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We perform a model-exhaustive analysis of all possible beyond Standard Model (BSM) solutions to the
ðg − 2Þμ anomaly to study production of the associated new states at future muon colliders, and we formulate
a no-lose theorem for the discovery of new physics if the anomaly is confirmed and weakly coupled solutions
below the GeV scale are excluded. Our goal is to find the highest possible mass scale of new physics subject
only to perturbative unitarity, and optionally the requirements of minimum flavor violation and/or naturalness.
We prove that a 3 TeV muon collider is guaranteed to discover all BSM scenarios in which Δaμ is generated
by SM singlets with masses above ∼GeV; lighter singlets will be discovered by upcoming low-energy
experiments. If new states with electroweak quantum numbers contribute to ðg − 2Þμ, then the minimal
requirements of perturbative unitarity guarantee new charged states below Oð100 TeVÞ, but this is strongly
disfavoured by stringent constraints on charged lepton flavor violating (CLFV) decays. Reasonable BSM
theories that satisfy CLFV bounds by obeying minimal flavor violation and avoid generating two new
hierarchy problems require the existence of at least one new charged state below ∼10 TeV. This strongly
motivates the construction of high-energy muon colliders, which are guaranteed to discover new physics:
either by producing these new charged states directly, or by setting a strong lower bound on their mass, which
would empirically prove that the Universe is fine-tuned and violates the assumptions of minimal flavor
violation while somehow not generating large CLFVs. The former case is obviously the desired outcome, but
the latter scenario would perhaps teach us even more about the Universe by profoundly revising our
understanding of naturalness, cosmological vacuum selection, and the SM flavor puzzle.
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I. INTRODUCTION AND EXECUTIVE SUMMARY

The magnetic moments of leptons have spurred the
development of quantum field theory and provided the most
precise comparison between theory and experiment in the
history of science. While the measured anomalous magnetic
moment of the electron, ðg − 2Þe, agrees with the Standard
Model (SM) prediction [1] to better than 1 part per 1 × 109,1

the analogous quantity for the muon, ðg − 2Þμ, has been
discrepant between theory and experiment at a statistically
significant level for nearly two decades [7]. Since the muon
mass is much closer to the QCD scale than the electron mass,
hadronic contributions to ðg − 2Þμ are an important part of
the calculation, and a recent tour-de-force effort [8] combin-
ing lattice calculations with quantities extracted from exper-
imental data [9–28] has recently confirmed the discrepancy
to be

Δaobsμ ¼ aexpμ − atheoryμ ¼ ð2.79� 0.76Þ × 10−9; ð1Þ
with a statistical significance of 3.7σ.2 The muon g − 2
experiment at Fermilab [33] is expected to surpass the
statistics of the previous Brookhaven experiment in the
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1While there is a ∼ − 2.5σðþ1.6σÞ discrepancy between the
theoretical prediction of ðg − 2Þe [1] and the experimental
measurement [2] ([3]) (with the difference between the two
measurements arising from a discrepancy in the measurement of
the fine-structure constant), in this paper we proceed under the
assumption that this is not evidence of new physics. See e.g.,
Refs. [4–6] for a discussion of possible BSM implications.

2Some lattice calculations [29] find no discrepancy with the
measured ðg − 2Þμ, but are discrepant with R-ratio measurements.
The source of this tension may lie in electroweak precision
observables [30–32], preserving the ðg − 2Þμ anomaly.
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coming months, which would further reduce the uncertainty
on the experimental result. If the discrepancy persists after
this measurement (and if it is also confirmed by JPARC [34])
it would be the first terrestrial discovery of physics beyond
the Standard Model (BSM).
Whenever a discrepancy is found in a low-energy precision

measurement, it is imperative to understand the implications
for other experiments, both to confirm the anomaly and
because such a discrepancy could point to the existence of
new particles at higher but accessible energy scales. Direct
production and observation of new states is, after all, the gold
standard for discovering new physics. In the long history of
the ðg − 2Þμ anomaly, many such studies were performed.
Examples include investigations of complete theories like
supersymmetry [35–37], minimal low-energy scenarios
involving only very light states [38,39], or various simplified
model approaches to study the generation of ðg − 2Þμ at
higher energy scales [40–43], which can include additional
considerations like the existence of a viable dark matter (DM)
candidate [44–50].
However, in all these past investigations, a simple question

was left unanswered: what is the highest mass that new
particles could have while still generating the measured BSM
contribution to ðg − 2Þμ? In this paper, we answer that crucial
question in a precise yet model-exhaustive way, relying only
on gauge invariance and perturbative unitarity, and optionally
on well-defined tuning or flavor considerations, without
making any detailed assumptions about the complete under-
lying theory.
We provide a detailed description of our model-exhaustive

approach in Sec. II, but it can be briefly summarized as
follows. We assume that one-loop effects involving BSM
states are responsible for the anomaly,3 since scenarios

where new contributions only appear at higher loop order
require a lower BSMmass scale to generate the required new
contribution. We can, thus, organize all possible one-loop
BSM contributions to Δaμ into two classes:

(i) Singlet scenarios: in which each BSM ðg − 2Þμ
contribution only involves a muon and a new SM
singlet boson that couples to the muon (analyzed in
Sec. III).

(ii) Electroweak (EW) scenarios: in which new states
with EW quantum numbers contribute to ðg − 2Þμ
(analyzed in Sec. IV).

Singlet scenarios generate Δaμ contributions proportional
to mμyμv=M2

BSM, where yμ ∼ 10−3 is the small SM muon
Yukawa coupling. Electroweak scenarios can generate the
largest possible ðg − 2Þμ contributions without the addi-
tional yμ suppression. In particular, we carefully study two
simplified models denoted SSF and FFS with new scalars
and fermions that yield the largest possible BSM mass
scale able to account for the anomaly. Careful analysis of
these two EW scenarios allows us to derive our model-
exhaustive upper bound on BSM particle masses for
scenarios that resolve the ðg − 2Þμ anomaly. We also
account for the possibility of many new states contributing
to Δaμ by considering NBSM ≥ 1 copies of each BSM
model being present simultaneously, allowing us to
understand how the maximum possible BSM mass scales
with BSM state multiplicity in each case.
We find that if Δaobsμ is generated in a singlet scenario,

the maximum mass of the BSM singlet particle(s) is 3 TeV
regardless of BSM multiplicity NBSM. For EW scenarios,
we find that there must always be at least one new charged
state lighter than the following upper bound:

Mmax;X
BSM;charged ≈

�
2.8 × 10−9

Δaobsμ

�1
2

×

8>>>>>><
>>>>>>:

ð100 TeVÞN1=2
BSM for X ¼ ðunitarity�Þ

ð20 TeVÞN1=2
BSM for X ¼ ðunitarityþMFVÞ

ð20 TeVÞN1=6
BSM for X ¼ ðunitarityþ naturalness�Þ

ð9 TeVÞN1=6
BSM for X ¼ ðunitarityþ naturalnessþMFVÞ

; ð2Þ

where this upper bound is evaluated under four assumptions
that the BSM solution to the ðg − 2Þμ anomaly must satisfy
the following: perturbative unitarity only, unitarityþ
minimal flavor violation (see e.g., [52,53]), unitarityþ
naturalness (specifically, avoiding two new hierarchy

problems), and unitarityþ naturalnessþMFV. The unitar-
ity-only bound represents the very upper limit of what is
possible within quantum field theory, but realizing such high
masses requires severe alignment tuning or another unknown
mechanism to avoid stringent constraints from charged lepton
flavor-violating (CLFV) decays [54,55]. We have therefore
marked every scenario without minimal flavor value (MFV)
with a star (*) above, to indicate additional tuning or
unknown flavor mechanisms that have to also be present.
Our results have profound implications for the physics

motivation of future muon colliders (MUC), which have
recently garnered renewed attention as an appealing

3We work under the assumption that the ðg − 2Þμ anomaly is
due to new physics which genuinely affects the value of gμ in
vacuum, rather than its measurement being sensitive to other
BSM effects on the muon spin, for example ultralight scalar dark
matter [51]. The latter case is also eminently testable in upcoming
experiments.
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possibility for the future of the high energy physics program
[56–63]. Muon colliders still face significant technical
challenges [58] but are in many ways ideal BSM discovery
machines: compared to electron colliders, the suppressed
synchrotron radiation loss might make it easier to reach high
energies in excess of 10 TeV; unlike in proton collisions,
the entire center-of-mass energy is available for the pair-
production of new charged particles with masses up to m ∼ffiffiffi
s

p
=2 [58]; and finally they collide the actual particles that

exhibit the ðg − 2Þμ anomaly.
These features enable us to formulate a no-lose theorem

for a future muon collider program. We presented our first
investigation of this issue in [64]. Here, we supply
important additional details, perform detailed muon col-
lider studies, and generalize our original derivation to
include crucial flavor considerations and present all pos-
sible EW scenarios that maximize BSM masses, all of
which reinforce the robustness of our conclusions. Since
our original study appeared, there have also been additional
investigations of indirect probes of ðg − 2Þμ at future muon
colliders [62,65]. The results of these studies, despite their
different technical approach, agree with our overall con-
clusions and strengthen them in important ways, as we
explain below.
We give a detailed description of this no-lose theorem in

Sec. V, but its most important final points are as follows,
broken down in chronological progression:
(1) Present day confirmation: assume the ðg − 2Þμ

anomaly is real.
(2) Discover or falsify low-scale singlet scenarios

≲GeV: if singlet scenarios with BSM masses below
∼GeV generate the required Δaobsμ contribution [38],
then multiple fixed-target and B-factory experiments
are projected to discover new physics in the coming
decade [39,66–73].

(3) Discover or falsify all singlet scenarios ≲TeV:
if fixed-target experiments do not discover new
BSM singlets that account for Δaobsμ , a 3 TeV muon
collider with 1 ab−1 would be guaranteed to directly
discover these singlets if they are heavier than
∼10 GeV.
Even a lower-energy machine can be useful: a

215 GeV muon collider with 0.4 ab−1 could directly
observe singlets as light as 2 GeV under the
conservative assumptions of our inclusive analysis,
while indirectly observing the effects of the singlets
for all allowed masses via Bhabha scattering.
Importantly, for singlet solutions to the ðg − 2Þμ

anomaly, only the muon collider is guaranteed to
discover these signals since the only required new
coupling is to the muon.

(4) Discover nonpathological electroweak scenarios
(≲10 TeV): if TeV-scale muon colliders do not
discover new physics, then the ðg − 2Þμ anomaly

must be generated by EW scenarios. In that case, all
of our results indicate that in most reasonably
motivated scenarios, the mass of new charged states
cannot be higher than few ×10 TeV. However, such
high masses are only realized by the most extreme
boundary cases we consider. Therefore, a muon
collider with

ffiffiffi
s

p
∼ 10 TeV is highly motivated,

since it will have excellent coverage for EW
scenarios in most of their reasonable parameter
space.
A very strong statement can be made for future

muon colliders with
ffiffiffi
s

p
∼ 30 TeV: such a machine

can discover via pair production of heavy new
charged states all EW scenarios that avoid CLFV
bounds by satisfying MFV and avoid generating
two new hierarchy problems, with NBSM ≲ 10.

(5) Unitarity ceiling (≲100 TeV): even if such a high
energy muon collider does not produce new BSM
states directly, the recent investigations by [62,65]
show that a 30 TeV machine would detect deviations
in μþμ− → hγ, which probes the same effective
operator generating ðg − 2Þμ at lower energies. This
would provide high-energy confirmation of the
presence of new physics.
In that case, our results guarantee the presence of

new states below ∼100 TeV by perturbative unitar-
ity, and the lack of direct BSM particle production atffiffiffi
s

p
∼ 30 TeV will prove that the universe violates

MFV and/or is highly fine-tuned to stabilize the
Higgs mass and muon mass, all while suppressing
CLFV processes.

Even the most pessimistic final case would profoundly
reshape our understanding of the Universe by providing
new information about the nature of fine-tuning, flavor,
and cosmological vacuum selection. If no new states are
discovered at 30 TeV, the renewed confirmation of the
ðg − 2Þμ anomaly at these higher energies and the asso-
ciated guaranteed presence of new states below the
unitarity bound with deep implications for naturalness
and flavor means finding the solution to all these puzzles
will surely provide impetus for pushing our knowledge of
the energy frontier to even greater heights.
If the ðg − 2Þμ anomaly is confirmed, then our analysis

and the results of [62,65] show that finding the origin of
this anomaly should be regarded as one of the most
important physics motivations for an entire muon collider
program. Indeed, a series of colliders with energies from
the test bed scale Oð100 GeVÞ to the far more ambitious
but still imaginable Oð10 TeVÞ scale and beyond has
excellent prospects to discover the new particles necessary
to explain this mystery. Regardless of what these direct
searches find, each will make invaluable contributions to
allow us to understand the precise nature of the new
physics that must be present. Therefore, this truly is a no-
lose theorem for the discovery of new physics, the greatest
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imaginable motivation for a heroic undertaking like the
construction of a revolutionary new type of particle
collider.4

We now present the details necessary to fill out this
argument. Our model-exhaustive approach is explained in
Sec. II; singlet and EW scenarios are analyzed in detail in
Secs. III and IV; the implications for a future muon collider
program and the no-lose theorem for discovery of new
physics is fully outlined in Sec. V.

II. MODEL-EXHAUSTIVE APPROACH

In this paper, we aim to address a simple question: how
could we discover all possible BSM solutions to the ðg − 2Þμ
anomaly? Specifically, how could we directly discover at
least some of the BSM particles that play a role in generating
Δaobsμ ? The bewildering plethora of possible BSM solutions
to the anomaly make answering this question very chal-
lenging; by construction, our answer cannot depend on the
particular choice of BSM model.
Very light, weakly coupled solutions to ðg − 2Þμ near or

below the scale of the muon mass will be exhaustively
tested by low energy experiments, and we focus on all other
BSM possibilities. In that case, at the low energies at which
the ðg − 2Þμ measurement is performed, we can parametrize
the deviation from the SM expectation as a BSM contri-
bution to the anomalous magnetic moment operator.
Taking into account electroweak gauge invariance, in two-
component fermion notation this is

Leff ¼ Ceff
v
M2

ðμLσνρμcÞFνρ þ H:c:; ð3Þ

where μL and μc are the two-component muon fields, v ¼
246 GeV is the SM Higgs vacuum expectation value
(VEV), and Ceff is a constant. The factor of v arises from
the fact that coupling left- and right-handed muon fields
requires a Higgs insertion, so the electroweak-symmetric
operator is dimension-6, H†LσνρμcFνρ, and thus must be
suppressed by two powers of a mass scale 1=M2.
Unfortunately, such model-independent EFT analyses are
limited to indirect signatures of the new physics, making
this approach unsuitable to answer the question of how to
directly discover the new states.

To study high-energy direct signatures of new physics, we
instead adopt a “model-exhaustive” approach. As illustrated
in Fig. 1, this simply involves adding the assumption that the
new physics is perturbative, which resolves the new ðg − 2Þμ
contributions into individual loop diagrams involving vari-
ous possible BSM particles in different SM gauge repre-
sentations. In principle, if all possibilities were considered,
one could study direct signatures of new physics in the same
full generality that model-independent EFT analyses afford
for indirect signatures.5

The idea of a model-exhaustive analysis is not, of course,
a new one. However, the challenge lies in systematically
covering all possibilities of BSM particles, or at least those
possibilities relevant to answering a specific phenomeno-
logical question. We now explain how to perform this
analysis for the ðg − 2Þμ anomaly, with an eye towards
direct signatures at future muon colliders.6

We limit ourselves to those perturbative BSM scenarios
where the required Δaμ is generated at one-loop order.
There are certainly many possibilities for BSM physics that
solves the ðg − 2Þμ puzzle by generating only new higher-
loop contributions [4,75,76] (e.g., from Z2 preserving
interactions with the muon), but such models necessarily
require lower mass scales, which must be accessible via
pair production at the collider energies we consider here.
We therefore omit a detailed discussion of these scenarios
without loss of generality. However, we note that even if
such signals were to be ultimately elusive to direct searches
due to complicated, high-background decay channels, a
future muon collider would still detect their presence
through enhanced μμ → γh production [56] and μμ →
μμ Bhabha scattering [64].
Our exhaustive coverage of candidate BSM theories for

ðg − 2Þμ is informed by the characteristic experimental
signatures available in each class of scenarios. For this
reason, we divide up the space of possibilities into two
classes, illustrated schematically in Fig. 2:
(1) Singlet scenarios: defined as BSM solutions to the

ðg − 2Þμ anomaly in which the only new particles in
the ðg − 2Þμ loop are SM gauge singlets. This
selects the first type of diagram in Fig. 1 (right
box) with the Higgs VEV insertion on the external
muon leg, such that the chirality flip and the Higgs
coupling both come from the muon, and hence
Δaμ ∝ mμyμv=M2

BSM. Their singlet nature means
these particles could be very light (≲GeV) while
evading present constraints [38], but they could
also be much heavier.

4While we argue in this work that muon colliders are sufficient
for discovery, they are not the only such probe: proton-proton
colliders, electron linear colliders, and even photon colliders have
strong potential for observing new TeV-scale EW states. That
said, muon-specific singlets will likely be challenging to observe
at any collider not utilizing muon beams, and discovering EW-
charged states at the 10 TeV scale may not be as straightforward
with a 100 TeV pp collider due to PDF factors and a noisier
detector environment [57], while reaching such energies could be
challenging in an electron machine. Of course, all these cases
deserve a dedicated analysis.

