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Muonium is a bound state composed of an antimuon and an electron, and it constitutes a hydrogenlike
atom. Because of the absence of the hadronic matter in the bound state, the muonium is a useful probe to
explore new physics being free from the hadronic uncertainties. The process of the muonium-to-
antimuonium transition is considered to be effective to identify fundamental interactions which relate to the
lepton flavor and lepton number violation. New experiments are being planned at J-PARC in Japan and
CSNS in China, and it is expected to attract more attention in the near future. In this paper, we will study
what kind of model can be verified in the next generation of the muonium-to-antimuonium transition search
experiments while escaping the limitations from other experiments. Though the transition probability is
strongly suppressed by the lepton flavor conservation in the standard model, it can be much larger by the
exchanges of neutral and doubly charged bosons, and by box loop diagrams in new physics beyond the
standard model. We study the neutrino models with heavy Majorana neutrinos at TeV scale, a type-II
seesaw model, left-right models, and models for radiative neutrino masses such as the Zee-Babu model in
particular, in addition to other possible models to induce the sizable transition probability, which can be

tested in the forthcoming experiments.
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I. INTRODUCTION

The muonium (Mu: u*e™) to antimuonium (Mu: p~e™)
transition is an interesting phenomenological possibility
[1-4]. There has been no new experimental result of the
Mu-to-Mu transition since the Paul Scherrer Institute (PSI)
experiment in the late 1990s [5]. The coefficient of the four-
fermion transition operator is bounded to be less than
3 x 1073 in the unit of the Fermi constant by the experiment.
A brand new idea of the transition experiment is now
planning at Japan Proton Accelerator Research Complex
(J-PARC) [6]. A new experiment is also planning at China
Spallation Neutron Source (CSNS) [7]. Itis expected that the
bound will be updated for more than one digit by high-
intensity 4+ beam lines. From the theoretical point of view,
the Mu-to-Mu transition is an important ingredient to
accumulate our knowledge on lepton flavor violation and
lepton number violation, and to extract the fundamental
interactions in the lepton sector. For these twenty years, there
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are lots of new experimental results: measurements of the
parameters in neutrino oscillations, updated results to bound
the Mu-to-Mu transition indirectly, and direct bounds on the
new particles at the Large Hadron Collider (LHC). We
believe that it is worth organizing the models of the
Mu-to-Mu transition. o

The Mu-to-Mu transition resembles K°~K° mixings in
the quark sector. The box diagrams via W boson exchanges

generate K'-KO mixings in the standard model (SM). It is

well known that the K%—K° mixings are suppressed due to
the unitarity of the quark mixing matrix in the SM, but they
do not vanish completely because the up-type quark masses
are hierarchical, m, < m, < m; ~ My,. Similarly to the

K°-K° mixings, the Mu-to-Mu transition operator can be
potentially generated by the box diagram via W boson
exchanges in the SM. However, the transition operator is
strongly suppressed ~1073" due to the unitarity of the
neutrino mixing matrix and tiny neutrino masses, which is
very different from the quark sector. If there is a new
particle around a TeV scale and it couples to electrons and
muons, the new interaction can induce the Mu-to-Mu
transition in an observable size.

The induced size of the Mu-to-Mu transition via the Te V-
scale particles in the models beyond the SM is indirectly
restricted by the nonobservation of lepton flavor violating
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(LFV) processes [8,9], such as u — ey and u™ — e"eTe™
(u — 3e). We remark that the severely constrained LFV
decays are AL, =—-AL,=+1 processes, while the

change of the lepton flavor numbers in the Mu-to-Mu
transition is AL, = —AL, = —2. Therefore, if the lepton
flavor numbers that new particles carry are odd, one needs
the multiple flavor violating interactions to induce the
transition operator, and therefore, it turns out that the size of
the Mu-to-Mu transition will be much less than the one
which can be observed in near-future experiments.
However, if the lepton flavor numbers of the new particles
are even, the severe experimental constraints can be
avoided and an observable size of the Mu-to-Mu transition
at near-future experiments can be induced at the tree level.

Those circumstances of the new physics contributions
from flavor violation are similar to the meson mixings in
the models beyond the SM. In the case of the Mu-to-Mu
transition, an additional contribution from the Ilepton
number violation can be considered. The transition oper-
ators can be generated by box diagrams in which the mass
terms of the fields in the internal lines violate the lepton
numbers, even if the interactions conserve the lepton flavor
numbers. In this case, the size of the Mu-to-Mu transition
relates to the mechanism to generate the proper size of the
tiny active neutrino masses.

The purpose of this paper is to scrutinize the models to
induce the transition operators in eager anticipation of the
new experiments. In particular, we will study in detail those
models with neutrino mass production.

We first review the model-independent issues of the
Mu-to-Mu transition and Mu spectroscopy (Sec. II). We
next classify the new particles and interactions that causes
the Mu-to-Mu transition in the models beyond the SM, and
make introductory remarks on how a sizable transition to be
observed in the near-future experiments can be induced
avoiding the constraints such as LFV processes, which we
have briefly mentioned above (Sec. III). After those tradi-
tional reviews, we start up the Mu-to-Mu transitions in the
orthodox neutrino models: TeV-scale Majorana neutrinos
(Sec. 1V), type-II seesaw (Sec. V), and left-right models
(Sec. VI). We learn how the LFV processes restrict the
transition operators in the respective models. The box loop
contribution is restricted by the u — ey, and three-body
LFV decays such as y — 3e restrict the transition operators
generated at the tree level.

We also learn the lepton number violation to induce the
Mu-to-Mu transition in the orthodox models, and one finds
that the Mu-to-Mu transition induced by the lepton number
violation is restricted by the natural realization of the sub-
eV neutrino masses. We thus study the models with the
radiatively generated neutrino masses (Sec. VII), which
will be the main issue of this paper. The radiative neutrino
mass models fall into two broad categories: models with
and without right-handed neutrinos. In the models with

right-handed neutrinos, the Dirac neutrino masses are
forbidden by a discrete symmetry and the tree-level
neutrino mass is absent. The Mu-to-Mu transitions induced
by the lepton number violation in such situations are
discussed. The so-called Zee-Babu model [10-13] is one
of the representative radiative neutrino models without the
right-handed SM singlet fermions. We show that the Zee-
Babu model can produce the largest Mu-to-Mu transition
among the radiative neutrino mass models, which can be
tested in near-future experiments.

We also describe other models of the Mu-to-Mu tran-
sitions via the tree-level mediator exchanges, including the
ones that have been known for a long time: neutral scalar
exchange (Sec. VIII), R-parity violating supersymmetry
(SUSY) (Sec. IX), dilepton gauge bosons (Sec. X), and
flavored neutral gauge bosons (Sec. XI). We will also
investigate the radiative neutrino masses as a version of a
SUSY model with R-parity. Other possible exotics can be
considered (Sec. XII): leptoquarks, vectorlike fermions,
and axionlike particles.

II. MODEL INDEPENDENT DESCRIPTION
OF Mu-to-Mu TRANSITION

We review the model-independent issues on the
Mu-to-Mu transitions. We first describe the quantum
mechanics of the Mu-to-Mu transition and the probability
of the transition. We next introduce the four-fermion
operators of the Mu-to-Mu transition, and we obtain the
transition amplitudes. Since the experiments for the
Mu-to-Mu transition have been done in a magnetic field,
we need to know the magnetic field dependence of the
transition probability in order to decode the experimental
results. We also comment on the corrections to the ground-
state Mu hyperfine structure from the transition operators.

A. Mu - Mu mixings
The Schrodinger equation of the Mu — Mu system is

()= G ) ()

i— = ,

o\ p My My /\p
for |y(1)) = a(f)[Mu) + B(¢)|Mu). The matrix elements
can be written as M;; = M;; —il';;/2. The CPT symmetry
holds M;; = M,, and Mu and Mu can mix largely even if
the off-diagonal element is tiny. Solving the Schrodinger

equation, we obtain the time evolution of the Mu state,
which is purely Mu at ¢t = 0, as

(2.1)

IMu(1)) = f.(£)[Mu) + (q/p)f-(1)Mu),  (2.2)

where
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1 . .

— t) = — (e7 W+t 4 p—idt 23
a/p M, felt) =5 (e e”1), (2.3)
I 1 A

/11 —M—12i2<AM—12>,
A
AM —i— =2 M]zle. (24)

2

Here, M and I are the averages of the masses and widths,

respectively, and AM and AT are the differences of them.

The transition probability at a time ¢ can be written as
P(Mu — Mu; 1) ~ |q/ p[?|f (1)
P(Mu = Mu; 1) ~ [ £ (1)]?, (2.5)

2
)

and one can calculate
1 Al
lfL(0))? = 5 et <cosh7 t % cos AMt) . (2.6)

If there is CP symmetry or |['j,/M,| < 1, one obtains
lg/p| = 1. We take a plausible assumption |I'j,/M,| < 1
to describe the following, and M = M, = (AM)/2.

The time-integrated probability of the Mu-to-Mu tran-
sition is obtained by

_ © 2 M2
P(Mu — Mu) :/ the‘rtsinth:L

0 M? 41727 (27)

which corresponds to the probability that the decay of
the Mu produced in the laboratory comes from the
Mu(ute™) - Mu(u~e™) - (e~ + 7, +v,) + e mode.
For |AM| <T' =1/t (v is the Mu lifetime, 2.20 us),
one can write the time-integrated transition propability as

P ~202 M2, (2.8)

B. Operators

The operators which can induce the Mu-to-Mu transition
are [14]

Oy = (ar (1 —ys)e)(ar*(1 —ys)e).  (2.9)
0y =(fiy, (1 +7s)e)(ar* (1 +7ys)e),  (2.10)
Q5 =(fy, (1 +7s)e)(ar(1 —ys)e).  (2.11)
Q4 =((1 —ys)e)(ia(1 —ys)e). (2.12)
Qs =(a(1 +ys)e)(a(1 +7s)e). (2.13)

Any dimension-six four-fermion operators for the
Mu-to-Mu transition can be written by a linear combination

of the above five by using Fierz identities. For example, one
can find

R(1+ 7)) @1 = 19)e) = =505 (214)
(pe)(fie) = i (=03 + 04 + Os), (2.15)
(rse)frse) = 1 (03 + 0 +Qs). (2.16)
(o, e)ioe) = =3(0s +Q5).  (217)

We denote the terms in the effective Lagrangian as

G
Lyuim= D SEQ“ (2.18)

i=1,...,

where the normalization of the coefficients mimics the
Fermi constant G.

In practice, the state of the produced Mu is a mixture of
four states made by the hyperfine structure. The four states
(F,m) = (0,0), (1,0), and (1,+£1) are indicated by the
magnitude of the total angular momentum F and the z
component of the total angular momentum m. The F = 0
state is called paramuonium, while the F =1 state is
called orthomuonium. The amplitudes of the Mu(F, m) —
Mu(F, m) transition' are written as

Mp, = > —E(Mu; F.om|Q;|Mu; F.om).  (2.19)

Treating the bound leptons nonrelativistically, we obtain

8lp(0)? 3 1 1
Moo = - ()] <G1+G2——G3——G4——G5>,

V2 2 4 4
(2.20)
for the spin-singlet paramuonium, and
Mig=M; 1
= —&L\/g)lz (G1 +G, +%G3 —%G4 —%GS) , (2.21)

for the spin-triplet orthomuonium. The derivation of
Egs. (2.20) and (2.21) is given in Appendix A.

Solving the Schrédinger equation for the hydrogenlike
atom, we find that the wave function ¢(r) is

_ (ereda)3
(p(l’) - exp(_mredar)7 (222)

T F # F orm # m/, (Mu; F,m|Q;[Mu; F',m') = 0 for any i.
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where myeq = m,m,/(m, +m,) ~m, is the reduced mass
between a muon and an electron and a ~ 1/137 is the QED
fine structure constant. The value of ¢(r) at the origin is
given by

(2.23)

C. Magnetic field dependence

The transition probability of Mu to Mu is changed in a
finite magnetic field B. Since we have to care about the
effects of the external magnetic field to describe the
experimental constraints given by the PSI experiment, let
us review the magnetic field dependence [15,16]. For the
Mu spectroscopy, see Appendix B.

