSu 03×1 y2P2vPγ⃗P ySvSγ⃗u

ySvSu
y2uv2

2
þ u2 yuvffiffi

2
p yP1γ⃗P ySvSγ⃗u ðuþ Xu13×3Þγ⃗u

01×3
yuvffiffi
2

p yP1γ⃗
†
P y2P1v

2
P 0 yuvffiffi

2
p yP1vP

y2P2vPγ⃗
†
P ySvSγ⃗

†
u 0 y2P2v

2
P þ y2Sv

2
S XuySvS

ySvSγ⃗
†
u γ⃗†uðuþ Xu13×3Þ yuvffiffi

2
p yP1vP XuySvS

y2uv2

2
þ X2

u

1
CCCCCCCCCA
: ð32Þ

In the same framework as our treatment of Uu
L, we shall split the result into a matrix ðUu

RÞ0 which diagonalizes MuM
†
u

in the limit where γ⃗P;u → 0, and a matrix ðUu
RÞγ which provides the leading-order corrections due to the γ⃗P;u terms.

For ðUu
RÞ0, we arrive at

ðUu
RÞ0 ¼

0
BBBBBB@

−WucuηsgnðySyuuDÞ −WusuηsgnðuDÞ 03×1 03×1 03×1
−WusuηsgnðySyuuDÞ WucuηsgnðuDÞ 03×1 03×1 03×1

01×3 01×3 sgnðyP1Þ αR12sgnðyP2Þ αR13sgnðXuÞ
01×3 01×3 −αR12sgnðyP1Þ sgnðyP2Þ αR23sgnðXuÞ
01×3 01×3 −αR13sgnðyP1Þ −αR23sgnðyP2Þ sgnðXuÞ

1
CCCCCCA
;

cuη ≡ diagðcosðηu1Þ; cosðηu2Þ; cosðηu3ÞÞ; suη ≡ diagðsinðηu1Þ; sinðηu2Þ; sinðηu3ÞÞ;

cosðηui Þ ¼
�
M2

ui − y2Sv
2
S

M2
ui

�
1=2

; sinðηui Þ ¼ −
ySvS
Mui

sgnðuiÞ;

αR12 ≡ yuvffiffiffi
2

p
Xu

ðySvSÞðyP1vPÞ
ðy2P1 − y2P2Þv2P

; αR13 ≡ yuvffiffiffi
2

p
Xu

yP1vP
Xu

�
1 −

y2Sv
2
S

ðy2P1 − y2P2Þv2P

�
; α23

R ≡ ySvS
Xu

: ð33Þ

The sole nontrivial difference in the result of Eq. (33) and that of Eq. (23) is the introduction of sign flips (or rather, phase
rotations) of the right-handed quarks in order to ensure that the mass terms in the final action correspond to real positive
fermion masses—these rotations could have just as well been done in the left-handed sector, without altering the physical
results of the model. The leading perturbations to ðUu

RÞ0 arising from the γ⃗P;u terms of the mass matrix of Eq. (32) are then
given by

ðUu
RÞγ ¼

0
BBBBBBBB@

13×3 03×3 Δ⃗u
P1R Δ⃗u

P2R Δ⃗u
P3R

03×3 13×3 Δ⃗U
P1R Δ⃗U

P2R Δ⃗U
P3R

−Δ⃗u†
P1R −Δ⃗U†

P1R 1 0 0

−Δ⃗u†
P2R −Δ⃗U†

P2R 0 1 0

−Δ⃗u†
P3R −Δ⃗U†

P3R 0 0 1

1
CCCCCCCCA
; ð34Þ

where
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ðΔ⃗u
P1RÞi ¼

−ððyuvffiffi
2

p yP1suη − αR12y
2
P2vPc

u
ηÞW†

uγ⃗P − ðαR12ySvSsuη þ αR13ðySvScuη þ uDsuη þ XusuηÞÞW†
uγ⃗uÞi

ððmu
P1Þ2 −m2

uiÞsgnðyP1ySyuuiÞ

ðΔ⃗u
P2RÞi ¼

−ððαR12 yuvffiffi
2

p yP1suη þ y2P2vPc
u
ηÞW†

uγ⃗P þ ðySvSsuη − αR23ðySvScuη þ uDsuη þ XusuηÞÞW†
uγ⃗uÞi

ððmu
P2Þ2 − ðm2

uiÞÞsgnðyP2ySyuuiÞ

ðΔ⃗u
P3RÞi ¼

−ððαR13 yuvffiffi
2

p yP1suη þ αR23y
2
P2vPc

u
ηÞW†

uγ⃗u þ ðαR23ySvSsuη þ ySvScuη þ uDsuη þ XusuηÞW†
uγ⃗uÞi

ððmu
P2Þ2 −m2

uiÞsgnðXuySyuuiÞ

ðΔ⃗U
P1RÞi ¼

ððyuvffiffi
2

p yP1cuη þ αR12y
2
P2vPs

u
ηÞW†

uγ⃗P − ðαR12ySvScuη þ αR13ð−ySvSsuη þ uDcuη þ XucuηÞÞW†
uγ⃗uÞi

ððmu
P1Þ2 −M2

uiÞsgnðyP1uiÞ
;

ðΔ⃗U
P2RÞi ¼

ððαR12 yuvffiffi
2

p yP1cuη − y2P2vPs
u
ηÞW†

uγ⃗P þ ðySvScuη − αR23ð−ySvSsuη þ uDcuη þ XucuηÞÞW†
uγ⃗uÞi

ððmu
P2Þ2 −M2

uiÞsgnðyP2uiÞ
;

ðΔ⃗U
P3RÞi ¼

ððαR13 yuvffiffi
2

p yP1cuη − αR23y
2
P2vPs

u
ηÞW†

uγ⃗P þ ðαR23ySvScuη − ySvSsuη þ uDcuη þ XucuηÞW†
uγ⃗uÞi

ððmu
P3Þ2 −M2

uiÞsgnðXuuiÞ
: ð35Þ

In the same manner as the left-handed eigenvectors, the expressions in Eq. (35) simplify dramatically in the limit where the
mu

P3 quark and the heavy up and charm partners decouple from the theory. In this limit, we arrive at

ðΔ⃗u
P1RÞ3 ≈

mt

mu
P1

ðW†
uγ⃗PÞ3
vP

;

ðΔ⃗u
P2RÞi ≈ −sgnðyuySuiyP2Þ

�
M2

ui − y2Sv
2
S

M2
ui

�
1=2 ðW†

uγ⃗PÞi
vP

;

ðΔ⃗U
P1RÞ3 ≈ sgnðyuu3Þ

mu
P1mt

ðmu
P1Þ2 −M2

t

�
M2

t − y2Sv
2
S

y2Sv
2
S

�
1=2 ðW†

uγ⃗PÞ3
vP

;

ðΔ⃗U
P2RÞ3 ≈ sgnðyP2Þ

ðmu
P2Þ2

ðmu
P2Þ2 −M2

t

�
ySvS
Mt

� ðW†
uγ⃗PÞ3
vP

; ð36Þ

with all other Δ⃗ terms for the right-handed quarks being either numerically negligible or parametrizing mixing between the
extremely heavy fermions. We can then insert the results of Eq. (36) into Eq. (34) in order to derive the rotation matrix
ðUu

RÞγ , which when combined with ðUu
RÞ0 given in Eq. (33) will give us the mass eigenstates for the right-handed uplike

quarks in the model. As in the case of the left-handed diagonalization matrices, we shall restrict our attentions to the limit in
which only the SM quarks, the heavy top partner, and the two lighter portal matter fields mix among one another, with the
other much more massive additional fermions decoupled from the low-energy theory. Using the truncated flavor-space
vectors of Eq. (29), we can write

Uu
R ≈ N1

0
BBBBBBBBBBBBBBB@

1 0 0 0 0
ðγ⃗PÞ1
vP

0 1 0 0 0
ðγ⃗PÞ2
vP

0 0 qr q rq
�

z3P1
1−z2P1

�
mt
Mt

ðγ⃗PÞ3
vP

�
1−q2r2z2P2
1−z2P2

�
ðγ⃗PÞ3
vP

0 0 −q qr zP1
q

�
1−q2z2P1
1−z2P1

�
mt
Mt

ðγ⃗PÞ3
vP

r q2z2P2
1−z2P2

ðγ⃗PÞ3
vP

0 0 zP1
mt
Mt

ðγ⃗PÞ�3
vP

−r
�

zP1
1−z2P1

�
mt
Mt

ðγ⃗PÞ�3
vP

1 0

− ðγ⃗PÞ�1
vP

− ðγ⃗PÞ�2
vP

−qr ðγ⃗PÞ�3
vP

− q
1−z2P2

ðγ⃗PÞ�3
vP

0 1

1
CCCCCCCCCCCCCCCA

N2;

N1 ≡ diagð1; 1; 1; sgnðyuySÞ; 1; 1Þ; N2 ≡ diagð−sgnðu1ySyuÞ;−sgnðu2ySyuÞ;−1; 1; sgnðyP1Þ; sgnðyP2ÞÞ; ð37Þ
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up to Oðm2
t =M2

t Þ corrections, where r, q, zP1, and zP2 are
all defined as in Eq. (30). Considering the case of the
downlike quarks, where just as we did for Ud

L we have
assumed that the heavy b partner has decoupled from the
theory, we arrive at

Ud
R ≈

0
BB@

Wd 03×1
γ⃗P
vP

01×3 1 0

− γ⃗†PWd

vP
0 1

1
CCA

×

0
BB@

−sgnðySyddDÞ 03×1 03×1
01×3 sgnðyP1Þ 0

01×3 0 sgnðyP2Þ

1
CCA: ð38Þ

At this point, we have determined the rotation matrices
Uu
L and Uu

R necessary to diagonalize the uplike quark mass
matrix, and by trivial generalization, these results will also
give us the rotation matrices Ud

L;R needed to diagonalize
the downlike quark mass matrices. With this knowledge,
we can now comment briefly on how to ensure that this
construction reproduces the observed CKM matrix.
Considering Eq. (23) and its downlike equivalent, we
can see that in the limit where γ⃗P;u;d → 0, the CKM matrix
(as defined by the coupling matrix to the SM W boson,
which couples to the left-handed SM quarks but not their
heavy partners) is approximately given by

VCKM ¼ cuρW
†
uWdcdρ; ð39Þ

where we remind the reader thatWu andWd are the unitary
matrices which diagonalize the Hermitian matrices u and d
(as defined in Eq. (13) for u, with an analogous expression
for d) respectively. Since cuρ ≈ cdρ ≈ 1 up to Oðm2

q=M2
qÞ

corrections (where q ¼ u; d; s; c; b; t), the CKMmatrix can
be well-approximated as W†

uWd, or in other words, by
specifying u and d such that the clash of their diagonal-
ization matrices matches the observed CKM.
Our recipe for reconstructing the quark sector in this

construction is therefore compete, and it is useful at this
point to take stock of the parameters which we may freely
specify while still producing SM quark masses and mixings
consistent with observation. First, we recall that there are
two SUð4ÞF adjoint scalars in the model, ΦA and ΦB, with
vevs that we can write hΦAi and σ2=2 ⊗ hΦBi. Then, we
can use SUð4Þ freedom to work in a basis in which the
combination yAhΦAi þ yBhΦBi is diagonal, which we can
see from the action in Eq. (8) results in γu ¼ 0 and
u ¼ uD ¼ diagðu1; u2; u3Þ. Then, we have VCKM ≈Wd,
that is, the rotation matrix to diagonalize d is uniquely
determined by the need to recreate the CKM matrix
(Wu is, of course, simply the identity matrix in this basis).
Turning to quark masses, we note that if we specify
yu ≡ yH cosðα − βÞ ∼Oð1Þ, yd ≡ yH sinðαþ βÞ ∼Oð1Þ,

and ySvS ∼ 1 TeV, Eqs. (18) and (33) uniquely determine
the eigenvalues of u and d up to a sign, and therefore also
give us the masses of the heavy partner quarks and the
mixing angles ρu;d1;2;3 and ηu;d1;2;3. If we additionally specify
yP1 ∼ 1, yP2 ∼ 1, vP ≳ 1 TeV, and the mass term M [as
seen in Eqs. (8), (11), and (13)], we can then specify the
masses and mixings of the portal matter fermions (that is,
those that consist primarily of fields with nonzero charge
under Uð1ÞD). Notably, in our present construction, the
masses of the some of the portal matter fermions are
degenerate between the up- and down-quark sectors (spe-
cifically, mu

P1 ¼ md
P1 and mu

P2 ¼ md
P2) up to radiative

corrections. In practice, we might expect such a relation
to not hold precisely, due to differing renormalization group
evolution of the Yukawa couplings yP1;2 to the up- and
downlike sectors, but for the purposes of our simple
numerical study we shall take this relation at face value.
The sole remaining parameters we may specify are the
Uð1ÞD-breaking terms, in form of the complex vectors
γ⃗P;d ≲ 1 GeV (recalling that in our basis, γ⃗u ¼ 0), which in
turn give us the effects of mixing between states of different
Uð1ÞD charge, as parametrized in Eqs. (26) and (35).
In summary, then, we can generate a point in the model

parameter space that produces the observed quark masses
and mixings by specifying the Oð1Þ real parameters yH,
yP1, yP2, as well as ySvS, the angles α and β, the real vevs
vP, vS ≳ 1 TeV, and the complex Uð1ÞD-breaking vevs γ⃗P
and γ⃗d. Altogether, these selections generate a unique point
in parameter space up to the signs of the eigenvalues of the
matrices u and d.
Having addressed the quark sector, we move on to

discussing the lepton sector of the theory. Notably, because
none of the scalars introduced thus far break the group
SUð4Þc, the Yukawa couplings in Eq. (8) do not account
for any discrepancy between downlike quark and charged
lepton masses at tree level. However, because we have
already assumed that the scale for SUð4Þc breaking is
incredibly high (and indeed must be, due to constraints on
processes mediated by new SUð4Þc gauge bosons), we can
assume that discrepancies between the charged lepton and
downlike quark masses are due to significant renormaliza-
tion group effects. Specifically, we can posit differing
running of the couplings yA, yB, and yH, as well as the
mass term M, for color triplets versus singlets. In practice,
the task of generating a specific numerical realization of the
leptonic Yukawa couplings necessary to reproduce the
observed charged lepton spectrum (consistent with the
vev structure necessary to reproduce the SM quark masses
and CKM matrix) is analytically onerous and not terribly
enlightening. However, we can expect that the effect of the
specific realization of the charged lepton sector is largely
phenomenologically irrelevant: Because the spectrum of
charged leptons resembles that of the downlike quarks
(at least in order of magnitude), it suffices here to point out
that such a realization is almost certainly achievable with
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choices of leptonic yA, yB, yH, and M of roughly the
same order of magnitude as those for the downlike quark
sector, as would be consistent with RG evolution.
Phenomenologically, then, we would expect that the
SUð3ÞF heavy partner leptons here are too heavy to be
realistically producible in existing and currently planned
collider experiments, like their counterparts in the downlike
quark sector. Therefore, the only potentially accessible new
fermions arising from the charged leptons would be the
SUð3ÞF singlet portal matter fields, specifically those
which should have masses of OðTeVÞ. However, due to
their lack of color charge, experimental constraints on their
production at the LHC are somewhat weaker than those of
the quark portal matter fields with comparable masses, so
we shall not address their phenomenology in detail here.
Meanwhile, the neutrino sector within this model

presents substantial additional challenges. In particular,
the tiny neutrino masses ∼0.1 eV and near-maximal
neutrino flavor mixings are in general inconsistent with
any sort of high-energy degeneracy with the uplike quark
sector broken by renormalization group running, as the
Yukawa couplings in Eq. (8) suggest. However, there do
exist extensions of the model that can account for this
discrepancy. For example, including scalars in the repre-
sentations (15; 1; 1; 15; 0), (15; 1; 3; 15; 0), (15; 1; 1; 1; 0)
and/or (15; 1; 3; 1; 0) could allow for dramatically different
Yukawa couplings and mixings between the quark and
lepton sectors, at the expense of a yet larger scalar sector
and extreme fine-tuning to reproduce the tiny neutrino
masses. Alternatively, the introduction of a scalar in the
representation ð10; 1; 3; 10;−1=2Þ with the appropriate vev
would permit the inclusion of a large Majorana mass for the
right-handed SUð3ÞF triplet neutrinos, which would in turn
suppress the SM neutrino masses via a seesaw mechanism.
In both of these scenarios, the extension of the scalar sector
would also result in substantial additional contributions to
the masses of the new SUð3ÞF gauge bosons—given the
fact that the SM neutrino masses are so small, its even
probable that given these setups the vevs of some of these
scalars would dominate the mass terms of the gauge
bosons. Given the model-building ambiguity here and
the substantial complexity that such considerations would
introduce, however, we determine that a full exploration of
potential ways to realize the neutrino mass spectrum and
mixing within this framework is beyond the scope of our
present work. In our discussion of the gauge boson masses
in Sec. II D, however, we shall note that even in the absence
of any additional mass terms which might arise from added
scalar content to the model, the new gauge bosons
associated with the SUð3ÞF symmetry will be extremely
heavy, with only one of these bosons approaching a low
enough mass scale to have a potentially observable
effect even in highly constrained measurements of flavor-
changing neutral currents. As a result, we can expect that
any modifications to the model setup that must be made to

accommodate the neutrino masses and mixings should have
a minimal effect on the experimentally observable new
physics in the model considered here.