5While our analysis is formally limited to perturbative BSM
solutions of the ðg − 2Þμ anomaly, our results nonetheless end up
parametrically covering the case of strongly coupled BSM
scenarios as well, as we argue in Sec. II D.

6For a philosophically similar approach to the hierarchy
problem, see [74].
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For singlet scenarios, our task is to find the
largest possible mass these singlets could have, and
determine how a muon collider could produce and
observe them for all possible masses, regardless of
how or if they decay in the detector.

(2) EW scenarios: defined as all BSM solutions that are
not singlet scenarios. This necessarily implies that
ðg − 2Þμ receives contributions from loops involving
BSM states with EW quantum numbers, which in
turn implies the existence of new heavy charged
states with masses ≳100 GeV to evade large elec-
tron–positron collider bounds. These charged par-
ticles could contribute to ðg − 2Þμ directly, or be new
states that must exist due to gauge invariance. The
new charged states will be our focus, since any lepton
collider with

ffiffiffi
s

p ≳ 2m can directly pair produce such
states of mass m, and as they have to either be
detector stable or decay into charged final states, they
should be discoverable in a clean detector environ-
ment regardless of their detailed phenomenology. For
EW scenarios, our task is therefore to find the largest
possible mass that the new charged states could have.
EW scenarios can generate diagrams of both types

shown in Fig. 1(right). Of particular interest is the
second type where the Higgs insertion and chirality
flip belong to BSM particles in the loop, which would

giveΔaμ ∝ mμgBSMv=M2
BSM without the suppression

of the small muon Yukawa. This can result in much
heavier BSM mass scales than singlet scenarios.

If we examine both of these possibilities exhaustively, we
will have completed our model-exhaustive analysis.
Singlet scenarios are relatively straightforward to ana-

lyze. In Sec. II Awe define simplified models that cover all
possibilities for this singlet. These models have few
parameters, and the parameter space can be explored in
full generality. Electroweak scenarios present more of a
challenge. To find the minimum muon collider energy that
would guarantee direct production and discovery of at least
one BSM charged state, we have to find the heaviest
possible charged state consistent with resolving the
anomaly. This amounts to finding the following quantity:

Mmax
BSM;charged≡ max

BSMtheoryspace

Δaμ¼Δaobsμ

n
min

i∈BSMspectrum

�
mðiÞ

charged

�o
:

ð4Þ

This can be understood in the following algorithmic way.
The outer maximization scans over all possible BSM
theories and possible values of their parameters that give
Δaμ ¼ Δaobsμ while satisfying the constraints of perturbative

FIG. 1. The philosophy of our “model-exhaustive” analysis. Traditional model-independent analyses express the new physics
contribution to ðg − 2Þμ as a nonrenormalizable operator, either in the low-energy theory after EW symmetry breaking (left) or in the full
SM gauge invariant formulation (middle). This makes no assumptions about the new physics but is limited to indirect signatures of the
new physics produced by the same operator. Since we want to probe direct signatures of the BSM physics which solves the ðg − 2Þμ
anomaly, we add the single assumption of perturbativity to the traditional model-independent analysis, which resolves the new Δaμ
contributions into explicit loop diagrams of new states fψ ig carrying specific SM quantum numbers (right). If the Higgs insertion lies on
the external muon, then Δaμ is suppressed by yμ, while Δaμ can be significantly enhanced if the Higgs couples to new particles in the
loop. By exhaustively analyzing all possible choices of new states, we can derive predictions for direct signatures that are as universal as
the traditional model-independent predictions for indirect signatures.
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unitarity. For each specific theory and given values of its
parameters, we find the lightest new charged state (inner
bracket) and add it to a list. The outer maximization then
picks the maximum value from this list, giving the heaviest
possible mass of the lightest new charged state that must
exist to resolve the ðg − 2Þμ anomaly, and therefore the
minimum energy of a muon collider that is guaranteed to
produce these particles. The difficulty obviously arises in
performing the first theory space maximization. In Sec. II B
we explain how this maximization can be performed,
allowing our model-exhaustive analysis to determine the
heaviest possible masses of new charged states with the
generality of a traditional model-independent analysis.

A. Singlet scenarios

In this case, SM singlets that could be below the GeV
scale (or much heavier) generate the new one-loop con-
tributions to ðg − 2Þμ. The singlet could either be a scalar,
vector, or fermion. Our focus will be the case of a new real
scalar S or vector V. The relevant Lagrangian terms for the
real scalar case are

LS ⊃ −ðgSSμLμc þ H:c:Þ − 1

2
m2

SS
2: ð5Þ

Note that the Yukawa coupling of the real scalar to muons
gS is not gauge invariant. This implies that either the
interaction arises from the nonrenormalizable operator
1
Λ cSμLμ

cHS, in which case gS ∝ v=ð ffiffiffi
2

p
ΛÞ, or the inter-

action comes from a singlet-Higgs mixing, in which case
gS ∼ yμ sin θ, where θ is the mixing angle. We briefly
discuss the consequences of consistent embedding in the
full electroweak theory in Sec. III. For the vector case, the
relevant Lagrangian terms are

LV ⊃ gVVαðμ†Lσ̄αμL þ μcσαμc†Þ þm2
V

2
VαVα: ð6Þ

These two scenarios are representative of muophilic new
gauge forces or scalars that have been extensively studied in
the literature [39,77–79] and their contributions to ðg − 2Þμ
are shown in Fig. 3.
As discussed in Sec. III, the only viable anomaly-free

vector model is gauged Lμ − Lτ, which can still resolve
ðg − 2Þμ for mV ∈ ð10 MeV; 2mμÞ [73,80]. Bounds on
muonphilic singlet scalars are more model dependent
and can, in principle, resolve ðg − 2Þμ with any mass
between the MeV scale and the perturbative unitarity limit
∼ few TeV. For both scalars and vectors, the lower limit is

FIG. 2. Schematic representation of the model-exhaustive space of BSM theories that can solve the ðg − 2Þμ anomaly, and our
mutually exclusive and collectively exhaustive categorization into singlet and electroweak scenarios. For these two classes of theories,
the phenomenological questions are distinct. To understand how to discover singlet scenarios, we have to not only find the heaviest
possible mass of the singlet(s), but also how to discover this singlet for all possible masses, since its phenomenology depends on its
stability and decay mode, and lighter singlets have weaker coupling. Electroweak scenarios predict new charged states, and since those
have to produce visible final states in a collider and are efficiently produced at lepton colliders for m ≲ ffiffiffi

s
p

=2, we only have to find the
maximum mass the lightest new charged state in the BSM theory can have. (We limit ourselves to scenarios that generate Δaobsμ at one-
loop, since higher-loop solutions have lower BSM mass scales.)
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set by cosmological constraints, most importantly bounds
on ΔNeff , the effective number of relativistic species at big
bang nucleosynthesis [73,81]. Thus, the scalar singlet
scenario will be of most interest to us, but we keep the
vector case in our discussions for completeness since the
analyses are very similar.
These singlet scenarios are the most minimal BSM

solutions to the ðg − 2Þμ anomaly, featuring new particles
required only to couple to the muon and no other SM
particles. Consequently, muon colliders and muon-beam
fixed-target experiments might be the only guaranteed way
to probe all singlet scenarios. Given that fixed-target
experiments and B factories will exhaustively probe singlet
scenarios with masses below ∼GeV [39,66–73], we will
particularly focus on singlet scenarios above the GeV scale
in our muon collider physics analyses.
Of course, it is possible that more than one new degree of

freedom contributes to ðg − 2Þμ. We account for this
possibility by considering NBSM ≥ 1 copies of each SM
singlet scenario in Eqs. (5) or (6), and analyzing how the
various higher-energy signatures scale with BSM multi-
plicity. Note that the assumption that all NBSM copies of the
simplified model have equal masses and couplings is the
most pessimistic one with regards to high-energy signa-
tures, since nondegenerate masses and couplings always
lead to larger signatures due to the nonlinearity of the
associated cross sections and amplitudes. If couplings or
masses are highly unequal, the phenomenology will be

dominated by just a few new states. Considering degenerate
NBSM ≥ 1 copies therefore covers the signature space of
possibilities.
In principle, one could also consider the case of a neutral

fermion N contributing to ðg − 2Þμ. This would essentially
be a right-handed-neutrino-type scenario (see e.g., [82] for
a review), where the new ðg − 2Þμ contribution consists of a
loop of a W boson and the neutral N that mixes with the
muon neutrino. However, in the presence of a unitary
neutrino mixing matrix, such contributions would cancel
up to corrections of order ∼ðmν=mWÞ2, which are inad-
equate to explain Δaobsμ . We therefore restrict our focus to
scalar and vector singlets.
Finally, we point out a peculiar but interesting edge case.

It is possible to define versions of these singlet models
where the virtual fermion in Fig. 3(top) is replaced by a
virtual tau lepton. This appears quite pathological, since
they lead to large charged-lepton flavor-violating tau
decays unless singlet couplings to two muons [as in
Eqs. (5) and (6)] are completely negligible or absent.
However, insofar as they are a theoretical possibility, we
classify them as part of the electroweak scenarios that we
discuss below, since the contribution to Δaμ is enhanced by
the larger tau mass. Their experimental probes at muon
colliders is discussed in Sec. IV H.

B. Electroweak scenarios

We now move on to discuss the most general class of
BSM solutions to the ðg − 2Þμ anomaly, electroweak
scenarios. This includes an overwhelmingly large number
of possibilities, but fortunately, we do not need to study all
of them. To perform the maximization over all of BSM
theory space in Eq. (4), we merely need to study those
models which are guaranteed to give the largest possible
BSM mass scales. This will be sufficient to model-
exhaustively determine the heaviest possible mass for
new charged states.
Which EW scenarios maximize the BSM mass scale?

Consider the most general new one-loop diagrams that
could contribute to ðg − 2Þμ. To make sure the relevant
masses and couplings are maximally unconstrained, we
consider the cases where all fields in the loop are BSM
fields. Furthermore, the chirality flip and the Higgs VEV
insertion necessary to generate Eq. (3) should both come
from these BSM fields to avoid additional suppression by
the small muon Yukawa. The minimal ingredients are,
therefore,
(1) at least 3 BSM fields, either two bosons and one

fermion or one boson and two fermions;
(2) a pair of these fields undergo mass-mixing with each

other via a Higgs coupling after electroweak sym-
metry breaking (EWSB);

(3) all new fermions are vectorlike under the SM to
maximize allowed masses and avoid constraints on
new fourth generation fermions [83];

FIG. 3. Representative 1-loop contributions to ðg − 2Þμ in the
simplified models we consider. Top row: singlet scenarios with a
SM neutral vector V or scalar S that couple to the muon. Note that
the Higgs VEVon the muon line gives both the chirality flip and
the EW breaking insertions in these models. Bottom left: EW
scenario of SSF type, with one BSM fermion and two BSM
scalars that mix via a Higgs insertion. Bottom right: EW scenario
of FFS type, with one BSM scalar and two BSM fermions that
mix via a Higgs insertion.
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(4) no VEVs for any new scalars with EW charge. Since
we are primarily interested in BSM states above
the TeV scale, any new VEVs that break electroweak
symmetry will exceed the measured value v ≈
246 GeV for perturbative scalar self couplings.

As in our analysis for singlet scenarios, our default focus
is on the most experimentally pessimistic case in which
these new BSM states only couple to the SM through their
muonic (and gauge) interactions. We find that scenarios
with new vectors generate smaller Δaμ contributions than
the analogous scenario with a new scalar, and likewise for
Majorana fermions or real scalars. Since this results in a
lower BSM mass scale that would be easier to probe, we
focus on EW scenarios with new complex scalars and
vectorlike fermions only. This leaves just two classes of
models, which we label SSF and FFS by their field content.
The SSF simplified model is defined by two complex

scalars ΦA, ΦB in SUð2ÞL representations RA, RB with
hypercharges YA, YB and a single vectorlike fermion pair
FðFcÞ in SUð2ÞL representation R(R̄) with hypercharge
Y (−Y):

LSSF ⊃ −y1FcLðμÞΦ�
A − y2FμcΦB − κHΦ�

AΦB

−m2
AjΦAj2 −m2

BjΦBj2 −mFFFc þ H:c: ð7Þ

Here y1, y2 are new Yukawa couplings and κ is a trilinear
coupling with dimensions of mass. LðμÞ ¼ ðνL; μLÞ and μc

are the two 2-component second-generation SM lepton
fields, and H is the Higgs doublet. A typical SSF
contribution to ðg − 2Þμ is shown in Fig. 3(b). Note that
the chirality flip comes from the heavy vectorlike fermion
F while the Higgs VEV insertion arises due to mixing of
the new scalars.
The FFS simplified model is analogously defined but

reverses the role of fermions and scalars, featuring two
vectorlike fermion pairs FA, FB (Fc

A; F
c
B) in SUð2ÞL

representations RA, RB (R̄A; R̄A) with hypercharges YA,
YB ð−YA;−YBÞ and a single complex scalar S in SUð2ÞL
representation R with hypercharge Y:

LFFS ⊃ −y1Fc
ALðμÞΦ� − y2FBμ

cΦ − y12HFc
AFB

− y012H
†FAFc

B −mAFAFc
A −mBFBFc

B

−m2
SjΦj2 þ H:c: ð8Þ

There are now two renormalizable Yukawa couplings
y12; y012 which control the mixing of the A and B fermions
via the Higgs. A typical FFS contribution to ðg − 2Þμ is
shown in Fig. 3(c). The chirality flip and Higgs VEV
insertion both arise in the loop due to the Higgs couplings
of the new fermions.
These two simplified models generate the largest pos-

sible BSM particle masses that could account for Δaobsμ .
Therefore, the maximization over theory space in Eq. (4)

can be replaced by a maximization over the SSF and FFS
parameter spaces:

Mmax
BSM;charged≡ max

SSF;FFS models

n
min

i∈BSM spectrum

�
mðiÞ

charged

�o
:

ð9Þ

Note that one could in principle consider extensions of the
SM Higgs sector with additional scalar contributing to
EWSB. In that case, the κ and y1;2 terms in the above
Lagrangians could arise from coupling to these new
scalars rather than a SM-like Higgs doublet, which might
change the allowed EW representations of the BSM states.
However, current constraints already dictate that most of
the observed EWSB arises from the VEV of a single
doublet [84,85], which means that relying only on BSM
scalars to generate the required EWSB insertions in the
above Lagrangians would lead to smaller effective mix-
ings and hence smaller Δaμ and BSM masses. We there-
fore do not have to consider such extended scenarios to
perform the maximization of the lightest new charged
particle mass over BSM theory space.
In both SSF and FFS models, the choices of representa-

tions must satisfy

1 ⊂ RA ⊗ R ⊗ 2;

RB ¼ R̄;

YA ¼ −
1

2
− Y;

YB ¼ −1 − Y; ð10Þ

with Y chosen to make the electric charges integer valued.
We will explore all choices of representations involving
SUð2ÞL singlets, doublets, and triplets, and all choices of Y
that ensure that all electric charges satisfy jQj ≤ 2. As we
discuss, this is sufficient to perform the above maximiza-
tion. The possibility of a high multiplicity of new BSM
states is again taken into account by considering the trivial
generalizations where there are NBSM identical copies of
the above fields contributing to Δaμ.
The Lagrangians in Eqs. (7) and (8) only show the

interactions necessary to form new one-loop contributions
to ðg − 2Þμ. Depending on the choice of SUð2ÞL ⊗ Uð1ÞY
representations, additional couplings between the new fer-
mions/scalars and the muon or Higgs may be allowed by
gauge invariance. However, these couplings will not con-
tribute to ðg − 2Þμ at leading order, at most supplying a small
correction to the leading terms generated by the couplings in
Eqs. (7) and (8), or slightly modifying the mass spectrum of
the fermions/scalars that couple to the Higgs after EWSB by
≲TeV, which does not meaningfully affect our results or
discussion. We can therefore neglect these additional cou-
plings in our analysis. We also assume that the new BSM
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states do not couple to any other SM fermions (except when
discussing leptonic flavor violation bounds). Both of these
assumptions are conservative in that they minimize addi-
tional experimental signatures arising from the new physics
responsible for the ðg − 2Þμ anomaly.
Depending on the choice of representations, some of

the EW scenarios we consider were previously studied in
Refs. [45–48,86–88]. There have also been previous
attempts to define simplified model dictionaries for
generating Δaobsμ [41,42,45,47,48,89–92], but none took
our completely model-exhaustive approach and none
aimed to find the highest possible mass of new BSM
charged states that could account for Δaobsμ . We also make
no assumptions about e.g., the existence of a viable DM
candidate, or any couplings of the new degrees of freedom
that are not required for resolving the ðg − 2Þμ anomaly
(except optionally considering flavor). Other possible
simplified models for ðg − 2Þμ, such as adding fewer than
three new BSM particles with nontrivial EW representa-
tions (see e.g., [41]), require smaller masses for the new
charged particles than the SSF and FFS models, and their
inclusion does not affect the outcome of the maximiza-
tion over theory space of Eq. (4). We demonstrate this
explicitly in Sec. IV H.