The external magnetic field splits the (1, 1) states and
makes AE = M, — M, to be nonzero. As a consequence,
the Mu — Mu mixing becomes small and the transition
probability becomes

M,
Mlil + (AE/2)?

P(Mu — Mu, 1) ~ e~

xsin®\JM3 ., + (AE/2)r, (224)
and the time-integrated probability is
) o 2 2 2
/ dTP(Mu — Mu, 1) ”Mi‘ilt (2.25)
0 1 + (zAE)

The energy splitting AE of the (1,41) states by the
magnetic field can be obtained by Eq. (B3), and one obtains

TAE = 3.85 x 10° x

2.26
Tesla ( )

Therefore, in the magnetic flux B to be more than 1 uT
(micro Tesla), the transition probability is suppressed for
(1, £1) states. For one’s information, the geomagnetic flux
density is ~30-60 uT.

We note that the oscillation time without a magnetic field
is O(1) second or longer under the current experimental
bound. Therefore, the Mu-to-Mu “oscillations” do not start
before Mu decays. The behavior of the transition proba-
bility for the m = +1 states near 1 = 0 is the same as the
one without a magnetic field. However, if the external
magnetic field is ~1 uT, the oscillation time is the same as
the Mu lifetime, and therefore, the transition probability for
m = £1 is suppressed for B = O(1) uT

The Mu—Mu mixing for m =0 states is (nearly)
maximal even in the magnetic field, contrary to the
m = £1 states. The (F,m) = (1,0) and (0, 0) states are
mixed due to the magnetic filed, and the transition
amplitudes (halves of the mass differences) are modified as

Moo+ M
V14 X?

Moo+ M,
V14 X2

where X = 6.31 x B/Tesla is defined in Eq. (B6).
The time-integrated transition probability is totally

Moo =5 <Mo,0 - Mo+ >, (2.27)

1
M?,o =5 (—Mo,o + Mo+ ) (2.28)

p_zfz<|cO,o|2|M 12+ leoPIME P

2 |M1m|
D leunl TAE))

m==1

(2.29)

where |cp,,|* gives the population of the Mu states. The
experimental result by the PSI experiment at the magnetic
flux density B = 0.1 Tesla is [5]

P <83x 107!, (2.30)

The oscillations of the (1,+1) states are dropped in the
magnetic flux density. If Gz = 0, we obtain

_ 64mfeda612G% Gl + G2 - i (G4 + GS) 2
7[2 GF

lco0l” + |10l

1+ X?
=257 %107 (Gl £ slGut G5)>2
Gr

« |co,01|2_:“)|(§1.0|2’ (2.31)

and the experimental result is decoded as
‘Gl + G, —%G‘; - %G5 <3.0x 107Gy (2.32)

If G5 # 0 and the others are zero, we find
|G5| < 2.1 x 1073Gp. (2.33)
We use the population of Mu states, |cyol* = 0.32,

lc10|*> = 0.18. If the operators are turned on containing
05, the expression is a little complicated to write down
here, but one can easily calculate the bound from the
expressions above.

The PSI experiment tried to observe the decay product
(electron) from an expected x~ in Mu (u~e™) after Mu
(ute™)is produced in the laboratory. The external magnetic
field is thus needed. The MACE group in China will also
use this method [7]. The time is not specified, and the time-
integrated transition probability is applied. The intrinsic
beam-related and accidental backgrounds disturb the
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detection of the electrons emitted from the Mu decays,
which determines the experimental bound of the Mu-to-Mu
transition.

A new method of the Mu-to-Mu transition search is
proposed using a high-intensity pulsed muon source in
J-PARC and an intense laser [6]. The high-intensity beam
(H-line) will work this summer. In their method, an
expected Mu is ionized by a laser shot at a time and the
dissolved p~ is directly analyzed by a spectrometer. The
transition probability is not time-integrated and is given at a
time ¢ when the laser is shot. Therefore, the number of the
possible transition events will be less (by a factor
(t/7)? exp(—t/7)/2 up to the other experimental lacks in
the laboratory) than the time-integrated transitions in the
preceding method. This method, however, is free from the
background noises from the accelerator and messy posi-
trons’ scatterings from " decays in the preceding experi-
ment. Their method does not need an external magnetic
flux to detect the decay products from Mu and Mu
decays, and the Mu-to-Mu transition can be observed
with the geomagnetic flux or with shielding it. The
controllability of the external magnetic field has further
advantages to confirm new physics and to investigate the
operator dominance by the characteristic magnetic-field
dependence.

D. Muonium hyperfine structure

The MuSEUM group is planning measurements of the
1S hyperfine structure (HFS) of Mu using the H-line at
J-PARC [17,18]. The current most accurate experimental
value of the Mu HFS interval is [19]

Upps = 4463302765 £ 53 Hz, (2.34)
which has been measured in a strong magnetic field. The
MuSEUM group will reduce the systematic errors of the
measurements to a few Hz in both zero and strong magnetic

fields. The theoretical expression of the HFS interval can be
written in Heaviside-Lorentz units as

116
VﬁFS - E?ﬂyﬂe'fp(o)'Z(l + 5QED + 5weak + 5hadr0nic>7

(2.35)

where y1, and p, are the magnetic moments of the muon and
electron, respectively. The theoretical calculation with
electroweak and intermediate hadronic corrections contains
the uncertainty ~300-500 Hz [20-22]. Precise measure-
ment by MuSEUM also reduces the uncertainty in the
muon-proton magnetic moment and muon-electron mass
ratios, which can reduce the uncertainty in the theoretical
calculation of the HFS interval. In this subsection, we
describe the corrections from the Mu-to-Mu transition

operators to the HFS interval. For the ground-state Mu
spectroscopy, see Appendix B.

When the external magnetic field is zero B = 0, the HFS
interval is defined as

hvygs (B = 0) =Ep_ — Er—o, (2-36)

where

Ep_y =Ey+ %hl/HF& Ep_o=Ey)— ZhVHF& (2.37)
and the Planck constant is 4 = 2z since we are working in
the natural unit 7 = 1(= 6.582 x 107> GeV -s). When
there is a transition operator, the Mu and Mu is maximally
mixed (even if the coefficient of the operator is small). The
energy eigenstates correspond to CP eigenstates. The HFS
interval is measured by using the resonance of microwave
frequency in the cavity. The transitions to the different CP
states are suppressed. As a result, the correction from the
transition operators is given as

Mp_y —Mp_
2r

am3_o?

= +—22|G;).
\/§ﬂ2 | 3|

If there is Q3, the mass difference between Mu and Mu is
different for spin-singlet and triplet, and then, it can modify
the Mu HFS interval between the spin-singlet and triplet
[23]. If there is only a Q5 operator, the current bound of the
Mu-to-Mu transition implies

Avyps(B = 0) = =+

(2.38)

|Avgrs(B = 0)| < 1.1 Hz. (2.39)

When there is an external magnetic field, the states split
and thus the definition of the HFS interval should be
modified:

hvyps(B # 0) = hvyy + husy

=Eqn —Eqo +Eq-1—Epo- (2.40)
The energy eigenstates are not CP eigenstates in the
magnetic field, and thus there are two resonant frequencies
if there is a transition operator and the measurements
of the frequency are very accurate. The corrections are
given as

dmiga® | o G+ Ga=5Gs =3Ga =46y
V1+X? ’
(2.41)
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Mg,
A ~ 4
b 2n
::I:M _G3+G1+G2_%G3—%G4—}—‘G5 ‘
var? Virx
(2.42)

The splitting of the resonant frequency is less than about
1 Hz for the current experimental bound of the Mu-to-Mu
transition.

The theoretical calculation of the HFS interval contains
the uncertainty of the fine structure constant, and it will be
hard to reduce the uncertainty of the theoretical prediction
to be less than 1 Hz. Therefore, we cannot say anything
about new physics even if the HFS interval is accurately
measured only in the case of B = 0. The accurate mea-
surements of the HFS intervals for both B =0 and B # 0
will be important. According to Ref. [18], the HFS intervals
for both B ~ 0 and B # 0 will be measured with systematic
errors of 2-3 Hz. The accurate measurement of the HFS
intervals will give us an interesting cross-check, though
the accuracy is not enough to say something, and the
Mu-to-Mu transition bound will be updated when the HFS
interval is accurately measured at J-PARC.

III. CLASSIFICATION OF THE MEDIATORS

The purpose of this paper is to study models to induce
the transition operators, Q;. Before moving to the concrete
description of the individual models, we classify them by
the LFV couplings to generate the operators to learn how
the Mu-to-Mu transition can be sizable avoiding the LFV
decay constraints. Though the assignments of the lepton
(flavor) numbers may have ambiguity in respective models,
this classification can specify the mediator in the model.
This classification is useful to make clear what is needed
to obtain the sizable Mu-to-Mu transition in a model-
independent way.

(1) AL, =AL,=0

The interactions do not violate the flavor
numbers, but the mass terms of SM singlet fields
have L, = £2 and L, = £2. Total lepton number
conservation is violated in this case. Therefore, this
case is friendly to the models to generate neutrino
masses.

The models with right-handed Majorana neutri-
nos are considered to induce the Mu-to-Mu
transition, which will be studied mainly in Secs. IV,
VII B, and VIIC. The transition operators can be
generated by box loop diagrams [e.g., Figs. 1 (right)
and 12 (right)].

() (AL,.AL,) = (£2,0) and (AL,,AL,) = (0,%2)

Interaction terms violate the flavor numbers
separately.

The mediators have the lepton number to be 2,
and they are called dilepton bosons. The mediators
have doubly electric charges. The dilepton doubly
charged scalars will be studied in Secs. V, VI, and
VII A, and dilepton gauge boson will be considered
in Sec. X. The transition operators can be generated
by tree diagrams (e.g., Figs. 3 and 16).

(3) AL, =-AL, ==+1

Interaction terms violate both flavor numbers.

The mediators are neutral bosons. The neutral
scalars are considered in Secs. VIII and IX A, and
neutral gauge bosons are studied in Sec. XI. The
transition operators can be generated by tree diagram
(e.g., Figs. 15 and 17).

We remark that this mediator should not couple
with quarks to generate the Mu-to-Mu transition to
avoid the p—e conversion in nuclei induced at the
tree level.

4 (AL,.AL,) = (£1,0) and (AL,,AL,) = (0,%1)

The transition operators can be generated by box
loop diagrams [e.g., Figs. 1 (left) and 12 (left)].
However, the interaction can induce ¢ — ey and/or
u — 3e, which restricts the size of coupling con-
stants. Then, the magnitudes of the coefficients of
the transition operators become much less than the
achievement of the planned experiments, as we will
see in many of the models.

In the cases 1, 2, and 3, there are interactions or mass
terms with AL, — AL, = +2, which are even numbers.
Even in those cases, the interactions with AL, — AL, =
41 may be intermingled in the respective models, and then,
the magnitudes of the Mu-to-Mu transition is bounded by
u — ey and/or y — 3e [8,9]:

Br(u — ey) <4.2x 1071, (3.1)

Br(u — 3e) < 1.0 x 107'2, (3.2)
If Z, discrete symmetry can be imposed to suppress the
AL, — AL, = +1 interactions (while the AL, — AL, =

=+2 interactions are allowed), the Mu-to-Mu transition can
be as large as the current experimental bound. In other
words, the observation of the Mu-to-Mu transition in the
near-future experiments implies the existence of such
discrete symmetry in the lepton sector.
The new AL, — AL, = +2 interactions can induce a
“wrong muon decay’:
=, et +10,, (3.3)
and thus the couplings and masses of the mediators are
restricted by the universality of the Fermi decay constant [23].
They are also constrained by ete™ — e e~ Bhabha scatter-
ing data. The couplings can also induce muon and electron
anomalous magnetic moments. The couplings and the
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pt v/N et

FIG. 1.

e e+

+ v/N o

The box loop diagrams to generate the transition operator Q4. There are two types of contribution: the momentum parts (p) of

the numerators of neutrino propagators are picked (left), and the mass parts of the propagators are picked (right). The lepton flavors are
changed at the vertices in the left diagram, while the lepton numbers are violated in the neutrino masses in the right diagram.

mediator masses to induce the Mu-to-Mu transition which is
allowed by the PSI experiment, do not conflict with those low
energy data at present. Rather, the experimental results of the
Mu-to-Mu transitions restrict them. The data from the high-
luminosity LHC, ILC, and Belle II will cooperate with the
near-future Mu-to-Mu transition experiments.