D. Gauge boson spectrum

Having selected our scalar vacuum expectation values
such that the SM quark masses and mixings can be
faithfully recreated, we now turn to how these selections
will generate masses for the new gauge bosons in the
theory. As noted in Sec. II B, we shall assume for the sake
of simplicity that the Pati-Salam symmetry group,
SUð4Þc × SUð2ÞL × SUð2ÞR, is broken down to the SM
gauge group SUð3Þc × SUð2ÞL × Uð1ÞY at a significantly
higher energy scale than any of the symmetry breakings of
the group SUð4ÞF × Uð1ÞF. While this is certainly feasible,
we do also note that even if that assumption is dropped, the
SUð2ÞR symmetry must still be broken at a scale much
higher than is presently observable, due to the vev of the
field ΦB ∼ ð1; 1; 3; 15; 0Þ, which we can estimate from our
results in Sec. II C will break this symmetry at a scale of
roughly ∼108 GeV. Assuming that the new gauge bosons
associated with the Pati-Salam extension to the SM are too
heavy to be relevant, we turn to the mass matrices of the
gauge bosons corresponding to the SUð4ÞF × Uð1ÞF gen-
erators. In this case, the squared mass matrix of the 16
gauge bosons here takes the form,

M2
G ¼

� g24MSUð4Þ 3
2
g4g1M⃗SUð4Þ×Uð1Þ

3
2
g4g1M⃗

T
SUð4Þ×Uð1Þ 9

8
g21jhΦPij2

�
;

ðMSUð4ÞÞij≡−2ðTr½½ti; hΦAi�½tj; hΦAi��
þTr½½ti; hΦBi�½tj; hΦBi��Þ
þ hΦPi†fti; tjghΦPi;

ðM⃗SUð4Þ×Uð1ÞÞi≡ hΦPi†tihΦPi; ð40Þ

where g4 and g1 are the SUð4ÞF and Uð1ÞF coupling
constants respectively, ½A; B� denotes the commutator of A
and B, fA;Bg denotes the anticommutator, and ti denotes
the ith generator matrix for the fundamental representation
of the group SUð4Þ, in the basis described in the Appendix.
Note that here, MSUð4Þ is a 15 × 15 real symmetric matrix,

while M⃗SUð4Þ×Uð1Þ is a 15-component real vector, and both
of these terms have dimensions of mass squared.
Referring to Eq. (40), our first task to determine the mass

eigenstates of SUð4Þ ×Uð1Þ gauge bosons is to determine
what the vevs hΦAi and hΦBi are, given our requirements
that the SM quark masses and mixing matrices are properly
reproduced. To that end, we consider the combinations of
ΦA andΦB that are coupled to the up- and downlike quarks,
referring to Eq. (11) and several useful variable definitions
in Eq. (13). Comparing these to the vevs of ΦA and ΦB as
given in Table II, we arrive at
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�
uD 03×1
01×3 Xu

�
¼ yA

� hAi γ⃗A

γ⃗†A −Tr½hAi�

�
þ yB

� hBi γ⃗B

γ⃗†B −Tr½hBi�

�
þM14×4;

�
V†
CKMdDVCKM γ⃗d

γ⃗†d Xd

�
¼ yA

� hAi γ⃗A

γ⃗†A −Tr½hAi�

�
− yB

� hBi γ⃗B

γ⃗†B −Tr½hBi�

�
þM14×4; ð41Þ

where we remind the reader that we can use SUð4Þ gauge freedom to work in a basis where u is diagonal and γ⃗u ¼ 0, as we
have done in Sec. II C, and that VCKM is the CKM matrix. We recall that in that section, the procedure we developed to
produce a point in parameter space that recreates the SM quark masses and mixings already leaves us with uD, dD, and M
specified. Then, simply selecting the Yukawa couplings yA and yB here will allow us to uniquely determine the matrices hAi
and hBi, as well as the vectors γ⃗A and γ⃗B. Specifically, we have

hAi ¼ 1

2yA
ðuD þ V†

CKMdDVCKM − 2MÞ; hBi ¼ 1

2yB
ðuD − V†

CKMdDVCKMÞ; γ⃗A ¼ 1

2yA
γ⃗d; γ⃗B ¼ −

1

2yB
γ⃗d: ð42Þ

Hence, given a construction which generates the SM quark masses and mixings, we now can readily determine the
necessary vevs hΦAi and hΦBi by only specifying two additional parameters, the Yukawa couplings yA and yB. With this
information, we can now discuss the spectrum of the gauge bosons which results. In general, the eigenvalues of the mass
matrix in Eq. (40) are highly complicated expressions and difficult to present in a compact closed form. However, we
can avail ourselves of the hierarchies present between eigenvalues of uD and d, as well as the nearly diagonal form of the
CKMmatrix, in order to dramatically simplify matters. Specifically, we will employ the Wolfenstein parametrization of the
CKM matrix,

0
B@

1 − λ2

2
− λ4

8
λ Aλ3ðρ − iηÞ

−λ 1 − λ2

2
− ð1þ 4A2Þ λ4

8
Aλ2

−Aðρþ iη − 1Þλ3 −Aðλ2 þ λ4

2
ð2ðρþ iηÞ − 1ÞÞ 1 − A2λ4

2

1
CA;

λ ¼ 0.22453; A ¼ 0.836; ρ ¼ 0.122; η ¼ 0.355; ð43Þ

and note that, numerically, the eigenvalues of uD and d
(u1−3 and d1−3, respectively) satisfy u2 ∼ λ4u1, u3 ∼ λ8u1,
d2 ∼ λ2d1, and d3 ∼ λ4d1 for values of these parameters that
reproduce the SM quark masses. By rewriting Eq. (40)
using the identities in Eq. (42), and making the substitu-
tions u2 → λ4υ2, u3 → λ8υ3, d2 → λ2δ2, and d3 → λ4δ3,
where u1 ∼ d1 ∼ υ2 ∼ δ2 ∼ υ3 ∼ δ3, we can determine an
approximate hierarchy between gauge boson mass eigen-
values by expanding in the parameter λ. To start, we note
that 13 of the gauge bosons acquire masses that are
generally in excess of any currently observable energy
scale. In particular, we find that 10 gauge bosons possess
masses that are of Oðu1; d1Þ ∼ 108 GeV, while three more
have masses of Oðλ2u1; λ2d1Þ ∼ 107 GeV. Even more
conveniently, the gauge bosons which acquire masses at
these scales correspond to the operators facilitating the
most constrained flavor-changing effects, those involving
light quarks: These gauge bosons in fact must develop high
masses, because the scales of the scalar vevs which
contribute to these operators are ultimately set by the
masses of the light quarks’ seesaw partners, which dictate
how we constructed our scalar vevs. As we have seen in
Sec. II C, these masses are enormous, and therefore in our

construction the masses of the gauge bosons which couple
to the light quarks must be similarly large.
For particles at the scale of these heavy bosons (around

107−8 GeVÞ, the only even remotely observable effects
stem from the imaginary part of effective 4-quark operators
that facilitate K0 − K0 mixing [25,26]. However, from the λ
expansions outlined above, it can be seen that effects which
give a nontrivial phase to the coefficients of these 4-quark
operators only appear at theOðλ3Þ level or higher. Since the
masses of the potentially offending gauge bosons are
already near the limit of the sensitivity of this tree-level
probe, this essentially rules out any observable effect from
the heavy bosons. Given that any observable signatures of
these bosons are likely well outside the sensitivity of any
experiment, we can shift our attention to the three remain-
ing gauge bosons that acquire mass at a far lower scale.
The first of these, which we shall refer to as ZF (the

“flavor Z”), consists almost entirely of a combination of the
generators of the SUð3ÞF group embedded in SUð4ÞF
[corresponding to the first eight ti generators, and the
first eight rows/columns of the mass matrix in Eq. (40)], up
to numerically negligible corrections due to γ⃗d;P terms.
There does not exist a compact numerically accurate
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approximation for the mass of ZF. However, expanding
in the Wolfenstein parameter λ as above yields the result
that mZF

∼Oðλ4d1; λ4u1Þ ∼ 105 GeV. While this initially
seems quite large, we note that a boson of this mass may
still mediate observable tree-level flavor-changing neutral
currents [15,26,27]. As such, it behooves us to determine
how ZF couples to the quarks, and crucially what flavor-
changing interactions it can mediate. Expanding Eq. (40) in
the Wolfenstein parameter λ offers an appealing approxi-
mate expression for the relevant combinations of generators
corresponding to this state. Specifically, up to Oðλ2Þ,
the SUð4ÞF generator combination corresponding to ZF
becomes

Oðλ7Þt1 þOðλ7Þt2 þOðλ4Þt3 þOðλ5Þt4 þOðλ5Þt5
þ

ffiffiffi
3

p
Aλ2ðρ − 1Þt6 þ

ffiffiffi
3

p
Aλ2ηt7 þ t8: ð44Þ

Consulting the explicit form of the generator matrices ti in
Appendix, we see that ZF only mediates significant flavor-
changing neutral currents between the second and third
generations—in both the up- and downlike sectors, flavor-
changing neutral currents featuring the first generation of
quarks only appear at the Oðλ5Þ ∼ 10−4 level, at most. Our
chief phenomenological concern regarding ZF, then, is the
constraint arising from tree-level flavor-changing neutral
currents that it mediates between the second and third
generation of quarks. We shall discuss phenomenological
constraints arising from this type of interaction in Sec. IV B 2.
The next two light gauge bosons we consider will arise

from the generators that are left unbroken by hΦAi and
hΦBi, at least in the approximation where γ⃗d → 0. In
particular, we see that in the limit where γ⃗d;P → 0, hΦAi
and hΦBi break SUð4ÞF ×Uð1ÞF down to Uð1Þ0F ×Uð1ÞF,
where the generator for Uð1Þ0F is given by the matrix t15.
In the limit where γ⃗P → 0, the scalar hΦPi ¼ ðγ⃗P; vPÞ
breaks Uð1Þ0F ×Uð1ÞF down to Uð1ÞD at the scale
vP ∼ 1–10 TeV. The γ⃗d and γ⃗P terms then finally break
the Uð1ÞD symmetry at ∼0.1–1 GeV. The two mass
eigenstates we consider here, then, will be well-approxi-
mated as combinations of the Uð1ÞF and Uð1Þ0F bosons,
with one achieving a mass of OðvPÞ ∼ 1–10 TeV, the scale
at which Uð1Þ0F ×Uð1ÞF breaks down to Uð1ÞD, and the

other achieving mass only at the scale where Uð1ÞD is
broken, at approximately 0.1–1 GeV. Referring to Eq. (40),
we see that in the limit where γ⃗d;P → 0, the squared mass
matrix for the eventual mass eigenstates, ZP and AD (i.e.,
the dark photon), becomes

ðB0 B Þ

0
BB@

3g2
4
v2P
4

−
ffiffi
3
2

q
3g4g1v2P

4

−
ffiffi
3
2

q
3g4g1v2P

4

9g2
1
v2P
8

1
CCA
�
B0

B

�
; ð45Þ

where B and B0 refer to the Uð1ÞF and Uð1Þ0F gauge
bosons, respectively. It is convenient to define an angle θP
such that g1 ¼

ffiffiffiffiffiffiffiffi
2=3

p
g4 tan θP. Then, we may write the

mass squared matrix as

3g24v
2
P

4
ðB0 B Þ

�
1 − tan θP

− tan θP tan2θP

��
B0

B

�
: ð46Þ

The mass eigenstates for these gauge bosons can then be
easily determined, up to Oðγ⃗2P;d=v2PÞ ∼ 10−4 corrections.
Given the definition of θP we have provided, we see that the
eigenstates are simply

AD ≈ B0sP þ BcP; ZP ≈ B0cP − BsP; ð47Þ

where AD refers to the dark photon, with a mass of
∼0.1–1 GeV, while ZP refers to the heavier gauge boson,
a dark “portal Z,”withOðvPÞmass. Here we have also used
the abbreviations cP ≡ cos θP and sP ≡ sin θP, which for
simplicity we shall also employ going forward.
The masses of AD and ZP can also be straightforwardly

determined. In the case of ZP, we can directly extract the
mass from the mass matrix of Eq. (46), arriving at

m2
ZP

≈
3g24v

2
P

4c2P
; ð48Þ

which is accurate up to numerically negligible Oðγ⃗2P;d=v2PÞ
corrections. Meanwhile, the mass of the dark photon can be
given up to Oðλ2Þ ∼Oð10−2Þ corrections by

m2
AD

≈
2g24s

2
P

3

�
7

8
ðγ⃗�P · γ⃗PÞ þ μAD

1 ðγ⃗�d · γ⃗dÞ þ μAD
2 jðγ⃗dÞ1j2

�
;

μAD
1 ≡ 4ð4M − u1Þ2

y2Aðd1 − u1Þ2 þ y2Bðd1 þ u1 − 8MÞ2 ;

μAD
2 ≡ 16Mðd1 − u1Þðy2Aðd1 − u1Þð−3M þ u1Þ þ y2Bðð−4M þ u1Þ2 −Mu1 þ d1ð−3M þ u1ÞÞÞ

ðy2Aðd1 − u1Þ2 þ y2Bðd1 þ u1 − 8MÞðd1 þ u1 − 4MÞÞ2 þ 16y2Ay
2
BM

2ðd1 − u1Þ2
; ð49Þ

where to arrive at this expression, we have exploited the fact that d1, u1 ≫ d2;3, u2;3, vP. At this point, we have obtained the
masses and eigenvectors for the three new gauge bosons that may be phenomenologically relevant—namely, the SUð3ÞF
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boson ZF with a mass of Oð105 GeVÞ, the “portal Z” field
ZP with a mass roughly of Oð1 TeVÞ, and the dark photon
field AD, with a mass of Oð0.1–1 GeVÞ.

III. COUPLINGS, KINETIC MIXING, AND
LOW-ENERGY PARAMETERS

Before computing the observable experimental signa-
tures of this setup, it is useful to explicitly determine the
couplings between various phenomenologically relevant
particles in the model. In particular, in light of our
discussion of the fermion spectrum in Sec. II C, we shall
focus on the SM and new physics gauge boson and scalar
couplings of the SM fermions, the portal matter fermions,
and the heavy top partner.

A. SUð4ÞF × Uð1ÞF gauge bosons

We begin our discussion by deriving the couplings of the
new gauge bosons that arise in our setup due to our
SUð4ÞF ×Uð1ÞF extension of the SM gauge group. In
Sec. II D, we have determined that only three of the new
gauge bosons are sufficiently light so as to have observable
phenomenological effects: A (comparatively) light SUð3ÞF
boson that we have dubbed ZF, with a mass of roughly
Oð105 GeVÞ, a portal Z field with a mass ofOð1–10 TeVÞ,
which we denote as ZP, and a dark photon, AD, with a mass
of approximately Oð0.1–1 GeVÞ.
To start, we consider the couplings of the dark photon AD

to the fermions of the theory before KM takes place. In the
limit where γ⃗P;d → 0, the dark photon is given as a simple
combination of two Uð1Þ bosons, described in Eq. (47). In
fact, the results of Eq. (47) are exceedingly numerically
accurate, even once contributions from γ⃗P;d terms are
included: Mixing between AD, the gauge boson ZP, and
the gauge bosons corresponding to the SUð3ÞF embedded
in SUð4ÞF only occurs at second order in the quantities γ⃗P;d,
and is hence numerically negligible, while mixing between
AD and the gauge bosons corresponding to the other
SUð4ÞF generators is suppressed by the latter’s enormous
masses—in Sec. II D, we found these to be of
Oð107−8Þ GeV. Thus, we can use the combinations given
in Eq. (47) to derive the couplings of AD and ZP without
concerning ourselves with any additional complicating

effects. Noting that the B0 boson corresponds to the 15th
generator of SUð4ÞF (t15, as listed in Appendix), and B is
simply the Uð1Þ0F boson, we can straightforwardly find a
coupling matrix by writing the fermions as 9-dimensional
vectors in flavor space, as in Eq. (10). We find that for
uplike and downlike quarks, charged leptons, and neutrinos
(at least ignoring any extra structure the model may need to
accommodate neutrino flavor phenomenology), the dark
photon couplings are given by

g4

ffiffiffi
2

3

r
sPðCu;d;e;ν

AD
ÞL;R

¼−g4

ffiffiffi
2

3

r
sPU

u;d;e;ν†
L;R

0
B@
03×3 03×3 03×3
03×3 03×3 03×3
03×3 03×3 13×3

1
CAUu;d;e;ν

L;R ; ð50Þ

where we have used the fact that the Uð1ÞF coupling
constant, g1, is given in terms of the SUð4ÞF coupling
constant by the relation g1 ¼

ffiffiffiffiffiffiffiffi
2=3

p
g4 tan θP. The overall

negative sign in this expression is simply an artifact of the
sign conventions we have selected for the definitions of
Uð1ÞF and Uð1ÞD. At this point, we have omitted the
additional couplings arising from kinetic mixing with the
SM hypercharge field as noted earlier—these will introduce
shifts of eϵQ19×9 to the above expression, where e is the
proton charge, ϵ is the kinetic mixing parameter and Q is
the electric charge of the given field. While these shifts are
obviously significant in dark matter phenomenology, since
they encapsulate the means by which, for example, a dark
matter field might annihilate to form SM particles, they are
of less importance to us when considering other constraints
here: Because the eϵQ shift is always proportional to the
identity matrix for a given fermion electric charge, it does
not facilitate flavor-changing neutral currents or portal
matter decay to SM particles. Restricting our attention to
only fermions which are light enough to be phenomeno-
logically relevant, namely the SM quarks, the heavy top
partner, and the lightest two portal matter fields in each
sector, we can rewrite the coupling matrices using the
truncated flavor vectors of Eq. (29). In the uplike quark
sector, we arrive at the truncated coupling matrices
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ðCu
AD
ÞL ≈