C. Upper bounds on BSM couplings

The size of the ðg − 2Þμ contribution is controlled by
BSM couplings and masses, and the largest possible BSM
masses that can account for the anomaly depend on the
largest possible BSM couplings. In Sec. II C 1 we describe
first how perturbative unitarity supplies an absolute upper
bound on the new couplings. This will inform our baseline
analysis, but more careful consideration of how these
simplified models must arise as part of a more complete
BSM theory suggests that an upper bound based on unitarity
alone is likely far too conservative, especially in light of
stringent CLFV bounds. In Secs. II C 2 and II C 3 we
therefore consider the additional constraints on the new
muon couplings arising by assuming either MFV or requir-
ing the absence of large, explicitly calculable new tunings.

1. Unitarity

To define the boundaries of parameter space in our
simplified models we appeal to tree-level partial-wave
unitarity, expressed in terms of helicity amplitudes so that
we can apply the constraints to fermions as well as bosons
[93]. (See e.g., [94–99] for more recent studies.) We begin
from the partial-wave expansion of the (azimuthally sym-
metric) scattering amplitude for the 2 → 2 process
i → f≡fa; bg → fc; dg:

Mi→fðθÞ ¼ 8π
X∞
j¼0

ð2jþ 1ÞTj
i→fd

j
λfλi

ðθÞ; ð11Þ

where djλfλiðθÞ are the Wigner d functions, Tj
i→f is the jth

partial wave of the tree-level scattering amplitude, λi ¼
λa − λb and λf ¼ λc − λd are the helicities of the initial and
final states, and j is the eigenvalue of the total angular
momentum. The coefficients Tj

i→f can be found by using
the orthogonality condition of the d functions

1

16π

Z
Mi→fðθÞdjλfλiðθÞdðcos θÞ ¼ Tj

i→f: ð12Þ

From the optical theorem one can get the partial-wave
unitarity condition of an inelastic process for each j

βiβfjTj
i→fj2 ≤ 1; ð13Þ

where the phase space factors for states of mass m1 and
m2 are

βm1;m2
¼ 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðm1 þm2Þ2�½s − ðm1 −m2Þ2�

q
; ð14Þ

and s is the squared center of mass energy. For a given
set of mass eigenstates which appear in our theory,
we will require that the lowest partial-wave tree-level
2-to-2 scattering amplitudes between initial states i
and final states f satisfy the unitarity condition (13).
We will consider boson-boson (j ¼ 0), boson-fermion
(j ¼ �1=2), and fermion-fermion (j ¼ 0, 1) scattering;
fermion-vector scattering (j ¼ 1=2) will always lead to
weaker constraints for large NBSM. The relevant Wigner d
functions are given in Table I.
Note that the partial wave decomposition in Eq. (11)

requires specifying the angular momenta of the initial and
final states, so in principle the different helicity ampli-
tudes for j ¼ 1=2 can give independent constraints. Note
also that these partial-wave constraints are valid at any
kinematically allowed value of s, as the phase space
factors vanish at kinematic thresholds and enforce
physical kinematics.
The constraints obtained from (13) amount to

the requirement that loop contributions to scattering

TABLE I. The Wigner d functions used in our partial-wave
unitarity calculations.

Scalar-scalar Tj¼0
0→0

d000ðθÞ ¼ 1

Scalar-fermion
Tj¼1=2
þ→þ d1=21

2
1
2

ðθÞ ¼ cosðθ=2Þ
Tj¼1=2
þ→− d1=21

2
−1
2

ðθÞ ¼ sinðθ=2Þ

Fermion-fermion
Tj¼0
þþ→�� d000ðθÞ ¼ 1

Tj¼1
þ−→�� d101ðθÞ ¼ −

ffiffiffi
2

p
sinðθ=2Þ cosðθ=2Þ

Tj¼1
þ−→þ− d111ðθÞ ¼ cos2ðθ=2Þ
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amplitudes are smaller than tree-level contributions at
scales up to a factor of a few above mmax, where mmax is
the largest mass eigenvalue in the model under consid-
eration.7 The violation of these constraints would require
nonperturbative physics to appear at an energy scale close
to mmax to unitarize the theory, so restricting to parameter
space which satisfies tree-level unitarity amounts to the
following statement: either a theory with masses up to
mmax is perturbatively calculable, or new physics appears
at the scale smax.
In some processes, we may encounter singularities

either in the scattering amplitude itself in the form of s-
channel poles, or after integrating the amplitude as
demanded by Eq. (13). The latter appear in t- and u-
channel diagrams. In Ref. [96], these singularities are
treated by removing values of the center of mass energyffiffiffi
s

p
around the singularities. We avoid such a complica-

tion by studying processes where t- and u-channel
amplitudes do not appear, and where s-channel singu-
larities correspond to poles at energies below the thresh-
old where the cross section is nonvanishing. This will
become clear when we discuss the perturbative unitarity
constraints for specific processes in the sections below.
Note that somewhat stronger constraints could be

achieved by considering a coupled-channel analysis where
the full scattering matrix between all initial and final states is
diagonalized, by considering higher partial waves, and/or by
relaxing the constraints on poles; our constraints are thus
conservative, but will suffice for the statement of our no-lose
theorem.

2. Unitarity and minimal flavor violation

Proposing new scalars with Yukawa couplings to the
muon prompts us to ask how these new degrees of
freedom couple to the other lepton generations. The
physics which solves the ðg − 2Þμ anomaly would have
to be embedded in whichever UV-complete framework
explains the flavor structure of the SM fermions. From a
bottom-up perspective, this is most relevant since flavor-
changing neutral currents (FCNCs) in the lepton sector,
most importantly CLFV decays li → ljγ, are tightly
constrained [54,55]:

Brðμ → eγÞ < 4.2 × 10−13; ð15Þ

Brðτ → μγÞ < 4.4 × 10−8; ð16Þ

Brðτ → eγÞ < 3.3 × 10−8: ð17Þ

It is well known that CLFV constraints impose stringent
requirements on BSM solutions to the ðg − 2Þμ anomaly

(see e.g., [41,89]). We can demonstrate this by consider-
ing a flavor-anarchic version of the scalar singlet scenario:

−L ⊃ SgijS l
i
Ll

jc; ð18Þ

where i, j are lepton generation indices. This would
generate flavor-violating versions of the low-energy
operator Eq. (3)

Leff ¼ Cij
eff

v
M2

ðlj
Lσ

νρlicÞFνρ þ H:c: ð19Þ

The assumption that the above scalar singlet scenario
resolves the ðg − 2Þμ anomaly fixes the Cμμ

eff Wilson
coefficient. Assuming for simplicity that Cμμ

eff is fully
determined by gμμS , this determines all the other operators
up to ratios of gijS couplings:

Cij
eff ≈

maxðmli ; mljÞ
mμ

X
k

gikS
gμμS

gkjS
gμμS

; ð20Þ

where we have set gijS ¼ gjiS , again for simplicity. It is
straightforward to obtain CLFV branching ratios from this
low-energy description, which can be used to constrain ratios
of the singlet scalar couplings to different fermion gener-
ations:

X
l

gμlS
gμμS

gleS
gμμS

≲ 1 × 10−5;

X
l

gτlS
gμμS

glμS
gμμS

≲ 7 × 10−3;

X
l

gτlS
gμμS

gleS
gμμS

≲ 6 × 10−3; ð21Þ

from μ → eγ, τ → μγ, and τ → eγ decays, respectively. We
emphasize that these bounds assume that gμμS is fixed to
generate Δaobsμ . Clearly, flavor-universal couplings of the
singlet scalar are excluded, and flavor-anarchic couplings are
severely disfavored by CLFV bounds.
The situation is similar for EW scenarios. Consider

flavor anarchic versions of the SSF and FFS models:

−LSSF ⊃ yi1F
cLiΦ�

A þ yi2Fl
c
iΦB þ κHΦ�

AΦB; ð22Þ

−LFFS ⊃ yi1F
c
ALiS� þ yi2FBlc

i Sþ y12HFAFc
B: ð23Þ

Again, in this anarchic ansatz, the same new fermions and
scalars that account for the ðg − 2Þμ anomaly generate the

flavor violating operators in Eq. (19), and Cij
eff is deter-

mined by Δaobsμ up to coupling ratios:

7Specifically, in some processes we take the s → ∞ limit to
obtain our constraint, but numerically the constraint asymptotes
rapidly for energies a factor of a few times above threshold.
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Cij
eff ≈

giS
gμS

gjS
gμS

; ð24Þ

where we again assumed for simplicity that yi1 ¼ yi2 and
that Cμμ

eff is fully determined by yμ1;2. The only difference to
scalar singlet scenarios is the absence of the lepton mass
ratio in Eq. (20), since for FFS and SSF models, the
chirality flip and Higgs coupling insertion now lie on the
propagators of the BSM particles in the loop. Repeating
the estimates for CLFV decay branching ratios, we obtain
the following bounds on the lepton coupling ratios:

ye1;2
yμ1;2

≲ 10−5;
yτ1;2
yμ1;2

≲ 10−1;
yτ1;2
yμ1;2

ye1;2
yμ1;2

≲ 10−1; ð25Þ

from μ → eγ, τ → μγ, and τ → eγ decays, respectively, if
yμ1;2 is fixed by resolving the ðg − 2Þμ anomaly.
Clearly CLFV constraints, in particular μ → eγ,

exclude flavor-universal BSM solutions to the ðg − 2Þμ
anomaly (which involve new scalars), and severely
constrain flavor-anarchic ones. It is of course possible
that a flavor anarchic model evades the above constraints
by some coincidence (perhaps all the more unlikely given
that the above coupling ratio constraints have to be
satisfied in the lepton mass basis after Pontecorvo–
Maki–Nakagawa–Sakata matrix diagonalization, not
the lepton gauge basis). However, it seems much more
reasonable to take the absence of observed CLFVs as
evidence of some protection against FCNCs in whatever
UV-complete theory solves the SM flavor puzzle, and that
the physics of ðg − 2Þμ has to respect that protection.
A robust model-independent framework that encom-

passes many possible flavor embeddings and provides
strong protection against FCNCs is the MFV ansatz (see
e.g., [52,53]). In MFV, the SM Higgs Yukawa matrices
couplings are assumed to be the only spurions of global
Uð3ÞL ×Uð3Þlc → Uð1Þlepton flavor breaking, so that all
BSM flavor violation is aligned with the SM Yuwakas.
Such a structure naturally emerges if the SM Yukawa
matrices arise as the VEVs of heavy UV fields respon-
sible for breaking a larger flavor group.
The MFVansatz does not specify the representations of

BSM fields under the flavor group, but it does require all
Lagrangian terms to be flavor singlets (with the Yukawa
matrices as spurions). This would, for example, forbid
off-diagonal terms in Eq. (18), avoiding large CLVFs
while still providing a viable explanation for ðg − 2Þμ
over a wide range of scalar masses [39]. For EW
scenarios, the muon-scalar-fermion index has to involve
a Yukawa coupling factor and the scalar and fermion
together have to contract into triplets of Uð3ÞL or Uð3Þlc.
This automatically forbids interactions of the form
Eq. (22) since there would have to be at least one separate

BSM fermion (or scalar) for each lepton flavor and the
CLFV diagrams are not generated.8

Imposing MFV has several important consequences.
First, nontrivial flavor representations of BSM fields in
EW scenarios can give rise to more than one set of BSM
states coupling to the muon and contributing to ðg − 2Þμ. In
effect, this corresponds to NBSM > 1, which is covered by
our analysis. Second, MFV requires that some of the
muonic BSM couplings in the scalar singlet, SSF and
FFS models have a taulike equivalent that is at least a factor
mτ=mμ ≈ 17 larger. This larger taulike coupling will there-
fore have to satisfy the bounds of perturbative unitarity,
effectively lowering the upper bound from unitarity on the
relevant muonic coupling that generates Δaobsμ by a factor
of ≈17. This leads to a dramatic reduction in the maximum
allowed BSM mass scale compared to imposing unitarity
alone (and implicitly assuming that CLFV decays are
suppressed by accidentally small flavor-anarchic BSM
couplings in the lepton mass basis).
Precisely which muonic BSM couplings have a tau

equivalent can depend on the Uð3ÞL ×Uð3Þlc →
Uð1Þlepton representation of the BSM fields. The situation
is simple for the scalar singlet scenario, since the gS
coupling must be in the same representation as the SM
Yukawas, and therefore gμS=g

τ
S ¼ mμ=mτ. For EW scenarios

there is more ambiguity. An example of a minimal choice
for the flavor representation of the BSM fields in the SSF
model (the discussion is similar for FFS) is

F ∼ ð3; 1Þ; Fc ∼ ð3̄; 1Þ; SA;B ∼ ð1; 1Þ: ð26Þ

Since L ∼ ð3; 1Þ and ec ∼ ð1; 3̄Þ this implies that y2 must
transform like the SM electron Yukawa while y1 can be a
flavor singlet:

y2 ∼ ye ∼ ð3̄; 3Þ; y1 ∼ ð1; 1Þ: ð27Þ

Therefore, the MFV assumption implies yμ2=y
τ
2 ¼ mμ=mτ

and the yμ2 coupling effectively has a smaller perturbativity
bound, while the upper bound for y1 is unaffected since that
coupling is flavor universal. Other minimal choices can
make y2 a flavor singlet and y1 a bifundamental, but at least
one of the two muonic y1;2 couplings has its perturbativity
bound reduced by mμ=mτ. Nonminimal flavor representa-
tions for the BSM fields may introduce additional coupling

8This statement is strictly true only for massless neutrinos, in
which case the lepton Yukawa matrices are spurions of Uð3ÞL ×
Uð3Þlc → Uð1Þe × Uð1Þμ × Uð1Þτ flavor breaking and lepton
flavors are separately conserved. However, for nonzero neutrino
masses, there will still be some CLFV contributions from these
models, but they involve diagrams with virtual W exchange and
are further suppressed by powers of mν=mW relative to the
leading diagrams that resolve ðg − 2Þμ, so we do not consider
them here.
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ratios and hence even tighter perturbativity bounds, but for
the purposes of our conservative estimates, we only make
the minimal assumption.

3. Unitarity and naturalness in electroweak scenarios

The hierarchy problem in the SM is often formulated
using an estimate of loop corrections to the Higgs mass
regulated with a finite momentum cutoff ΛUV:

Δm2
H ∼

y2t
4π2

Λ2
UV; ð28Þ

where yt is the SM top Yukawa, which dominates this
estimate. Avoiding fine tuning of the Higgs mass parameter
in the Lagrangian requires either cancellation of the above
quadratically divergent correction (supersymmetry) or new
physics far below the Planck or grand unification theories
(GUT) scale (i.e., a low UV cutoff). This is simple and
intuitive, appealing to the physical interpretation of
unknown physics at some high scale in a Wilsonian picture.
The cutoff argument is also “morally correct” in that it
accurately indicates the quadratic sensitivity of the Higgs
mass to UV corrections, whatever they may be. However,
without knowledge of what the new physics is, one could
argue that the specific cutoff-dependent quantity in Eq. (28)
has no physical meaning. While it might seem unlikely or
even absurd that quantum gravity corrections at the Planck
scale contribute nothing to Δm2

H, without explicit knowl-
edge of (1) new physics between the weak scale and the
Planck scale, and (2) the precise nature of quantum gravity,
one cannot be absolutely sure that the hierarchy problem
does, in fact, refer to a real tuning of our Universe’s
parameters.
The situation is entirely different when explicit new

states with high mass and sizeable couplings to the Higgs
are introduced, as is the case for the EW scenarios we
examine. These models have been engineered to account
for the ðg − 2Þμ anomaly with the highest possible BSM
particle masses in order to perform the theory-space
maximization of Eq. (4) and identify the experimental
worst-case scenario and the minimum energy of future
colliders required for discovery. Realizing these high-mass
scenarios requires unavoidably large couplings to the
Higgs, which in turn leads to large but finite and calculable
corrections to the Higgs mass; this makes the hierarchy
problem explicit.
Specifically, we can calculate the one-loop contributions

of the new S, F fields to the Higgs mass using dimensional
regularization as a regulator in the MS renormalization
scheme. This gives contributions of the schematic form

Δm2
H ∼

1

4π2

�
c1M2

BSM þ c2M2
BSM log

μ2R
M2

BSM

�
; ð29Þ

where in this instance MBSM stands for various combina-
tions of BSM masses in each term, and μR is the

renormalization scale. The quadratic UV sensitivity of
the Higgs mass is illustrated by the first term, with the
size of the correction given by the scale of new physics as
expected.
Naively, one might worry that the dependence of the

second term on the renormalization scale invalidates such a
straightforward physical interpretation. One might in prin-
ciple choose μR to set the above correction to zero.
However, this would not be physically meaningful, since
for such a choice of μR, the perturbative expansion would
be invalid. Restoration of perturbativity by inclusion of
higher-loop diagrams would restore the large size of ΔmH.
Therefore, the most reasonable physical interpretation of
this correction is obtained setting μR to optimize the validity
of the perturbative expansion, in which case the above one-
loop result is the best possible approximation for the total
size of the Higgs mass correction to all orders. This is why
one typically choose μR ∼m in MS calculations that are
dominated by physics at scale m. In that case, the μR
dependence becomes minor and simply corresponds to the
fact that in a truncated perturbative expansion, there are
unknown higher-order terms that could slightly modify the
one-loop result.
With this in mind, we fix μR ∼OðMBSMÞ to the value

that sets the log terms to zero. This gives the following
expressions for the Higgs mass corrections in SSF and FFS
models:

Δm2
H ¼ C1NBSM

κ2

16π2
ðSSFÞ ð30Þ

Δm2
H ¼ C2NBSM

1

8π2
ððy212 þ y012

2Þðm2
A þm2

BÞ
þ 2y12y012mAmBÞ; ðFFSÞ ð31Þ

where C1;2 ∼Oð1Þ depend on the gauge representations of
the new scalars and fermions in the SSF/FFS model. The
required presence of such corrections in BSM theories that
solve the ðg − 2Þμ anomaly with the highest possible BSM
mass scale makes the hierarchy problem explicit.
What is more surprising, if not entirely unfamiliar

[5,64,87], is that these same theories actually lead to a
second hierarchy problem for the muon mass. Fermion
masses are usually technically natural, but the required
muon coupling to new heavy fermions F means their chiral
symmetry is shared in the limit where both are massless.
Corrections to the muon mass therefore no longer scale
with the muon Yukawa yμ.