G, _ GpMj,

V2 167>
_GiMy,

~ Z X, XX, X Eo (. xp) + (X2 (X0 2 Ey (x7.x))],

1672

where

M3

X7 = M_‘%V7 (42)

and see Appendices C and D for the neutrino mixing matrix
U and the loop functions E, and E;. The E; term comes
from box diagrams such as Fig. 1 (left), and E; term comes
from diagrams such as Fig. 1 (right). We ignore the light
neutrino masses x; = m?/M%, ~ 0, and one can rewrite the
first line into the second line by using the unitary relation of
the mixing matrix,

ZUMLIZ/{ZLI = ZUﬂiU:i + ZXMXZI =0, (4~3)
7 7 1
and
Ey(x,y) = Eo(x.y) = Eo(x,0) = Eo(0.y) + Eo(0,0)
= Ey(x,y). (4.4)

We enumerate the necessary facts to evaluate the loop
contribution.
(1) The mixings are bounded by electroweak precision
data model-independently [28,29]

|XeI

> <0.003, (4.5)

’

;tI

individually (supposing only one of M; is in the
TeV scale).

IV. HEAVY MAJORANA NEUTRINOS

The simplest neutrino model to acquire the Mu-to-Mu
transition may be the models with TeV scale Majorana
neutrinos, which are SM singlets. The coefficient of the
transition operator from the neutrino box loop contribution
1s written as [24-27]

= Z Uy, U5, Uy, UG B0 (X1, x5) + Uy, 1) (UL 7)) E (37, x7)]

(4.1)

(2) The product of |X,;X,,| is bounded by LFV proc-
esses, especially u — ey.
The up — e;y decay amplitude is given as

em, Gp “ *
AR:167:2% (ZUﬂiUeiF<xi>+ZX/41X€IF(X1>>

em, Gp ‘3

:167z2ﬁZXﬂIXeIF(x1)’ (4.6)
where
F(x) = F(x) — F(0)
1 - P+ 200 - 6]
_ _X( 6x + 3x° + 2x 6x le) ) (47)

(1-x)*
One finds’

*The decay width in our convention of the amplitude is

ml
i (AL + |Ag[?).

r 4.8

(h—ey) = 162 (4.8)
The branching ratio can be written as

Brln — e) = o (AP + [AsP) (49)

H V)= lox VAL RI7)s .
where the dimensionless amplitude A; g is defined by

em ~

AL,R — FﬂZGFAL'R. (410)

015026-7



FUKUYAMA, MIMURA, and UESAKA

PHYS. REV. D 105, 015026 (2022)

3

“

®)

(6)

’ (4.11)

3a . 3
Bl er) = 350|5 XXiF ()
and the bound of Br(u— ey) <4.2x 10~13 requires

S44x107°. (4.12)

ZX;IXeIF (x7)
1

In the box loop contribution of the Mu-to-Mu
transition in Eq. (4.1), the E, term is generated
by flavor violation, and therefore, its magnitude is
bounded by y — ey. The E; term, on the other hand,
is generated by the Majorana property of heavy
neutrinos even if there is no flavor violation in
principle, i.e., the E;| term can be enlarged without a
constraint from u — ey, if X,; and X,; (I # J) can
become large.

One finds
1 xy  x
Eo(x,y) ~— In—,
o(x.y) dx—y 'y
1 ylnx—xlIny
E ~— = 4.13
1(0y) ~ 5 /Xy iy (4.13)
and
1 1
Eo(x,x)fvzx, El(x,x)~—§xlnx, (4.14)

for large x, y. Therefore, “if the neutrino mixings can
be kept the same,” the Mu-to-Mu transition can be
larger for heavier neutrinos. This is due to the
longitudinal modes of gauge bosons in the unitary
gauge (or Nambu-Goldstone bosons in the ’t Hooft-
Feynman gauge).

For one generation (2 X 2 neutrino mass matrix), the
light neutrino mass in type-I seesaw is m, =
m3/My, and the mixing is (Xy)? = m3/M% =
m,/My, and therefore, the Mu-to-Mu transition is
tiny. For a three-generation case, there is freedom to
enlarge the mixings, X,; and X,;, while keeping the
active neutrino masses tiny. Therefore, the E, term
can be larger than the naive expectation from the size
of the light-heavy neutrino mixing in one gener-
ation. If two X ;s (say X, X,») are large, the heavy
neutrino masses need to be degenerate, M| = —M,
and X, = X, (or conventionally, M; = M, and
X = iX ), due to the freedom of the mass matrix.
Such degeneracy can eliminate the £, contribution.
If there are more than three singlet neutrinos, such
degeneracy can be released.

If the light-heavy neutrino mixing is enlarged, a
sizable active neutrino mass can be generated by Z
boson loop [30],

* M; M
M N E XuX n .
Mo )a = G rcosly, =AM MY M

(4.15)

The loop-induced neutrino mass can be canceled
if the heavy neutrino masses are degenerate
(M| = —M,). Therefore, the E| contribution cannot
be enlarged, unless the tree-level and loop-induced
active neutrino masses are miraculously canceled.
(Even if one allows such unnatural cancellation, the
size of the coefficient is |G| < O(107%)G due to
the constraints of light-heavy neutrino mixings from
precision electroweak data, and near-future experi-
ments cannot reach it.)

In total, the E; contribution is bounded by u — ey
constraint, and the E; contribution is bounded by the
natural neutrino mass hierarchy.

Since the cancellation between the tree-level and loop-
induced neutrino masses cannot be controlled by symmetry,
an elaborated construction of the neutrino mass model is
needed (e.g., the Dirac neutrino mass is forbidden) to enlarge
the Mu-to-Mu transition naturally from the neutrino
Majorana property, which we will see in Sec. VII. Here,
we exhibit the Mu-to-Mu transition assuming the heavy
neutrino mass degeneracy, which can be controlled by a
flavor symmetry.

We assume that the right-handed neutrino mass matrix
My is given as

0o 0 M,
M, 0 O
Then, the light neutrino mass after seesaw is
_ (mp)a1(mp)gs + (mp)y3(mp)
_(My)aﬂ - M
I
m m
(mp)ua (o). )

M;

The heavy neutrino masses are M, M,(= —M,), and Mj.
The light-heavy neutrino mixings are approximately

(mD)a3
M,

X(ll :Xazﬁ 5 Xa3 ~ 0. (418)

To obtain the proper size of light neutrino masses with
sizable light-heavy neutrino mixings, (mp),; needs to
be small.

We plot the upper bound of |G,|/Gp in the above setup
in Fig. 2. For M| <30 TeV, the Dirac mass (mp),; is
chosen just to satisfy the 4 — ey bound. For M, = 1 TeV,
the loop function F for 1 — ey does not depend on M, very
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1078}
10°L

1010}

1G1l/GF

10—11 ;

1012}

0.1 1 10 100 1000

M;(TeV)

FIG. 2. The upper bound of |G,|/G as a function of the heavy
neutrino mass. For the neutrino mass to be less than ~30 TeV, the
Mu-to-Mu transition is bounded by the u — ey constraint.

much (due to the longitudinal modes of the gauge bosons
in the unitary gauge), and thus the maximal value of
|X.1X,1| does not depend on M. Therefore, in the region of
1 TeV <M, <30 TeV, the upper bound of the Mu-to-Mu
transition behaves as |G, | & M? because of 4E, ~ M3 /M3,
for M| > My, For M, Z 30 TeV, the y — ey bound can
satisfy for (mp),; < 100 GeV, and then, the upper bound
behaves as |G| « 1/M2.

V. TYPE-II SEESAW MODEL

The doubly charged scalar can couple with two charged
leptons, and the Mu-to-Mu transition can be induced by
the exchange of it at the tree level [31,32] as shown in
Fig. 3. The doubly charged scalar which can couple to
right-handed charged leptons is a SU(2), singlet with
hypercharge Y = 2, while a SU(2), triplet scalar with
hypercharge ¥ = 1 can couple to the left-handed lepton
doublets 7.

In the type-II seesaw model [33-36], the neutrino masses
are generated by a vacuum expectation value (vev) of the
neutral component of the SU(2), triplet scalar:

@ (2N e
T \ap Ve

Therefore, the neutrino mass generation in the type-II seesaw
model can be related to the Mu-to-Mu transition [37].

» <
> <

et
A+t

+ f

I

< »
< >

FIG. 3. The tree-level exchange of a doubly charged scalar
boson AT to induce the Mu-to-Mu transition.

The Lagrangian of the type-1I seesaw can be written as

1
L= <2K1<Lj(fiL)cijAL +uaHHA} + H'C')

+ MA|A,L

%, (5.2)

where H is a Higgs doublet with hypercharge Y = 1/2, and
Ua is a dimensionful scalar trilinear coupling. The “££A;”
term is written down as

- _ 1
. __7c 0 g +
(Ci)CiL AL = Vv A ——=v e Af

V2

1 — _
5 + 5 ++
——eiLUjLAL +eiL€jLAL .

V2

By integrating out A;, the dimension-five neutrino mass
operator (so-called Weinberg operator, “/ZHH’) can be
generated, which can be also interpreted to mean that the
vev of AY is v, = (AY) = —u, (H°)? /M3, and the type-1I
neutrino mass is

(5.3)

MY = «Ly, . (5.4)

As mentioned, the type-II seesaw Lagrangian contains
the doubly charged scalar couplings to the left-handed
charged leptons. We here describe it using two-component
spinor convention to avoid the complication of the
expressions,3

1 1.
-L Dixf/eiejA["L +5K €8 ALT FMAALTALT,  (5.7)

2

where e denotes the two-component spinor. Integrating
out Ay = (A[7)* by equation of motion, 1/2«};e;e; +
M3 A== =0, one obtains

11
Lot kbii(ee)@8).  (58)
4mz Y ’
Using
aéﬁ 1 ~pa
5ﬂ a _E paH > (59)
one finds
3 JE—
e,‘ej = €$PL€j = elTCPLej. (55)

In the chiral representation, the four-component spinor can be
expressed as

e:@), e:(ee) s(ec 8), F=(e &) (56)
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(e,0t'e;)(€5,€)). (5.10)

| =

(e€;)(€&) =

Expressing it in four-component fermion convention, we
obtain

11
LD - Kb (e Pre;) ey, Pre;),

81 (5.11)

and the coefficient of the transition operator can be
written as

o = ngkﬁ; = ! I 10
75_ _32M2A o _320%Mi (Ml’)L’e(Ml/)yy (512)

The four-Fermi operator Eq. (5.11) can generate LFV
decays

Br(l; — [JI713)

1 KLbKLd* 2 )
=30 a6,z < Brla = hw) (513)
¢ A

The 4 — 3e decay process gives the most stringent con-
straint to the Mu-to-Mu transition in the model:

Br(s — 3e¢) < 1.0 x 10712, (5.14)
We find
Gil_ s3] <3 5107 5) (515)
—_— = Ir(u— DX — .
Gr SRRV P <L,

We suppose that the type-II term dominates the active
neutrino mass (e.g., there is no right-handed neutrino, or the
type-I contribution is negligible for the right-handed
neutrinos to be very heavy), and the type-II neutrino mass
matrix is

M} = Upyiysdiag(mye™ , mye™™, my)Upys, — (5.16)
where Upyns 18 the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix given by Particle Data

Group convention [38], and m;’s are the active neutrino
masses. Naively, one obtains

L

Ke
KT” ~ 0(‘913’ \/ Amsz'ol/Amgtm)’ (5.17)
Hp

and |5, /kk,| is roughly 10%—20%. Then, |G,|/G is
smaller than O(107°), which cannot be observed in
near-future experiments. However, the observed neutrino
mixings can be realized even if K‘éﬂ — 0. From the view-
points of the masses and mixings, Kﬁiﬂ — 0 can happen if

(1) The neutrino masses are degenerate, m,e'™ ~
mye'® (xmy).