0
BBBBBBBBBBBBB@

0 − ðγ⃗PÞ1
vP

0

ðCu
AD
ÞSML 0 − ðγ⃗PÞ2

vP
0

0 − ðγ⃗PÞ3
vP

qrzP2
mt
Mt

ðγ⃗PÞ3
vP

0 0 0 0 − r
ð1−z2P1Þ

mt
Mt

ðγ⃗PÞ3
vP

− qzP2
1−z2P2

ðγ⃗PÞ3
vP

− ðγ⃗PÞ�1
vP

− ðγ⃗PÞ�2
vP

− ðγ⃗PÞ�3
vP

− r
ð1−z2P1Þ

mt
Mt

ðγ⃗PÞ�3
vP

1 0

0 0 qrzP2
mt
Mt

ðγ⃗PÞ�3
vP

− qzP2
1−z2P2

ðγ⃗PÞ�3
vP

0 1

1
CCCCCCCCCCCCCA
;

ðCu
AD
ÞR ≈N2

0
BBBBBBBBBBBBB@

0 0
ðγ⃗PÞ1
vP

ðCu
AD
ÞSMR 0 0

ðγ⃗PÞ2
vP

0 −zP1
mt
Mt

ðγ⃗PÞ3
vP

qr ðγ⃗PÞ3
vP

0 0 0 0 − rzP1
ð1−z2P1Þ

mt
Mt

ðγ⃗PÞ3
vP

− q
1−z2P2

ðγ⃗PÞ3
vP

0 0 −zP1
mt
Mt

ðγ⃗PÞ�3
vP

− rzP1
ð1−z2P1Þ

mt
Mt

ðγ⃗PÞ�3
vP

1 0

ðγ⃗PÞ�1
vP

ðγ⃗PÞ�2
vP

qr ðγ⃗PÞ�3
vP

− q
1−z2P2

ðγ⃗PÞ�3
vP

0 1

1
CCCCCCCCCCCCCA
N2;

ðCu
AD
ÞSML ≡ ðγ⃗P ⊗ γ⃗†PÞ

v2P
; ðCu

AD
ÞSMR ≡

0
BBBBB@

jðγ⃗PÞ1j2
v2P

ðγ⃗PÞ1ðγ⃗PÞ�2
v2P

qr ðγ⃗PÞ1ðγ⃗PÞ�3
v2P

ðγ⃗PÞ2ðγ⃗PÞ�1
v2P

jðγ⃗PÞ2j2
v2P

qr
ðγ⃗PÞ2ðγ⃗PÞ�3

v2P

qr ðγ⃗PÞ3ðγ⃗PÞ�1
v2P

qr ðγ⃗PÞ3ðγ⃗PÞ�2
v2P

q2r2 jðγ⃗PÞ3j2
v2P

1
CCCCCA; ð51Þ

where q, r, zP1, and zP2 are defined as in Eq. (30), andN2 is
defined as in Eq. (37). The downlike quark sector, mean-
while, has its truncated coupling matrices given by

ðCd
AD
ÞL ≈

0
BBB@

ðW†
d γ⃗PÞ⊗ðγ⃗†PWdÞ

v2P
−W†

d γ⃗P
vP

03×1

− γ⃗†PWd

vP
1 0

01×3 0 1

1
CCCA;

ðCd
AD
ÞR ≈

0
BBB@

ðW†
d γ⃗PÞ⊗ðγ⃗†PWdÞ

v2P
03×1 −W†

d γ⃗P
vP

01×3 1 0

− γ⃗†PWd

vP
0 1

1
CCCA; ð52Þ

where we remind the reader that Wd is the unitary matrix
first described in Eq. (13), and that in the SUð4ÞF basis we
have chosen, Wd is equal to the CKM matrix. The
corresponding coupling matrix for the charged leptons
can be given in complete analogy to Eq. (52), with the
sole exception that the matrix Wd must be replaced by the
appropriate rotation matrix given the lepton couplings to
the scalars ΦA and ΦB.

In I and II, it was seen that in the event that the
portal matter mixes with electrons, there exists a parity-
violating interaction of the right-handed electrons with
the dark photon field. Consulting Eq. (52), we observe
that the analogous terms emerge at the Oðγ⃗2P=v2PÞ level,
however, they occur identically for the right- and left-
handed fields (at least up to corrections due to the super-
heavy fermions that we have omitted from our truncated
coupling matrices). As a result, no such parity-violating
interaction occurs in this model, in contrast to those of I
and II. Generically, this can be expected to be the case
due to the more left-right symmetric form of the model:
The left-handed electrons receive a chiral correction
from their coupling from the SUð2ÞL doublet portal
matter, while the right-handed ones receive the same
correction from SUð2ÞL singlet portal matter. The cou-
plings in the neutrino sector may be qualitatively similar
to those that we have already explored, however, we note
that the recreation of light neutrino masses and the
observed mixing matrix will likely require significant
modifications to the neutrino mass matrix, which are
beyond the scope of this paper. Notably, we have
retained Oðγ⃗2P=v2PÞ terms in the components of
Eqs. (51) and (52) which correspond to mixing among
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the SM quarks.5 In spite of their minute magnitude, with
γ⃗P=vP ∼ 10−ð3−4Þ, we have kept them here because they
facilitate highly constrained flavor-changing neutral cur-
rents mediated by the extremely light AD boson. In
Sec. IVA, we shall in fact derive significant nontrivial
constraints on the model parameter space from these
interactions. We do note in passing that similar Oðγ⃗2P=v2PÞ
terms exist elsewhere in Eqs. (51) and (52), however, we
have omitted them here since they have a negligible effect
on any observable physics.
Apart from the flavor-changing interactions we observe in

the SM, the dark photon also facilitates Oðγ⃗P=vPÞ inter-
actions between the portal matter fermion fields and those
uncharged under Uð1ÞD, namely the SM quarks and the
heavy toppartner. Inpractice, due toAD’s tinymass compared
to other gauge bosons in the theory, these interactions make
meaningful contributions to a number of interesting proc-
esses; most notably, they dominate the decay of portal matter
to an SM quark, or the decay of a top partner to portal matter
(or vice versa, depending on which process is kinematically
allowed). The presence of these couplings for the extremely

light dark photon field can substantially simplify our later
discussions of the couplings of heavier gauge bosons:
From the equivalence theorem [23], and the fact that
jγ⃗Pj ∼mAD

∼ 0.1–1 GeV, we would anticipate that the over-
all strength of the AD-facilitated interaction between portal
and nonportal matter would undergo a substantial enhance-
ment over what the γ⃗P=vP suppression in its coupling would
suggest, since this suppression would be canceled bymAD

(at
least for the longitudinal mode of AD). Since obviously such
an enhancement does not exist for γ⃗P=vP-suppressed cou-
plings for heavier gauge bosons, which in turn mediate the
same Uð1ÞD-breaking couplings as we see emerging from
AD, we therefore can omit a detailed evaluation ofOðγ⃗P=vPÞ-
suppressed effects in the couplings of ZF, ZP, the SM
electroweak gauge bosons and the SM-like Higgs; in all
cases we consider, these effects are overwhelmed by those
arising from AD.
We next turn to the couplings for the “portal Z” boson,

ZP. Again referencing Eq. (47), this time to get the
approximate mass eigenvector for ZP, we arrive at the
coupling matrices

−
g4

2
ffiffiffi
6

p
cP

ðCu;d;e;ν
ZP

ÞL ¼ −
g4

2
ffiffiffi
6

p
cP

Uu;d;e;ν†
L

0
BBB@

16×6 06×1 06×1 06×1
01×6 1 − 4c2P 0 0

01×6 0 4s2P 0

01×6 0 0 1 − 4c2P

1
CCCAUu;d;e;ν

L ;

−
g4

2
ffiffiffi
6

p
cP

ðCu;d;e;ν
ZP

ÞR ¼ −
g4

2
ffiffiffi
6

p
cP

Uu;d;e;ν†
R

0
BBB@

16×6 06×1 06×1 06×1
01×6 4s2P 0 0

01×6 0 1 − 4c2P 0

01×6 0 0 1 − 4c2P

1
CCCAUu;d;e;ν

R : ð53Þ

We can then determine what the couplings are for the quarks that are light enough to remain phenomenologically relevant,
as we have already done for AD, by inserting our results for U

u;d
L;R from Eqs. (30), (31), (37), and (38) into Eq. (53). In fact, up

to Oðγ⃗P=vPÞ corrections, which we note are negligible compared to similar interactions arising from AD, we find that we
can write the truncated coupling matrices as

ðCu
ZP
ÞL ≈ diagð1; 1; 1; 1; 1 − 4c2P; 4s

2
PÞ;

ðCu
ZP
ÞR ≈ diagð1; 1; 1; 1; 4s2P; 1 − 4c2PÞ;

ðCd;e
ZP
ÞL ≈ diagð1; 1; 1; 1 − 4c2P; 4s

2
PÞ;

ðCd;e
ZP
ÞR ≈ diagð1; 1; 1; 4s2P; 1 − 4c2PÞ; ð54Þ

where we have noted that in the absence of corrections due to mixing with heavy partner states and γ⃗P terms, the coupling
matrix for charged leptons here is the same as that for downlike quarks. We shall not explicitly determine the coupling
matrices in the neutrino sector in this work. As noted at the end of Sec. II C, a realistic neutrino mass matrix in this model

5In spite of the fact that our expressions for Uu
L;R and for AD’s mass eigenvector are only valid up to Oðγ⃗P=vPÞ, these expressions (at

least for flavor-changing interactions, which are of phenomenological interest here) are numerically valid, because the Oðγ⃗2P=v2PÞ
corrections to the matrices Uu

L;R do not contribute to theOðγ⃗2P=v2PÞ flavor-changing couplings in the SM, and we shall see that the gauge
boson ZP, which may mix with AD at the Oðγ⃗2P=v2PÞ level, has SM flavor-universal couplings up to Oðγ⃗P=vPÞ corrections.
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would likely involve vacuum expectation values of still
more additional SUð4ÞF ×Uð1ÞF scalars, which would
complicate the already highly intricate structure of the
model while remaining unlikely to influence most of the
new physics at an experimentally observable scale.
We finally address couplings which arise from the gauge

boson ZF, the “flavor Z” that represents the only gauge
boson from the SUð3ÞF flavor symmetry which possesses a
low enough mass to have some phenomenological impact.
Consulting Eq. (44), we see that the coupling matrix for this
gauge boson may be written,

g4
2
ffiffiffi
3

p ðCu;d;e;ν
ZF

ÞL;R

¼ g4
2
ffiffiffi
3

p Uu;d;e;ν†
L;R

0
B@

Λ3×3 03×3 03×3
03×3 Λ3×3 03×3
03×3 03×3 03×3

1
CAUu;d;e;ν

L;R ;

Λ≡
0
B@

1 0 0

0 1 3Aλ2ðρ − iη − 1Þ
0 3Aλ2ðρþ iη − 1Þ −2

1
CA; ð55Þ

where we remind the reader that A, λ, ρ, and η are the
Wolfenstein parameters. Notably, ZF couples to SM fields
and their heavy partners equivalently, and as such does not
facilitate any couplings between them. However, we see
that this gauge boson can produce flavor-changing neutral
currents in the SM quark sector. Focusing on this possibil-
ity, we consider what the coupling matrices for the SM
quarks look like in our setup, arriving at

ðCu
ZF
ÞSML;R¼Λ;

ðCd
ZF
ÞSML;R¼W†

dΛWd≈

0
B@
1 0 0

0 1 3Aλ2ðρ− iηÞ
0 3Aλ2ðρþ iηÞ −2

1
CA;

ð56Þ

where to derive the expression for ðCd
ZF
ÞSML;R, we have used

the fact that Wd is simply given by the CKM matrix, and
used the Wolfenstein parametrization of the CKM given in
Eq. (43), keeping terms up to Oðλ2Þ. Note that in spite of its
appearance (and explicit dependence on Wolfenstein param-
eters), the coupling of Eq. (56) is not simply an artifact of our
choice of SUð4ÞF gauge: Effecting an SUð4ÞF transforma-
tion here to a frame which, for example, Wd is equal to the
identity matrix and Wu is nontrivial should correspondingly
alter the gauge boson mass matrix so that the resulting
coupling is preserved. We do, however, note that the right-
handed coupling expressions in Eq. (56) ignore the sign flips
(phase rotations) of various right-handed quark fields
observed in Eqs. (37) and (38). Since they cancel in any
phenomenological results we shall discuss, we have omitted
them above for the sake of brevity.

B. SM gauge bosons and the Higgs

Having discussed the couplings of the fermions to new
gauge bosons in the theory, we now address the coupling
matrices for usual SM fields, namely the Z and W gauge
bosons and the light SM-like Higgs doublet embedded in
the bidoubletH. We begin our discussion with the Z boson.
Writing the fermions as 9-component vectors in flavor
space as outlined in Eq. (10), we can write the coupling
matrix of the Z as

g
cw

ðCu;d;e;ν
Z ÞL ¼ g

cw
Uu;d;e;ν†
L

0
BBBBBB@

ðT3L −Qs2wÞ13×3 03×3 03×1 03×1 03×1
03×3 −Qs2w13×3 03×1 03×1 03×1
01×3 01×3 ðT3L −Qs2wÞ 0 0

01×3 01×3 0 −Qs2w 0

01×3 01×3 0 0 −Qs2w

1
CCCCCCA
Uu;d;e;ν
L ;

g
cw

ðCu;d;e;ν
Z ÞR ¼ g

cw
Uu;d†
R

0
BBBBBB@

−Qs2w13×3 03×3 03×1 03×1 03×1
03×3 −Qs2w13×3 03×1 03×1 03×1
01×3 01×3 ðT3L −Qs2wÞ 0 0

01×3 01×3 0 −Qs2w 0

01×3 01×3 0 0 −Qs2w

1
CCCCCCA
Uu;d;e;ν
R ; ð57Þ

up to OðϵÞ corrections due to kinetic mixing, which will not be phenomenologically significant here, since they will only
represent a uniform small correction to the couplings of the three portal matter states, arising from mixing with the dark
photon AD. Here, T3L refers to the left-handed isospin of the SM fermion species andQ refers to its electric charge. We can
then find the coupling matrices for the phenomenologically relevant mass eigenstates by simply truncating the above
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matrices to exclude the extremely heavy states and rotating by the approximate diagonalization matrices given in
Eqs. (30), (31), (37), and (38). Up to numerically negligible Oðγ⃗P=vPÞ terms, we arrive at

ðCu
ZÞL ≈

0
BBBBBBBBBB@

1
2
− 2

3
s2w 0 0 0 0 0

0 1
2
− 2

3
s2w 0 0 0 0

0 0 1
2
− 2

3
s2w r

2
mt
Mt

0 0

0 0 r
2
mt
Mt

− 2
3
s2w 0 0

0 0 0 0 1
2
− 2

3
s2w 0

0 0 0 0 0 − 2
3
s2w

1
CCCCCCCCCCA
;

ðCu
ZÞR ≈

0
BBBBBBBBBB@

− 2
3
s2w 0 0 0 0 0

0 − 2
3

0 0 0 0

0 0 − 2
3
s2w 0 0 0

0 0 0 − 2
3
s2w 0 0

0 0 0 0 1
2
− 2

3
s2w 0

0 0 0 0 0 − 2
3
s2w

1
CCCCCCCCCCA
; ð58Þ

where we remind the reader that the variable r is defined in Eq. (30). We see that at this level of approximation, the sole
new coupling for the Z boson (other than its diagonal couplings to the new fermions, which directly follow their SUð2ÞL ×
Uð1ÞY quantum numbers) is between the top quark and its vectorlike partner, which can be quite large—the suppression
ratio mt=Mt for this coupling can be as high as ∼0.1, for top partner masses near 1 TeV. We note that there do exist
Oðm2

t =M2
t Þ corrections to the Ztt coupling, however, since these corrections would be at most on the order of a few percent,

they are well within current constraints for modifications of the top-Z coupling [28]. Of course, such small variations in the
top quark couplings to the Z may be probed by precision measurements made at future eþe− colliders. In the downlike
and charged lepton sectors, we have an analogous result to Eq. (58), however, assuming that the b and τ partners are too
massive to influence the low-energy phenomenology of the theory, we find no significant departures from the SM behavior
of the Z and diagonal coupling matrices.6