9 Following the same procedure
as the calculation of Higgs mass corrections we obtain
corrections to the muon Yukawa due to loops of heavy
fermions and scalars in EW scenarios:

9Indeed, if the new physics is not so heavy it can modify the
muon Yukawa [100].
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Δyμ ∼ NBSM
y1y2
16π2

κmF

M2
BSM

ðSSFÞ; ð32Þ

Δyμ ∼ NBSM
y1y2y

ð0Þ
12

4π2
ðFFSÞ: ð33Þ

For large BSM couplings and masses, jΔyμj ≫ yμ, neces-
sitating tuning of the Lagrangian parameters. This hier-
archy problem of the muon Yukawa arises due to large,
calculable corrections from new states present in the theory,
making it just as explicit as the Higgs hierarchy prob-
lem above.
It is therefore reasonable to consider BSM scenarios that

avoid adding two explicit hierarchy problems to the SM by
keeping such a dual fine-tuning to a reasonable minimum,
e.g., 1% each for the muon and Higgs mass. Similar to the
MFV ansatz, this shrinks the viable parameter space by
reducing the maximum allowed size of BSM couplings,
thereby reducing the maximum BSM mass scale.10

D. Upper bound on the BSM mass scale

The analysis of singlet and EW scenarios is discussed in
detail in Secs. III and IV. In each scenario, the viable
parameter space of BSM masses and couplings is compact,
since we require the new states to explain the ðg − 2Þμ
anomaly, and the couplings cannot exceed the limit set by
perturbative unitarity, or unitarityþMFV, or unitarityþ
naturalness. Therefore, each scenario has well-defined
maximum BSM particle masses for a given BSM multiplic-
ity NBSM. We then analyze the signatures of these models at
future muon colliders. The details are slightly different for
singlet and EW scenarios due to their different collider
signatures.
Singlet scenarios feature new SM singlets which can be

invisible. Lighter singlets are more weakly coupled to
account for the ðg − 2Þμ anomaly, so the scenarios with the
heaviest BSM particles are not necessarily the hardest to
discover. Furthermore, the sensitivity of collider searches
can depend on whether the new singlets are stable or how
they decay. We therefore have to map out the complete
parameter space of the simplified singlet scenarios.
Fortunately, with the muon coupling gS;V determined by
the requirement of accounting for the observed Δaobsμ , the
model has just two parameters, singlet mass mS;V and
multiplicity NBSM (as well as the choice of singlet being a
scalar or vector). As a function of mass and multiplicity we
then analyze the sensitivity of a completely inclusive search
for the production of the BSM singlets at muon colliders
regardless of their decays. We also analyze the reach of an
indirect search based on deviations in Bhabha scattering to
explore the physics potential of a muon collider Higgs

factory. We find that the singlet BSM states cannot be
heavier than about 3 TeV, and can be directly discovered at
a 3 TeV muon collider with 1 ab−1 for masses ≳10 GeV in
singletþ photon production processes. A 215 GeV muon
collider that might be used as a Higgs factory can directly
discover singlets as light as 2 GeV in our conservative
inclusive analysis with 0.4 ab−1 of luminosity. Heavier
singlets up to the 3 TeV maximum can be probed with
Bhabha scattering.
The parameter space of the SSF and FFS simplified

models that allow us to perform the EW scenario theory
space maximization of BSM charged particle mass in Eq. (4)
is much more complex, featuring three masses, several BSM
couplings, the number of BSM flavorsNBSM, and the choice
of EW gauge representations for the BSM states. However,
since we only need to find the heaviest possible BSM
masses, for each SSF/FFS model with a given choice of
NBSM and EW gauge representation we can simply find the
boundaries of the parameter space defined by the maximum
possible BSM masses that still allow BSM couplings below
the unitarity (or unitarityþMFV=naturalness) limit to
account for the ðg − 2Þμ anomaly.
For EW scenarios we find that requiring only perturba-

tive unitarity allows the lightest charged states to sit at the
100 TeV scale,11 but this assumption is disfavored by
CLFV bounds. Requiring either consistency with MFV to
avoid CLFVs, or avoiding two explicit new tunings worse
than 1%, predicts new charged states at the 10 TeV scale or
below. Encouragingly, these states are in reach of some
muon collider proposals.
It is worth noting that at the very boundaries of the BSM

parameter spaces we explore, with couplings set at the upper
limit set by perturbative unitarity, the theory itself strictly
speaking has already lost predictivity, by definition. If the
couplings actually had this value, we would have to regard
the theory as a strongly coupled one, requiring different
analysis tools. This is suitable for deriving upper bounds on
the BSMmass scale, but it is interesting to note these bounds
could actually be saturated by strongly coupled BSM
solutions to the ðg − 2Þμ anomaly (which would still have
to feature new states with EW gauge charges). One feature of
composite theories is a large multiplicity of states, which we
include by considering NBSM > 1, with NBSM ¼ 10 serving
as a “high-multiplicity benchmark” for our analyses.
Therefore, while our quantitative predictions are unlikely
to apply precisely to strongly coupled BSM solutions of the
ðg − 2Þμ anomaly, by including couplings up to the unitarity

10Any lower-scale new physics that somehow cancels this fine-
tuning would lead to new experimental signatures and hence also
lead to a discovery.

11Leptoquark (LQ) models provide one example that realizes
these extremal cases. LQ models that couple to the first
generations of fermions are constrained by rare meson decays
to have masses ≳Oð100 TeVÞ, depending on their particular
flavor structure [101]. If these LQ models couple to muons and
the top quark, then they can explain the ðg − 2Þμ anomaly even
for such heavy masses [102].
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limit and considering large numbers of BSM flavors we
parametrically include the signature space swept out by these
strongly coupled theories. The statements we make about the
discoverability of new physics should, broadly speaking,
apply to those scenarios as well. That being said, it would be
interesting to undertake a dedicated investigation of high-
scale composite BSM solutions to the ðg − 2Þμ anomaly
within our framework. We leave this for future work.
While CLFV constraints strongly favor the existence of

some kind of flavor protection mechanism, the degree to
which the precise assumptions of MFV would have to be
satisfied is obviously up for debate. Similarly, the precise
degree of tuning depends on the tuning measure, and it is
difficult to define exactly at what point a theory becomes
“un-natural” in a meaningful sense. However, our model-
exhaustive approach has the advantage of throwing these
issues into stark relief: solving the ðg − 2Þμ anomaly with
BSM masses up to ∼10 TeV is apparently relatively
“easy,” while pushing the masses of new states to the
maximum 100 TeV scale limited only by unitarity appears
to require some extreme form of tuning and violation of
MFV while somehow suppressing CLFV decays.
In particular, if the 10 TeV scale were exhaustively probed

without direct detection of new states while the ðg − 2Þμ
anomaly is confirmed, this would confirm empirically that
nature is fine-tuned12 and does not obey the assumptions of
the MFV ansatz but still suppresses CLFV decays in some
way. An analogy would be the discovery of split supersym-
metry [104,105], where the lightest new physics states are
heavy and couple to the Higgs; in our case, the situation is
even more severe since heavy states in EW scenarios make
the muon mass radiatively unstable as well, and very heavy
BSM states also preclude MFV solutions to the SM flavor
puzzle.
Our analysis generalizes and reinforces our earlier results

in [64] by including a more complete basis for the relevant
EW scenarios, considering consistent electroweak embed-
dings of singlet scenarios, addressing flavor physics con-
siderations, and supplying important technical details.
Subsequent studies have employed an effective field theory
(EFT) approach to explore indirect signatures of the new
physics causing the ðg − 2Þμ anomaly at muon colliders
[62,65]. While this EFTapproach would not allow us to ask
detailed questions about the BSM physics—like studying
direct particle production, tuning, and flavor considerations
—it is nonetheless extremely useful due to its maximal
model-independence and simplicity. As we discuss in
Sec. V, the results of these analyses are highly comple-
mentary to our own and help flesh out the muon collider no-
lose theorem.

III. ANALYSIS OF SINGLET SCENARIOS

A. ðg− 2Þμ in singlet scenarios

As defined in Eqs. (5) and (6), if BSM singlet scalars or
vectors are responsible for the ðg − 2Þμ anomaly, the
relevant muonic interactions are

ðgSμLμcSþ H:c:Þ; gVVαðμ†Lσ̄αμL þ μcσαμc†Þ: ð34Þ

The contribution of NBSM scalar singlets to ðg − 2Þμ is

ΔaSμ ¼ NBSM
g2S

16π2

Z
1

0

dz
m2

μð1 − zÞð1 − z2Þ
m2

μð1 − zÞ2 þm2
Sz

;

≈ 2 × 10−9NBSMg2S

�
700 GeV

mS

�
2

; ð35Þ

where in the last step we have taken themS ≫ mμ limit. For
vectors, the corresponding ðg − 2Þμ contribution is

ΔaVμ ¼ NBSM
g2V
4π2

Z
1

0

dz
m2

μzð1 − zÞ2
m2

μð1 − zÞ2 þm2
Vz

;

≈ 2 × 10−9NBSMg2V

�
200 GeV

mV

�
2

; ð36Þ

where again we have taken the mV ≫ mμ limit. It is known
in the literature that pseudoscalar or pseudovector contri-
butions to ðg − 2Þμ have the wrong sign to explain the
anomaly [41], so we do not consider these scenarios here.
Note also that in both casesΔaμ ∝ m2

μ, which implies a low
(≲TeV) mass scale for any choice of perturbative couplings
that yield Δaμ ∼ 10−9 required to explain the anomaly (see
discussion in Sec. III B). Therefore, any TeV-scale collider
with sufficient luminosity will produce the S or V states on
shell via μþμ− → γS=V. Our challenge in the remainder of
this section is to identify the highest singlet masses of
interest and to demonstrate that a plausible muon collider
would unambiguously discover the signatures associated
with these states regardless of their mass and decay
channels.

B. Constraining the BSM mass scale
with perturbative unitarity

In our analysis, we first calculate the perturbative
unitarity constraints on singlet couplings gS and gV that
arise from the amplitude μ−μþ → μ−μþ with an intermedi-
ate S or V. We then calculate how the singlet mass is
determined by the coupling to explain ðg − 2Þμ, up to the
maximum allowed values of these couplings. This will give
a maximum possible mass for the singlet(s).
The amplitude for the process μ−ðp1Þμþðp2Þ → S=

V → μ−ðp3Þμþðp4Þ is given by (note that we have
temporarily switched to 4-component fermion notation
for convenience)

12A similar observation was made in connection with electron
EDM measurements [5] and in [87]. On a similar ground, see
[103] for the implications of tuning in the context of models with
radiative leptonic mass generation.
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MS ¼ ū3ð−igSÞv4
i

s −m2
s
v̄2ð−igSÞu1 − ū3ð−igSÞu1

i
t −m2

s
v̄2ð−igSÞv4; ð37Þ

MV ¼ ū3ð−igVγαÞv4
i

s −m2
V

�
−gαβ þ

ðp1 þ p2Þαðp1 þ p2Þβ
m2

V

�
v̄2ð−igVγβÞu1

− ū3ð−igVγαÞu1
i

t −m2
V

�
−gαβ þ

ðp1 − p3Þαðp1 − p3Þβ
m2

V

�
v̄2ð−igVγβÞv4: ð38Þ

We calculated the constraints on the scalar and vector
singlets by calculating Eq. (13) for different j. For scalars,
the strongest constraint was obtained from the process
μ−ðλþÞμþðλþÞ → μ−ðλ−Þμþðλ−Þ, where λ� represents pos-
itive/negative helicities. For vectors, the strongest con-
strain was obtained for the process μ−ðλþÞμþðλ−Þ →
μ−ðλ−ÞμþðλþÞ. Using the procedures outlined in
Sec. II C 1 we get the following constraints:

g2S ≤
4π

NBSM
; g2V ≤

12π

NBSM
; ð39Þ

where NBSM is the number of singlets with common
masses and couplings in the theory. For NBSM ¼ 1ð10Þ the
upper bound on the scalar singlet coupling is gS ≤
3.54ð1.12Þ and on the vector singlet coupling is
gV ≤ 6.14ð1.94Þ.13
In Fig. 4 we show the singlet scalar or vector coupling

required for a given mass to account for the ðg − 2Þμ
anomaly. The upper bounds are ms ≤ 2.7 TeV and
mV ≤ 1.1 TeV, for scalar and vector singlets, respectively.
Even though the upper bound on the singlet couplings
decreases as the number of BSM flavors increases, the
upper bound on the singlet masses does not change, since
the NBSM dependence drops out by imposingΔaμ ¼ Δaobsμ .

C. Flavor considerations

As discussed in Sec. II C 2, CLFV constraints exclude
flavor-universal couplings of the scalar to leptons, and
severely disfavor anarchic ones. This serves as strong
motivation for the MFV ansatz in scalar singlet scenarios,
resulting in a lower maximum mass scale than unitarity
alone. Figure 4 shows that the scalar should be no heavier
than 200 GeV if MFV is satisfied.
The vector interaction Vαðμ†Lσ̄αμL þ μc†σ̄αμcÞmust arise

from a new Uð1Þ gauge extension to the SM, which is
spontaneously broken at low energies. If V is a “dark

photon” whose SM interactions arise from V − γ kinetic
mixing, then the parameter space for explaining ðg − 2Þμ
has been fully excluded for both visibly and invisibly
decaying V [77,78]; some viable parameter space still
exists for semivisible cascade decays, but this will be tested
in with upcoming low energy experiments [72]. If, instead,
V couples directly to muons, then the only14 anomaly-free
options for this gauge group are

Uð1ÞB−L; Uð1ÞLi−Lj
; Uð1ÞB−3Li

; ð40Þ

where B and L are baryon and lepton number, respec-
tively, and Li is a lepton flavor with i ¼ e, μ, τ.

FIG. 4. The coupling of the singlet scalar (gS) and vector (gV )
required to account for the ðg − 2Þμ anomaly as a function of its
mass mS;V and multiplicity. For NBSM ¼ 1, perturbative unitarity
imposes gS ≤ 3.5 and gV ≤ 6.1, which implies an upper bound on
the masses needed for ðg − 2Þμ of ms ≤ 2.7 TeV and
mV ≤ 1.1 TeV, respectively. If one imposes MFV in the scalar
couplings, then the upper bounds for scalars become
ðgS; msÞ ≤ ð0.2; 155 GeVÞ. Note that the NBSM dependence of
the singlet mass drops out by requiring Δaμ ¼ Δaobsμ .

13The process μ−ðλþÞVðλþÞ → μ−ðλþÞVðλþÞ can provide
stronger constraints for singlet vectors with NBSM ¼ 1. However,
because this process is NBSM independent, for larger values of
NBSM the strongest constraint is provided by Eq. (39). We omit
this constraint from our analysis for simplicity since it does not
change our final result.

14Other Uð1Þ options may also be viable if additional electro-
weak charged BSM states are included to cancel anomalies, but
these models are phenomenologically similar for the purpose of
our ðg − 2Þμ analysis and are further subject to strong bounds at
scales below the masses of these new particles [106,107].
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Importantly, all of these options require couplings to first
generation SM particles and are, therefore, excluded as
explanations for ðg − 2Þμ by the same bounds that rule out
dark photons [77,78], see also [108]. The sole exception is
gauged Lμ − Lτ which can still explain the anomaly for
mV , but in that case the vector mass is constrained to lie in
the narrow range ∼ð1–200Þ MeV. This scenario will soon
be tested with a variety of low-energy and cosmological
probes [73,80,109,110]. Therefore, singlet vector scenar-
ios are less relevant to our discussion of high energy muon
collider signatures, but we include them since their
phenomenology is nearly identical to that of singlet
scalars.

D. Muon collider signatures

We now discuss the collider signatures of singlet
scenario explanations for the ðg − 2Þμ anomaly. In particu-
lar, here we focus on the region of masses above ∼GeV,
with the understanding that low energy experiments will
cover the lower mass region. The first signal we discuss is
direct production of the singlets in association with a
photon. The presence of a photon is important because
we will consider the possibility that the singlets decay
invisibly, in which case the MUC can look for monophoton
signatures. This γ þ X signal is particularly important for
low masses. The second signal that we will discuss is
Bhabha scattering. The process μ−μþ → μ−μþ receives
contributions via singlet exchange. This process is particu-
larly important for high singlet masses in a low-energy
collider. An important question that we want to address is at
which luminosity a given signal can be detected at 5σ
significance for a given collider energy.
We consider two possible muon colliders: a high energy

3 TeV collider with 1 ab−1 of integrated luminosity and a
low energy 215 GeV collider (a potential Higgs factory)
with 0.4 ab−1 of luminosity. These benchmark luminosities
are discussed by the international muon collider collabo-
ration at CERN [111]. As opposed to conventional col-
liders, a MUC has the extra complication of beam-induced
background due to muon decay in flight. For this reason the
detector design includes two tungsten shielding cones
along the direction of the beam. The opening angle of
these cones should be optimized as a function of the energy
of the MUC. In order to be conservative, our simulations
assume that the detector cannot reconstruct particles with
angles to the beam line below 10° (20°) for the higher
(lower) energy muon collider [112].