2) YU U me is accidentally canceled, which can

ei ™~ pui
~ VA qol/Amatm and 60y3,0, ~

happen since 63
o(1).

In the case of the degenerate solution, the transition
probability is maximized (for fixed v; and M,), and then,
the half-life of neutrinoless double beta decay can be just
above the current bound (if other experimental data allow
the solution).

Let us calculate the numerical upper bounds of |G, |/GF
allowed by the constraints from LFV decays [38]:

{Br(r = 3e),Br(z = 3u)} < {2.7,2.1} x 1078, (5.18)

{Br(t~—etuu),Br(t-—ute e™)} <{1.7,1.5} x 1078,
(5.19)

The LFV decay bounds can give the upper bounds of the
Mu-to-Mu transition as

Gl [Brir=3¢) 1 K’L"‘ <tax105] (520)
GF BI‘(T—>€I/I/)2\/. Kez Kez

@: Br(z~ —>ﬂ+e:e_) 1 @ <1.0x 10~ @

Gr Br(z = uwv) 22|k Kz
(5.21)

Br(z~ +umy— 1 L

[Gil ,  [Br(e = et ) Kee 11X104f<ee

GF BI'(T - eyy) 2\/§ Ker er
(5.22)

G, B 3 1 |«L

1G], [Br(z=31) 1 |Kee| )5, 104|Kee K” (5.23)

GF Br(f_)/’”/’/)z\/i Ker er

The u — ey (and pu—e conversion [39]) constraint can be
written as

vl !
— <1 X107 X ., (5.25)
M (1 TeV)
which is interpreted as
¢ L L 2
3a AN 1

B Ry 24
W= el = Ter | 36, (Mzr 8M2A+> 5-24)

The SU(2), triplet contains a single charged scalar, which
contributes y — ey.
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-6

FIG. 4. Contour plots of upper bound of log;,(|G,|/Gf) from LFV decays as a function of § and a, (in radian) for normal mass
ordering (left) and inverted mass ordering (right). In the dark blue region, there is no solution to make Kﬁu — 0.

G ceKi;
|G—1| < 3.8 x 1076 Sectn] (5.26)
F et \ut

We solve the equation k%, =0 by m;e™ to satisfy the

severe y — 3e bound. Eliminating m,e’® from the equa-
tion, we obtain the neutrino mass matrix as a function of a
Dirac phase ¢ in the PMNS matrix and a Majorana phase
a,. Therefore, the upper bounds of the Mu-to-Mu transition
are obtained as shown in Fig. 4. Surely, the plot in Fig. 4 is
symmetric under § - —6 and @, — —a,, because of
G, = G]. Near 6~0,7 (and a, ~0), the degenerate
solution can be obtained, and thus, the Mu-to-Mu transition
can be largest there. In the inverted hierarchy case, m; and
m, are degenerate by themselves, and the Mu-to-Mu
transition can be large at all the points (if there is a solution
to make K‘éﬂ — 0). In the normal hierarchy case, Kéﬂ can be
canceled even without mass degeneracy. Actually, both

0.001
5.x1074F

x 1074

-

IG1I/Gr

.x1075}
5.x1078}

-

1.x107° : ;
0.05 0.10 0.20 0.50

> m, (eV)

FIG. 5.

kL, and kL, can be small to reproduce the neutrino

oscillation data. Therefore, there is a band where the
Mu-to-Mu transition is small in the plot.

The current strongest bound of the absolute neutrino
mass is from cosmological measurement: the total neutrino
mass Zm, < 0.12 eV [40]. Therefore, unless there is a
loophole (e.g., the neutrinos are not stable in the cosmo-
logical time scale [41]), the solution of the large degree of
degeneracy is excluded and the Mu-to-Mu transition is
bounded. In Fig. 5, we show the plot of the coefficient of
the Mu-to-Mu transition operator versus the total neutrino
mass. The shown Mu-to-Mu transition in the plot is the
upper bound from LFV as described above, generated by a
mesh of § and a,. The cosmological measurements bound
the Mu-to-Mu transition as |G,|/Gr < O(107).

If we adopt the type-I seesaw contributions in addition to
type-II, one can tune Kiﬂ to be zero irrespective of the
neutrino masses and mixings, and because of the many

0.001¢
5.x107F

1.x107¢
5.x107%¢

1.x1075¢
5.x107F

0.1 0.2 0.3 04 05
> my (eV)

The plot of |G,|/G allowed by LFV constraints versus the total neutrino mass for normal mass ordering (left) and inverted

mass ordering (right). The vertical red line shows »_ m, = 0.12 eV.
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parameters, any size of the Mu-to-Mu transition can be fit
satisfying experimental constraints in principle [37].
Supposing k%, ~ k%, ~0.3,and M, = 600 GeV (the exper-
imental bound of the doubly charged scalar mass can be
found in [42,43]), one finds

IGy| ~ 1 x 103G, (5.27)

which can be soon tested by the near-future experiments.

VI. LEFT-RIGHT MODEL
The  SU(3), x SU(2), x SU(2)p x U(1)_,(=Giza))

gauge theory (left-right model) to induce the Mu-to-Mu
transition [44,45] is one of the representative models where
the new experimental results in this quarter-century have
brought about changes drastically. In the early 1990s, there
was still room that the active neutrinos can lie around
10-100 keV. Surely, the neutrino oscillations exclude the
room, and a large mixing between left-handed neutrinos
and SM singlet right-handed neutrinos at such mass scale is
not allowed. The meson mixing data pushes up the Wy
gauge boson mass to be more than 3 TeV [46,47]. The
direct LHC data from W} — Ng£y — jjf5¢} processes
gives the lower bound of the Wy mass to be more than
4 TeV [48-50]. Therefore, the resume for the Mu-to-Mu
transition in the quarter-century ago is not valid anymore.

Various experimental constraints in the left-right model,
especially on the flavor physics, can be found in [51,52].
We note that the same sign and opposite sign of the two-
lepton signals from the W} — jj£%£} processes can be a
probe of the structure in the neutrino mass matrix, which is
related to the degeneracy of the heavy neutrino masses [53].

The Dirac mass of tau neutrino is supposed to be (at
least) of the order of GeV due to left-right symmetry, and
thus, one needs fine-tuning to obtain the sub-eV active
neutrino mass in the TeV-scale left-right model. Therefore,
an extended seesaw model to generate sub-eV active
neutrino mass is often considered in the TeV-scale left-
right model. We employ three SM singlet fermions §;, and
consider the neutrino mass as

~L=3 (0 Np GIOM| V), | +He. (61)
St

where M is a 9 x 9 mass matrix (in the basis where the
charged-lepton mass matrix is diagonal),

0 mp 0
0 Mg Hs

The light neutrino mass matrix is

ligh _ _
MY = mp(Msps' M§ — py) ™' m,

= mp (M)~ psM' mi,. (6.3)
We suppose that the Majorana mass ug of the singlet S is
small, and then the active neutrino mass can be sub-eV
easily even in the TeV-scale left-right model. This is
sometimes called an inverse seesaw.

The Dirac mass m comes from the usual Dirac Yukawa
coupling to Higgs bidoublet: (1,2,2,0) under Gsy,;, and
Mg comes from the @S, coupling with ®: (1,1,2,-1)
under G35y;. The vev of ®@ breaks G5,,; down to SM gauge
symmetry. The Majorana mass p is generated if there is a
SU(2)g triplet Ag: (1,1,3,2) and it acquires a vev to
break G3,,;. How the Mu-to-Mu transition is induced in the
left-right model depends on with or without the SU(2),
triplet. In the case without the triplet, the Mu-to-Mu
transition is generated at the loop level, while in the case
with the triplet, it can be generated at the tree level since the
triplet contains the doubly charged scalar.

We parametrize

mp = Ujdiag(m},, m3, m?))\/g, (6.4)
py = Vidiag(uk. g3 1)V, (6.5)
Mg = Vidiag(Mg, M3, M3). (6.6)

The convention in the diagonalization of the neutrino mass
matrix is given in Appendix C. The matrix U in the 9 x 9
diagonalization matrix in Eq. (C9), which corresponds
to nearly the 3 x3 PMNS matrix, is a diagonalization
matrix of

«diagy T diag\ 1 diag\—1v,Tv/*...diagy ;T
Ugmp = VoVo (M=) us (M=) =V Vomp Uy (6.7)
In the left-right model, the mixings in U, and V| are
expected to be small as CKM mixings, but the structure of
Mg and pug can have freedom to generate large neutrino
mixings. Surely, one can also employ a SU(2), triplet and

consider the type-II seesaw contribution for the active
neutrino mass.

A. Case 1: Without SU(2), triplet

If there is no SU(2) triplet, the Mu-to-Mu transition is
generated by a box loop diagram. In addition to the
W, -W, loop diagram in Fig. 1, we have Wr—Wj box
loop contributions:

SSince the singlet S does not have a reference current basis, one
can parametrize the matrix Mg to be given in Eq. (6.6) without
loss of generality and pg to be a general 3 x 3 matrix.
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G2 G%M%V g 1 * * ¥ ¥
== R Z[Y YeIYﬂJYeJEO(xlaxJ)

V2 lexr giz 7
+ (Y52 (Yo )2 E (31, %)), (6.8)
and W;—Wy box loop contributions:
G G2 MW g .
\/—%: 71'2 —5 gRZ ul IXeJYeJEO(xIax]’Z)
L 1J
+XMIYeIXe.IY/4!E1 (xlva’ Z)]’ (69)
where
My, M3, M3,
1= M2 s X = M2 s = M2 (610)
Wp W, W,

The loop functions E, and E; are given in Appendix D.
Strictly speaking, since there is a W;—Wj mixing due to
vevs of Higgs bidoublet, the mass eigenstates should be
quoted as their mixed states. We here neglect their mixing
in the box contributions.

One can find that E; term in G, and E, term in G3
correspond to the Mu-to-Mu transition utilized by the
Majorana property of the heavy neutrinos. If there is no
SU(2)g triplet, the Majorana mass of the right-handed
neutrino py is absent, and the heavy neutrino masses are
degenerate in the setup of the inverse seesaw. Then, their
contributions are canceled. Therefore, our concerns are E|,
term in G, and E; term in Gj, which are bounded by
u — ey. The up — e,y amplitude via W loop is

em, G
AR( L _16 2\/52

where F is given in Eq. (4.7), and the y; — ey amplitude
via Wy loop is

eIF xl

(6.11)

em, Gp gR

AL(Wg) = 16n27;22Y v F(x

(6.12)

Because there is a W;—Wjy mixing &;p, the chirality
can flip at the internal line in the loop and the decay
amplitudes are

Ar(W1=Wrg)
o e gr GF Y X M 1 ~
—16ﬂ2§LRg Z ul X el N, G(XI)_EG(M) )
(6.13)
A (Wi -Wg)

G 1
= zfmgf fZX* Y*,MN,< (0—;6(%1))

(6.14)

where
2(4 —15x + 12x% — x* — 611
Gy = 2T I T2~ —6 Ty
(1-x)
The 4 — ey experimental result implies
;IXeIF(xl) ’
g 1 _
K- Y F(x)| S4%x1075, (6.16)

if we assume that there is no cancellation in each A; and
Ag. These two constraints restrict the Mu-to-Mu transition
operators from W;-W; box and Wr—Wp box diagrams,
respectively. The 4 — ey bound via the W;—Wp mixing is
written as

;11 eIMN ) ’

104
<40 Me Vx—x—,

XMy, G (xp) 0 Eun

(6.17)

which restricts the Mu-to-Mu transition from the W, -Wpg
box diagram. Because of

2 XXMy, = (6.18)

mD)aﬁ’

those roughly correspond to the bounds of the ey and ue
elements of the Dirac neutrino mass matrix. We remark that
the restriction to the Mu-to-Mu transition via W;—Wy box
(Gy) is severer due to the internal chirality flipping in the
u — ey diagram.