Next, we address the W boson couplings, restricting our attentions to the quark sector in order to avoid ambiguities
arising in the neutrino sector in this model. We may write our coupling matrices here as

gffiffiffi
2

p ðCWÞL ¼ gffiffiffi
2

p Uu†
L

0
BBBBBB@

13×3 03×3 03×1 03×1 03×1
03×3 03×3 03×1 03×1 03×1
01×3 01×3 1 0 0

01×3 01×3 0 0 0

01×3 01×3 0 0 0

1
CCCCCAUd

L;

gffiffiffi
2

p ðCWÞR ¼ gffiffiffi
2

p Uu†
R

0
BBBBBB@

03×3 03×3 03×1 03×1 03×1
03×3 03×3 03×1 03×1 03×1
01×3 01×3 1 0 0

01×3 01×3 0 0 0

01×3 01×3 0 0 0

1
CCCCCAUd

R: ð59Þ

6As an aside, we note that even in the event of a much lighter b partner, brought about by a percent-level tuning of the Higgs Yukawa
coupling to the down quarks, which might then have a mass comparable to the top partner mass Mt ∼ 1 TeV, we would not observe a
measurable effect in the tightly constrained Zb̄b coupling, since this would still be suppressed by Oðm2

b=M
2
bÞ ∼ 10−6, assuming

Mb ∼Mt, which is several orders of magnitude below present constraints [29].
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Up to numerically insignificant Oðγ⃗P=vPÞ corrections, we can derive the coupling matrix for the left-handed
phenomenologically relevant fermions using Eqs. (30) and (31) once again, yielding a coupling matrix (and hence the
CKM matrix) of

ðCWÞL ≈

0
BBBBBBBBBB@

ðWdÞ11 ðWdÞ12 ðWdÞ13 0 0

ðWdÞ21 ðWdÞ22 ðWdÞ23 0 0�
1 − r2

2

m2
t

M2
t

�
ðWdÞ31

�
1 − r2

2

m2
t

M2
t

�
ðWdÞ32

�
1 − r2

2

m2
t

M2
t

�
ðWdÞ33 0 0

r mt
Mt

ðWdÞ31 r mt
Mt

ðWdÞ32 r mt
Mt

ðWdÞ33 0 0

0 0 0 1 0

0 0 0 0 0

1
CCCCCCCCCCA
; ð60Þ

where r remains as defined in Eq. (30). Note, at least to this
order, that the first row of this coupling matrix remains
unitary when restricted to the SM quarks. Here, we
emphasize that in the truncated coupling matrix, only five
downlike quarks remain physically relevant (the three SM
quarks and two portal matter quarks), while six uplike
quarks do (the three SM quarks, the top partner, and two
portal matter quarks), as can be seen from the original
definition of the truncated flavor-space vectors in Eq. (29).
We also note that, unlike elsewhere in this work, we have
retained the Oðm2

t =M2
t Þ terms in the coupling matrix here;

we shall see that terms of this order represent the leading
contribution of the top partner’s loop-induced correction to
neutral meson mixing, and as such, we must retain these
terms for numerical consistency. The right-handed coupling
matrix ðCWÞR is substantially less phenomenologically
interesting—since the only right-handed fermions which
couple to the W boson are portal matter fields, and they do
so diagonally (at least in the limit, which holds to Oð10−6Þ
as discussed in Sec. II C, that mixing between the portal
matter states is numerically negligible), the W does not
exhibit numerically significant couplings to the right-
handed SM quarks, nor does it facilitate decays of any
of the new fermions in the model.
We conclude our exploration of the couplings in our

model by considering the SM Higgs field, or rather the
combination of elements of the bidoublet scalar H that

corresponds to such a field. As noted in Sec. II B, we can
estimate the scalar eigenstate corresponding to the SM
Higgs field as in Eq. (7), which in turn allows us, with
reference to the Yukawa action of Eq. (8), to write the Higgs
coupling matrices to the quarks as

yu;dC
u;d
H ¼yu;dU

u;d†
R

0
BBBBBB@

03×3 03×3 03×1 03×1 03×1
13×3 03×3 03×1 03×1 03×1
01×3 01×3 0 0 0

01×3 01×3 0 0 0

01×3 01×3 1 0 0

1
CCCCCCA
Uu;d
L ;

ð61Þ

where the constants yu;d are given in Eq. (11). An
analogous matrix for the charged leptons should be
identical to that of the downlike quarks, up to radiative
corrections to the parameter yd. Rather than relying on our
truncated rotation matrices here, which by removing the
heavy partners of the up and charm quarks, omits the
seesaw mechanism by which these SM quarks acquire
mass, it is more instructive here to simply work in the limit
where γ⃗P;d → 0 using the rotation matrices of Eqs. (23) and
(33). Doing this, and then truncating the matrix to remove
the extremely heavy fermions as earlier yields the coupling
matrix

yuCu
H ≈

ffiffiffi
2

p

v

0
BBBBBBBBBB@

mu 0 0 0 0 0

0 mc 0 0 0 0

0 0 mt mt
mt
Mt

�
M2

t−y2Sv
2
S

y2Sv
2
S

�
1=2

0 0

0 0 sgnðyuu3Þmt

�
M2

t−y2Sv
2
S

y2Sv
2
S

�
1=2

mt
mt
Mt

�
M2

t−y2Sv
2
S

y2Sv
2
S

�
0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCA
; ð62Þ

where the complete coupling is given by this matrix plus that generated by its Hermitian conjugate. Notably, among the SM
quarks the Higgs coupling matrix is simply given by the normal SM Higgs coupling matrix—this conclusion holds up to
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Oðm2
t =M2

t Þ ∼Oð10−2Þ corrections to the Ht̄t coupling.
There are, however, additional couplings between the top
partner and the top quark itself—the largest of these terms is,
in fact Oð1Þ. In practice, these couplings will contribute
significantly to the decay of the top partner to the top quark,
as is often the case in models with additional vectorlike
quarks mixed with the third generation [30]. In the downlike
quark and charged lepton sectors, the results are analogous,
however, given the fact that the heavy b and τ partners are
likely too massive to be observed, the approximate Higgs
couplings in these sectors precisely matches the SM result,
up to insignificant numerical corrections.

C. Kinetic mixing

Having addressed the fermion and gauge boson spectra
here, it is useful at this point to comment on the magnitude
and effects of the kinetic mixing betweenUð1ÞF andUð1ÞY
that will arise from the one-loop contributions of the
model’s fermion fields. For simplicity, we shall assume
that kinetic mixing vanishes until the scale at which the
Pati-Salam group is broken down to the SM and the dark/
flavor group remains SUð4ÞF ×Uð1ÞF. At this scale, the
only Abelian groups which may enjoy kinetic mixing are
the Uð1ÞF and Uð1ÞY groups, so we shall compute this
mixing here.7 As in II, we note that both SM and portal
matter fields will contribute to the kinetic mixing via
vacuum polarizationlike diagrams at one loop. In the

original basis, the SM hypercharge boson B̂ will mix with
the Uð1ÞF boson B̂F via a term of the form,

LKM ¼ ϵ

2cwcP
B̂μνB̂

μν
F ; ð63Þ

where cw is the familiar Weinberg angle and cP ≡ cos θP is
the cosine of the angle θP described directly above Eq. (46),
and B̂μν and B̂μν

F are the field strength tensors of the Uð1ÞY
and Uð1ÞF fields, respectively. Given this normalization
convention, the kinetic mixing term ϵ here becomes

ϵ ¼
ffiffiffi
2

3

r
ðgswÞðg4sPÞ

24π2
X
i

�
Yi

2

�
QF

i log
m2

i

μ2
; ð64Þ

where sw and sP are simply the sines of the same angles
referenced in cw and cP, g is the SUð2ÞL coupling constant,
and g4 is the SUð4ÞF coupling constant. The sum over i is
performed over all the fermions in the theory, Yi=2 is the
SM hypercharge of fermion i,QF

i is its charge underUð1ÞF,
mi is its mass, and μ is an arbitrary mass scale which will
cancel out of the final calculation. Ignoring the mixing
between various states of different representations under
Uð1ÞY or Uð1ÞF, the effects of which are numerically
negligible anyway, gives

ϵ ≈ ð4.2 × 10−4Þ
�
g4sP
gsw

��
log

me
P1

mu
P1

þ log
mν

P1

md
P1

þ 2 log
md

P2

mu
P2

þ 2 log
me

P2

mu
P2

þ 4

5
log

md
P3

mu
P3

þ 4

5
log

me
P3

mu
P3

þ
X
i

�
1

5
log

mdi

mui
þ 3

5
log

mei

mui
þ 1

5
log

mνi

mui
þ 4

5
log

Mdi

Mui
þ 4

5
log

Mei

Mui

��
; ð65Þ

where here we have used the same mass labeling con-
vention as Eq. (12), with the sub/superscripts u referring
to the uplike quark sector, d to the downlike quark sector,
e to the charged lepton sector, and ν to the neutrino sector
(of course, since the model’s neutrino sector remains
incomplete, the contributions from it to this mixing are
somewhat suspect; we include them here for the sake of

completeness). We note that some of the logarithms of
ratios of the exotic particles’ masses may have either sign.
In the absence of significant hierarchies, we would antici-
pate that ϵwould be ofOð10−4Þ if g4sP were approximately
equal to gsW , however, we note that there exist several mass
ratios in Eq. (65) that are necessarily quite hierarchical. For
example, if we assume that each SM neutrino possesses a
mass of approximately 0.1 eV and that the masses of the
portal matter fields mu;d;e;ν

P1;P2;P3 are close to degenerate (that
is, mu

Pi ∼md
Pi ∼me

Pi ∼mν
Pi for i ¼ 1, 2, 3, at least for the

purposes of computing the logs of their ratios), then we can
estimate the magnitude of Eq. (65) by noting that
logðmdi;ei=muiÞ ∼ − logðMdi;ei=MuiÞ, which holds as long
as there are no significant hierarchies between the cou-
plings to the scalar H among the charged leptons, uplike
quarks, and downlike quarks. We then arrive at a rough
numerical estimate of

7As was noted in Sec. II A, in the UV theory as written (with
all SM gauge symmetries are contained in the non-Abelian Pati-
Salam group factors), kinetic mixing mediated by a vacuum
polarizationlike diagram is forbidden. However, higher-order
operators stemming from insertions of scalar vevs will still
generate kinetic mixing here, and a truly concerned reader can
assume that the Uð1ÞF is unified with either the SUð4Þc or
SUð2ÞR, the two Pati-Salam groups which contain the Uð1ÞY
symmetry, at some higher scale, and some form of symmetry
breaking at this scale breaks the resulting theory down to the SM
gauge group by Uð1ÞF.
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ϵ ∼ ð3 × 10−3Þ
�
g4sP
gsw

�
; ð66Þ

which is in fact an order of magnitude larger than the
numerical coefficient in front of Eq. (65) might suggest.
While this level of kinetic mixing is still not unfeasible if
g4sP ≃ gsw ¼ e, it does suggest that this coupling is
unlikely to be much greater than this, and that to produce
smaller Oð10−4Þ values for the kinetic mixing parameter,
the coupling combination g4sP should likely be somewhat
smaller, perhaps closer to ∼0.1e.
With ϵ computed, the treatment of kinetic mixing is

ultimately entirely analogous to that of I and II (albeit with
no additional mixing due to scalars charged under both the
dark and SM gauge groups, which occur in II but not here),
with dark photon couplings to SM fields of ϵeQ, where e is
the proton charge and Q is the electromagnetic charge of a
given fermion. As these results are well known, we do not
reproduce them here.

D. Low-energy parameters from the high-energy model

With the field content, mass spectra, and coupling terms
for the model now determined, we have only one remaining
task before being able to explore this setup’s phenomeno-
logical implications: Properly identifying the parameters
with which we might conduct a probe of the model space.
Over the course of our development of the model in Sec. II,
we have noted that in spite of the large number of new
particles present in the model at high energy, only a handful
of these can be expected to have any significant effect at
scales that can be experimentally probed now or in the near
future. It stands to reason, then, that the large number of
parameters in our model at high energy can in fact be
reduced to a more manageable quantity at low energy. For
the sake of clarity, we shall distinguish now between these
two pictures: The “high-energy” model shall refer to the
complete model with the field content outlined in Sec. II.
The “low-energy” model shall refer to the model in which
only the fields of mass ≲Oð10 TeVÞ, namely those which
might have an observable effect on current and upcoming
experiments, are retained.
In Sec. II C, we found that the quark sector of the model

is uniquely specified by the SM Higgs Yukawa-coupling
parameters yH ∼Oð1Þ and α ∈ ½−π; π�, the two portal
matter Yukawa couplings yP1 ∼Oð1Þ and yP2 ∼Oð1Þ,
the vectorlike mass term M, the scalar vev parameters
γ⃗P, γ⃗d, vP, and ySvS,

8 and finally the signs of the
eigenvalues of the matrices u [defined in Eq. (13)] and

d (its analogous quantity in the downlike sector). In the
limit where particles which we estimate to be too heavy to
be experimentally observable decouple from the theory, our
work simplifies substantially. Referencing our expressions
for the masses and eigenvectors of the fermion fields in
Sec. II C, we see that up to signs of various quantities
(which we shall see do not affect any physical results up to
numerically small corrections), we note that we can
completely specify the physics of the accessible quark
sector, namely the masses in Eqs. (18) and (22), their
analogous values in the downlike sector, and the mass
eigenvectors given in Eqs. (30), (31), (37), and (38), simply
with the vev parameters vP, ySvS, and γ⃗P, the mass of the
top quark partner Mt, and the masses of the accessible
portal matter fields, mu

P1 ¼ md
P1 and mu

P2 ¼ md
P2.

Moving on to the gauge boson sector, we see that can
enjoy a similar drastic reduction in independent parameters.
Consulting Sec. III A, we see that the coupling matrices of
ZF, ZP, and AD, the three new gauge bosons that are light
enough to potentially have experimentally observable
effects, depend only on the CKM matrix, the mass
eigenvectors of the fermions, the SUð4ÞF coupling constant
g4, and the angle θP which functions as a Weinberg-like
angle for the group SUð4ÞF ×Uð1ÞF. Turning to Sec. II D,
we note that while the mass of ZP, given in Eq. (48), is
entirely specified by the parameters g4, vP, and θP, the
masses of the gauge bosons ZF and AD arise as complicated
functions of parameters which are not otherwise relevant in
the low-energy theory, namely the parameters u1;2 [defined
in Eq. (13)] and d1;2;3 (their counterparts in the downlike
quark sector), the Yukawa couplings yA and yB, and, in the
case of AD, the Uð1ÞD-breaking vev components γ⃗d.
Because the mass of AD depends on one set of parameters
that the mass of ZF does not, meanwhile, there is no
obvious rigid relationship between these masses. It is
therefore easier to simply specify the masses of ZF and
AD as independent low-energy parameters in their own
right, for the purposes of probing the phenomenology of
the model.
Finally, we note that the above treatment has neglected to

include any discussion of the leptons in the model. While
we have noted earlier that the neutrino sector will lie largely
unaddressed in this work, we cannot afford the same luxury
with the charged leptons, so the fact that we are only
introducing phenomenological parameters which cover the
emergence of new physics in the quark sector bears some
discussion. In the charged lepton sector, we note that we
would require specifying some additional parameters, since
we have posited that the charged lepton spectrum will be
generated by the same mechanism as that of the downlike
quarks, up to radiative corrections in the couplings to the
scalars ΦA, ΦB, the parameters yH and α, and the mass
termM. Among the accessible elements of the theory, these
radiative corrections would result in a modification of the
rotation matrix Wl [defined analogously to Wu is defined

8For the purposes of this analysis, we have combined the
coupling yS with the vev parameter vS of the singlet scalar ΦS.
Because the only instances of these parameters occurring
separately happen when considering interactions of the physical
scalar arising from ΦS, a detailed analysis of which we have
omitted here, this simplification is sufficient for our purposes.
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in the uplike sector in Eq. (13)], rather than it being
precisely equal toWd, its counterpart in the downlike quark
sector which must be approximately given by the CKM
matrix. Referencing the couplings of various interactions in
Sec. III A, we see that the matrix Wl plays a role in the
lepton-flavor-changing currents facilitated by the dark
photon AD, and the couplings of the accessible leptonic
portal matter states to SM leptons (which in turn will
govern the lifetimes and branching fractions of these new
particles). However, we note that constraints on lepton-
flavor-violating two-body decays of the τ lepton are much
less restrictive than those in the quark sector [31], while the
most restricted leptonic flavor-changing processes medi-
ated by AD, μ− → e−AD, is essentially always kinemati-
cally disallowed in the range of dark photon masses that we
consider (mAD

> 100 MeV).9 Meanwhile, discovery limits
on the color-singlet leptonic portal matter will likely be far
less constraining than those of the colored quark portal
matter particles. As a result, we note that the new physics
arising from additional parameters we must include to
describe the charged lepton sector is likely beneath any
notice, and we therefore have no need to expand our
parameter space beyond what is necessary to specify the
kinematically accessible fermions in the quark sector.
Our full parametrization of the lower energy observable

sector of the model then simply consists of two vev
parameters vP and ySvS, a three-component complex vector
of vevs γ⃗P, two gauge coupling parameters g4 and θP, and
five particle masses: the mass Mt of the heavy top partner,
the masses mu