1. Inclusive analysis of singlet direct production

Here we focus on single production of the singlets in
association with a photon. In principle, to study direct
production of the singlets one would need to make an
assumption about how they decay to optimally search for
them at the collider. We want to avoid such a model

dependence by implementing an inclusive analysis for
singletþ photon production with the following signal
topology for a given singlet mass mS, illustrated in Fig. 5:
(1) A nearly monochromatic photon with Eγ ∼

ffiffiffi
s

p
=2

(with some mild dependence on the singlet mass) in
one half of the detector.

(2) No other activity anywhere else in the detector,
except inside of a “singlet decay cone” of angular
size ϕmax around the assumed singlet momentum
vector p⃗S ¼ −p⃗γ.

(3) For each singlet mass, ϕmax is defined as the opening
angle within which ∼95% of singlet decay products
must lie, regardless of decay mode. This is deter-
mined from simulation under the assumption that the
singlet decays to two massless particles, which gives
the largest possible opening angle of any decay mode.

(4) There are no requirements of any kind on what final
states are found inside the singlet decay cone. This
gives near-unity signal acceptance for stable singlets
(resulting in missing energy) as well as all possible
visible or semivisible decay modes.

The veto on detector activity anywhere except the mono-
chromatic photon and inside the singlet decay cone would
have to be adjusted for a realistic analysis due to the
presence of beam-induced background and initial- and
final-state radiation. However, the former is likely to be
subtractable and the latter are small corrections at a lepton
collider, not greatly reducing signal acceptance. We there-
fore ignore this complication with the understanding that a
more complete treatment would not significantly change
our results.
We choose to focus on the γ þ X channel rather than the

Z þ X channel even though the latter may yield moderately
higher sensitivity in some cases. This allows our results to
only rely on a conservative estimate of photon energy
resolution and therefore be very robust with respect to
detailed assumptions about the detector of a future muon
collider. Conducting the Z þ X analysis would require

FIG. 5. Single production of the singlet in association with a
photon at a muon collider. The singlets can be stable and
constitute missing energy, or decay to any SM final states.
The search is defined by the search for the recoiling photon,
as well as any possible SM final states (including missing energy)
inside the singlet decay cone.
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much more detailed knowledge of detector resolution
effects, including jet energy resolution for highly boosted
dijets from Z decay, which is difficult to reliably estimate at
this time. In the same spirit, our choice of being completely
inclusive with respect to the singlet decay allows us to
remain as model independent as possible, something that is
necessary when scanning over a large range of singlet
masses with only the coupling to the muon known, without
paying any branching fraction penalty that would arise by
perhaps trying to exploit some minimum decay rate to
muons. For instance, for mS ≳ 200 GeV, the muon cou-
pling is> 1, making it natural for the dominant decay mode
to yield two muons, although other visible or invisible
decay modes could be codominant. For smaller masses,
e.g., close to 1 GeV, the muon coupling is 2–3 orders of
magnitude smaller, and the singlet could decay to invisible
particles, electrons, quarks, or photons.
Note that instead of searching for bumps in the invariant

mass distribution of candidate singlet decay products inside
the decay cone, we analyze the photon energy distribution.
This takes advantage on the fact that producing an on shell
particle in association with a photon forces the latter to be
nearly monochromatic in a lepton collider. For a given
singlet mass, the photon energy is determined within a bin
(ΔEbin

γ ) whose width is correlated with the decay width of
the singlet. We calculated ΔEbin

γ assuming a decay width of
30% around the mass of the singlet, which is near the upper
bound from perturbative unitarity and very conservative.
For small singlet masses that result in a very narrow photon
energy distribution, we instead define the bin size ΔEbin

γ to

be equal to the energy resolution of the electromagnetic
calorimeter (ECAL). We assume an ECAL resolution
similar to that of the Large Hadron Collider (LHC) main
detectors [113], again a very conservative assumption that
takes into account the most important detector effects.
Tables II and III show the assumed photon energy bins
ΔEbin

γ for a few values of the singlet mass at a 3 TeV and
215 GeV MUC.
We assume singlet production for each possible scalar or

vector mass is determined only by the coupling gS, gV to the
muon, which is in turn fixed by Δaμ ¼ Δaobsμ . We then
calculated the production cross section by coding up
the singlet scenarios as simplified models in FeynRules
[114] and generating tree-level signal events with
MADGRAPH5_aMC@NLO [115]. We confirmed that, with
the above cuts, signal acceptance for singlet decays is close
to 1 regardless of decay mode. The background was
calculated by simulating γ þ f̄f (including neutrinos) and
γ þ γγ final states at tree level and imposing the above cuts
in an off-line analysis. Background contributions involving
additional SM states would either fail one of the vetoes or cut
on additional states outside of the decay cone, or supply
small corrections to the lowest-order background rates we
calculate in our signal region. Our analysis should therefore
reliably estimate the sensitivity of a realistic inclusive singlet
search. Table II shows the total background cross section
after imposing analysis cuts for a few values of the singlet
mass and compares them to signal.
In the right panel of Fig. 6, dashed lines show that a

3 TeVMUCwith 1 ab−1 of luminosity will be able to probe

TABLE II. Photon energy bins as well as background and signal cross sections for different singlet masses. The
width of the energy bin corresponds to the maximum of the third and fourth columns for a given row. Values in this
table correspond to a MUC with

ffiffiffi
s

p ¼ 3 TeV.

Signal (fb)

Mass (GeV) Eγ bin (GeV) ΔEγ ðΓsingletÞ ΔEγ (ECAL) Background (fb) Scalar Vector

10 (1492, 1508) 0.02 16.17 3.23 0.22 4.31
100 (1490, 1506) 2.0 16.15 3.65 14.1 391
500 (1433, 1483) 50 15.75 2.51 372 11,177
1000 (1233, 1433) 200 14.50 3.18 1636 52,074

Muon collider energy: 3 TeV

TABLE III. Similar to Table II but for a 215 GeV MUC.

Signal (fb)

Mass (GeV) Eγ bin (GeV) ΔEγ ðΓsingletÞ ΔEγ (ECAL) Background (fb) Scalar Vector

1 (106, 108) 0.01 2.07 2.56 0.247 1.58
10 (106, 108) 0.28 2.07 9.14 10.86 147.4
50 (98, 105) 6.98 2.02 77.9 172.7 3356
100 (90, 96) 28 1.96 5.78 6.821 100.8

Muon collider energy: 215 GeV
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singlet masses above 11 GeV for scalars and 2.4 GeV for
vectors through γ þ X events. Note that these sensitivities
do not depend on NBSM, since signal rates at the MUC and
Δaμ both scale as NBSMg2S;V .
In order to probe smaller masses, one could use a lower

energy MUC. In the left panel of Fig. 6 we see that a
215 GeV MUC with 0.4 ab−1 will probe masses above
1.4 GeV for scalars and sub-GeVmasses for vectors, owing
to the larger production rate for light states at lower collider
energies. Such a lower-energy collider might be built as a
MUC test bed or Higgs factory, and while it would not be
able to directly produce singlets at the heaviest possible
masses allowed by unitarity, it would cover most of the
scalar parameter space allowed under the most motivated
MFV assumption. Furthermore, as we show in the next
section, it will be able to indirectly discover the effects of
the singlet scenarios by detecting deviations in Bhabha
scattering.

2. Bhabha scattering

In the Standard Model, Bhabha scattering is mediated by
s- and t-channel exchange of both a photon and a Z boson
(Fig. 7, top). New physics contributions from singlet scalars
and vectors have a similar topology (Fig. 7, bottom) and
can produce measurable deviations. When the energy of the
collisions is close to the mass of the singlets, the distinctive
signature of Bhabha scattering is a resonance peak at the
mass of the singlet. However, when the energy of the
collisions is lower, one could instead can look for devia-
tions in the total cross section of the process due to
contributions from off shell singlets. The potential problem
with this approach is that measurements of total rates for
Bhabha scattering are sometimes used to calibrate beams
and measure instantaneous luminosity [116]. To avoid
possible complications in that regard, one can measure

deviations in ratio variables similar to a forward-backward
asymmetry in parity-violating observables. Ratio variables
also have the advantage of mitigating the effect of sys-
tematics. We therefore define the ratio of the number of
forward to backward μþμ− → μþμ− events:

rFB ≡
R cθ0
0

dσ
dcθ

dcθR
0
−cθ0

dσ
dcθ

dcθ
; ð41Þ

where cθ is the cosine of the muon scattering angle, dσ=dcθ
is the differential cross section of the process
μ−μþ → μ−μþ, and the minimum angle θ0 is given by
the angular acceptance of the MUC detector. The depend-
ence of this variable on singlet mass is illustrated in Fig. 8
for a 215 GeV (left) and 3 TeV (right) MUC. For a given

FIG. 6. Luminosity needed for 5σ discovery significance of inclusive singlet scenario searches at a 215 GeVand 3 TeV muon collider
for singlet scalars (green) and singlet vectors (orange). This is shown for singlet masses up to the perturbativity limit calculated in
Sec. III B. Dashed lines (solid lines) show the results from the inclusive direct γ þ X analysis (Bhabha scattering analysis). Note that
these sensitivities do not depend on NBSM.

FIG. 7. Feynman diagrams for Bhabha scattering in the SM
(top) and contributions from singlet scalars or vectors (bottom).
(Note that the arrows in this diagram represent charge flow, not
helicity.)
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mass, the singlet coupling is determined by the value of
ðg − 2Þμ. Note that this result again does not depend on
NBSM since it depends only on g2S;VNBSM, which is fixed by
Δaμ ¼ Δaobsμ . In Fig. 8, blue lines represent the SM result.
As expected, the number of forward events exceeds that of
the backward events by orders of magnitude in the SM.
This is typical for Bhabha scattering due to t-channel
enhancements. The contribution of singlets interferes with
the SM contribution and reshapes the angular distribution,
resulting in deviations from the SM expectation for rFB. In
particular, near a s-channel resonance, rFB → 1, as
expected because the singlet-muon coupling is parity
conserving. To address the question of how much lumi-
nosity is needed to discover deviations from the expected
SM behavior of Bhabha scattering with 5σ statistical
significance, we calculate rFB for the background-only
hypothesis rSMFB and compare it with the background+signal
hypothesis rSMþNP

FB , obtaining the corresponding χ2,

χ2 ¼ ðrSMþNP
FB − rSMFB Þ2

ðΔrSMþNP
FB Þ2 þ ðΔrSMFB Þ2

: ð42Þ

The uncertainties in the denominator arise from Poisson
statistics in the number of forward and backward events
expected at each mass and luminosity.
In the right panel of Fig. 6, solid lines show that a 3 TeV

(1 ab−1) MUC will be able to probe singlet masses above
58 GeV for scalars and 14 GeV for vectors through Bhabha
scattering. More importantly, a 215 GeV (0.4 ab−1) MUC
will probe masses above 17.5 GeV for scalars and 5.5 GeV
for vectors. The most important role of Bhabha scattering is
in enabling a lower-energy 215 GeV muon collider
to discover the effects of singlet scenarios that solve the
ðg − 2Þμ anomaly over the entire allowed mass range of the
singlets (in combination with the inclusive direct search).

E. UV Completion of scalar singlet scenarios

We close this section by commenting on possible UV
completions of singlet scenarios. It is important to keep in
mind that the scalar-muon coupling in the singlet scalar
model has to be generated by the nonrenormalizable
operator ðcS=ΛÞHμLμ

cS after electroweak symmetry
breaking. There are only a few ways of generating this
operator at tree level using renormalizable interactions.
The simplest possibility involves the SH†H operator,

which introduces S −H mass mixing after electroweak
symmetry breaking. Diagonalizing away this mixing indu-
ces the SμLμc operator, which is proportional to both the
SM muon Yukawa coupling and S −H mixing angle.
However, this scenario is experimentally excluded as a
candidate explanation for ðg − 2Þμ [117] and similar argu-
ments sharply constrain models in which S mixes with the
scalar states in a two-Higgs doublet model.
The singlet-muon Yukawa interaction can also be

induced in models where the singlet S couples to a
vectorlike fourth generation of leptons ψ i. If the ψ i undergo
mass mixing with L and/or μc, then the requisite operator
SμLμc can arise upon diagonalizing the full leptonic mass
matrix after electroweak symmetry breaking. In such
models, these states inherit the flavor structure of their
UV mixing interactions, whose form must be restricted
(e.g., by MFV) to ensure that FCNC bounds are not
violated. If these additional ψ i states are sufficiently light
(≲ few TeV), they may be accessible at future proton and
electron colliders, e.g., via established search strategies for
heavy new vectorlike leptons [83]. As an example, the
Lagrangian

L ⊃ −yLH†Lψc − yRμcψS; ð43Þ

can generate the operator ðcS=ΛÞHμLμ
cS after integrating

out the vectorlike lepton ψ . In such a case we identify

FIG. 8. Prediction for the forward-backward asymmetry variable rFB in Bhabha scattering for singlet scenarios at a 215 GeVand 3 TeV
MUC. This is independent of NBSM.
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gS ¼
yLyRvffiffiffi
2

p
mψ

: ð44Þ

For NBSM ¼ 1, gS ≈ 1 × ðmS=TeVÞ to generate the
required Δaμ contribution, see Fig. 4. For perturbative
couplings yL;R ≲ ffiffiffiffiffiffi

4π
p

, the vectorlike lepton must therefore
obey

mψ < mmax
ψ ≈ ð2 TeVÞ ·

�
1 TeV
mS

�
; ð45Þ

which means that these states may be discoverable at the
HL-LHC or future proton, electron or muon colliders if the
singlet mass is near its upper bound allowed by perturba-
tivity. However, for lighter singlets these states can be far
heavier than the TeV scale, and therefore inaccessible at
traditional colliders.
A detailed study of these UV completions is beyond the

scope of this paper. We merely emphasize that the existence
of charged states at or below the TeV scale is not necessary
to realize the scalar singlet scenario. On the other hand,
discovering these scalar singlets at a muon collider only
relies on the coupling gS that is determined by solving the
ðg − 2Þμ anomaly.

IV. ANALYSIS OF ELECTROWEAK SCENARIOS

A. SSF and FFS model space

In Sec. II B, we defined the SSF and FFS simplified
models, with Lagrangians given in Eqs. (7) and (8), which
we repeat here for convenience

LSSF ⊃ −y1FcLðμÞΦ�
A − y2FμcΦB − κHΦ�

AΦB

−m2
AjΦAj2 −m2

BjΦBj2 −mFFFc þ H:c:; ð46Þ

LFFS ⊃ −y1Fc
ALðμÞΦ� − y2FBμ

cΦ − y12HFc
AFB

− y012H
†FAFc

B −mAFAFc
A −mBFBFc

B

−m2
SjΦj2 þ H:c: ð47Þ

For NBSM > 1, we simply consider multiple degenerate
copies of the above field content. In SSF (FFS) models, the
fermion F (complex scalar S) is in SUð2ÞL representation R
with hypercharge Y, while the two complex scalars ΦA;B

(two fermions FA;B) are in representation RA;B with hyper-
charges YA;B.
As we discussed in Sec. II, these two simplified models

include the most general form of new one-loop contri-
butions to ðg − 2Þμ, see Fig. 3 (bottom). In particular, since
every particle in the loop is assumed to be a BSM field, the
new couplings y1; y2; y12; y012; κ are experimentally uncon-
strained for BSM masses above a TeV or so, and can be
chosen to maximize Δaμ subject only to perturbative

unitarity (and optionally imposing MFV or naturalness),
which in turn allows Δaobsμ to be generated by the heaviest
possible BSM states under the assumption of perturbative
unitarity and electroweak gauge invariance. This allows us
to perform the theory space maximization in Eq. (4) by
only performing the maximization over the parameter
space of all possible SSF and FFS models, as in Eq. (9).
The possibilities not covered by these scenarios, like
Majorana fermions or real scalars, give smaller ðg − 2Þμ
contributions and hence must feature lighter BSM states
than the SSF and FFS scenarios, which does not change
the outcome of the theory space maximization.
Analyzing these two SSF and FFS simplified model

classes therefore allows us to find the heaviest possible
mass of the lightest new charged state in the theory. This
dictates the minimum center-of-mass energy a future
collider must have to guarantee discovery of new physics
by direct Drell-Yan production and visible decay of heavy
new states. In particular, the discovery of charged states
with mass m≲ ffiffiffi

s
p

=2 at lepton colliders is highly robust
[118], since they have sizeable production rates given by
their gauge charge and have to lead to visible final states in
the detector. This is why our results allow us to formulate a
no-lose theorem for future muon colliders.
Each individual SSF or FFS model is defined by the

choice of electroweak representations for the new scalars
and fermions. In principle there are infinitely many
possibilities that satisfy the requirements in Eq. (10),
but theories with very large EW representations lead to
issues such as low-energy Landau poles (see Sec. IV G) or
multiply charged stable cosmological relics. We therefore
restrict ourselves to models where all new particles have
electric charge jQj ≤ 2. Table IV shows a summary of all
the EW scenarios we explicitly analyzed as part of our
study, showing the SUð2ÞL ⊗ Uð1ÞY representation of the
BSM fields, which are all the unique possibilities with
electric charges of 2 or below and representations up to
and including triplets of SUð2ÞL. This table also lists the
highest mass that the lightest charged BSM state in the
spectrum can have subject to unitarity, unitarityþMFV,
unitarityþ naturalness, and unitarityþ naturalnessþ
MFV constraints. For each assumption, the last row
contains Mmax

BSM;charged. This constitutes our main result,
which we explain in the sections below. Crucially, in some
scenarios the lightest charged state does not actually
participate in the loop that generates Δaobsμ , but its
existence is nonetheless required by electroweak gauge
invariance.
The requirement of jQj ≤ 2 in principle allows for

theories featuring SUð2ÞL representations up to and includ-
ing the 5. However, we find that the largest possible BSM
mass does not appear to increase for higher-rank represen-
tations. Therefore, we believe our results for Mmax

BSM;charged to
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be robust even though we do not explicitly analyze scenarios
involving 4 and 5 representations.