In the case without a SU(2), triplet, the Majorana mass
uy = 0 at the tree level. The flavor violation of the right-
handed neutrino is characterized by V, in Eq. (6.6). To
show the evaluation of the size of the Mu-to-Mu transition,
we assume ML~ M3 and (V,),3 = (V3)3 = 0 (so that M3
does not contribute). In Fig. 6, we show the upper bound of
the Mu-to-Mu transition by the W box loop allowed by
u — ey constraint. We suppose g; = gy in the plot. When
My (= M}) is fixed, the u — ey bound to the mixing
(V3),, is relaxed for a heavier Wg. The upper bound of the
Mu-to-Mu transition becomes the largest for a mass of Wy
just when the maximal mixing is allowed. The largest upper
bound (for fixed My) becomes larger for larger My
because of the behavior of the box loop function. The
mass My comes from @S, coupling and the vev of ®
gives Wy mass. Therefore, the mass My should not be
much larger than My, and the bound of the Mu-to-Mu
transition is estimated as |G,|/Gr < O(1078).
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FIG. 6. The upper bound of |G,|/Gp as a function of My, and
the heavy neutrino mass M.

As we have remarked, the 4 — ey bound is stronger in
the case of internal chirality flipping. The Mu-to-Mu
transition via W; —Wp, diagram is bounded to be |G3|/Gr <

0(107'%) as long as & ¢ 2 0.01M5, /M3, . We note that
the W, W mixing &, is proportional to M3, /My, , and
the proportionality coefficient is determined by the ratio of
the vevs of Higgs bidoublet, though we do not describe it in
detail in this paper.

B. Case 2: With SU(2), triplet

If there is SU(2), triplet Higgs to break SU(2)gx
U(1)g_,, Majorana masses of the right-handed neutrinos
can be generated:

1 -
—£ :)Ekg‘l’ﬂiR(fjc‘)LAR +H.C., (619)

iy = KR(AY). (6.20)
The box loop contribution can be larger than in case 1. In
this case, however, the coupling to induce the Majorana
mass can generate the transition operator at the tree level,
which can be surely larger than the box loop:

11 _
LD - 8M2 Kl]Kkl ( i}/MPRel)(eﬂ/ﬂPRek)’ (621>
and
G, K§:KR

When we parametrize the Majorana mass matrix as

HN = Vdiag(ﬂm,/hvz,ﬂm)‘ﬂ, (6.23)

the xR matrix is written as

Ksﬂ = VaIVﬂIMNI' (624)

The p — 3e bound, Br(u — 3e) < 1.0 x 1072, restricts
the Mu-to-Mu transition similarly to the previous,

R

|G2| <10~ 6 1 Kﬂﬂ

Go S0 X (6.25)

ey

There are three ways to suppress K'§ﬂ = Velffﬂlﬂm +
Ve Viouns + VesVisuns. y

(1) The mixings are small: V ~1.

(2) The right-handed neutrino masses are degener-
ate: fiyy = pUno.

(3) The mixings are not small and the masses are not
degenerate, but the K‘ is accidentally canceled by
the uy3 contribution.

In models with “left-right parity” (exchange symmetry

¢ <> (£)°), one obtains

(6.26)

and Yukawa matrices are symmetric. Therefore, in the case
of the type-II dominance (ug — 0), k¥ is also related to the
neutrino masses and mixings:

KR oM, = Uy diag(my e myei® my) Uy, (6.27)

and the Mu-to-Mu transition is estimated in parallel to the
analysis in the type-II seesaw.

In general, there is no reason that V,, and f/ﬂ] are small
in the model construction in the left-right model. Rather,
the mixing is not small in the unification scenarios, and the
Mu-to-Mu transition is much smaller than the near-future
experimental reach. If we do not go beyond the left-right
symmetry, a global discrete flavor symmetry to suppress
LFV can be assigned in the lepton sector and V ~ 1. (Large
neutrino mixings can originate from a hidden sector with
singlet fermions, where the discrete symmetry is broken.)
The right-handed neutrinos (more precisely, mass eigen-
states of the heavy neutrinos from Ny and S for puy ~ M),
as well as W gauge boson, should be heavier than 4-5 TeV
to satisfy the bound from the W} — Npty — jit5¢%
processes at the LHC [48-50]. The doubly charged scalar
mass, on the other hand, can be around 1 TeV [42,43], and
thus, the Mu-to-Mu transition with |G,|/Gp ~ 1073 can be
obtained, which can be tested by the near-future Mu-to-Mu
transition experiments along with the direct search at high-
luminosity LHC experiment.
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VII. RADIATIVE NEUTRINO MASS

There are plenty of models in which the neutrino masses
are induced radiatively. The models can be roughly
classified into two groups.

(1) There is no SM singlet fermion.

(2) There are SM singlet fermions, but the Dirac

neutrino Yukawa coupling, NH?, is forbidden by
a discrete symmetry.

The representative model for (1) is called Zee-Babu
model [10-13,54-56]. The improved version of the model
has a hypercharge £2, SU(2), singlet scalar, which is a
doubly charged scalar and can be a mediator to induce the
transition operator. Neutrino masses are generated at the
two-loop level. The model where the neutrino masses are
induced at a three-loop level is also considered (so-called
cocktail model) [57,58].

In the models for (2), the tree-level active neutrino
masses are forbidden by discrete symmetries. Because
the discrete symmetries can be exploited, the models are
often discussed together with dark matter candidates [59].
As we have studied in Sec. 1V, the enlargement of the
Mu-to-Mu transition from the Majorana property suffers
from the natural neutrino mass hierarchy due to the light—
heavy neutrino mixings induced by the Dirac neutrino
masses. Because of the absence of the Dirac neutrino mass,
the models are also suitable to discuss the Mu-to-Mu
transition from the Majorana property. The model for
(2) has a Yukawa coupling NyZ(= Ny*te;, — Ni'v,) to
generate the neutrino mass at the one-loop level, where the
neutral component of the SU(2), doublet 1 does not
acquire a vev (n is often called an inert Higgs doublet).
Alternatively, the model has a NST ey type coupling (ST is
a hypercharge +1 SU(2), singlet scalar), and the neutrino
masses are generated at the three-loop level [58,60,61]. The
NnTe; and NSTep couplings can induce the transition
operators via box diagrams.

A. Models with doubly charged scalar

1. Zee-Babu model

In the Zee-Babu model, there are SU(2); singlet scalars,
h* and k**, with hypercharge Y = 1 and Y = 2, respec-
tively. The couplings to the leptons and the masses of the
scalars are given as

—E D) (flj?lc . fjh+ + gij?iejk__ + ﬂhhkh+h+k—_ + HC)
+ m b 4+ mA ek (7.1)

where “” stands for the contraction of the SU(2), doublet:
A-B=¢,A,B, = A By, — AyB,. The coupling matrix f is
antisymmetric under the flavor index, and ¢ is symmetric.
The scalar trilinear coupling p;,; violates the lepton
number symmetry.

- -

e

~ - _—l ~
|
ht s [ NI
/ | \
/ |]<7++ \
! | \
| | |
— <1<
vy, er, | CRr €r | ©rL vy,
| |
| |
(H) (H)

FIG. 7. The diagram to induce the neutrino masses in the Zee-
Babu model. The symbol (H) stands for the vev of the SM
Higgs boson.

The neutrino mass can be induced by two-loop diagram
in Fig. 7, and the mass matrix is given as

1
M,=—fM,gM,fT, (7.2)
M,
where M, = diag(m,, my, m,),
1 ik i (7.3)

M, 487> max(m2, m?)
and the loop function is approximately given as [54-56]

) 1 for m; < my,
P , 7.4
1+%(ln2%‘ ) for my > my, "

h

Because f is anti-symmetric, the neutrino mass matrix is
rank 2 (i.e., m; = 0), and the neutrino mass matrix in the
normal mass hierarchy is given by the PMNS matrix U as

M, = U*diag(0, my, m3)U" = myusul + myuiul,  (7.5)

where m;’s are the active neutrino masses as used through-
out this paper, and u, and u3 are column vectors in
U= (uh U, l/t3):

C12€13
Uy = | —512623 —ei5c12s13s23 >
S12823 — ei6012313023
S12€13
U = C12€23 — €i5512313523 s
—C12823 — €i5S12513023
e—i6s13
Uz = €13523 (7-6)
C13€23
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We parametrize the antisymmetric matrix f as

0 f3 —f
f=\(-f 0 fi [ (7.7)
fo =fi 0
and then,
[T = v 1= vjof, (7.8)

where v is a column vector, vy = (f1, f2. f3)", and I is an
identity matrix. Suppose that v, is orthogonal to u, and u3,
ie., vfuz = vfu3 0, which means that vy = fou; (fpisa
coefficient). Then, one finds

FFMLF T = 1fol*M,, (7.9)
and
fu; =0. (7.10)
One can also obtain
fTuz = —fous, fTug‘ = fius. (7.11)
Therefore, we find that the solution of Eq. (7.2) is
0 Ugn -Uy
=70l “Un 0 U, |, (7.12)
Uan -Ug 0
and
fo —M,gM, = m2u3u3T + myuyul + ajuyul
M,
+ ay(uyul + uyul)
+ a3 (uuj + uzuf). (7.13)

where a;’s are arbitrary coefficients with mass dimension.
Because any vectors can be given by a linear combination
of u;, there are three free complex parameters a; (and one
parameter f;, in f) in the solution.

Roughly, we obtain (supposing a; = 0)

fimag
RO (U P\ S (719
and the size of the scalar mass is estimated as
M 2 2 2 U.)?
Ozzmax(mh:mk)~4zo Gev x [0/ Wia) (_3 2 (71s)
4877: /’lhhkl 10 -

The coupling f can generate u — ey process by f..f}.
product:

Jei |?
3GFm%[

Br(y — ey) = (7.16)

167

and therefore, the magnitude of f, is bounded to satisfy
the u — ey experimental constraint: roughly, [f,|?> <
0.002 x (m;/1 TeV)2.

Since there are three free parameters a;, one can
eliminate all off-diagonal elements of the coupling matrix
g to suppress the LFV three-body decays of charged
leptons. In that case however, g,, becomes larger than 1
Since g, Mg ~ gy, ﬂ Therefore, using one degree of free-
dom, we need to adjust the ee element of M,gM,. Then,
one of the three off-diagonal elements of g cannot be
eliminated. Because it is expected that g, is small
(Yur = Gyumyu/my), T — 3u bound can be satisfied and the
other bounds of LFV processes can be satisfied by
eliminating ey and er elements of M,gM, using the
remaining two degrees of freedom.

In Fig. 8 (left), we show the contour plot of |G,|/Gf as a
function of the Dirac phase 6 and the Majorana phase a,,
by adjusting g,, = g, = 0 and g,, = g,,. The Majorana
phase @, defined in the convention by Particle Data Group
[38] is a, = arg(m,/m3) here. We choose f3 = 0.002,
m, =12 TeV, and M,/(48z%) = 500 GeV. In Fig. 8
(right), we show Br(z — 3u). Because g,, = g,, is chosen,
we obtain Br(z™ — uTe"e”) = Br(zr — 3u). As can be
large as the current
experimental bound shown in Eq. (2.32).

We comment on the model-parameter dependence of the
Mu-to-Mu transition. The coefficient of the transition
operator is roughly proportional to the model parameters as

(Gal _ 19eeGyul 1 maX(mi,mh)gee
V2 8mj fo P G

(7.17)

Here we use Eq. (7.15) to include the constraint to
reproduce the neutrino mass. The nonobservation of y —
ey gives the lower bound of m}/f3. If fo (namely f)
becomes smaller, the coupling g,, needs to be larger to
reproduce the size of neutrino mass ms, and thus, the
Mu-to-Mu transition becomes larger. The scalar trilinear
coupling ,,; should not be much larger than m,, and m, to
avoid a charge breaking global minimum. Therefore, the
search of the Mu-to-Mu transition gives a good test of the
Zee-Babu model in the range of g,, ~ g,,-

Since g,, cannot be eliminated, the 7 — 3y and 77 —
utee” processes are generated:

{Br(r = 3u),Br(z~ > ute e")}

% 2
Yee

G |?

G
— 8‘ =22 ,
Gr Jup

“Br(r — i) x { } (7.18)
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0.0017
‘ 0.0016
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0.0014

0.0013

0.0012

FIG. 8.

Because of g,, ~ g,,m,/m., if the Mu-to-Mu transition is
observed at G,/Gr ~ 1073, those two LFV tau decays will
be observed.