P1 ¼ md
P1 and mu

P2 ¼ md
P2 of the accessible

portal matter fields, the mass mZF
of the “flavor Z” boson

ZF, and the mass mAD
of the dark photon. For the reader’s

convenience, we have listed the parameters that are relevant
in the high- and low-energy theories, as well as their
approximate ranges, in several tables. Table IV contains the
parameters which are given in the underlying high-energy
theory, and retained unchanged as independent parameters
in our probe of the sector of the theory which is exper-
imentally accessible, as well as the ranges that we have
assumed here.
Table V contains the parameters which must be specified

to generate the complete high-energy theory, but can be
substituted for other parameters in the lower-energy theory.
Finally, in Table VI, we present the parameters which may
be used in lieu of those of Table V when probing the model

parameter space where only phenomenologically acces-
sible new particles are included. Notably, while there are
simple expressions for mu;d

P1 and mu;d
P2 in terms of the

parameters of Table V in Eq. (22), allowing for an easy
estimate of the range these parameters might take on in our
model, the natural ranges for the other three parameters in
Table VI, namely the masses Mt, mAD

, and mZF
, are not

immediately obvious: There are no such compact expres-
sions for these masses, at least in terms readily correspond-
ing to those in Table V. Since mAD

is the only parameter
which directly depends on the magnitude of γ⃗P, rather than
the ratio γ⃗P=vP, we find that by specifying vP, γ⃗P, and γ⃗d
properly we can reproduce virtually any mAD

between 0.1
and 1 GeV, so it is not unreasonable to treat this as a free
parameter in this range, but the masses Mt and mZF

are
more restricted. We can, however, produce estimates for the
ranges of these parameters via a simple numerical probe of
the high-energy parameter space.
Before beginning this exercise, however, we may simplify

our task with a handful of observations. For mZF
, we see

from Eqs. (40), (41), and (42) that the mass matrix which
produces ZF (namely, the first 8 rows and columns of the
matrix given in Eq. (40), up to tiny Oðγ⃗P;dÞ corrections)
should only have terms which depend on the matrices u [as
defined in Eq. (13)] and d, its downlike quark counterpart—
even dependence on the parameter M cancels out in this
portion of the gauge boson mass squared matrix.
Furthermore, inspection of Eq. (18), in particular the SM
fermion mass expression which may be rewritten (in the
uplike sector, with a corresponding expression applying in
the downlike sector) as u2i ≈ y2Sv

2
Sðy2uv2=ð2m2

uiÞ − 1Þ, that
the eigenvalues u1;2;3 and d1;2;3 of u and d are all directly
proportional to ySvS. That is, for all other model parameters
held constant, the matrices u and d scale directly with ySvS.
This in turn allows us to say that the mass matrix which
governs mZF

, which in turn consists solely of combinations
of u and d, must be directly proportional to ySvS, and
therefore the mass mZF

is directly proportional to ySvS as
well. Meanwhile, a similar argument can be made regarding
the mass of the top partner Mt, noting in Eq. (18) that we
may rewrite the equation for the mass of this fermion as
M2

t ¼ y2Sv
2
Sy

2
uv2=ð2m2

t Þ, and hence this mass is also directly

TABLE IV. The parameters which must be set to specify a
unique point in parameter space in both the complete high-energy
model and the low-energy model, as described in the text. Here, g
denotes the electroweak coupling constant. The philosophy
behind the chosen ranges of ySvS, vP, and γ⃗P are discussed in
Sec. II C, while we assume that g4 ≲ g to keep the magnitude of
the kinetic mixing ≲Oð10−3Þ, as discussed in Sec. III C.

ySvS vP γ⃗P g4 θP

1–10 TeV 1–10 TeV 0.1–1 GeV (0.1–0.6) 0 − π
2

9It should be noted that for lighter dark photon masses, the
two-body decay of a muon to a dark photon and an electron
would have a distinctive experimental signal, with a sharp peak in
the electron energy spectrum. Limits on flavor violating decays in
the quark sector remain more stringent than these constraints for
now, but null results in searches for μþ → eþX decays, where X
is some undetected boson, from the upcoming Mu3e experiment
can be expected to constrain this ratio to ∼10−8, which may allow
it to begin to compete with current limits on the model from
flavor-violating K meson decays [32].
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proportional to ySvS. Therefore, when probing the masses
mZF

and mAD
, we only need to consider the range of these

parameters at one specified value for ySvS and extrapolate
from there, and not probe the entire range we list in Table IV.
Similarly, we need not probe the entire range of the
SUð4ÞF ×Uð1ÞF gauge coupling parameters g4 and θP,
rather noting that mZF

, consisting up to tiny corrections
entirely of SUð4ÞF bosons, is proportional to g4.
To perform our numerical examination, we next generate

a sample of 105 points in parameter space (we note that
larger samples grant us the same results for our parameter
ranges, indicating that this sample size is likely large
enough to fully probe this setup), specifying ySvS ¼
1 TeV, and selecting yH, α, β, M, yA, and yB randomly
(i.e., with flat priors) in the ranges described in Table V. We
also impose several additional conditions on yH, α, and β,
the three parameters which govern the SM-like Higgs
bidoublet sector. Specifically, we require that yu and yd,
as defined in Eq. (11), are such that y2u > ð2m2

t Þ=v2 and
y2d > 1=100. The condition on yu ensures that the SM quark
spectrum can be reproduced using the relations of Eq. (18).
The condition on yd ensures that this Yukawa coupling is
not hierarchically small, which would in turn yield a heavy
b partner with a mass roughly comparable to that of the
heavy top partner, a region of parameter space that we have
already established lies beyond the scope of this paper.
To achieve a full sample of 105 points which meet the
aforementioned constraints on yu and yd, we generate yH,
α, and β, then regenerate these points (again with flat
priors) if the original set fails them, until a point is found
that meets the constraints; this in turn ensures that we
uniformly sample the parameter space of yH, α, and β that
meet the yu and yd constraints without bias. Finally, we
note that outside of numerically negligible corrections, the
particular values of the parameters γ⃗P, γ⃗d, vP, yP1, and yP2
have no effect on the masses we wish to probe here, so there
is no need to specify them. Given these conditions, we
estimate the expected “natural” ranges of Mt and mZF

, as
between the 5% and 95% quantile of their values in this

scan—because we engage in a sampling of all of the
parameters in our high energy theory with flat priors, we
expect the results of our numerical probe to at least
qualitatively reflect the necessary fine-tuning to effect
certain values of these parameters. The results are then
given in the ranges quoted in Table VI. We should note that
although our sampling of the high-energy parameters is
uniform over their ranges, the same cannot be said for the
ranges of the parameters Mt and mZF

. To get a sense of the
shapes of the Mt and mZF

distributions, we depict prob-
ability histograms of them in Fig. 1. Consulting this figure,
we see that while Mt has a straightforward (if nonuniform)
distribution in which smaller values of Mt=ðySvSÞ are
slightly favored over larger ones, the distribution of mZF

is somewhat more complex, with a large peak appearing
near mZF

∼ 30g4ySvS followed by a steady drop-off. As a
result of this long tail in the distribution, the range between
the 5% and 95% quantiles of our sample given in Table VI
is unusually large. As we shall see in Sec. IV B 2, however,
the phenomenologically interesting region of parameter
space lies in the region where mZF

≲ 60g4ySvS, so we shall
restrict our attentions there, merely noting that ample
parameter space exists for significantly larger mZF

without
significant fine-tuning.
To better illustrate the transition from the enormously

complicated high-energy model to the comparatively com-
pact low-energy model, and to get an idea of the sensitivity
(or lack thereof) of low-energy parameters to the specific
realization of the complicated pattern of SUð3ÞF breaking
in the high-energy model, it is useful to explicitly sum-
marize the scales of symmetry breaking effected in the
high-energy model and compare it to the scale of the new
physics fields which survive in the low-energy model.
Specifically, we note that in the high-energy setup, the
gauge symmetry SUð4ÞF ×Uð1ÞF undergoes the symmetry
breaking pattern

4F1F ⟶
≫TeV

10F1F ⟶
OðTeVÞ

1D ⟶
OðGeVÞ

Nothing: ð67Þ

TABLE VI. The parameters which may be used to specify a unique point in the parameter space of the low-energy
model in lieu of the high-energy model parameters in Table V. The large range of mZF

, and the shape of the mZF

distribution in the numerical probe, is discussed in the text and Fig. 1.

Mt mu
P1 ¼ md

P1 mu
P2 ¼ md

P2 mAD
mZF

ð1.1 − 3.2ÞySvS ð1=3 − 3ÞvP ð1=3 − 3ÞvP 0.1–1 GeV g4ySvSð17 − 210Þ

TABLE V. The parameters which must be set to specify a unique point in parameter space in the complete high-energy model, but
which can be eliminated in favor of a simpler set of parameters in the low-energy model. The ranges quoted here assume that the Yukawa
couplings are all of Oð1Þ and β is restricted based on the requirement for perturbativity in the left-right-symmetric model Higgs sector.
The magnitudes of M and γ⃗d are discussed in Sec. II C.

yH α β yA yB yP1 yP2 M=ðySvSÞ γ⃗d

�½1=3; 3� ½−π; π� ½0; arctanð0.8Þ� �½1=3; 3� �½1=3; 3� �½1=3; 3� �½1=3; 3� ½−106; 106� 0.1–1 GeV
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In particular, we see that the SUð3ÞF symmetry breaking,
which required prodigious fine-tuning in Sec. II, generally
takes place at the multi-TeV scale. In fact, the only fields in
the low-energy model which remain sensitive to the SUð3ÞF
breaking are the flavor Z field ZF and the vectorlike top
quark partner. Given that the emergence of a vectorlike top
partner of massMt ∼OðTeVÞ is well motivated as long as a
seesaw mechanism is used to generate the quark mass
hierarchy, we can comfortably assert that, with the exception
of any observable effects of the ZF boson, the phenomenol-
ogy of the low-energy model is applicable to a wide range of
high-energy constructions and agnostic to the complicated
specifics of SUð3ÞF breaking.

IV. PHENOMENOLOGY: FLAVOR-CHANGING
NEUTRAL CURRENTS

Having set up the model and determined the relevant
parameters we can begin to analyze the sector of the model

within experimental reach, the sole remaining task left to us
is to actually do the necessary exploration. To begin, we
note that our significant expansion of the model’s flavor
sector has resulted in substantial additional sources of
flavor-changing couplings, in particular flavor-changing
neutral currents (FCNC’s), which have the potential to
contribute to highly constrained processes. To examine
these flavor-changing effects, then, we explore the impact
of the model’s FCNC’s in two sectors: rare meson decays
and neutral meson oscillation.

A. Flavor-changing AD interactions

We begin our discussion of potential phenomenological
effects with a brief foray into the most constrained
couplings which emerge here, namely the light flavor-
changing neutral currents mediated by the dark photon. In
particular, the tiny flavor-changing couplings among the
SM quarks in Eq. (52) allow for b → sþ AD, b → dþ AD,
and s → dþ AD transitions. As in II, we shall assume that
the on-shell long-lived light dark photon will escape our
detector and/or decay to dark matter,10 and therefore these
interactions can facilitate meson decays which mimic to
some extent the highly constrained rare decay channels
B → Kνν̄, B → πνν̄, and K → πνν̄.
It should be noted that the naive bounds from the three-

body B → Kνν̄, B → πνν̄, and K → πνν̄ are not precisely
applicable to the two-body decay of a B and K mesons to a
lighter meson and a long-lived dark photon: The latter will
result in a sharply peaked momentum distribution for the
visible light meson in the final state. This difference has a
significant effect on our analysis ofK → πAD constraints in
particular: Searches in the “golden channel” Kþ → πþνν̄,
which are normally highly constraining, are substantially
weakened in cases where AD ∼mπ due to high back-
grounds from the Kþ → πþπ0 channel [33–35]. Instead,
it is more instructive to consider the constraints from
KL → π0X searches such as [35], where X is simply some
light long-lived invisible particle. Because the background
KL → 2π0 is CP-violating (and therefore suppressed),
unlike the decay Kþ → πþπ0, searches for KL → π0X
are not subject to the same ruinous kinematic cuts when
the mass of the X particle is close to the mass of the pion.
So, to derive for our model’s constraints from KL → π0X
branching fractions, we compute the branching fraction for
this decay arising from AD emission and compare it to the
90% C.L. upper limits from [35] obtained for various mass
values. In the case of the other flavor-changing decays we
consider, a more careful analysis of Bþ → πþ, Kþνν̄

FIG. 1. Top: a probability histogram of the values of mZF
in

units of g4ySvS obtained in our numerical sample, described in
the text. The green region denotes the values of mZF

between
the 5% and 95% quantiles. Bottom: same as above, but the
probability histogram now depicts values of Mt=ðySvSÞ.

10the dark photon decay to dark matter will be the dominant
decay if it is kinematically accessible, since its coupling is not
suppressed by a small kinetic mixing factor, so this assumption is
both completely reasonable and trivially realizable with the
addition of a dark matter particle of mass less than mAD

=2, for
example in the form of a scalar singlet under the SM gauge group.
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searches, which lack the same troubling kinematic cuts as
appear in Kþ → πþνν̄ searches, does not result in signifi-
cant differences from the constraints derived by simply
quoting the 90% C.L. upper bounds of BðBþ → πþνν̄Þ ≤
0.8 × 10−5 [36] and BðBþ → Kþνν̄Þ ≤ 1.6 × 10−5 [37] as
direct limits on the corresponding flavor-changing decays
mediated by AD (although it should be noted that we should
treat these constraints as order-of-magnitude, not precise,
limits barring a more detailed analysis of the final-state
light meson spectrum). Since we shall see that these
constraints are much less rigorous than those which are
derived from the KL → π0AD system, we also note that
the changes in restrictions on the parameter space from
Oð1Þ changes in these constraints are not qualitatively
significant.
A straightforward calculation employing the coupling

constants in Eq. (52) gives us the decay width of the
process KL → π0AD

ΓKL→π0AD
¼ g24s

2
P
jξ1j2jξ2j2

24π

m3
K

m2
AD

�
1þ ðm2

AD
−m2

πÞ2
m4

K

−
2ðm2

AD
þm2

πÞ
m2

K

�
3=2

jfK0π0þ j2;

ξi ≡ ðWdγ⃗PÞi
vP

ð68Þ

where mK and mπ are the masses of the neutral K and π

mesons, respectively, fK
0π0þ is a hadronic form factor we can

extract from [38] (up to percent level corrections, this factor
is equal to 1 for the process KL → π0AD), and we remind
the reader that, also up to percent level corrections, Wd is
equal to the CKM matrix. Expressions for Bþ → KþAD
and Bþ → πþAD decays can be easily determined by
replacing the appropriate indices of ξ and meson masses
in Eq. (68), and extracting the appropriate hadronic form
factors from [39]. Consulting the definition of ξi in
Eq. (68), we see that these decay processes should naturally
undergo substantial suppression, since γ⃗P ∼ 0.1–1 GeV
and vP ≳ 1 TeV. We might expect, therefore, that a natural
value of ξi would be in the realm or 10−4, leading to a
∼10−16 suppression of these decay processes, as was noted
in II. In spite of this suppression, we shall find, as in II, that
constraints on these decays are severe enough to provide
meaningful limits on the values of the ξi’s beyond even
their naturally small magnitudes.
We can straightforwardly derive expressions for the

maximum allowed magnitudes for products of ξi values,
upon which the constrained meson decays depend, for
various representative choices of the parameters mAD

and g4sP by comparing our results to upper experimental
limits on the branching ratios of these mesons to the
corresponding two-neutrino final states [or in the case of
KL → π0AD, the mass-dependent limits on the branching

ratios BðKL → π0XÞ]. The maximum values of the relevant
components of ðW†

dγ⃗PÞ=vP as functions of mA at various
values of g4sP are depicted in Fig. 2.
From Fig. 2, we can derive some approximate constraints

on the parameters ξi, which suggest that some of their
magnitudes must be well below the natural value of
∼Oð10−4Þ that we might expect. Up to Oð1Þ variations
as depicted in this figure, we arrive at the rough constraints

ξ1ξ2 ≲ 10−11; ξ1ξ3 ≲ 10−8; ξ2ξ3 ≲ 10−8; ð69Þ

where the first (and most stringent) constraint, coming from
KL → π0AD, only applies when mAD

≲ 260 MeV, past
which the study of [35] does not offer constraints due to
overly large KL → πþπ−π0 backgrounds. The much less
severe constraints from the other decay processes have no
such similar restriction on the dark photon mass for which
they apply; these processes remain kinematically accessible
over the entire range of mAD

we consider. Because the
constraints in Eq. (69) only apply to the products of ξi
terms, there is a fair amount of flexibility in how these
constraints might be satisfied. For example, we might meet
the harsh constraint on the product of ξ1ξ2 by allowing one
of either ξ1 or ξ2 to be ∼10−7, several orders of magnitude
below its expected magnitude of ∼10−4, while the other
stays at the natural higher magnitude, or we can require that
ξ1 ∼ ξ2 ∼ 3 × 10−6. Given that the other constraints here
are of comparatively little significance, we can outline
several phenomenologically allowed benchmark values of
the parameters ξi, listed in Table VII. An astute reader may
be concerned that, in suppressing various ξi (and hence γ⃗P)
values to such low values, we may anticipate that con-
tributions to fermion mixing from γ⃗d, which we have
neglected in our treatment of the low-energy phenomenol-
ogy, may be significant. However, in practice we find that
even assuming all components of ξi are as small as
Oð10−10Þ, the γ⃗P effects still dominate all phenomenologi-
cally significant couplings in the model.
Before moving on, we note that, as mentioned in

Sec. II B, we expect the model should contain a physical
scalar of mass ∼mAD

, i.e., the “dark Higgs,” which should
generically have similar flavor-changing couplings as the
dark photon. If we likewise assume that the light scalar is
long-lived or can primarily only decay to dark photons as
we would expect, we might anticipate that it will make
additional contributions to the branching fractions we have
discussed in this section, of comparable magnitude to those
facilitated by the dark photon. However, given the com-
plexity of the scalar sector within this model, computing the
exact magnitude of these contributions is highly nontrivial,
and will likely depend on a number of additional param-
eters in the scalar potential. For the sake of simplicity, then,
we shall not compute the light scalar contributions to these
flavor-changing decays. We can assume that at worst,
these likely manifest Oð1Þ corrections to the constraints
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appearing in Fig. 2, and given the highly nontrivial nature
of the scalar sector, it is just as plausible that large regions
of parameter space in the scalar potential exist such that
these decays are either kinematically forbidden or highly
suppressed by a small phase space factor.
Finally, it should be noted that similar transitions exist in

the uplike quark and charged lepton sectors (e.g., t → cAD,
c → uAD, μ → eAD). However, in the case of uplike quarks
the experimental constraints on decays mediated by these
processes are much weaker, while the case against includ-
ing restrictions in the leptonic sector was discussed in
Sec. III D. In either case, these processes provide no
significant limit on our model parameters at present.