B. ðg − 2Þμ in electroweak scenarios

It is straightforward to compute the general BSM one-loop
contribution to ðg − 2Þμ, reproducing results from the liter-
ature [41,45]. It is convenient to work in the low-energy
theory below the scale of electroweak symmetry breaking.
Consider an effective Lagrangian with a single new Dirac

fermion ΨF with mass mF and charge QF, and a complex
scalar ΦS with mass mS and charge QS interacting with the
muon as follows:

L ⊃ −Ψ̄FðaPL þ bPRÞμΦ�
S þ H:c: ð48Þ

Note we have temporarily switched to 4-fermion notation
for this low-energy calculation: μ is the muon spinor, and
PL;R are the left- and right-chirality projectors. The
contribution of particles ΨF, ΦS to ðg − 2Þμ is given by

TABLE IV. Summary of all the EW scenarios we analyze as part of our study. In SSF models, F ∼ R;ΦA;B ∼ RA;B. In FFS models,
S ∼ R;FA;B ∼ RA;B, and the choices of SUð2ÞL ⊗ Uð1ÞY representations are shown in columns 2–4 (with Y ¼ Q − T3 in the subscript),
which covers all unique possibilities satisfying jQj ≤ 2 involving SUð2ÞL representations up to and including triplets. Columns 5–6, 7–
8, 9–10, and 11–12 show the highest possible mass in TeV of the lightest BSM state in the spectrum, with the BSM couplings
constrained only by unitarity, unitarityþMFV, unitarityþ naturalness, and unitarityþ naturalnessþMFV, respectively. For
illustration of the NBSM dependence, we show results for a single copy of the BSM states NBSM ¼ 1, or for NBSM ¼ 10. The highest
possible BSM mass scale for unitarity and unitarityþMFV constrained couplings scales as ∼N1=2

BSM. Adding the naturalness constraint

of less than 1% tuning of both the Higgs and muon mass softens this dependence to ∼N1=6
BSM (both with and without the MFV constraint).

Note that in some scenarios, the lightest charged state does not directly contribute to ðg − 2Þμ, but its existence is nonetheless a
requirement of EW gauge invariance. The largest possible mass of the lightest new charged state across all the scenarios we examine is
shown in the last row, which corresponds to the theory-space maximization in Eq. (9) and hence Eq. (4). We do not expect the inclusion
of higher SUð2ÞL representations to meaningfully increase this upper bound.

Highest possible mass (TeV) of lightest charged BSM state

Unitarity only Unitarity þMFV Unitarityþ Naturalness Unitarityþ NaturalnessþMFV

NBSM: NBSM: NBSM: NBSM:

Model R RA RB 1 10 1 10 1 10 1 10

SSF 1−1 21=2 10 65.2 241 12.9 47.1 11.5 11.5 6.54 10.1
1−2 23=2 11 85.9 321 18.1 64.8 19.2 19.2 8.41 12.3
10 2−1=2 1−1 46.2 176 9.41 34.1 15.6 17.5 5.93 8.56
11 2−3=2 1−2 81.8 302 17.1 63.7 19.3 19.3 8.38 12.1
2−1=2 30 2−1=2 21.4 107 4.2 15.5 7.47 8.99 3.23 5.0
2−3=2 31 21=2 83.7 308 16.6 60.7 13.4 13.4 7.06 10.6
21=2 3−1 2−3=2 95.5 356 18.3 67.8 15.6 15.6 7.75 11.3
2−1=2 10 2−1=2 65.2 241 12.9 47.1 11.5 11.5 6.54 10.1
2−3=2 11 21=2 85.9 321 18.1 64.8 19.2 19.2 8.41 12.3
21=2 1−1 2−3=2 44.8 155 8.8 32.3 10.9 10.9 5.64 8.56
3−1 21=2 30 95.4 359 19.4 73 20.1 30 7.75 11.5
30 2−1=2 3−1 39.4 144 7.82 28.6 10.8 15.1 4.14 6.08

FFS 1−1 21=2 10 37.3 118 8.87 28 12.3 18.7 4.6 7.04
1−2 23=2 11 67.3 213 15.8 50 13.5 18.8 4.86 6.93
10 2−1=2 1−1 59.1 187 13.2 41.8 12.4 17.2 4.02 6.28
11 2−3=2 1−2 73.2 231 17.4 55 13.9 19.7 5.04 7.25
2−1=2 30 2−1=2 40 126 9.38 29.7 8.0 11.5 2.88 4.34
2−3=2 31 21=2 56.3 178 13.6 42.9 11.8 16.2 4.26 6.1
21=2 3−1 2−3=2 82.3 260 19.2 60.6 13.6 19 4.93 7.0
2−1=2 10 2−1=2 37.3 118 8.87 28 12.3 18.7 4.6 7.04
2−3=2 11 21=2 67.3 213 15.8 50 13.5 18.8 4.86 6.93
21=2 1−1 2−3=2 46.2 146 11.2 35.4 9.83 13.8 3.49 5.18
3−1 21=2 30 71 225 17 53.6 13.1 18.1 4.04 6.97
30 2−1=2 3−1 23.4 75 5.29 16.9 7.3 7.69 2.73 4.03

Mmax
BSM;charged (max in each column) 95.5 359 19.4 73 20.1 30 8.41 12.3
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Δaμða; b;mF;mS;QF;QSÞ ¼ −
mμmF

8π2m2
S

	
QF

�
Reða�bÞIFðϵ; xÞ þ ðjaj2 þ jbj2Þmμ

mF
ĨFðϵ; xÞ

�

−QS

�
Reða�bÞISðϵ; xÞ þ ðjaj2 þ jbj2Þmμ

mF
ĨSðϵ; xÞ

�

; ð49Þ

where ϵ ¼ mμ=mS, x ¼ m2
F=m

2
S and the loop integrals are

IFðϵ; xÞ ¼
Z

1

0

dz
ð1 − zÞ2

ð1 − zÞðx − zϵ2Þ þ z
; ð50Þ

ĨFðϵ; xÞ ¼
1

2

Z
1

0

dz
zð1 − zÞ2

ð1 − zÞðx − zϵ2Þ þ z
; ð51Þ

ISðϵ; xÞ ¼
Z

1

0

dz
zð1 − zÞ

ð1 − zÞð1 − zϵ2Þ þ zx
; ð52Þ

ĨSðϵ; xÞ ¼
1

2

Z
1

0

dz
zð1 − zÞ2

ð1 − zÞð1 − zϵ2Þ þ zx
: ð53Þ

Equation (49) makes it straightforward to calculate
ðg − 2Þμ for all the EW scenarios in Table IV (which may
involve several scalar-fermion combinations coupling to
the muon and contributing to Δaμ), after solving for the
BSM spectrum after EWSB. In FFS models,

Δaμ ∼ NBSMy21;2
yð0Þ12vmμ

m2
BSM

; ð54Þ

where mBSM is some combination of the BSM particle
masses, while, for FFS models,

Δaμ ∼ NBSMy21;2
κvmμ

m3
BSM

: ð55Þ

Once upper bounds on the BSM couplings from unitarity
or other considerations are determined, we can therefore
find upper bounds on the BSM mass scale under the
assumption that Δaμ ¼ Δaobsμ .

C. Constraining the BSM mass scale
with perturbative unitarity

As discussed in Sec. II C 1, the BSM couplings in SSF and
FFS theories have to satisfy perturbative unitarity. Deriving
the upper bounds for the new Yukawa couplings is straight-
forward. We constrain the Yukawa couplings y1 and y2 in
the SSF models from the process μ−ðλ�ÞFðλ∓Þ →
μ−ðλ�ÞFðλ∓Þ. The same Yukawas in the FFS models were
constrained from processes μ−ðλ�ÞS → μ−ðλ�ÞS, whereas
for the extra Yukawas y12 and y012 we used the processes
fiðλ�Þfjðλ�Þ → fkðλ�Þflðλ�Þ, where fi are the mass
eigenstates of the two fermions in the model after mixing.

For scalar-fermion scattering, the intermediate fermion
propagator scales at large s as 1=

ffiffiffi
s

p
for the þ → þ

helicity-preserving amplitude, and M=s for the helicity-
violating þ → − amplitude, where M is the mass of the
intermediate fermion. After taking into account the normali-
zation of the initial- and final-state spinors, we find that the
þ → þ amplitudes are independent of energy [and give
constraints y ≃Oð1Þ × ffiffiffiffiffiffi

4π
p

where y is a Yukawa coupling],
while the þ → − amplitudes are largest at small s. For the
SSF and FFS model, respectively, the constraints are

jy1j; jy2j ≤
ffiffiffiffiffiffiffiffi
16π

p
≈ 7.09 ðSSF unitarity boundÞ; ð56Þ

jy1j; jy2j ≤
ffiffiffiffiffiffi
8π

p
≈ 5.01 ðFFS unitarity boundÞ;

jy12j; jy012j ≤
ffiffiffiffiffiffi
4π

p
≈ 3.55; ð57Þ

independent of NBSM.
Obtaining a unitarity bound for the dimensionful cou-

pling κ in SSF models is slightly more involved. It has to
satisfy jκj < κmax, where parametrically,

κmax ¼ dðmA;mB;mFÞ
mAmB

v
: ð58Þ

The dimensionless factor d is a function of BSM mass
parameters with size d ∼Oð0.1 − 1Þ if there is large
hierarchy between mA and mB, asymptoting to d ≪ 1 as
mA → mB. This upper bound on the size of κ is far more
restrictive than the requirement that none of the new scalars
acquire VEVs. The derivation is as follows. Scalar-scalar
amplitudes are a sum of 3- and 4-point diagrams; the latter
are independent of energy, but the former scale as κ2=s. Thus
the amplitude will be largest, and hence the strongest
constraints on κ will generally be obtained, at the smallest
s which is kinematically accessible, which in principle
motivates focusing on the scattering channels with the
smallest initial- and final-state masses, namely hSi → hSj.
However, these processes include cases where s-, t-, and u-
channel singularities appear. The s-channel poles appear due
to the exchange of a scalar Sk whose mass is above the
threshold s ¼ ðmh þmSiÞ2. We can avoid dealing with such
poles by considering the scattering of the lightest scalars Si
through s- and t-channel exchange of a Higgs boson. This
way, neither of the s, t, u channel singularities appear when
calculating the constraints given by Eq. (13). In this sense,
our constraints are conservative, but they avoid defining
arbitrary ways to deal with singularities (a fully correct
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treatment would be model dependent), and is sufficient to
find a conservative but useful estimate of Mmax

BSM;charged.
The scattering amplitude for the process SiSi → SiSi is

given by

M ¼ −4λeff − κ2eff

�
1

s −m2
h

þ 1

t −m2
h

�
; ð59Þ

where the coefficients λeff and κeff are functions of mixing
angles, self-quartics for the scalars SA, SB, quartics between
different scalars and/or the Higgs (indicated by subscripts):

λeff ¼ cos θ4λA þ cos θ2 sin θ2λAB þ sin θ4λB; ð60Þ

κeff ¼ −
ffiffiffi
2

p
cos θ sin θκ þ cos θ2vλAH þ sin θ2vλBH: ð61Þ

From this process, the lowest-order partial wave is given by

a0 ¼ −
1

32π

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Si

s

s �
8λeff þ

2κ2eff
s −m2

h

�

þ 2κ2effffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

Si
Þ

q log

�
m2

h

m2
h þ ðs − 4m2

Si
Þ
�


: ð62Þ

The unitarity bound on κ < κmax corresponds to the
maximum value that for a given set of parameters (cou-
plings, masses, etc.), satisfies the condition

jReða0Þj ≤
1

2
; ð63Þ

for large s, but since the constraint asymptotes rapidly
above threshold, this corresponds to requiring consistency
of the theory close to (a factor of a few above) threshold
s≳ 4m2

Si
. To marginalize over the dependence of scalar

quartic couplings, we maximized κmax with respect to the
unknown quartics, subject to these quartics themselves
obeying perturbative unitarity.
We can now find the upper bound on the BSM particle

masses in each model, under the assumption that
Δaμ ¼ Δaobsμ . For each SSF (FFS) model in Table IV
the explicit steps in the calculation are the following:
(1) For a given choice of scalar (fermion) mass param-

eters mA, mB and coupling κ (y12; y012), find the

masses and effective muon couplings of all the mass
eigenstates. The Δaμ contribution can then be found
using Eq. (49).

(2) Find largest fermion mass mF (scalar mass mS) that
can still generate Δaobsμ , under the assumption that
the BSM couplings y1; y2; κ (y1; y2; y12; y012) are
chosen to maximize Δaμ subject only to the above
unitarity bounds.

(3) With the fermion (scalar) mass fixed to this maxi-
mum value and the couplings chosen to maximize
Δaμ, the entire BSM spectrum of the theory is fully
determined as a function of just the two scalar
(fermion) masses mA, mB. As expected, we find
thatΔaobsμ can be generated only in a compact region
of the ðmA;mBÞ plane.

(4) We can then ask at each point in this plane what the
mass of the lightest charged BSM state is. This is
shown in Fig. 9(first row) for two representative SSF
models. Importantly, in some theories, the lightest
charged state does not contribute to ðg − 2Þμ, but its
existence and mass is determined by gauge invari-
ance in the given SSF or FFS models.

(5) Since the region of parameter space that can account
for Δaobsμ is compact, we can determine the highest
possible mass of the lightest charged BSM state that
is consistent with this particular EW scenario ac-
counting for the ðg − 2Þμ anomaly.

In effect, this procedure allows us to explore the “maxi-
mum-BSM-mass boundary” of each EW scenario’s
parameter space, subject to the requirement that Δaμ ¼
Δaobsμ and the BSM couplings obey perturbative unitarity.
The resulting highest possible mass of the lightest BSM
state in the spectrum for each EW scenario we examine is
listed in columns 5 and 6 of Table IV for NBSM ¼ 1 and
10, respectively.
Obviously, the result for a given model in Table IV is not

particularly illuminating, since it is by definition model
dependent. However, obtaining this maximum allowed
mass of the lightest new charged state for different possible
choices of EW gauge representations in both SSF and FFS
models allows us to perform the theory space maximization
in Eq. (9), and hence obtain Mmax

BSM;charged for all possible
perturbative solutions of the ðg − 2Þμ anomaly:

Mmax;unitarity
BSM;charged ≡ max

Δaμ¼Δaobsμ ;perturbative unitarity

n
min

i∈BSM spectrum
ðmðiÞ

chargedÞ
o
; ð64Þ

where we have added the “unitarity” superscript to distin-
guish this bound from subsequent results with additional
assumptions. We can perform this maximization by taking

the largest values from columns 5 and 6 in Table IV, which
are shown in the last row. We therefore present the final
result of our perturbative unitarity analysis of EW scenarios:
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Mmax;unitarity
BSM;charged ≈

	
100 TeV for NBSM ¼ 1

360 TeV for NBSM ¼ 10



;

≈ ð100 TeVÞ · N1=2
BSM: ð65Þ

TheNBSM scaling arises due to the linear dependence ofΔaμ
on NBSM. For FFS models, this is clearly seen from Eq. (54),
while for SSF models this relationship is obscured by the
detailed form of the unitarity bound on κ, but we verified the
approximate

ffiffiffiffiffiffiffiffiffiffiffi
NBSM

p
scaling empirically. New charged

states therefore have to appear at or below the 100 TeV
scale unless NBSM is truly enormous, a scenario which is
disfavored not just by theoretical parsimony but also by
avoiding Landau poles close to the BSM mass scale, see
Sec. IVG.
It is important to keep in mind that realizing this upper

bound fromunitaritywould also require extreme alignment of
thenonmuonicBSMcouplings to avoidCLFVdecaybounds,
see Sec. II C 2. This can be regarded as a severe formof tuning
of the BSM lepton couplings before mass diagonalization,
which disfavors the unitarity-only assumption.