We note on the case of inverted mass hierarchy.
Similarly, the rank-2 neutrino mass matrix (m3 = O in this
case) is given as

M, = myuiul + mywsul, (7.19)
and the solution of Eq. (7.2) is

0 Us -Ug;
—Y3 0 UeS P
U}t3 - Ue3 0

f=ro (7.20)

and

2

/o _ T T T T

M—MegMe = myuyuy + mouyui + ay(usu; + ujus)
0

+ ay(usul + upul) + azuzul. (7.21)
The size of g, becomes larger than the one in the normal
hierarchy to make ee, ey, and et elements of M, gM, to be
small, under the same model parameters above. This is
because U,z is small compared to the other elements, and
a; needs to be larger. Consequently, the coefficient G,
becomes larger than the current bound unless g,, is made to
be much smaller than g,,.

2. Cocktail model

In the cocktail model [57], an inert Higgs doublet
(which does not acquire a vev) and a hypercharge ¥ = 1
SU(2), singlet S are introduced in addition to the doubly
charged scalar k™. Contrary to the Zee-Babu model, the

—1.26x107
—1.24x108
—1.22x108
1.20x 107
1.18x107®
1.16x 107
1.14x107®
1.12x107®

1.10x1078

1.08x 1078

The contour plots of |G,|/G (left), Br(z — 3u) (right) as functions of the Dirac phase § and the Majorana phase @,. The
choices of parameters in the Zee-Babu model are given in the text.

St scalar does not couple to leptons directly, and the
u — ey induced by ST loop does not bother us. The
neutrino masses are generated by three-loop diagrams,
which look like a cocktail glass as shown in Fig. 9. The
mass matrix is given as

1 F cocktail

(M) o5 = 1627 Mo GapMyp my (7.22)

where g is a doubly charged scalar coupling to right-handed
charged leptons (same as in Zee-Babu model), m, (a = e,
u, 7) is the charged lepton mass, m; is a doubly charged
scalar mass, and F g Stands for a loop function
containing couplings in the model.

v

v, €L | ¢r R

FIG. 9. A diagram to induce the neutrino mass in the cocktail
model. The charged scalar in the inert doublet 7 and the SU(2),
singlet scalar ST are mixed to be H f2. By splitting the masses of
the real and imaginary parts (H°, A%) of the neutral scalar in 7,
neutrino masses are generated. The symbol (H) stands for the vev
of the SM Higgs boson.
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The mass scale to generate the neutrino mass matrix,
M, = U*diag(m,, m,, m3)U", in the normal mass ordering
is estimated as

ng
TG et~ 100 GeVx gy,
i

my 1

7.23
F cocktail ( )

A large value of F_ ., 18 needed for a realistic model to
satisfy the experimental constraints. More numerical works
to obtain the scale by model parameters can be found in [58].
One can immediately notice that the magnitude of ee and ey
elements of the neutrino mass matrix M, should be much
smaller than the magnitude of yu element unless g,, and g,,
are much larger than 1. Indeed, we want to make g,, — 0 to

obtain a reachable Mu-to-Mu transition while suppressing
the y — 3e process. If the ee and eu elements of M, are
much smaller than the pu element, neutrino mixings and
mass ratio, and phases are constrained. The analytic relation
of the neutrino mixings and mass ratio is given in Ref. [62].
In Fig. 10, we show the relation between the PMINS phase o
and 0,3. We vary 0, since the relation is sensitive to it. The
30 range of 0, is 31.3°-35.9° by NuFIT 5.0 [63]. Because
6,3 is in the 30 range of 40°-52°, it predicts that d is preferred
to be in the second or third quadrant roughly.

Let us choose 0, =334° 03=238.57°, Am’, =
742 x 107 eV?, and AmZ,, = 2.52 x 1072 eV?. Then,
we can choose 6,3 = 45° and § ~  as a benchmark point.
For g., = g,, and g,, = 0, we obtain

1 0 —4.57
Gap = 0 1 0.0454 | g,
—4.57 0.0454 0.00321

(7.24)

Because of m, < m,,, the numerical values of the elements
are insensitive to g,, to reproduce the neutrino mass matrix.

50— S
— 9122320—
usl 012=33°
a —— 04,=34°]
g [ — 9122350:
g 40| 1
&
35F
307 L L L

0.0 0.5 1.0 1.5 2.0
ol

FIG. 10. The relation between § (radian) and 8,5 for various 6,
in the case of (M) — 0. We use central values for the 1-3

ee.eu

neutrino mixing and mass squared differences: 63 = 8.57°,
Am?, =742 x 1075 eV?, and Am2,, = 2.52 x 1073 eV? [63].

sol

It is important to notice that g,, is large, and the Mu-to-Mu
transition is bounded by the 7 — 3e process:

|G| _ Br(z—>3e) 1
Gr  Br(r = evd) 2,2

Jup

ger

<3x1075.  (7.25)

The u — ey process also bounds the Mu-to-Mu transition
similarly to Eq. (5.26) as

|G| _
=1 <38x10°
G, <3.8x

geeg;m
YerGur

Gee

Yup

=1.8x107°x (7.26)

in this benchmark point. We note that the Zee-Babu model
has freedom to suppress g.,, while in the cocktail model,
Jer 1S needed to generate 6, and 63 neutrino mixings.
Consequently, the Mu-to-Mu transition is bounded in the
cocktail model rather than the Zee-Babu model.

B. Charged Higgs contribution

The Dirac mass is supposed to be forbidden by Z,
symmetry. Namely, the Dirac Yukawa coupling with the
SM Higgs doublet @ is absent, but couplings with an
additional inert doublet # are allowed:

_ 1
-L£> yaifaPRNin +§M1NZCN1 + H.c. (727)
If the scalar potential contains the A5 term,
As 2
V> Z(I’[(D )* + H.c., (7.28)

the masses (my and my,) of the real and imaginary parts
(H° and A°) of the neutral Higgs boson in the inert doublet
n are split:

2 2 9.2
my —my = Asv”,

(7.29)
where v is the vev of the SM Higgs boson. Then, the active
neutrino masses are generated radiatively by the diagram
given in Fig. 11 as [59]

(). )
PR
HO/AO// \\HO/AO
/ \
129 ! N v v

FIG. 11. The diagram to generate the neutrino mass radiatively
in the model without the Dirac neutrino masses. The symbol (H)
stands for the vev of the SM Higgs boson.

015026-18



MODELS OF THE MUONIUM TO ANTIMUONIUM TRANSITION

PHYS. REV. D 105, 015026 (2022)

n n
R VR VR V.

Nﬂsvz}’ai)’ﬂi M? B M nm%”
S 162 M; \m3—-M? (my—-M?)?> M?

1 m2 m> m> m2
(M,))op = {2 VaipiMi <7H 5 A A)

(7.30)

The charged Higgs boson in x can generate the
Mu-to-Mu transition by the box diagrams in Fig. 12:

G1 y:iyﬂiy:jyyj
7:71 X‘,X‘
V2 512n°m} (%, %))

(52 ()

gy VIO x). (731)

where x; = M7/m;, and I,(x;, x;)’s are the box loop
functions given in Appendix D, and m, stands for the
charged Higgs boson mass. The first term is bounded by
u — ey. Let us consider whether the Mu-to-Mu transition
from the second term can be generated avoiding the y — ey
constraint. To do that, we consider

Yel 0 0
Yi=| 0 Yo O (7.32)
Yiir Y2 Vi3

to eliminate the one-loop y — ey amplitude via 5 loop. (For
the purpose to eliminate 4 — ey, one of h,3 and h,3 can be
nonzero. We here suppose that both are zero to reduce the
number of parameters.) Then the neutrino mass matrix is

I~ T

Yer Yer Vel
M, 0 M,
/151)2 v2
) y
=20 g m we | (733)
167 M, M,
’ 2 2 2
YerYe  Yu¥a Yo 4 Yo 4 Vo
M, M, My M, M,

where M, is defined to be M; divided by a loop function so
that the neutrino mass matrix is o« y,;yg; /M;. The size of
the coupling is estimated as

_ M,
e N W
| |
n-‘r: :7]+
| |
e N e

Because there are four complex parameters (up to nor-
malization), one can fit three neutrino mixings, one mass
ratio, and phases, in principle. The lightest neutrino mass
m; (with its phase) is a function of the other parameters
since the ey element is chosen to be zero.

Though the couplings have been chosen to eliminate the
4 — ey process, one needs to care aboutt — I,y (I, = e, )
processes since y,; and y,, are needed to reproduce the
neutrino mixings:

3 VEF o (x)]2
Br(z — L,y) :é % Br(z - ), (7.35)
where
1 — 6x + 3x% + 2x° — 6x°1
Fr(x) = X + 3x° + 2x x~ In x (7.36)

12(1 —x)*

We also need to care about muon g — 2 since the loop
contribution gives a negative contribution to it:

1 m?
Aag, = —@m—’é |yl4i‘2FN(xi)'
7

(7.37)

We can check that the experimental bound can be
satisfied even if the nonzero elements of y, are O(1)
for m, = 500 GeV. The transition amplitude can be maxi-
mal for M;~m,, and we find |G|/Gr < O(1075) for
m, = 500 GeV and |y,| < 1.

C. NS*ep coupling

We consider models with right-handed charged lepton
couplings to SM singlet fermion N:

_ 1 __
~L = hyegPrN;S* + 3 MNIN, + M3S*S™. (7.38)

where ST is a SU(2), singlet with hypercharge Y = 1. The
transition operator O, is generated and the coefficient is

FIG. 12. The box loop diagrams to generate the Mu-to-Mu transition via the charged Higgs bosons.
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Gy heiltihoihs,

L ej'tuj

V2 s122M2
(hei)(h2;)?

+— 2567:2M2 VXX (x,,x)

I (x;, x;)
(7.39)
where x; = M?/M3.

1. KNT model
In the model by Krauss-Nasri-Trodden (KNT) [60], two
Y =1 SU(2), singlet scalars (we call them S, and S,) are
introduced:
—;C:)faﬁl/ﬂ fﬂS++h ePRNS

+ 45(S1S5)? + Hee. (7.40)

The neutrino mass is generated by a three-loop diagram
shown in Fig. 13:

As
Wf ao

X Fynt(My;/Mg, Mg, [Mg,)hgimp f s,

(Ml/)aﬁ My My

(7.41)

where m, = (m,, m,,m,) and Fgyr is a loop function. The
equation can be solved just similarly to the Zee-Babu
model. However, the coupling /# becomes large to be in a
nonperturbative region if one assumes that the observed
neutrino masses are all covered by this contribution.
Actually, in the Zee-Babu model in which the neutrino
masses are generated by the two-loop diagram, the cou-
pling can be O(1) for several hundred GeV scalar masses,
and thus, one can imagine that the coupling needs to be
large to generate the neutrino mass by three-loop. This is
because the antisymmetric coupling f needs to be small to
avoid 4 — ey constraint. Of course, it is possible to give up
on explaining the entire neutrino mass matrix with this
loop-induced contribution and assume that the neutrino
masses come primarily from somewhere else. In such a
situation, the i couplings can be O(1) without a contra-
diction with observables, and they can induce the

vy, €L | €r Ng €r | €L VL
[ I
(H) (H)
FIG. 13. A diagram to induce the neutrino mass in the KNT

model. The symbol (H) stands for the vev of the SM Higgs
boson.

Mu-to-Mu transition, potentially as large as the current
bound, from the second term in Eq. (7.39).

2. AKS model
In the model by Aoki-Kanemura-Seto (AKS) [61], two
Higgs doublets @, and ®, to have a physical charged Higgs
scalar (H) in the loop, and one real scalar singlet 7° are

introduced. The neutrino mass is generated by three-loop
diagrams such as shown in Fig. 14:

K*tan’f3

M Faxs(Myi. M, Mg My-+)
(M) = 1622y

MNi

mam/)’h(lih/)’i

’

(7.42)

where k is @;®,7nS coupling.