B. Neutral meson oscillation

While the dark photon’s flavor-changing couplings are
capable of facilitating distinctive and highly constrained
meson decays, they are hardly the only potentially danger-
ous flavor-changing couplings in the theory. In particular,
we find that B̄d − Bd and B̄s − Bs oscillations can suffer

FIG. 2. Maximum values of the products ξ1ξ2 (top left), ξ1ξ2 (top right), and ξ2ξ3 (bottom) based on the 90% C.L. measured limits on
BðKL → π0XÞ (where X is some invisible long-lived particle) [35], BðBþ → πþνν̄Þ [36], and BðBþ → Kþνν̄Þ [37], respectively.
Benchmark values of g4sP are taken as 0.1 (blue), 0.2 (red), and 0.3 (magenta). The ξ parameters are described in the text.

TABLE VII. The different benchmarks for ξi magnitudes which
can satisfy the rough constraints of Eq. (69). Scenarios A1, A2,
and A3 correspond to cases where one ξi is hierarchically larger
than the others, with the number denoting which generation, first,
second, or third, has the dominant ξi. Scenario B1(B2) assumes
that either ξ1ðξ2Þ is roughly equal in magnitude to ξ3, while
ξ2ðξ1Þ is hierarchically smaller. Scenario C1, in which all ξi’s are
approximately equal, is only viable if mAD

≳ 250 MeV, and
hence the decay KL → π0AD is either hidden by KL → πþπ−π0
backgrounds or is kinematically inaccessible; scenario C2 is the
equivalent of C1 in the event that mAD

≲ 250 MeV.

Benchmark ξ1 ξ2 ξ3

A1 ≲10−4 0 0
A2 0 ≲10−4 0
A3 0 0 ≲10−4
B1 ≲10−4 0 ≲10−4
B2 0 ≲10−4 ≲10−4
C1 ≲10−4 ≲10−4 ≲10−4
C2 ≲10−6 ≲10−6 ≲10−6
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significant contributions to their dispersive amplitudes,
given by ðM12Þq¼hB̄0

qjHΔB¼2
eff jB0

qi=ð2mBq
Þ (where HΔB¼2

eff

is simply the effective Hamiltonian for the relevant flavor-
changing interactions) from two additional sources: The
flavor-changing ZF couplings, identified in Eq. (56), and the
one-loop contributions of the heavy top partner to the box
diagram which generates meson mixing in the SM. We note
that effects in K̄0 − K0 mixing, by contrast, are generally
quite muted: The contribution to this process due to the top
partner loops is suppressed by CKM factors, while the
corresponding FCNC’s mediated by ZF vanish at Oðλ4Þ. To
obtain our results, we shall compute the new physics
contributions to ðM12Þq and parametrize them as [27,40,41]

ðM12Þq ¼ ðM12ÞSMq ð1þ hqe2iσqÞ; ð70Þ

where ðM12ÞSMq is the SM contribution to Bq meson mixing,
while hq and σq are real parameters for the contribution
of new physics to these processes. ðM12ÞSMq is in turn
given by [42]

ðM12ÞSMq ≈
G2

Fm
2
W

12π2
f2Bq

mBq
BBq

ðλðqÞt Þ2S0ðxtÞ;

S0ðxtÞ≡
�
xtð4 − 11xt þ x2t Þ

4ð1 − xtÞ2
−
3x3t logðxtÞ
2ð1 − xtÞ3

�
;

λðqÞi ≡ V�
ibViq; xi ≡ ðmpole

i Þ2
m2

W
: ð71Þ

We can then compare the new physics contributions to the
limits in a fit of CKM observables to new physics in the
meson mixing sector in [27] in order to extract approximate
constraints on our model parameters. In particular, this fit
gives

hd ≤ 0.26; hs ≤ 0.12 ð72Þ

at the 95% C.L. level as of Summer 2019. We note that
simply referring to these ranges represents only a very
approximate assessment of the constraints afforded by
flavor-changing neutral currents in this model; for example,
the above ranges assume uncorrelated hd and hs values,
which we shall see is not the case here, and ignore nontrivial
constraints on the phase σd, which we shall see may
substantially tighten constraints on hd. In spite of these
limitations, however, we find that the limits in Eq. (72) will
afford us an approximate picture of the effect our model has
on meson oscillation parameters.

1. Neutral meson oscillation:
Top partner loop contribution

We now move on from the flavor effects of the dark
photon AD to the effects of heavier new physics on flavor
observables, in particular the highly constrained measure-
ments related to neutral meson oscillation. To start, we
consider the effect of the heavy top partner fermion. In spite
of being a loop-level interaction, the contribution of the
heavy top quark partner to neutral meson mixing processes,
in particular those of the Bs and Bd mesons, is significant
enough to warrant discussion. We note that the new physics
contributions to meson mixing from the top partner take two
forms: Additional loop diagrams featuring the heavy top
quark, and, as can be seen in Eq. (60), tree-level modifica-
tions of the SM CKM matrix elements Vtd, Vts, and Vtb. As
discussed in [27], the fit performed in that work extrapolates
these CKM matrix elements from unitarity, rather than
directly, and as such the tree-level modifications to these
parameters must be included as “new physics” that contrib-
utes to hd;s and σd;s. We can now determine the contribution
of the top partner here in direct analogy to the SM calculation
done in, for example, [42]. Inserting Eq. (60) for the CKM
couplings of the top partner, we find that up to Oð10−2Þ
corrections due to subdominant loops featuring up and
charm quarks, the top partner’s contribution to ðM12Þq is

ðM12ÞTq
ðM12ÞSMq

¼ hTqe2iσ
T
q ≈

r2

S0ðxtÞ
m2

t

M2
t

�
−2S̃ðxt; xtÞ þ 2S̃ð0; xtÞ þ 2S̃ðxt; xTÞ þ r2

m2
t

M2
t
S̃ðxT; xTÞ

�
;

S̃ðxi; xjÞ ¼
4 − 7xixj

4ð1 − xi − xj þ xixjÞ
þ ð4 − ð8 − xiÞxjÞx2i logðxiÞ

4ðxi − 1Þ2ðxi − xjÞ
þ ð4 − ð8 − xjÞxiÞx2j logðxjÞ

4ðxj − 1Þ2ðxj − xiÞ
;

xT ≡ M2
t

m2
W
; xt ≡ ðmpole

t Þ2
m2

W
; ð73Þ

where we have assumed that the QCD corrections for the
heavy top partner loops are approximately equal to those of
the top quark itself (as done in, for example, [43]), S0ðxtÞ is
the Inami-Lim function given here in Eq. (71), and we
remind the reader that r is the variable first defined in

Eq. (30). It is useful to point out that here, as elsewhere in
this work, when we refer to an SM quark mass such as mt,
we are explicitly referring to its value at a scale of ∼1 TeV
(as we noted in Sec. II C), the scale at which we assumed
the SM fermion masses were generated via a seesaw
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mechanism. Hence, mt in Eq. (73) refers to the top quark
mass at this scale, or in this case ð∼1 TeVÞ ≈ 144 GeV,
and not its pole mass, which is explicitly denoted by
mpole

t ≈ 173 GeV. As both the pole mass mpole
t and the RG-

evolved mass mt appear in Eq. (73), some care must be

taken in order to use the formula correctly. Since the scale
1 TeV is dramatically closer to the top partner pole mass
than it is to that of the top quark, we neglect any effects of
RG running in Mt. In the limit where xT ≫ xt, which
applies here, we can combine Eqs. (71) and (73) as

hTd;s ≈
r2xt

2S0ðxtÞ
m2

t

M2
t

�
6xt

ð−1þ xtÞ2
−
3ð−1þ 3xtÞ
ð−1þ xtÞ3

logðxtÞ − 1þ r2

2

�
mt

mpole
t

�
2

− 2 log

�
mpole

t

Mt

��
;

σTd;s ¼ 0: ð74Þ

Inserting mpole
t ≈ 173 GeV, mt ≈ 144 GeV, and xt ≈ 4.63, we arrive at

hTd;s ≈ 0.064
�
1 TeV
ySvS

�
2
�
1 −

y2Sv
2
S

M2
t

��
1þ 0.102

�
M2

t

y2Sv
2
S
− 1

�
− 0.592 log

�
1 TeV
Mt

��
; ð75Þ

where for clarity we have explicitly inserted the equation
r2 ¼ M2

t =ðy2Sv2SÞ − 1 in the above expression. Notably, we
see that the heavy top partner contributes the same
correction to both Bd and Bs oscillation, and also that this
correction can be quite significant, even of Oð10%Þ.
Obtaining a realistic range for Mt=ðySvSÞ from Table VI,
we can then consider the correction hTd;s as a function of the
parameters ySvS and Mt=ðySVSÞ. In the case of hd, the top
partner loops represent the dominant new physics contri-
bution to this parameter, so our computation of this variable
can be completed here. We depict the results for hd for
various values of ySvS andMt=ðySvSÞ in Fig. 3 [we remind
the reader that Mt > ySvS, which can be straightforwardly
seen from the equation for M2

t ¼ M2
u3 in the last line of

Eq. (18)].
From Fig. 3, we can see several interesting character-

istics of this new physics contribution. First, comparing the
magnitude of the effects in this figure to the constraints in
Eq. (72), we see that for the region of parameter space we
are considering, the effects of the top partner loops on
meson mixing parameters should lie within current exper-
imental constraints. We do, however, note that for regions
with the largest effect, which can reach hd ∼ 0.14,
the results exceed the expected sensitivity of LHCb and
Belle-II data in the coming years, which may be sensitive
to hd ∼ 0.07 within the next decade [27]. Furthermore, we
note that a quick reference to Eq. (73) allows us to see that
σd ¼ 0 from this contribution (indicating a positive propor-
tional contribution to ðM12Þd), while the best-fit value of σd
in the fit of [27] is σd ¼ −1.40þ0.97

−0.23 (or roughly corre-
sponding to a negative proportional contribution to the
mixing matrix–see [40] for a full chart of allowed values in
the hd − σd plane, albeit with slightly outdated data but
exhibiting similar favored regions of hd − σd as the present

FIG. 3. Top: value of hd as a function of ySvS for, from top to
bottom, Mt=ðySvSÞ ¼ 3, 2.5, 2, 1.5, and 1.1, respectively.
Bottom: value of hd as a function of Mt=ðySvSÞ for, from top
to bottom, ySvS ¼ 1, 1.5, 2, 2.5, and 3 TeV, respectively.
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constraints). We might therefore expect that constraining our
model more rigorously, with a CKM fit of our own, might
result in nontrivial constraints on the scenarios with low ySvS
values from measurements of Bd oscillation. However, the
sharp drop off of these contributions as ySvS increases likely
removes this sensitivity as ySvS ≳ 1.75 TeV, unless these
constraints are an order of magnitude more sensitive than the
generic boundaries found in [27]. In practice, therefore, we
find that the loop-level contributions of the top partner to
neutral meson mixing are presently not subject to any
substantial constraints; however additional data from
LHCb and Belle-II in the coming years will likely constrain
the parameter space near the lower end of the range ySvS ∼
1 TeV from effects in this sector.

2. Neutral meson oscillation: ZF contribution

While the top partner loops represent by far the dominant
effect in the Bd-meson mixing system, the Bs mixing
system suffers additional contributions from another
source, i.e., the flavor Z boson, ZF. In particular, we can
see from the coupling in Eq. (56) that the dominant
contribution of the ZF boson will be to Bs mixing alone.
We can compute this contribution straightforwardly by
following the treatment of, e.g., [44]. In this case, we can
write the effective flavor-changing Hamiltonian as

HΔB¼2
ZF

¼ C1ðmZF
ÞO1ðmZF

Þ þ C̃1ðmZF
ÞÕ1ðmZF

Þ
þ C4ðmZF

ÞO4ðmZF
Þ þ C5ðmZF

ÞO5ðmZF
Þ; ð76Þ

with

O1 ¼ ðb̄αLγμqαLÞðb̄βLγμqβLÞ; Õ1 ¼ ðb̄αRγμqαRÞðb̄βRγμqβRÞ;
O4 ¼ ðb̄αRsαLÞðb̄βLsβRÞ; O5 ¼ ðb̄αRsβLÞðb̄βLsαRÞ; ð77Þ

using operators defined identically to those of [44]. Our
computation of ðM12Þs stemming from these effects then
simply requires identifying the Wilson coefficients Ci
and extracting the expectation values of the operators Oi
from [44]. Using Eq. (56), we can straightforwardly see that
at some high scale μhigh, we have

C1ðμhighÞ¼ C̃1ðμhighÞ¼
3g24
4m2

ZF

A2λ4ðρþ iηÞ2;

C4ðμhighÞ¼0; C5ðμhighÞ¼−
3g24
m2

ZF

A2λ4ðρþ iηÞ2: ð78Þ

We can then run these coefficients down to hadronic scales
using anomalous dimension matrices which can be
extracted from [45]. For the sake of simplicity, we shall
assume that μhigh ¼ 10 TeV, which should be within a
factor of ∼Oða fewÞ frommZF

, consulting the range for this
parameter given in Table VI and assuming g4 ∼ 0.3,
ySvS ∼ 1 TeV. We also assume, consulting the likely

ranges for these masses in Table VI, that at the scale
∼10 TeV, only five non-SM quark flavors are dynamical:
The top partner, two uplike portal matter quarks, and two
downlike portal matter quarks, and that for the purposes of
our RGE calculation all five of these extra flavors can be
integrated out at the same scale, which we take to be 1 TeV.
Running the coupling constants of Eq. (78) down to the b
quark mass, extracting the expectation value of the oper-
ators O1;4;5 [and the bag parameter as well as the decay
constant from the SM contribution to Bs oscillation given in
Eq. (71)] from [44], we arrive at

ðM12ÞZF
s

ðM12ÞSMs
¼ hZF

s e2iσ
ZF
s

≈ ð0.024Þe2ið−0.099Þπ
�
10 TeV
mZF

�
2
�
g4
0.3

�
2

: ð79Þ

We note that while this correction has a magnitude which
varies depending on the SUð4ÞF coupling g4 and the mass
mZF

, its phase remains fixed. This is the result of the
coupling constants in Eq. (78) all having the same complex
phase, that of ρþ iη, which is of course fixed by the
Wolfenstein parameters. The result of Eq. (79) suggests, as
in the case of the loop-level corrections due to the top
partner, that we may anticipate roughly Oða few%Þ cor-
rections from ZF exchange: That is, these two processes
have roughly comparable effects. We should, then, estimate
total contribution to hs as

hs ¼ jhZF
s e2iσ

ZF
s þ hTs e2iσ

T
s j; ð80Þ

with hZF
s and σZF

s given by Eq. (79), hTs given by Eq. (75),
and σTs ¼ 0, as noted in Sec. IV B 1. Taking numerical
results of Eq. (80) and comparing the results to the
constraints on hs in Eq. (72), we can also extract some
rough constraints on the parameters ySvS for various
choices of the proportional mass parameters Mt=ðySvSÞ
andmZF

=ðg4ySvSÞ. In Fig. 4, we depict the combined effect
of the ZF and top partner contributions to the variable hs.
Comparing the results of Fig. 4 to those of Fig. 2, which

should be identical to hTs , or the new physics parameter in
the absence of any ZF contributions, we see that for lower
masses of ZF, in particular mZF

¼ 20g4ySvS (the lower end
of the range we consider), the effect of the ZF boson on hs
is significant, on the order of 0.06 for ySvS ¼ 1 TeV. For
lower values ofMt=ðySvSÞ, the ZF contribution at these low
masses is even the same magnitude as the contribution due
to vectorlike quarks. However, some caveats are required
here. First, a ZF mass as low as 20g4ySvS ∼ 7ySvS is the
result of somewhat finely tuned parameters in the high-
energy theory: Our numerical probe of the high-energy
parameter space in Sec. III D places such a mass only just
above the 5% quantile. Larger values of mZF

, such as
60g4ySvS ∼ 20ySvS, which is close to the median mZF

of
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our sample, generally offer only anOð10%Þ correction to the
mixing result purely from considering top partner loops.
For larger values of mZF

, which can reach as high as
200g4ySvS ∼ 70ySvS in our sample, the effects of the ZF
boson quickly become negligible. We also note that, as
discussed in Sec. II D, the ZF boson’s mass may be sensitive
to modifications in the model to accommodate the SM
neutrino sector, or generally to a broad array of changes to
the specifics of the high energymodel. In particular, the mass
of any gauge bosons corresponding to the SUð3ÞF flavor
group may increase dramatically. As a result, we might see
any observable new physics contribution from ZF vanish.
These concerns aside, however, we do see in Fig. 4 that

any constraint from Bs meson mixing is quite mild—while
there do exist points in parameter space which can exceed
the 95% C.L. upper bound for hs ≃ 0.12, we see that they
tend to only occur in the “optimal” scenario for these
corrections: The only scenarios we depict in which the
present hs cannot be evaded by simply requiring
ySvS ≳ 1.1 TeV, a mere 10% increase from the lowest
value of ySvS we consider, occur when we have assumed
mZF

¼ 20g4ySvS, near its 5% quantile value in our numeri-
cal sample, andMt ≥ 2.5ySvS. As in the case of Bd mixing,

however, we can note that future improvements to hs
observations from Belle-II and LHCb measurements
(and improvements in lattice computations of hadronic
matrix elements), which might be expected to reduce the
95% C.L. bound on hs to ∼0.06 [27], may begin to place
more meaningful constraints on our model parameter space
for the ZF and top partner masses.