D. Constraining the BSM mass scale with
unitarity +MFV

As discussed in Sec. II C 2, the MFV assumption is
motivated for EW scenarios by severe experimental bounds
on CLFV decays. Adopting this “UnitarityþMFV”
assumption significantly reduces the maximum allowed
BSM mass scale. We repeat verbatim the unitarity-only
analysis from Sec. IVC, with the additional step of lowering
the perturbativity bound on either y1 or y2 by mμ=mτ,
whichever gives higher BSM masses at that point in
parameter space. (In practice there is almost no difference
between these two possibilities since Δaμ ∝ y1y2 up to tiny
corrections.) The resulting largest possible mass of the
lightest BSM charged state for two representative SSF
models is shown in Fig. 9 (second row), with the results
for all EW scenarios we examine summarized in columns 7
and 8 of Table IV forNBSM ¼ 1 and 10, respectively. We can
therefore define, for all possible perturbative solutions of the
ðg − 2Þμ anomaly that obey MFV:

Mmax;MFV
BSM;charged ≡ max

Δaμ¼Δaobsμ ;unitarity;MFV

n
min

i∈BSM spectrum
ðmðiÞ

chargedÞ
o
;

ð66Þ

where the outer theory-space maximization is now con-
strained by unitarity as well as MFV, and can again be

performed by taking the largest values from columns 7 and 8
in Table IV, which are shown in the last row. This gives

Mmax;MFV
BSM;charged ≈

	
20 TeV for NBSM ¼ 1

73 TeV for NBSM ¼ 10



;

≈ ð20 TeVÞ · N1=2
BSM: ð67Þ

The reduction in BSM mass scale compared to the unitarity-
only assumption is very significant, and could be within
reach of future muon collider proposals.

E. Constraining the BSM mass scale with
unitarity +naturalness

The physical concreteness of the Higgs and muon mass
corrections in EW scenarios, see Eqs. (30)–(33), means that
confirmation of the ðg − 2Þμ anomaly and confirmed
nonexistence of the required new charged states up to
some scale Mexp means that these states must exist at some
scale MBSM > Mexp, which implies a certain amount of
tuning in the Lagrangian. Such an empirical confirmation
of fine-tuning would have profound consequence for our
thinking about the hierarchy problem or cosmological
vacuum selection. It is therefore worth quantifying how
heavy the new charged states could be without inducing
such physical fine-tuning.
We therefore define a very conservative “naturalness”

criterion by requiring the tuning in both the Higgs mass and
the muon Yukawa coupling to not exceed 1%, which
amounts to imposing

Δ≡max

�
Δm2

H

m2
H

;
Δyμ
yμ

�
< 100: ð68Þ

We repeat verbatim the unitarity-only analysis from
Sec. IV C, with the above naturalness bound applied in
addition to the unitarity bound. In practice, this means that
both the Higgs and muon masses are tuned at the 1% level
for the largest BSM masses we find, since maximizing all
couplings relevant for Δaμ saturates both tuning bounds.
The largest possible mass of the lightest BSM charged

state for two representative SSF models under this
“unitarityþ naturalness” assumption is shown in Fig. 9
(third row), with the results for all EW scenarios we examine
summarized in columns 9 and 10 of Table IV for NBSM ¼ 1
and 10, respectively. We can therefore define, for all possible
perturbative solutions of the ðg − 2Þμ anomaly that obey our
conservative naturalness requirement Eq. (68), the largest
possible mass of the lightest BSM states:

Mmax;naturalness
BSM;charged ≡ max

Δaμ¼Δaobsμ ;unitarity;Δ<100

n
min

i∈BSM spectrum
ðmðiÞ

chargedÞ
o
; ð69Þ
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FIG. 9. Contours show mass in TeVof lightest charged state in two representative SSF models with NBSM ¼ 1 as a function of scalar
masses mA, mB. The largest possible fermion mass mF was determined by ΔaBSM ¼ Δaobsμ , with the couplings y1; y2; κ chosen to
maximize ðg − 2Þμ while obeying the constraint from perturbative unitarity (first row), unitarityþMFV (second row), unitarityþ
naturalness (third row) or unitarityþ naturalnessþMFV (fourth row) On the left, ðR; RA; RBÞ ¼ ð1−2; 23=2; 11Þ, and all fields contributing
to ðg − 2Þμ are charged. On the right, ðR;RA; RBÞ ¼ ð1−1; 21=2; 10Þ, and the scalars in the ðg − 2Þμ loop are neutral but since ΦA is an EW
doublet, there is a charged scalar with mass mA.
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where again the superscript indicates the additional natural-
ness constraint on the theory space maximization, and we
can perform this maximization by taking the largest values
from columns 9 and 10 in Table IV, which are shown in the
last row. This gives

Mmax;naturalness
BSM;charged ≈

	
20 TeV for NBSM ¼ 1

30 TeV for NBSM ¼ 10



;

≈ ð20 TeVÞ · N1=6
BSM: ð70Þ

The reduction in BSM mass scale compared to the unitarity-
only analysis is even more dramatic than for the MFV
assumption. The unusual NBSM scaling was empirically
determined, but it arises because unlike the unitarity con-
straint, the tuning constraint on the couplings becomes more
severe with increasing BSM multiplicity, which mostly
cancels the increased contribution to Δaμ.

15

F. Constraining the BSM mass scale with
unitarity +naturalness+MFV

Given how strongly CLFV decay bounds motivate the
MFVansatz, it is reasonable to ask how high the BSMmass
scale could be if solutions to the ðg − 2Þμ anomaly have to
respect both naturalness and MFV. We investigate this by
imposing both constraints simultaneously in our analysis.16

The largest possible mass under this combined assumption
for two representative SSF models is shown in Fig. 9
(fourth row), with the results for all EW scenarios we
examine summarized in columns 11 and 12 of Table IV for
NBSM ¼ 1 and 10, respectively.
This allows us to define, for all possible perturbative,

natural, and MFV-respecting solutions of the ðg − 2Þμ
anomaly, the largest possible mass of the lightest BSM
states:

Mmax;naturalness;MFV
BSM;charged ≡ max

Δaμ¼Δaobsμ ;unitarity;Δ<100;MFV

n
min

i∈BSM spectrum
ðmðiÞ

chargedÞ
o

ð71Þ

We can perform this maximization by taking the largest
values from columns 11 and 12 in Table IV, which are
shown in the last row. This gives our strongest constraint:

Mmax;naturalness;MFV
BSM;charged ≈

	
9 TeV for NBSM ¼ 1

12 TeV for NBSM ¼ 10



;

≈ ð9 TeVÞ · N1=6
BSM: ð72Þ

The NBSM scaling, similar to the naturalness-only con-
straint, was empirically determined and is obeyed to very
good precision for NBSM ≲ 100. This result strongly
reinforces the notion that any “theoretically reasonable”
BSM solution to the ðg − 2Þμ anomaly must give rise to
charged states at or below the 10 TeV scale.

G. Electroweak Landau poles

Apart from flavor and naturalness considerations, the
parameter space for electroweak scenarios may be

restricted by imposing the requirement that the
SUð2ÞL and Uð1ÞY gauge couplings do not hit low-lying
Landau poles. In this section, we demonstrate parametri-
cally that such considerations disfavor truly enormous
values of the BSM multiplicity NBSM, which is relevant
since our upper bounds on the BSM scale increase
with NBSM.
Since new matter of mass MBSM with electroweak

charges only contributes to the running of gauge cou-
plings at scales μ > MBSM, a muon collider which is only
barely able to produce new states on-shell cannot easily
probe the threshold corrections to the gauge coupling.
However, in the spirit of our flavor and naturalness
discussions to find the most “reasonably theoretically
motivated” parts of parameter space, we will impose the
modest requirement that both of the electroweak gauge
couplings remain finite up to a scale Λ ¼ 10MBSM, where
MBSM here represents the largest mass of all the new
states. For this simple estimate, we setMBSM ¼ 100 TeV,
inspired by the upper bounds from unitarity. We also
consider the effect of avoiding Landau poles all the
way up to the GUT scale. This allows us to obtain
approximate bounds on NBSM which depend on the
electroweak representations of the new states in SSF
and FFS models.
The 1-loop SUð2ÞL and Uð1ÞY beta functions are

βY;L ¼ 1
16π2

bY;Lg3Y;L, where

bY ¼ 41

6
þ 1

3

X
S

Y2
S þ

2

3

X
F

Y2
F; ð73Þ

15In fact, for many SSF models the maximum BSM mass is
realized in regions of parameter space where the maximum allowed
value for all BSM couplings is set by the naturalness constraint. In
that case the NBSM dependence cancels exactly, but this does not
affect the model-exhaustive upper bound, since it is not the case for
all SSF models, and is never the case for FFS models (which have
an additional BSM coupling, meaning that there is always a
coupling combination that can saturate unitarity).

16Note that under the MFV assumption, there may be addi-
tional states generating contributions to the Higgs mass or the
other lepton Yukawas. Since these depend on the representations
chosen under the flavor group we do not include them in our
tuning measure, making our analysis conservative.
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bL ¼ −
19

6
þ 1

3

X
S

TðRSÞ þ
2

3

X
F

TðRFÞ: ð74Þ

The first term in bY and bL represents the SM contribution,
and the remaining terms give the contributions from
complex scalars S and 2-component fermions F, respec-
tively. In bL, TðRÞ is the index of the representation, equal
to ðdþ 1ÞðdÞðd − 1Þ=12 for the d-dimensional representa-
tion of SUð2Þ. A positive bL or bY indicates a coupling
which grows with increasing energy, hitting a Landau pole
at the scale Λ when

ln

�
ΛY;L

μ

�
¼ 2π

αY;LðμÞbY;L
: ð75Þ

Using the measured values of the couplings at μ ¼ mZ,
evolving them with the SM beta functions up to
μ ¼ 100 TeV, and imposing the absence of a Landau pole
at 1 PeV (GUT scale MGUT ¼ 1016 GeV) requires

bY < 249ð22.6Þ; bL < 92ð8.4Þ: ð76Þ

Since the BSM states do not all have the same mass, these
bounds are approximate but sufficient for a useful estimate.

Applying these constraints to the 24 models in Table IV, we
find the maximum values of NBSM shown in Table V. The
maximum allowed BSM multiplicity decreases for larger
electroweak representations, with the strongest constraint
being NBSM ≤ 27ð23Þ for the highest-representation SSF
(FFS) models to avoid PeV-scale Landau poles. Avoiding
GUT-scale Landau poles requires NBSM ≤ 37ð17Þ for all
models, with the strongest constraint requiring some SSF or
FFS models to have NBSM ¼ 1 or 2.
Given the very modest scaling of our mass bounds with

NBSM, and the severity of the GUT-scale constraints,17 this
suggests that

NBSM ≲Oð10Þ ð77Þ

represents the most reasonably motivated BSM parameter
space. It also justifies our choice to restrict our numerical
model-exhaustive analysis of SSF/FFS models to repre-
sentations up to and including triplets. Models with larger

TABLE V. Approximate maximum values of NBSM for each of the models in Table IV, obtained using Eq. (76) by requiring that each
model avoids a Landau pole below 1 PeV (orMGUT ¼ 1016 GeV in parentheses) in the hypercharge (fourth column) and SUð2ÞL (fifth
column) gauge coupling. The last column is the minimum of the two NBSM values for the two EW gauge groups.

Model R RA RB NBSM (Uð1ÞY) NBSM (SUð2ÞL) NBSM (min)

SSF 1−1 21=2 10 170 (11) 571 (69) 170 (11)
1−2 23=2 11 37 (2) 571 (69) 37 (2)
10 2−1=2 1−1 580 (37) 571 (69) 571 (37)
11 2−3=2 1−2 70 (4) 571 (69) 70 (4)
2−1=2 10 2−1=2 580 (37) 114 (13) 114 (13)
2−3=2 11 21=2 70 (4) 114 (13) 70 (4)
21=2 1−1 2−3=2 170 (11) 114 (13) 114 (11)
2−1=2 30 2−1=2 580 (37) 63 (7) 63 (7)
2−3=2 31 21=2 70 (4) 63 (7) 63 (4)
21=2 3−1 2−3=2 170 (11) 63 (7) 63 (7)
3−1 21=2 30 170 (11) 27 (3) 27 (3)
30 2−1=2 3−1 580 (37) 27 (3) 27 (3)

FFS 1−1 21=2 10 362 (23) 142 (17) 142 (17)
1−2 23=2 11 42 (2) 142 (17) 42 (2)
10 2−1=2 1−1 145 (9) 142 (17) 142 (9)
11 2−3=2 1−2 27 (1) 142 (17) 27 (1)
2−1=2 10 2−1=2 580 (37) 114 (13) 114 (13)
2−3=2 11 21=2 100 (6) 114 (13) 100 (6)
21=2 1−1 2−3=2 54 (3) 114 (13) 54 (3)
2−1=2 30 2−1=2 580 (37) 27 (3) 27 (3)
2−3=2 31 21=2 100 (6) 27 (3) 27 (3)
21=2 3−1 2−3=2 54 (3) 27 (3) 27 (3)
3−1 21=2 30 362 (23) 23 (2) 23 (2)
30 2−1=2 3−1 145 (9) 23 (2) 23 (2)

17Also note that in an actual GUT theory, the existence of
additional electroweak states would further increase renormali-
zation group (RG) running and lead to significantly lower NBSM
upper bounds than we show in Table V.
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representations hit Landau poles for much lower BSM
multiplicities, lowering the maximum possible BSM mass
compared to models that account for the ðg − 2Þμ anomaly
with smaller EW representations.

H. EW scenarios with fewer than three new BSM states

The SSF and FFS scenarios we study are engineered to
generate Δaobsμ with the maximum possible masses for all
the BSM particles in the ðg − 2Þμ loop, which justifies
concentrating on these simplified models to determine the
largest possible BSM mass scale. However, for the pur-
poses of finding Mmax

BSM;charged, one could imagine the
following loophole to our argument: imagine replacing
one of the charged BSM states by a SM particle, specifi-
cally the Higgs or the muon. In that case, Δaμ would be
generated by new diagrams involving one or more SM
particles and two or fewer BSM particles in the loop. Since
the charged SM particle does not count as a new discov-
erable charged state despite its low mass, it might be
possible for the BSM charged states to be much heavier
than ourMmax

BSM;charged upper bound. In this section, we show
that this is not the case.
Our exhaustive analysis of SSF and FFS scenarios covers

all possible EW representations that could generate new
Δaμ contributions (up to and including triplets). We can
reuse this classification and identify scenarios where some
of the BSM scalars/fermions can be replaced by the Higgs/
muon, subject to our assumption that no new significant
sources of electroweak symmetry breaking are introduced
(which would give rise to other experimental signatures).
We categorize them as follows:

(i) FFH models, which are FFS models where S ∼ 2�1=2

is replaced by H or H̃, where H̃i ¼ ϵijH�j.
(ii) μFS models, which are FFS models where Fc

A or
FB ∼ 2−1=2 or 11 and is therefore replaced by LðμÞ or
μc. In that case, no new FA (or Fc

B) field is added,
and there is no y012-type interaction.

(iii) HSF models, which are SSF models where SA or
SB ∼ 2�1=2 is replaced by H=H̃.

Replacing the F in SSF models by a muon field would
require introducing a vector partner for the muon, which
would introduce a new charged state at much lower masses
than ourMmax

BSM;charged upper bound. The above are therefore
all the relevant modifications of the SSF/FFS models where
one BSM particle is replaced by a Higgs or a muon.
Replacing two BSM particles by SM fields is not relevant
to our discussion, since there are no SSF (FFS) scenarios
where both scalars (fermions) have the correct EW repre-
sentation to be replaced by the Higgs doublet (muon
spinors). One could consider replacing one BSM fermion
and one scalar by the Higgs and muon, respectively, in the
FFS scenario, but this would identify one of the y1;2
couplings with the small muon Yukawa, suppressing
Δaμ and guaranteeing a small BSM mass scale. To ensure

that our derivation of Mmax
BSM;charged is correct, we therefore

only have to consider the FFH, μFS, and HSF cases.
We also discuss the EW-model-like pathological flavor-
violating singlet case mentioned in Sec. II A.
We systematically explored the entire allowed parameter

space of all three possible FFH scenarios, five μFS
scenarios, and five HSF scenarios, for NBSM ≥ 1. None
of them give rise to larger charged particle masses than the
full SSF/FFS scenarios, meaning they have no bearing
on the Mmax

BSM;charged upper bounds derived above. In most
cases, it is easy to understand why this is the case.
In μFS models, there are two new Δaμ contributions: one

with the muon-dominated mass eigenstate in the loop, and
one with the new heavy fermion in the loop. Only the latter
is chirally enhanced by the large BSM fermion mass mF,
but since there is no y012 coupling, it is suppressed by a very
small mixing ∼vy12mμ=m2

F, effectively reintroducing the
same parametric suppression by mμ as in singlet scenarios.
Therefore, μFS models that account for the ðg − 2Þμ
anomaly and respect perturbative unitarity always require
new charged states below a few TeV.
HSF models are most easily analyzed in Feynman-

t’Hooft gauge, where the charged and neutral Higgs gold-
stone modes are kept in the spectrum with masses mW , mZ,
respectively. This allows our calculations of ðg − 2Þμ and
radiative corrections to be applied almost verbatim. The
unitarity limit on the κ-type coupling, see Eq. (58), now
becomes κmax ∼ 0.3mS, where mS is the mass of the BSM
scalar.18 In HSF scenarios where the scalar is a SM singlet,
this ensures that the charged fermion cannot be made so
heavy as to violate our Mmax

BSM;charged upper bound: generat-

ing Δaobsμ with a very heavy charged fermion mass would
require a relatively light SM singlet scalar, but such low
values of mS forbid the κ couplings required to generate
Δaobsμ . We therefore find that all HSF models require new
charged states below 25 TeV from perturbative unitarity
alone, and much lower masses once MFV assumptions are
included. HSF models also contain additional large radi-
ative corrections to the Higgs mass ∼y21m2