Let us consider if the observed parameters of neutrino
oscillations can be reproduced with satisfying the y — ey
constraint, and see if the Mu-to-Mu transition can be
induced by the h,; coupling. To do that, let us consider

hy, 0 O
hi=| 0 hy 0], (7.43)
hrl h12 h73

similarly to Eq. (7.32), in order to eliminate the one-loop
41 — ey amplitude via h,; coupling. Then the neutrino mass
matrix is

mzh 0 mfm,h Iy
M, M,
*tan’f} iy mym:hyohe
©(len’) i, , ’
2
mgmahflhfl Wl,,mihyzhrz 11+ 12+h
M, M, M,

(7.44)

FIG. 14. A diagram to induce the neutrino mass in the AKS
model. The symbol (H) stands for the vev of the SM Higgs
boson.
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where M; = M y;/F sxs(My;). We obtain the mass scale of
M, as

My =100 GeV x hy,«*tan®p. (7.45)

There are two types of solutions:
(1) Naive solution: h,, < h, ~ 1.

If there is no cancellation in the 7z element of M,
one needs h,, < h,, to realize the neutrino mixings.
This is due to m, < m,,. Since h,, is small, a large
value of k tan /3 is needed to obtain the proper size of
the neutrino mass in this solution. Any observed
neutrino mixings (within errors) and a PMNS phase
5 can be realized. The Mu-to-Mu transition is
estimated as |G,|/Gr < O(1077). (If one allows a
nearly nonperturbative value of 4, ~ 10, the
Mu-to-Mu transition can be enlarged, though.)

(2) hel ~ hﬂ2

If we allow a tuning of the zr element of M,
(h2,/ M, + h% /M5 < hZ,/M,) to obtain the atmos-
pheric mixing properly, hey ~ hy, can be allowed.
Both ee and eu elements of M, are much smaller
than pp element in this solution, and therefore, the
neutrino mixings and the Dirac phase 6 are related as
shown in Fig. 10. To realize the solar neutrino
mixing, one needs to enlarge /,; compared to the
naive solution. Since /,; becomes O(1), one needs
to care about 7 — ey process. Our estimation of the
Mu-to-Mu transition is |G,|/Gr < 0(107°).

VIII. NEUTRAL SCALAR EXCHANGE

The Mu-to-Mu transition induced by the neutral scalar
exchange shown in Fig. 15 is considered [64].

In general two-Higgs-doublets model, so-called type-III,
the Yukawa couplings can be written as

—L = (Yy);iCier®@; + (Y1), fier®, + He.

(8.1)

and the vevs of the neutral components are (@) =
veosf, (DY) = vsinf. Redefining the Higgs fields so
that ®; does not acquire a vev,

\/

-
>

HO

+

I
|
|
|
|
|
| ct

1

< <
Y <

FIG. 15. The tree-level exchange of a neutral scalar boson (H°,
here) to induce the Mu-to-Mu transition.

<d>2) _ ( sin ff/ Cf)Sﬂ/> (dl’z)’ (8.2)
@, —cosfp sinp D)

we can rewrite the Yukawa interaction as

-L = (Ye)ijf_iLequ)z +Pijf_iL€jR<D1 +He, (83)
where
Y, =Y,sinf/ +Y,cosf,
p=-=Y cosff +Y,sinp. (8.4)

We can redefine sinff = 1. The Yukawa coupling Y,
generates the charged lepton masses, and thus, we work
on the flavor basis where Y, is diagonal, Y, =

diag(y,.y,,y.). The neutral physical Higgs interaction
can be written as

1 _
-L= A (Yo + psa)ijeirejrh
1 _
+—=(Yesq — pcg)ijeire g

V2

1
V2
where s, = sina and ¢, = cosa are the mixings of CP-
even Higgs bosons (h and H). Integrating out the neutral
Higgs bosons, h, H, and A, we extract the terms which can
be the transition operators:

1
m}

1 s2
L= 4(/)21( fizer)* + pi3(igeL)? )<mﬁ+

ca
2
My
1 . _ c2
_§p21p12</"LeR)(/"R€L) +—+

+H.c., (8.6)
and

G, 1 22 1
\/i = 16p21/)12( %1 + m}zq +m_§ , (8.7)

G4 1 " Sé C%, 1
===l st ). (8.8)

V2 16 m;  miy  m;

G5 1 ) Sé Cg 1
=—-— -— 8.9
A 69

If we suppose that p,; and p;, are not zero with the other
pi; =0 and sina(= cos(f —a)) — 0 (alignment limit),
LFV processes such as ¢ — ey and ¢ — 3e do not occur.
In the limit, one obtains G4, G5 — 0. Actually, in that case,
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there is a global discrete Z, symmetry, and the charge
assignments are

e i1, egil, wu; i3, ug:3, @2, (8.10)
and the charges of the others are 0. Therefore, once the
selection of p with the alignment limit is given, LFV is not
generated perturbatively. We note that the electron mass can
have a loop correction from p,p,;. The p terms can also
induce the electron g—2 and electric dipole moment
(therefore, p,p,; should be real). The coefficient G5 can
be generated satisfying the LFV constraints in the align-
ment limit, and the Mu-to-Mu transition can be around the
current experimental bound.

IX. SUSY

Similarly to the meson mixings, the box diagram in
which superparticles propagate can generate the transition
operators. Indeed, the minimally extended SUSY standard
model (MSSM) contains Majorana particles known as
gauginos: bino B and wino W°. Though the Majorana
property of gauginos can be utilized to generate the
Mu-to-Mu transition, the transition probability is bounded
by the p — ey constraint as we have seen in various
models.

In the MSSM, the left-handed slepton doublet and the
down-type Higgs doublet have the same quantum numbers,
and thus, so-called R-parity is introduced to distinguish
them. The R-parity is also needed to avoid rapid proton
decays. If the R-parity is broken in the lepton sector, the
Mu-to-Mu transition can be induced at the tree-level
sneutrino exchange [65], as a simple corollary of the
neutral Higgs exchange (in the alignment limit) in the
previous section.

In this section, we first briefly describe the previously
well-known Mu-to-Mu transition in the R-parity violating
SUSY model, and then study the box contribution of the
neutralinos and charginos in extended models.

A. R-parity violation

If we consider R-parity violating terms, the transition
operators can be induced at the tree level [65]. The
superpotential is

W:%/lijkfi-fje,‘;, (9.1)
where 4 = —4;5. We introduce only 431, and A3;;:
W = Asna(vser — esvi)es + A (v3e2 — esva e, (9.2)
and Lagrangian contains
—LD (M1l fiPre+ A D ePru+He.)+mg |07, (9.3)

where m;_is a SUSY breaking tau-sneutrino mass. By the
tau-sneutrino exchange, one obtains

Gy _ M

9.4

v (9.4)
The tau-neutrino mass can be generated by loop:

Az1d13 Amemy 7 (9_5)

%" 62 m?
where A is a SUSY breaking trilinear scalar coupling.

B. Gaugino contribution

In this subsection, we describe how large Mu-to-Mu
transition can be induced by box contribution in the MSSM
with R-parity.

Though gauginos are new Majorana particles in the
MSSM, the Mu-to-Mu transition is strongly restricted by
1 — ey constraints as we have seen several times since the
gaugino interactions are (AL,,AL,) = (£1,0), (0,=£1)
processes. Therefore, it is not very worth describing it in
detail, and we here note the rough estimation of the bound
of the Mu-to-Mu transition from the y — ey bound.

Using mass insertion approximation [66,67], the u — ey
constraints of the off-diagonal elements of slepton mass
matrix can be written as

[ L
La"sz” < 0(10) (9.6)
m=
7o F
with
5%2L = (M %)12/’”;- (9.7)

Here, M is a 3 x 3 SUSY breaking left-handed slepton
squared mass matrix, and my is an averaged left-handed
slepton mass. This LL constraint mainly comes from the
chargino loop diagram, and the neutralino loop can
also constrain &5 ** similarly. The coefficient G, of
the transition operator from wino loop can be roughly
written as

G L 4 L

\/—% %Iﬂx,x}—l—%ﬁdl(}c,x%

(9.8)
where x ~ m2 / m . One should notice that the Mu-to-Mu
transition needs the mass insertion twice irrespective of
whether the Majorana property of wino is used or not.
Because G5(x, x) ~xG%(x,x) <1, it is estimated as

Gi| _ N
— 1078) 2222 L .
Gp ™ o ) tan (9:9)
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Therefore, the Mu-to-Mu transition becomes the largest if
8t ~ 1 is allowed for the slepton mass to be several times
10 TeV. The bino and charged wino box loop contribution
with RR, LR mass insertions can be also estimated
similarly. The coefficients can depend on the detail of
the superparticle spectrum, but we do not survey the
numerical detail since the Mu-to-Mu transition is tiny.
The chargino and neutralino contribution of pr — e;y
amplitude can be canceled, but the y—e conversion is not
simultaneously canceled, and thus, it constrains the
Mu-to-Mu transition.

C. Charged Higgsino contribution

If AL = +2 neutrino mass can be utilized, the
Mu-to-Mu transition can be potentially generated avoiding
the 4 — ey constraint. However, as we have seen, the size
of neutrino mass restricts the Mu-to-Mu transition. This is
because Dirac neutrino masses induce light-heavy neutrino
mixings, and large active neutrino masses can be generated
at the loop level, even if we adjust the tree-level neutrino
masses to be zero. In the situation that the loop-induced
mass is suppressed by a flavor symmetry, the box con-
tribution of the Mu-to-Mu transition is also suppressed. In
the SUSY limit, the loop-induced masses are zero due to
the nonrenormalization theorem. By soft terms of SUSY
breaking, the neutrino masses are induced but the size of
the loop-induced mass can be suppressed compared to the
non-SUSY case [68]. As a result, the Dirac mass or the
light-heavy neutrino mixing can be larger than the one in
the non-SUSY case, and the Mu-to-Mu transition can be
larger. Although it can be larger, it is not large enough to
observe in near-future experiments. Therefore, similarly to
the non-SUSY model, let us consider a model with inert
Higgs doublets and Dirac mass is forbidden by discrete
symmetry.

G,
V2 20487°m}

+<)’ei>2(}’;j>2(12(xm’ij) - IZ(XRi’xlj) - I2<x1ivaj> + 12(x1i’x1j)))7

where

msx=

The model we now consider is the SUSY version of the
model in Sec. VIIB. We introduce additional Higgs
doublets  and 1’ (because of gauge anomaly, we need
to introduce a pair of Higgs doubles in the SUSY model),
and the Yukawa coupling to n with hypercharge ¥ = 1/2:

W = Yaill - CaNi = Yai (€0 = 1"va) N (9.10)
We suppose that 7° does not acquire a vev and the Dirac
neutrino mass is absent. In order to avoid too large neutrino
masses, we introduce a discrete symmetry to forbidan - H,
mass term. In the SUSY model, the so-called A5 term
(nH 4)? is absent in the F-term and D-term scalar potentials
in the SUSY limit, and the neutrino mass shown in Sec. VII
B is not generated. Introducing the (nH,)? term in the
superpotential, one obtains the A5 term by bino and wino
dressing, and the tiny neutrino masses can be generated.
Alternatively, one can apply the type-1I seesaw to generate
the neutrino mass.

The box loop via the charged scalar 77 is the same as in
Sec. VII B. We here consider the box loop via the charged
Higgsino 777 and sneutrino N. The sneutrino masses are
given as

- 1 o~ o~

where m[2V contains the SUSY breaking squared mass and

Majorana mass of N, 1/2M;N;N;, and B;’s are the
coefficients of the SUSY breaking bilinear terms. For
2

simplicity, we assume that (mg); and B;; are flavor

diagonal. By a field redefinition, B;; can be made to be
real and positive. Then, masses of the sneutrinos for

V2ReN and v/2ImN are (m%,);; £ By The coefficient of

the Mu-to-Mu transition operator from the sneutrino box
loop diagram is obtained as

1
—= = o5 (VeiVpiVeiVnj (T2 (Xris Xrj) + Lo (Xgi» Xpj) + I (xpi, Xgj) + L2 (X3, xp7))

(9.12)

=N 7 (9.13)

We suppose that the Yukawa coupling is given in Eq. (7.32) to eliminate 4 — ey. Then, the first term of G| in Eq. (9.12)
becomes zero, and the second term remains if B;; # 0 (which reminds us the B-term violates lepton number conservation).