V. PHENOMENOLOGY: PORTAL BOSONS
AND EXOTIC MATTER

Having discussed the low energy flavor-violating impli-
cations of the model, we can turn to some other simple
processes in the model, in particular focusing on where our
results differ from those of I and II. We shall organize this
discussion by considering each of the likely kinematically
accessible heavier exotic particles, the ZP, top partner, and
the portal matter separately.

A. Phenomenology: Portal matter fermions

We shall begin our discussion of the phenomenology
of our new exotic particles with the portal matter: The
fermion fields which possess nontrivial Uð1ÞD charge.

FIG. 4. The full value of hs, including tree-level ZF and top partner loop contributions, formZF
=ðg4ySvSÞ ¼ 20 (blue), 40 (red), and 60

(magenta). These plots assume thatMt=ðySvSÞ ¼ 3 (top left), 2.5 (top right), 2 (bottom left), and 1.5 (bottom right). For comparison, the
95% C.L. limit on hs is depicted in each plot as a dashed orange line.
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From Sec. II C, we note that our theory anticipates two such
fields for each sector of the theory (uplike quarks, downlike
quarks, charged leptons, and neutrinos) that we can expect to
have masses potentially accessible to experiment in the
foreseeable future. For convenience, we shall label the two
portal matter states based on their masses: Pu

1, for example,
will be the uplike portal matter quark with mass mu

P1 [as
given in Eq. (22)], while Pu

2 will be the uplike portal matter
quark with mass mu

P2 [again given in Eq. (22)]. Analogous
definitions exist for the portal matter in the downlike quark
and leptonic sectors. For the sake of simplicity, and because
the constraints on color triplet new particles are dramatically
stronger than those for color singlets, we shall limit our
discussion here to the portal matter in the quark sector, Pu;d

1;2 .
Much of the behavior of the portal matter phenomenol-

ogy in the present setup is analogous to that of I and II, and
as such does not bear particular repeating. However, the
additional structure present in this model does introduce
some nontrivial complications to the existing frameworks
discussed there. In particular, the couplings of the portal
matter states to various generations of SM matter are
entirely controlled by the orientation of the vector γ⃗P in
three-dimensional flavor space: Couplings of ith-genera-
tion uplike quarks are proportional to ðγ⃗PÞi=vP, while
couplings of the ith-generation downlike quarks are propor-
tional to ξi ¼ ðW†

dγ⃗PÞi=vP, where we remind the reader
that Wd is well approximated by the CKM matrix. Since
the CKM matrix is nearly diagonal, this in turn limits the
freedom with which we may couple different quark portal
matter states to various generations: If the benchmark A1 is
taken from the ξi benchmarks in Table VII, for example,
the branching fractions of the uplike portal matter to the
second- and third-generation uplike quarks will be sup-
pressed by CKM factors of≲Oð10−2Þ. Finally, we note that
the universal dependence on γ⃗P to generate couplings
between portal matter and SM states limits the freedom
with which discrepancies may appear between the mixing
of P1 states with the SM and that of P2 states: With the
exception of the third generation of the uplike sector, where
corrections occur due to mixing between the SM top quark
and its nonportal partner, the magnitude of P1 and P2

couplings to SM states are the same, with P1 states coupled
to left-handed (SUð2ÞL doublet) SM states and P2 states
coupled to right-handed (SUð2ÞL singlet) ones. So, for
example, the branching fractions of Pd

1 and P
d
2 portal matter

particles to each of b, s, and d quarks are always equal.
Meanwhile, the fact that the P1 states overwhelmingly
couple to SUð2ÞL doublet SM fields and the P2 over-
whelmingly couple to SUð2ÞL singlet fields is unsurprising:
Given that the P1 states are SUð2ÞL doublets, mixing
between P1 states and right-handed (SUð2ÞL singlet) fields
violates SUð2ÞL, and so only occurs due to mass terms in
Eqs. (14) and (32) proportional to the SUð2ÞL-breaking
vev, v=

ffiffiffi
2

p
∼ 170 GeV. Mixing between P1 states and

left-handed fermions, however, has no such restriction,
and can be proportional to the significantly larger vev terms
vS and vP. An analogous argument applies for P2 states
preferring to couple to SUð2ÞL singlet fields over doublets.
Regarding the production of portal matter states, the

QCD pair production cross section of these fermions will
be the same as the results already given I and II for 13 TeV
and 14 TeV center-of-mass energy at the LHC, respectively.
Additionally, as in II, there exist potentially significant
non-QCD contributions to the qq̄ → P̄u

i P
u
i process from

t-channel dark photon exchange. We note that the dark
photon exchange contribution has one piece of additional
structure compared to that of II: Because all three gen-
erations may mix with the portal matter states, depending
on the orientation of the vector γ⃗P, the contribution of the
t-channel AD exchange to portal matter pair production
may stem from portal matter couplings to multiple different
SM quarks. This is in contrast to II, in which each portal
matter field was only coupled to a single SM quark, and
therefore portal matter pair production would only suffer a
t-channel dark photon contribution from that specific quark
flavor. However, we also note that the effect of this exchange
varies radically depending on the generation in question,
with portal matter coupling to lighter quarks having a
dramatically stronger effect than coupling with heavier
quarks, due to the greater content of the lighter quarks in
proton parton distribution functions. We can then see,
consulting the results of II for the downlike sector of our
model, that restricting considerations of mixing in this
contribution to just that of the lightest generation for which
themixing is nontrivial (in the languageof Sec. IVA, the ξi for
the lowest index i that is not hierarchically smaller than any
other ξi) will likely be accurate towithinOð10%Þ corrections,
at worst. Given the even larger hierarchies among quark
masses in the uplike sector, we anticipate this approximation
to be even more accurate for uplike portal matter.
Finally, we can discuss the decay branching fractions

of portal matter fields to SM states. As in I and II, the
dominant decay process is the emission of a dark photon to
decay into an SM state with the same SM quantum numbers
as the portal matter field. Consulting the couplings in
Eqs. (50), (51), and (52), we find that the decay widths for
these processes are given by

ΓPd
1;2→diAD

¼ g24s
2
Pðmd

P1;P2Þ3
48πm2

AD

jðW†
dγ⃗PÞij2
v2P

; i ¼ 1; 2; 3;

ΓPu
1
→uiAD

¼ g24s
2
Pðmu

P1Þ3
48πm2

AD

jðγ⃗PÞij2
v2P

; i ¼ 1; 2; 3;

ΓPu
2
→uiAD

¼ g24s
2
Pðmu

P2Þ3
48πm2

AD

jðγ⃗PÞij2
v2P

; i ¼ 1; 2;

ΓPu
2
→tAD

¼ g24s
2
Pðmu

P2Þ3
48πm2

AD

jðγ⃗PÞ3j2
v2P

�
M2

t − y2Sv
2
S

M2
t

�
; ð81Þ
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where d1 ≡ d, d2 ≡ s, d3 ≡ b, analogous definitions hold
for the uplike quarks, and we have neglected the effects
of the top quark mass (which should only introduce
Oðm2

t =ðmu
P1;2Þ2Þ ∼Oð10−2Þ corrections). For clarity, we

note that the enormous ratios ðmu;d
P1;P2Þ2=ðmAD

Þ2 in
these expressions are canceled by the comparably tiny
ratios jðγ⃗PÞij2=v2P, leading to results with reasonable
magnitudes—this is in fact analogous to the discussion
in Sec. III .3 of II in which the dark photon coupling
between SM and portal matter states is strongly suppressed,
but the suppression is counteracted by the dark photon’s
small mass to give an Oð1Þ overall strength for the
interaction. In addition to these decay widths, we would
expect equal (at least in the limit where mAD

→ 0) con-
tributions from a light scalar, corresponding to a physical
scalar mode associated with Uð1ÞD breaking, from
Goldstone boson equivalence. As the scalar sector is not
well explored here, and such changes would not affect the
branching fractions of the portal matter anyway, we shall
ignore this scalar from here on out, with one exception
discussed in Sec. V B. As discussed in I, assuming that the
dark photon is long-lived or only decays to DM (which we
will assume here), the signal for a portal matter pair
production event here should consist of two (possibly
fat) jets, which may be from t, b, or lighter quarks
depending on γ⃗P’s orientation in flavor space, plus a
significant amount of missing energy stemming from the
dark photon decays. Perhaps more interesting in this model
are the possibilities afforded us by the existence of the
heavy top partner: In addition to decays to SM particles,
decays with comparable rates should exist for the portal
matter fields into the top partner, provided the latter is
lighter enough that these channels are kinematically acces-
sible. We should note that, because the masses Mt, mu

P1,
and mu

P2 are simply free parameters in our theory with
masses of at least OðTeVÞ, we have little a priori guidance
about whether the top partner is heavier than the portal
fields or vice versa. It therefore behooves us to consider
both the possibility that a portal matter field can decay into
a top partner, and, in Sec. V B, whether the reverse process
might occur in a different region of parameter space.
Turning our attention back to the decay of portal matter
to a top partner, up toOðm2

t =M2
t Þ corrections and assuming

that mAD
and γ⃗P are much smaller than any other mass

scale in the expression, we find that these decay widths are
given by

ΓPu
1
→TAD

≈
g24s

2
Pðmu

P1Þ3
48πm2

A

�
1 −

M4
t

ðmu
P1Þ4

�
m2

t

y2Sv
2
S

jðγ⃗PÞ3j2
v2P

;

ΓPu
2
→TAD

≈
g24s

2
Pðmu

P2Þ3
48πm2

A

�
1 −

M4
t

ðmu
P2Þ4

�
y2Sv

2
S

M2
t

jðγ⃗PÞ3j2
v2P

: ð82Þ

The somewhat strange dependence of these decay widths
on the fourth power of the ratio Mt=mu

P1;2 bears a brief

discussion here: It occurs because the phase space factor in
the decay (which approaches 1 −M2

t =ðmu
P1;P2Þ2 in the limit

where mAD
→ 0) multiplies the combination of coupling

constants appearing in the squared amplitude, which are
proportional to 1þM2

t =ðmu
P1;P2Þ2. Meanwhile, we also

note that the decay of Pu
1 to a top partner quark is

suppressed by a factor of m2
t =ðy2Sv2SÞ≲ 10−2, and so is

unlikely to have much phenomenological impact. However,
the decay of Pu

2 to the heavy top partner can be quite
significant. The branching fraction for this decay should be
given by

BðPu
2 → TADÞ ¼

ð1 − M4
t

ðmu
P2Þ4

Þ y2Sv2SM2
t
jðγ⃗PÞ3j2

ðγ⃗�P · γ⃗PÞ − M4
t

ðmu
P2Þ4

y2Sv
2
S

M2
t
jðγ⃗PÞ3j2

: ð83Þ

Note that because Mt < ðmu
P2Þ, ySvS < Mt, and jðγ⃗PÞ3j2

will always be less than γ⃗�P · γ⃗P here, the above branching
fraction will always be positive. To get a feel for the
magnitude of this effect, we show this branching fraction
as a function of the ratio Mt=mu

P1 in Fig. 5 for some of
the benchmarks of γ⃗P orientation outlined in Table VII.
We note that the benchmarks in Table VII list values of
ξi ≡ ðW†

dγ⃗PÞi=vP, not γ⃗P, however, the corrections due to
letting ξi ≈ ðγ⃗PÞi=vP to Eq. (83) will be suppressed by
Oðλ2Þ ∼ 10−2 CKM factors and so are negligible for
demonstrative purposes.
In Fig. 5, we can see that when kinematically allowed,

the branching fraction of Pu
2 to the top partner can be quite

significant. In cases where the portal matter mixes pre-
dominantly with the top quark, it can even account for
nearly half of possible decays. As we shall see in Sec. V B,
in this scenario the top partner will then decay via the
emission of an SM Z, W, or Higgs into an SM top quark,
reflecting the more conventional decay channels for vector-
like quarks. This behavior in turn can yield interesting
collider signals: Rather than simply producing a pair of jets
plus missing energy, as will overwhelmingly occur for the
other portal fields in this model, one of the Pu

2 fields
decaying via the top partner might result in, for example,
missing energy, a pair of fat top quark jets, and a pair of
leptons from a Z boson. This is an atypical signature.

B. Phenomenology: Top quark partner

Other than the portal fields, the top partner T is the sole
other exotic fermion field that may be accessible at current
or planned experiments in this model. Anticipating that the
top partner here will behave similarly to conventional
uplike vectorlike quarks, we have quoted the constraint
of [24], which places a 95% C.L. limit on the mass of a
generic electroweak singlet vectorlike quark with this
electric charge as >1.31 TeV. However, we note that this
constraint assumes that the top partner will always decay
via the standard processes T → ht, T → Zt, or T → Wþb.
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In our present construction, additional decay channels may
also be present, so it is useful to determine the extent to
which this assumption is valid.
The interactions of this top partner with the SM closely

follow the familiar behavior of vectorlike quarks in other
models; most notably, as we can see from the couplings in
Sec. III B, the SM Z,W, and Higgs all mediate interactions
between the top partner and the SM top, facilitating the
T → Zt, T → Wþb, and T → ht decay processes which
are assumed in [24], and which are by contrast highly
suppressed for the portal matter fields. Specifically,
for these processes we have (up to Oðm2

t =M2
t Þ ∼ 10−2

corrections)

ΓT→Wb ¼ 2ΓT→Zt ¼ 2ΓT→ht ¼
GFm2

tffiffiffi
2

p
8π

�
M2

t − y2Sv
2
S

y2Sv
2
S

�
Mt;

ð84Þ
where GF ¼ 1.1663787 × 10−5 GeV−2 is the Fermi con-
stant. Notably, while there are no decays of this quark into
other SM uplike quarks (at least up to highly suppressed
flavor-changing neutral currents from, for example, the
dark photon), there are CKM-suppressed decays of the
form T → Wþd and T → Wþs; these are, however,
suppressed by at least λ4 ∼Oð10−3Þ compared to the
T → Wþb decay, and therefore have no observable exper-
imental effect at present.
In the event that all portal matter fields in the model are

more massive than T, the above exhausts the possible decay
channels for the top partner, indicating that it strongly
resembles a conventional vectorlike quark. The scenario
can become more complicated, however, when the uplike
portal matter is light enough to allow for the top partner to
decay into it. In this case, the widths for decays of T to Pu

1

and Pu
2 are

ΓT→Pu
1
AD

¼ g24s
2
Pðmu

P1Þ2
48πm2

AD

�
1 −

ðmu
P1Þ4
M4

t

��
1 −

y2Sv
2
S

M2
t

�
m2

t

y2Sv
2
S
Mt

jðγ⃗PÞ3j2
v2P

;

ΓT→Pu
2
AD

¼ g24s
2
Pðmu

P2Þ2
48πm2

AD

�
1 −

ðmu
P2Þ4
M4

t

�
y2Sv

2
S

M2
t
Mt

jðγ⃗PÞ3j2
v2P

: ð85Þ

We see that, analogous to the case for the reversed decay
pattern discussed in Sec. VA, the decay width from T to Pu

1

is suppressed by a factor of m2
t =ðy2Sv2SÞ≲ 10−2, and so is

likely not numerically significant, while the decay width
from T to Pu

2 has no such suppression and may be large.
Furthermore, we note (as discussed in Sec. VA), we would
anticipate from Goldstone boson equivalence that a physi-
cal scalar, the “dark” Higgs, which we shall call SD,
associated with the breaking of Uð1ÞD will likely also
exist, with a decay width such that ΓT→Pu

2
SD ¼ ΓT→Pu

2
AD
, at

least in the limit where mAD
→ 0. Unlike in the case of

portal matter decays, for which each numerically signifi-
cant decay channel has such an identical channel with SD,
and hence branching fractions are unaffected by ignoring
the scalar, the top partner’s dominant SM decays T → Zt,
T → ht, and T → Wþb do not have an equivalent SD
channel, while the decay to portal matter does. Therefore,
when discussing the decay of the top partner to portal
matter, we must include the decay width of the process
T → Pu