F=8π
2. This

makes naturalness constraints even more severe than in
regular SSF models, requiring new charged states far below
our calculated upper bound for all assumptions.
Finally, we discuss the FFH models, which introduce no

parametric suppressions for Δaμ. There are two cases
where both vectorlike BSM fermions carry EW charge:
ðFA; FBÞ ∼ ð30; 2−1=2Þ or ð1−1; 2−3=2Þ. For unitarity-only or
unitarityþMFV assumptions, we find that the upper
bound on the lighter charged particle mass is almost the
same as for the corresponding FFS model. On the other

18The κHHS-type coupling also leads to a tiny VEV for the
BSM scalar, but since its EWSB contribution is aligned with the
Higgs in cases where S carries EW charge, it does not mean-
ingfully affect our discussion.
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hand, any naturalness constraint leads to much lower
allowed charged masses, since like HSF models, FFH
models include additional large finite Higgs mass contri-
butions ðy21m2

A þ y22m
2
BÞ=8π2. Any such models obeying

our naturalness criterion hence require new charged states
below a few TeV. Therefore, these FFH scenarios can never
violate our Mmax

BSM;charged upper bounds.
The one case that requires further discussion is the FFH

model with ðFA; FBÞ ∼ ð10; 2−1=2Þ. Because FA is a SM
singlet, the only BSM charged state is FB. Imposing the
naturalness criterion for even just the Higgs mass still
guarantees mB ≲OðTeVÞ, well within our upper bound.
However, if we do not impose the naturalness constraint, it
is naively possible to generate Δaobsμ for a relatively light
singlet FA, large y1, y1, y12 couplings (y012 does not
contribute in this limit), and very heavy charged FB,
driving up the maximum allowed charged mass to
Oð1000Þ TeV and Oð100Þ TeV for the unitarity and
unitarityþMFV assumptions, respectively. Fortunately,
such an extreme scenario violates electroweak precision
constraints. This FFH model contains the coupling

−y1Fc
AνμH

0; ð78Þ

which does not contribute to ðg − 2Þμ directly but is a
requirement of SUð2ÞL ×Uð1ÞY gauge invariance. This
gives rise to a mixing between the active muon neutrino and
the heavy sterile FA fermion θνμA ∼ y1v=mA, generating
deviations from SM predictions for the Zνν coupling, see
e.g., [119]. Imposing the constraints jVμN j2 ≲ 10−3 for the
unitarity assumption and jVτN j2 ≲ 10−2 for the unitarityþ
MFV assumption forbids the extreme case of very light FA
and very large y1 which would permit a very heavy charged
FB mass. Including electroweak precision constraints, the
heaviest possible charged mass for the unitarity
(unitarityþMFV) assumption in this FFHmodel is smaller
than 65 TeV (10 TeV) for NBSM ¼ 1. Larger values of
NBSM also do not violate our upper bound.
In summary, the Mmax

BSM;charged upper bounds we calculate
using the FFS and SSF simplified models also apply to
scenarios with fewer BSM fields in nontrivial EW repre-
sentations, and hence to all possible EW scenarios in
general.
Finally, we discuss the pathological flavor-violating

EW-model-like singlet scenario mentioned at the end of
Sec. II A. In the presence of flavor-violating scalar
couplings SðgμττLμc þ g̃μτμLτc þ H:c:Þ or vector cou-
plings Vαðgμτμ†Lσ̄αμL þ g̃μτμcσαμc†Þ, Δaμ is enhanced by
a factor of mτ=mμ ≈ 17 relative to the singlet models
considered in Sec. III. As a result, the singlet scalar
(vector) could be up to

ffiffiffiffiffi
17

p
∼ 4 times heavier than the

upper bounds in Fig. 4, resulting in a maximum mass of
∼12 (4) TeV. As we discuss below, any muon collider that

can produce the charged states of the other EW models
can also discover these flavor-violating singlet models.

I. Muon collider signatures

We focus on the simplest andmost robust signature of EW
scenarios at muon colliders: direct production of new heavy
charged states. Such a state X would be pair-produced in
Drell-Yan processes independent of its direct couplings to
muons, with a pair production cross section similar to
SM EW 2 → 2 processes above threshold, σXX ∼
fbð10 TeV=

ffiffiffi
s

p Þ2 [58], as long as
ffiffiffi
s

p
> 2mX. At high

energies far above a TeV, the same is true of electrically
neutral states carrying weak quantum numbers, which are
also present in EW scenarios. However, charged states must
either decay to visible SM final states, or are themselves
visible if they are detector stable. As a result, the conclusive
discovery of such heavy states should be possible in the
clean environment and known center-of-mass frame of a
lepton collider regardless of their detailed phenomenology.19

In the discussions of the next section, we can therefore
simply assume a muon collider will be able to discover any
heavy BSM charged state withmX ≲ 1

2

ffiffiffi
s

p
. As we have seen,

for reasonable BSM solutions to the ðg − 2Þμ anomaly, this
will call for an Oð10 TeVÞ muon collider (or an electron
collider, if it could be built at such high energies).
The complications particular to a muon collider, like the

shielding cone necessary to reduce beam-induced back-
ground, do not affect this argument for heavy charged states.
Of course, it is always possible to imagine very unusual
scenarios where details of the model conspire to make
discovery much harder than generically expected. However,
such edge cases do not invalidate a no-lose theorem. For
example, while models that could hide the Higgs boson at
the LHC were certainly considered prior to its discovery (see
e.g., [120]), this did not invalidate the fact that the combi-
nation of EWSB and basic unitarity requires the production
of new states at the LHC. Indeed, if such a scenario had
come to pass, the no-lose theorem for the Higgs would have
motivated Herculean analysis efforts to tease the hidden
signals out of the data. (Furthermore, production and
observation of new charged states via gauge couplings is
much more robust than production of neutral scalars.) Our
no-lose theorem serves a similar function: it motivates the
construction of colliders that can produce the predicted new
charged states, and in case those states are not found right
away, it will hopefully provide similar emotional fortifica-
tion for future experimentalists looking to uncover the new
physics behind the by then well-established ðg − 2Þμ
anomaly.
In some EW scenarios there is an electrically neutral or

even complete SM singlet state that is lighter than the lightest

19Note that the large Drell-Yan cross sections imply that a
discovery is possible even at a considerably lower luminosity
than ab−1, which may provide some practical advantages.
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charged state. As we discussed in our first study [64], this
can also be discovered in a monophoton search if the new
state escapes as missing energy, where vector boson fusion-
enhanced SM backgrounds can be effectively vetoed with a
high-momentum-cut on the recoiling photon. However,
while this signature is interesting in its own right, it is
not our focus in this study. Across the whole space of
possible EW scenarios and hence all theories that solve the
ðg − 2Þμ anomaly, assuming that all kinematically accessible
BSM states can be discovered versus only assuming that
charged states can be discovered does not actually lower the
resulting minimum required energy of the muon collider
necessary to guarantee discovery of new physics. We can
therefore focus on charged BSM states without being unduly
conservative.
The same logic applies to the flavor-violating EW-

model-like singlet scenario mentioned at the end of
Sec. II A, which can feature singlet scalars (vectors) as
heavy as 12 (4) TeV. Assuming these models avoid CLFV
bounds, any muon collider with sufficient energy to pair-
produce the charged states in the EW models discussed in
this section will have sufficient energy to probe this flavor-
violating singlet model as well via strategies similar to
those discussed in Sec. III D: either indirectly via anoma-
lous t-channel contributions to μþμ− → τþτ−, or via direct
singlet-strahlung production.

V. NO-LOSE THEOREM FOR THE MUON
COLLIDER PROGRAM

We now synthesize the results of our model-exhaustive
analysis to understand the concrete implications for a future
muon collider program, and use them to derive our no-lose
theorem for the discovery of new physics.
One-loop perturbative solutions to the ðg − 2Þμ anomaly

can be classified as either singlet scenarios or EW scenar-
ios, based simply on whether the new physics contributions
in the loop are only SM singlets or if there are any particles
with SM gauge quantum numbers. Direct discovery of
singlet scenarios requires observation of the SM singlet,
while EW scenarios can be discovered by producing the
lightest new charged state at lepton colliders.
BSM theories that only generate ðg − 2Þμ at higher-loop

order necessarily feature lower mass scales relative to those
found in one-loop models and are thus easier to discover.
Furthermore, strongly coupled BSM scenarios involving
composite new states in the ðg − 2Þμ loop are parametri-
cally covered by our analysis, since we consider BSM
multiplicity of states NBSM > 1 and large couplings at the
unitarity limit.20

If singlet scenarios explain the ðg − 2Þμ anomaly, the
maximum possible mass of BSM states based on pertur-
bative unitarity only is 3 TeV, and only 200 GeV if we
impose MFV, as motivated by CLFV decay bounds. We
performed a careful analysis of direct singlet production at
muon colliders via the same coupling that generates Δaμ,
which is completely inclusive with respect to the singlet
stability or decay mode.
We find that a 3 TeV muon collider with 1 ab−1

integrated luminosity would be able to discover all singlet
scenarios that solve the ðg − 2Þμ anomaly, provided the
mass of the singlet is larger than ∼10 GeV. A 215 GeV
muon collider with 0.4 ab−1 would not be able to probe the
highest possible singlet masses, but could discover singlets
heavier than 2 GeV. However, such a lower-energy muon
collider would also be able to observe deviations in Bhabha
scattering μþμ− → μþμ− at the 5σ level to indirectly
discover the effects of these singlets with masses as high
as the unitarity limit. These results are independent ofNBSM
because all observables scale with gBSMNBSM, the same
combination of parameters that determines Δaμ.
On the other hand, EW scenarios are the most general

way to solve the ðg − 2Þμ anomaly at one-loop, hence
resulting in much higher possible BSM mass scales. We
defined the following highest possible mass for the lightest
BSM charged state in the spectrum:

Mmax;X
BSM;charged ≡ max

Δaμ¼Δaobsμ ;X

n
min

i∈BSM spectrum
ðmðiÞ

chargedÞ
o
: ð79Þ

The outer max represents a maximization over theory space
subject to assumptions X, where we examined four pos-
sibilities:

X ¼

8>>>><
>>>>:

perturbative unitarity�

unitarityþMFV

unitarityþ naturalness�

unitarityþ naturalnessþMFV

: ð80Þ

The last three assumptions include perturbative unitarity
but are more restrictive. MFV avoids CLFV decay bounds
and assumes that the SM Yukawas are the only source of
flavor violation in whatever new physics solves the flavor
puzzle, which lowers the unitarity bound on some of the
BSM muon couplings, since the corresponding BSM tau
coupling must obey perturbative unitarity. Naturalness is
defined to require that both the muon and Higgs mass,
which both become technically unnatural in EW scenarios
due to calculable new loop corrections, are tuned to no
more than 1%. The star (*) indicates that assumptions
without MFV implicitly rely on some coincidence or
unknown mechanism to suppress CLFVs while allowing
the muonic BSM couplings to be pushed up to the unitarity
(or naturalness) limit.

20While we considered large BSM couplings that are border-
line nonperturbative to derive upper bounds on new particle
masses, the existence and production of the new EW states at
colliders is a consequence of gauge invariance and only involves
perturbative couplings, making our signal predictions robust.
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We can perform this theory space maximization using our SSF and FFS simplified models to obtain the highest possible
mass of the lightest new charged state as a consequence of resolving the ðg − 2Þμ anomaly:

Mmax;X
BSM;charged ≈

�
2.8 × 10−9

Δaobsμ

�1
2

×

8>>>>><
>>>>>:

ð100 TeVÞN1=2
BSM for X ¼ ðunitarity�Þ

ð20 TeVÞN1=2
BSM for X ¼ ðunitarityþMFVÞ

ð20 TeVÞN1=6
BSM for X ¼ ðunitarityþ naturalness�Þ

ð9 TeVÞN1=6
BSM for X ¼ ðunitarityþ naturalnessþMFVÞ

: ð81Þ

We include the scaling of these mass bounds with Δaobsμ so
they can be easily adapted to updated measurements of
ðg − 2Þμ.21 The presence of required CLFV suppression is
again indicated with a star. In light of CLFV decay bounds,
the two MFV results are the most theoretically and
experimentally motivated. Furthermore, avoiding relatively
low-lying Landau poles motivates NBSM ≲Oð10Þ.
Since charged states of mass m are efficiently produced

by a lepton collider with
ffiffiffi
s

p ≳ 2m and have to leave visible
signals in the detector, we assume that any such BSM state
would be discovered at a sufficiently energetic muon
collider. Specifically, a

ffiffiffi
s

p
∼ 30 TeV muon collider would

be able to discover any high-scale, MFV-respecting sol-
ution to the ðg − 2Þμ anomaly that avoids introducing two
new hierarchy problems and has BSM multiplicity up to
NBSM ≲ 10. Such a collider would also be able to indirectly
confirm the existence of the effective BSM operator
responsible for generating Δaμ via hγ measurements
[62,65]. This makes a 30 TeV muon collider a highly
ambitious but highly motivated benchmark goal for the
discovery of new physics.
High-scale solutions to the ðg − 2Þμ anomaly which

evade discovery at a 30 TeV machine are extremely
strange: they would have to have a high BSM multiplicity,
resulting in possible Landau poles below the Planck or
even the PeV scale; or violate the assumptions of MFV
while avoiding CLFV decay bounds; or be highly tuned in
an explicitly calculable way. Therefore, nonobservation of
new states at a 30 TeV muon collider (alongside con-
firmation of the new BSM operator via hγ measurement)
would force the ðg − 2Þμ solution into theoretically
extreme territory, which still has to satisfy the bounds
of unitarity with charged states below a few hundred TeV.
Such a scenario would constitute empirical proof that
nature is fine-tuned, and/or refute the MFV ansatz for the
solution of the flavor puzzle, which would now be much
more severe since unknown mechanisms have to suppress
naïvely large CLFV contributions. This in itself would be
highly meaningful and new information about the

fundamental nature of our Universe, the selection of its
vacuum, and the origin of flavor.
These results allow us to formulate the no-lose theorem

for future muon colliders, which we already stated in Sec. I,
but we repeat the chronological progression here for
completeness:
(1) Present day confirmation:

assume the ðg − 2Þμ anomaly is real.
(2) Discover or falsify low-scale singlet scenarios

≲GeV:
if singlet scenarios with BSM masses below

∼GeV generate the required Δaobsμ contribution
[38], then multiple fixed-target and B-factory experi-
ments are projected to discover new physics in the
coming decade [39,66–73].

(3) Discover or falsify all singlet scenarios ≲TeV:
if fixed-target experiments do not discover new

BSM singlets that account for Δaobsμ , a 3 TeV muon
collider with 1 ab−1 would be guaranteed to directly
discover these singlets if they are heavier than
∼10 GeV.
Even a lower-energy machine can be useful: a

215 GeV muon collider with 0.4 ab−1 could
directly observe singlets as light as 2 GeV under
the conservative assumptions of our inclusive ana-
lysis, while indirectly observing the effects of
the singlets for all allowed masses via Bhabha
scattering.
Importantly, for singlet solutions to the ðg − 2Þμ

anomaly, only the muon collider is guaranteed to
discover these signals since the only required new
coupling is to the muon.

(4) Discover nonpathological electroweak scenarios
(≲10 TeV):
if TeV-scale muon colliders do not discover new

physics, the ðg − 2Þμ anomaly must be generated by
EW scenarios. In that case, all of our results indicate
that in most reasonably motivated scenarios, the
mass of new charged states cannot be higher than
few ×10 TeV. However, such high masses are only
realized by the most extreme boundary cases we
consider. Therefore, a muon collider with

ffiffiffi
s

p
∼

10 TeV is incredibly motivated, since it will have
excellent coverage for EW scenarios in most of their

21The dependence of the naturalness bounds on SM masses
could make this scaling less than completely trivial, but we have
verified that it holds within a factor of a few of the Brookhaven
National Laboratory measurement Eq. (1).
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reasonable parameter space.
A very strong statement can be made for future

muon colliders with
ffiffiffi
s

p
∼ 30 TeV: such a machine

can discover via pair production of heavy new
charged states all EW scenarios that avoid CLFV
bounds by satisfying MFVand avoid generating two
new hierarchy problems, with NBSM ≲ 10.

(5) Unitarity ceiling (≲100 TeV):
Even if such a high energy muon collider does not

produce new BSM states directly, the recent inves-
tigations by [62,65] show that a 30 TeV machine
would detect deviations in μþμ− → hγ, which probes
the same effective operator generating ðg − 2Þμ at
lower energies. This would provide high-energy
confirmation of the presence of new physics.
In that case, our results guarantee the presence of

new states below ∼100 TeV by perturbative unitarity,
and the lack of direct BSM particle production atffiffiffi
s

p
∼ 30 TeV will prove that the Universe violates

MFVand/or is highly fine-tuned to stabilize the Higgs
mass and muon mass, all while suppressing CLFV
processes.

As we already argued in Sec. I, if the ðg − 2Þμ anomaly is
confirmed, this should serve as supremely powerful moti-
vation for an ambitious muon collider program, from the
test bed or Higgs-factory scale of Oð100 GeVÞ to energies
in excess of 10 TeV. It would of course also be interesting to

understand if and how proposed future hadron or electron
colliders could explore the same physics.
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