2SD explicitly, arriving at the combined branching
fraction from Eqs. (84) and (85) of

FIG. 5. Top: the branching fraction of the Pu
2 quark to the top

partner, assuming that Mt=ðySvSÞ ¼ 1.5 and that γ⃗P is oriented
according to the benchmarks A3 (blue), B1 (red), and C1

(magenta), described in Table VII. Bottom: same as above, but
assuming that Mt=ðySvSÞ ¼ 2.
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BðT → Pu
2AD; SDÞ ≈

2ΓT→Pu
2
AD

4ΓT→ht þ 2ΓT→Pu
2
AD

: ð86Þ

To get a sense of the possible magnitude of the branching
fraction given in Eq. (86), we depict it for various
choices of Mt and Mt=ðySvSÞ in Fig. 6, assuming that
jðγ⃗PÞ3j=vP ¼ 10−4, the “natural” magnitude we discussed
in Sec. IVA.
In Fig. 6, we have selected values of g4sP and mAD

so as
to maximize the branching fraction to the portal matter
fields, selectingmAD

at the bottom of the range we consider,
while selecting g4sP close to the upper end of the range that
still permits Oð10−3Þ kinetic mixing (as discussed in
Sec. III C). Given that the decay width of the top partner
tomP1 is proportional to the square of g4sP, and the inverse
square of mAD

, we can anticipate that larger values of mAD

and smaller couplings g4sP will result in dramatically

smaller branching fractions—letting mAD
¼ 0.3 GeV, for

example, will reduce the branching fraction by a factor of 9.
Even in the maximal case we depict in Fig. 6, we generally
only attain limited branching fractions of T to P2

u here,
however we achieve a ∼30% branching fraction at the
largest when Mt ¼ 6 TeV, half that when Mt ¼ 4 TeV,
and in all other cases we depict, the branching fraction is
less than 10%. This branching fraction can be enhanced if
we assume a larger value of jðγ⃗PÞ3j=vP (for example,
enhancing this parameter by a factor of 3 would increase
the decay width of T to portal matter by a factor of 9),
however, considering a value of jðγ⃗PÞ3j=vP much larger
than 10−4, as we have taken it to be in Fig. 6, begins to be
in tension with constraints on flavor-changing B meson
decays discussed in Sec. IVA. In short, in contrast to the
scenario with the possible decay of portal matter to the top
partner the reverse scenario is likely to have a minimal
effect on the signal of top partner production, except in
certain special corners of parameter space. In these corners,
however, we might anticipate some interesting potential top
partner events—for example, top partner pair production
might give us one “conventional” top partner which decays
via the channels T → Zt, T → ht, or T → Wb, and the
other that decays to a top (or, depending on the orientation
of γ⃗P in flavor space, a lighter uplike quark) through
sequentially emitting two dark photons, which would
appear as missing energy. Determining the degree to which
the latter decay path might be kinematically distinguishable
from, for example, T → Zt with an invisibly decaying
Z → ν̄ν may be of interest, but lies beyond the scope of
this work.

C. Phenomenology: ZP production

To start, we shall consider the production of the portal Z
boson ZP, representing the heavy counterpart to the lighter
dark photon, with a mass of Oð1 TeVÞ. Notably, since the
other gauge bosons with which ZP might couple (specifi-
cally, those associated with SUð4ÞF generators other than
t15, so in principle any gauge boson except AD) are all much
heavier than ZP itself, there is no region of parameter space
in which ZP might decay into any other gauge bosons at
tree-level. Our sole concern at this point, then, would be the
decay of the ZP into fermion pairs. Consulting the coupling
matrix for ZP given in Eqs. (53) and (54), we can then
straightforwardly determine the decay widths of the ZP
boson. In particular, for decay into any particular SM
fermion, we have

ΓZP→f̄f ≈ Cf
g24=c

2
P

288π
mZP

�
1þO

�
m2

f

m2
ZP

��
; ð87Þ

where Cf is simply a color factor (3 for quarks, 1 for
charged leptons and neutrinos). Depending on the relative
masses of the top partner and the portal matter fields

FIG. 6. Top: the branching fraction of the top partner quark
to Pu

2 as a function of the ratio of their masses, assuming
that g4sP ¼ 0.3, mAD

¼0.1GeV, jðγ⃗PÞ3j=vP¼10−4, and
Mt=ðySvSÞ¼1.5, for Mt ¼ 2 TeV (blue), 4 TeV (red), and
6 TeV (magenta). Bottom: same as above, but assuming that
Mt=ðySvSÞ ¼ 2.
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to mZP
, however, ZP may also decay into these states. For

the top partner, the decay width is

ΓZP→T̄T ¼ g24=c
2
P

96π
mZP

�
1þ 2M2

t

m2
ZP

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
t

m2
ZP

s
: ð88Þ

The phenomenologically relevant portal matter fields,
meanwhile, yield decay processes with widths

ΓZP→P̄u
i P

u
i
¼ 3

g24=c
2
P

64π
mZP

��
1þ 8

9
xP

��
1 −

ðmu
PiÞ2

m2
ZP

�

þ 8

3
xP

ðmu
PiÞ2

m2
ZP

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðmu
PiÞ2

m2
ZP

s
;

xP ≡ s2Pð1 − 4c2PÞ; ð89Þ

where Pu
i refers to the portal matter field of mass mu

Pi, and
analogous expressions exist for the portal matter in the

downlike quark, charged lepton, and neutrino sectors (note
that the factor of 3 in front of Eq. (89) is a color factor, and
will hence be equal to one for the corresponding case of
neutrino and charged lepton portal matter). Because the
couplings of the ZP to SM states are flavor-universal, this
model makes easy contact with existing searches for high-
mass spin-1 resonances. To estimate constraints on our
model, we employ the limits on leptonic cross sections
from [46], a dilepton (dielectron and dimuon)-channel null
search using 139 fb−1 of 13 TeV data, and the analogous
expected limits from a null result with 3000 fb−1 of LHC
data at 14 TeV [47]. In Fig. 7, we depict the maximum
value of g4=cP allowed as a function of mZP

and the
corresponding minimum allowed value of vP, both for
current experimental limits and those expected from a null
result at the High-Luminosity LHC, assuming that the ZP
boson only decays into SM final states (in which case the
branching ratios for the dielectron or dimuon channels are
simply 1=24).

FIG. 7. Top: the maximum allowed value of g4=cP (left) and the minimum allowed vP (right) for different values of mZP
, based on

limits from dilepton-channel searches with 139 fb−1 of 13 TeV LHC data [46], assuming ZP only decays into SM final states. For
comparison, the electroweak coupling g=cw (left) and the value of vP assuming g4=cP ¼ g=cw for a given mZP

value (right) have been
depicted as dashed orange lines. Bottom: same as above, but using the expected constraints from a null result with 3 ab−1 of 14 TeV
LHC data [47].
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Examining Fig. 7, we note that for realistic Oð1Þ values
of g4=cP (or, equivalently, Oð10 TeVÞ values of vP), the
present constraint roughly requires mZP

≳ 5 TeV; if we
assume that g4=cP ¼ g=cw, where g is the SUð2ÞL coupling
constant and cw is the cosine of the Weinberg angle, the
limit is, for example, mZP

≥ 5.15 TeV. A null result at
the HL-LHC meanwhile suggests that these limits could be
increased by approximately 1 TeV: If g4=cP ¼ g=cw, the
expected limit from a null result of HL-LHC data would be
mZP

≥ 6.2 TeV. However, we note that similar to the setup
in II, this circumstance can be somewhat modified in
regions of parameter space in which decays to exotic
fermion species are kinematically allowed. In particular,
constraints may be somewhat relaxed by assuming that the
portal matter fields, Pu;d;e;ν

1;2 are sufficiently light to allow for
ZP to decay into them (which, assuming g4=cP ∼Oð1Þ,
would require at worst a mild Oð10−1Þ tuning of the
Yukawa coupling parameters yP1 and yP2). While the decay
into the top partner can reduce the branching fraction of the
ZP to dilepton channels by approximately 10%, the large
number of portal matter states with roughly degenerate
masses (if we assume that decays to all of these portal
matter states are kinematically accessible, for example, ZP
would have 8 different new particles, some color triplets, to
which it can decay) can provide as much as an order of
magnitude reduction in the cross section observable in
dilepton final state searches. We depict the proportional
suppression factor of the branching ratio BðZP → lþl−Þ
assuming that some or all portal matter states are kine-
matically accessible in Fig. 8, where we note that, as
Eq. (89) suggests, the suppression factor is a function of cP.
In Fig. 8, we have specifically considered two sets of

simple benchmarks for the possibility that the portal matter
states are kinematically accessible in ZP decays—either
that all portal matter states have the same mass (which, we
note, would not be an unreasonable approximation if
yP1 ≈ yP2, in which case all portal matter states would
have degenerate masses up to radiative corrections), or that
only half of the portal matter states are light enough for ZP
to decay into them (as we might expect if, for example,
yP1 < yP2). The suppression factors in Fig. 8, in turn,
correspond to as much as Oð1Þ increases in the maximum
allowed g4=cP values (or equivalently, Oð1Þ decreases in
the minimum vP values) depicted in Fig. 7. We note,
however, that even under the best of circumstances (for
example, if the suppression factor is ∼0.2, very near the
lowest we can achieve), the g4=cP values are only increased
by a factor of ∼2. A cursory inspection of Fig. 7 indicates
that this amelioration is enough to perhaps allow mZP

∼
4 TeV while maintaining a reasonable Oð1Þ value of g4=cP
(at least based on 13 TeV data), but certainly cannot enable
much smaller mZP

values. Of course, the potential amelio-
rating effects of these exotic decay channels on dilepton
searches may be counteracted by new distinctive signals
due to the exotic matter production. In particular, the

production of particle-antiparticle pairs of portal matter
or top partner quarks via a resonant ZP might have a
significant effect on the overall production cross section of
these states, especially in the case of leptonic portal matter,
which otherwise may only be produced via electroweak
and dark photon interactions. Null results for portal matter
and top partner searches, then, will likely apply a nontrivial
constraint on the possible mass of the ZP as well, however
treating this situation quantitatively is beyond the scope of
this paper.

VI. DISCUSSION AND CONCLUSIONS

The distinctive requirements for fermionic portal matter
fields in vector portal DM models provide an intriguing
framework for UVextensions of these models. In particular,
constraints from SM anomalies and lifetimes of new

FIG. 8. Top: the proportional suppression of the branching ratio
of ZP to leptons, compared to the scenario where ZP only decays
to SM states, as a function of cP, assuming portal matter states
have the same mass mP, assuming mP=mZP

¼ 0.2 (blue), 0.3
(red), and 0.4 (magenta). Bottom: same as above, but assuming
that only one of the two lighter portal matter states in each sector,
rather than both, are kinematically accessible for this decay.
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SM-charged particles suggest that these fields are vector-
like, albeit with collider signatures that are quite different
from those seen with more “conventional” vectorlike
fermions. Here, we have seen that highly complex addi-
tional physics, not a priori related to DM, can in fact be
incorporated into a portal matter model by following simple
rules: Extending the SM gauge group to a semisimple one
guarantees that KM with a Uð1ÞD embedded in a separate
dark group will be finite and calculable, at which point the
only requirements are to ensure that the complete theory is
anomaly-free and contains only the SM and heavy vector-
like particles.
To demonstrate the potential of following this recipe, we

have developed a model with Pati-Salam symmetry
extended by SUð4ÞF ×Uð1ÞF ¼ 4F1F, in which the
4F1F symmetry contains both a dark photon gauge group
Uð1ÞD and an SUð3Þ flavor symmetry. The Pati-Salam
symmetry is assumed to be broken at a high scale
∼1013 GeV, at which point KM between Uð1ÞF and
Uð1ÞY occurs. Scalars in the adjoint representation of
SUð4ÞF then break the 4F1F down to 1F01F, completely
breaking the embedded SUð3ÞF flavor symmetry, at multi-
TeV scales to avoid flavor constraints and generate the
fermion mass hierarchy observed in the SM. The 1F01F
symmetry is then broken down to Uð1ÞD at a scale of
∼1–10 TeV, and Uð1ÞD, the gauge symmetry corres-
ponding to the DM vector portal, is finally broken by
small vev terms of Oð0.1–1 GeVÞ. The presence of
diverse scales in the symmetry breaking in turn translates
to diverse scales of the new exotic particles proposed.
However, we find that among the new fermions, only
certain portal matter fields, which we have labeled Pu;d;e;ν

1;2 ,
and a vectorlike new partner to the top quark, which we
call T, can be expected to be light enough to be observed
at present collider experiments, having masses at the scale
of ∼ a few TeV. Among the new gauge bosons we have
anticipated, the only ones which we find to have poten-
tially observable effects are the dark photon of mass
Oð1 GeVÞAD, a TeV-scale boson with flavor-universal
couplings ZP, and a TeV-scale flavor-changing neutral
boson ZF associated with a combination of generators of
the flavor group SUð3ÞF.
With the model setup, we proceeded to explore the

phenomenological implications of the experimentally
observable (that is, TeV-scale or less) sector of the theory,
in particular focusing on the phenomenology of quarks and
their portal matter partners, which we expect to have more
phenomenologically visible signals than the corresponding
physics in the lepton sector. We found that present con-
straints from flavor-changing neutral currents arising from
the dark photon, in particular from K → πAD transitions,
placed harsh limits on the form of the vev parameters which
might break Uð1ÞD, and in turn can substantially influence
the branching fractions of portal matter fields to SM
particles. We next noted that the vectorlike top partner T

and the new vector boson ZP contributed nontrivially to
ΔB ¼ 2 flavor-changing processes, the ZP at tree-level
and the T at the one-loop level. These effects were
comparable in magnitude and heavily dependent on the
value of the model parameter ySvS, a dimensionful quantity
which set the scale of both T and ZF’s mass. However, even
when combined the sum of these contributions still
provided only a limited constraint on our parameter space
based on present measurements, although Belle II and
LHCb data may constrain these more stringently in the
near future [27].
Beyond the rich collider phenomenology already

explored in I and II, much of which is replicated in our
model, we find additional model-building flexibility arising
from the potential for the portal matter fields Pu

2 to
decay into T (or vice versa, depending on the particles’
relative masses), which can provide distinctive collider
signatures appearing in neither the treatments discussed
in I and II nor more conventional models of vectorlike
quarks [12,30,43].
Looking forward, we note that the present model

represents a single specific realization of a much broader
recipe for developing models with nonminimal portal
matter sectors. There are a number of different avenues
through which this particular effort can be further explored,
for example by incorporating an explanation for the small
masses and near-maximal mixing observed in the neutrino
sector, addressing the scalar sector rigorously, considering
scenarios in which the Pati-Salam symmetry (or some
components of it) are broken at a similar or lower scale to
the one at which the SUð4ÞF ×Uð1ÞF symmetries are
broken, or explicitly incorporating either scalar or fer-
mionic DM in the construction. Perhaps a broader con-
clusion to be drawn from this work, however, is the
potential that portal matter model building possesses to
elaborate on other extensions of the SM. In particular, we
have seen that incorporating a local SUð3Þ flavor symmetry
with a model of portal matter leads to rich phenomeno-
logical signatures, some of which do not appear in more
conventional portal matter models or models with local
flavor symmetries individually, such as a potential corre-
lation between portal matter lifetime, branching fractions,
and the allowed dark photon masses, or decays of portal
matter to more conventional vectorlike quarks. Presumably,
similar paths can be taken to explore potential links
between portal matter models and other popular extensions
of the SM, predicting entirely different unique signatures
that may depart radically from those anticipated by conven-
tional new physics searches.
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APPENDIX: SUð4Þ GENERATOR MATRICES

Here we list the generators of the SUð4Þ algebra, ti. The
first eight generators correspond to the embedded group
SUð3ÞF in SUð4ÞF, and are given by

t1 ¼ 1

2

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; t2 ¼ 1

2

0
BBB@

0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1
CCCA;

t4 ¼ 1

2

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCA; t5 ¼ 1

2

0
BBB@

0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

1
CCCA;

t6 ¼ 1

2

0
BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCA; t7 ¼ 1
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0
BBB@
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0 0 −i 0
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0 0 0 0

1
CCCA;

t3 ¼ 1

2
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BBB@
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0 −1 0 0

0 0 0 0

0 0 0 0

1
CCCA; t8 ¼ 1

2
ffiffiffi
3

p
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BBB@

1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

1
CCCA:

ðA1Þ

The next six generators are then

t9 ¼ 1

2

0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCCA; t10 ¼ 1

2

0
BBB@

0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0

1
CCCA;

t11 ¼ 1

2

0
BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1
CCCA; t12 ¼ 1

2

0
BBB@

0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0

1
CCCA;

ðA2Þ

t13 ¼ 1

2

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; t14 ¼ 1

2

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

1
CCCA:

ðA3Þ

Finally, t15 is the generator corresponding to the embedded
group Uð1Þ0F in SUð4ÞF, which mixes with Uð1ÞF to form
the dark charge group. It is given by

t15 ¼ 1

2
ffiffiffi
6

p

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

1
CCCA: ðA4Þ
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