The Yukawa coupling can generate 7 — u(e)y:

3a

Br(z = lyy) = Ton

y Fy(xg;) + Fy(xy)  Fy(x;)
yai Ti 2GFmg -
i

(9.14)

2
G 2> ’ Br(t — [w0),
Fm

n
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where x; = M?/mj, and the loop function Fy(x) is
given in Eq. (7.36). The Mu-to-Mu transition can be
the largest when x;; < 1 < xp;, and our estimation is
G\|/Gr £ 0(107°).

X. DILEPTON GAUGE BOSONS

In a gauge extension model where the left- and
right-handed charged leptons are in one multiplet, a
doubly-charged dilepton gauge boson can be introduced
[23,69-73]:

E = % (Y;+Ei5ﬂei + Y;_ecio"éi)

+ MY, YR (10.1)
The gauge coupling g3; is the same as the SU(2), gauge
coupling g, (up to a renormalization correction) in the
SU(3). x SU(3), x U(1)y model. The tree-level exchange
of the doubly-charged dilepton gauge boson in Fig. 16 can
induce the Mu-to-Mu transition. Integrating out the gauge
boson, one obtains

931 (e c
— =2 (e%c"e;)(e‘;0"€;)
2M3 !
g%l =
= —W(eclej)(ecjel) (10.2)
Y
In four-component convention, it is written as
9%1
L= _W(E’jpkel)(‘?jPLei)
Y
9%1
= +=5(e;y"Pge;)(e;v,PLe;). (10.3)
2M5

Assuming that the current eigenstates €;, €°; correspond to
the mass eigenstates of charged leptons, one finds that the
transition operator Q5 is generated and the coefficient is

G __ o
V2 8My

The transition bound, Eq. (2.33), implies

(10.4)

Y t+

pt no

< »
< >

FIG. 16. The tree-level exchange of the doubly charged gauge
boson to induce the Mu-to-Mu transition.

My > 1.8 x 5L Tev.

P (10.5)

In general, the current eigenstates are not the same as the
mass eigenstates. Writing the four-component charged
leptons of the mass eigenstates as

“ ((v%»)’

we obtain the gauge interaction as

(10.6)

V=V Vii+Vji
£:>——2% (—-’2 ! e,-TC}’”ejJF%eiTCY”Vsej) vt

+H.c. (10.7)

Due to the anti-commutation of the fermions, the vector
term is anti-symmetric and the axial-vector term is sym-
metric under the flavor indices. Therefore, LFV decays
such as y — 3e are induced by the gauge boson exchange
in general. If the charged lepton mass matrix M;; is
symmetric (where M;;€,€°; is the mass term) and no extra
fields are mixed with the charged leptons, one finds that the
current eigenstates correspond to the mass eigenstates and
Vij = 6;;. Then, LFV decays are not induced by this term.

XI. FLAVORED GAUGE BOSONS

If there is a neutral gauge boson whose interaction is
AL, =-AL, = +1, the Mu-to-Mu transition can be
induced by its exchange at the tree level as in Fig. 17.
The gauge boson should have a flavor-dependent charge.
For example, the Mu-to-Mu transition in non-Abelian
flavor gauge symmetry is discussed in Ref. [74]. We here
consider an Abelian flavor gauge symmetry to induce the
Mu-to-Mu transition.

As an example, the extra U(1) charges of the lepton
doublets £ = (v;,e;) and scalars ¢; are assigned as in
Table I, and the charges of the other fields are zero. We
introduce vectorlike lepton doublets L, L. The mass terms
for the first and second generations can be written as

- -
> L

pt et

<
<

<
<

FIG. 17. The tree-level exchange of a neutral gauge boson to
induce the Mu-to-Mu transition.
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TABLEIL Anexample of the extra U(1) charge assignments for
the flavored gauge model.

4 £ ¢ (&)
1 -1 -1 1

~L = y11 Lty + y2boLglr + M LL + 51€igL Hy
+ ekl Hy. (11.1)
Integrating out the vectorlike lepton doublets, we obtain the
Yukawa interactions of the first and second generations of
charged leptons. The electron and muon mass eigenstates
are given by
e; = cosbe; + sinfe,,

Uy = —sinfe; + cos e, (11.2)

where tanf = —y;¢,/(y,¢,). Denoting the extra U(1)
gauge field as X, we can write the gauge interaction as

_ - 1
L= gxX,(C1y'ey = Cophts) + §M§(XMX”. (11.3)
The gauge interaction of the electron and muon is

gXX;t(él}/ﬂel - 7327”62)
= gx X, ((eLy'uy + py'er ) sin20

+ (err'er — fiLy"ur) cos 20). (11.4)

The sin26 term can induce the Mu-to-Mu transition,

2 o2
gxsin-20 , _ B
L5 —XZT(MV”@L)(ML}’”Q)’ (11.5)
X
and
G, _ gxsin®26 (11.6)

V2 8M

We need to assume |cos26| < 1 to suppress y — 3e.
(Surely, we assume that the mixings of X to photon and Z
boson are negligibly small). Naively, Br(u — 3e¢) < 10712
provides a bound:

G 1
—L|cot20] S ——=x 1076,

Gr 2V/2

Since the signs of ee and uu couplings to X, in the above
are opposite, the constraint of cos 26 from y — ey is loose
for m,, m, < M. Theoretically, if there is an exchange

(11.7)

symmetry ¢, <> ¢y, £1 <> ¢, in the Lagrangian, one finds
that [tan@| = 1 and the unwanted LFV is absent.

One can similarly consider a model where X, can couple
to both left- and right-handed electron and muons. In that
model, the bounds of the diagonal couplings to electrons
and muons are stronger. The right-handed operators for
u — 3e are simply added at the tree level, while the bound
becomes stronger due to the chirality flipping in the internal
line for 4 — ey. In any cases, the models are free from LFV
constraints by a choice that the diagonal couplings are
absent. Even in the choice, the electron and muon g — 2 can
be induced. If X, couples only to the left-handed leptons (as
the example above), the ratio of the induced anomalous
magnetic moments® is

Aa,
Aa,

(11.10)

|3
ESESTENIS)

i

If X, couples to both left- and right-handed ones, the muon
and electron mass can be hit at internal lines, and thus, the
above flavor relation is violated. One can find that the
magnitude of Aa,/m? can be much larger than Aa,/m.

Let us consider the model where both left- and right-
handed leptons couple to the extra gauge boson in the
absence of the diagonal couplings:

L= gxX,(err'u, + aegy'ug + (u <€),  (11.11)
where a is a U(1) charge for the right-handed charged
leptons. In this case, we obtain
G % G, d’g% Gy 2agy
V2oO8MYT V2o 8MyT V2o 8My
The contributions to (g —2)/2 of the muon and electron
can be calculated as

(11.12)

(1+a*)gyx 8
Aa, = —m2 oI O (11.13)
T YT VR

m2
Gy —£ s 11.14
X<N@) (11.14)

®The current muon g — 2 measurement [75] implies

2agy
Ade = MM 3320y

Aa, = (2.514£0.59) x 107°. (11.8)

The values of the anomalous electron g —2 are reported by
Berkeley [76] and Laboratoire Kastler Brossel (LKB) [77]
groups:
Aa,(Berkeley) = (—8.8 +3.6) x 10713,
Aa,(LKB) = (4.8 +3.0) x 10713, (11.9)

which seem to depend on the fine structure constant extracted
from the Rydberg constant.
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1.5x10713

1.x10718}

5.x107"}

Aag

0,

-5.x107"*}

—1.X10_13 I I I I I I I
0

FIG. 18. The contribution to the electron g — 2 (Aa,) is shown
as a function of the U(1) charge a for the right-handed charged
leptons when the Mu-to-Mu transition is assumed to be just the
same as the experimental upper bound.

where the loop function is

4 -3x—x3+6xlnx
GX('X): (1_x)3

(11.15)

The contribution of the neutral gauge boson to the muon
g — 2 s negative. The experimental bound of the Mu-to-Mu
transition implies

—Aa, <2x 107, (11.16)
Therefore, the muon g — 2 anomaly cannot be explained. In
Fig. 18, we show the electron g — 2 as a function of @ when
the Mu-to-Mu transition is just on the current experimental
bound. The magnitude of the electron g — 2 is one digit
smaller than the current central value. Though the electron
g—72 can be larger than the naive expectation without
flavor violation, the Mu-to-Mu transition constrains the
magnitude of it.

XII. OTHER MODELS

A. Leptoquark

If there are F'P,#;S and/or FPge;S types of interactions
(F: fermion, S: boson), the Mu-to-Mu transition can be
induced by a box diagram. As an example, we consider a
“leptoquark” scalar,

1
D: (3,1,——), (12.1)
3
and we allow the following interactions’:

7 . . . .
In this section, we use two-component fermion convention to
avoid complicated expressions.

We must forbid “diquark™ interactions (¢ggD and u‘d‘D*
terms) to avoid a rapid proton decay. There is a fairly merit
to introduce the leptoquark coupling: it induces the
b — seTe™, b — suTu~ for lepton nonuniversality at the
tree level [78,79].

Let us consider u — ey constraints. We suppose y;; — 0.
Then, the bound is roughly

V12

F, £0(107),
MG !

(12.3)

where F| is a form factor. If both y;; and y;; are switched
on, the chirality can flip at an internal line, and the bound
can be roughly

My, Y1;y2i

F, <0(107),
mﬂMzDGF 2N ( )

(12.4)

where F, is a form factor. Therefore, for y,y < O(1), the
4 — ey constraints roughly give the bound,

|G/ 23]
F

<0(1078). (12.5)

This is a consequence when only (AL,,AL,) = (£1,0),
(0,+1) interactions are introduced.

B. Vectorlike fermions

Vectorlike fermions are often introduced in flavor
models. Via the box diagram in which the vectorlike
fermions propagate, the Mu-to-Mu transition can be gen-
erated. Here, we consider a minimal version to illustrate the
essence. We introduce SU(2), singlet fermions:

E: (1,1,-1), E°: (1,1,1), (12.6)
and SM singlet flavon complex scalars ¢, and ¢,. The
global U(1) charges are assigned as in Table II, and
Lagrangian is

—L = hope E° + hygpuE°

+ > vt i HE® + MgE°E°,
i=1,2

(12.7)

The mass matrix is given as

TABLE II. The global U(1) charge assignments for the model
with vectorlike fermions discussed in Sec. XII B.

e¢ 'uc ¢e ¢” Ec E¢
a b —a -b 0 0
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0 0 yw e‘
—L>(e u E)| O 0 yuw us | (12.8)
he¢e hu¢;¢ ME E*

The muon mass is generated as

Vi + y%\/(herﬁe)z + (hu,)?

m, ~ v.
"
ME

(12.9)

Even if the Yukawa couplings are O(1), the smallness
of muon mass is explained by the vev hierarchy
¢$o < ¢, < Mg. Surely, the electron is massless at this
stage, unless we introduce additional heavier vectorlike
fermions. To suppress 4 — ey via the vectorlike fermions,
h. < ¢, is needed.

The ¢, field has partial lepton numbers as
(L..L,) = (=1,1). Once ¢, and ¢, acquire vevs, partial
lepton number symmetry is broken (while total lepton
number symmetry is kept). Then, the Mu-to-Mu transition
can be generated as

G, hih;,

ﬁ — m(lz(xRevay) - IZ(XRe’xlﬂ)

— Iy (%Xp, XRy) + 1o (Xpe, X)) (12.10)
where
2 2
MReg, Mimg,,
xRa:M—%:7 Xpg = e (12.11)

If soft breaking terms of the global U(1) symmetry are
absent, the imaginary parts are massless. Because the
masses of real and imaginary parts split, G, becomes
nonzero.

C. Axionlike particle

If a global flavor symmetry is broken spontaneously, the
following flavored axionlike coupling can be considered
[80-82]:

0,a
L= ﬁfﬁ’”(% +7saij)f ;.

By a field redefinition f, one can consider the axionlike
coupling as

(12.12)

af (v5 +rsyb)f- (12.13)
Therefore, one can think that the coupling can be a global
symmetry version of the model in Sec. XI, or the Higgs
scalar has a Peccei-Quinn-like global charge in the model in
Sec. VIII. The Mu-to-Mu transition can be induced by the

exchange of the axionlike particle at the tree level. The
Mu-to-Mu transition induced by the axionlike particle is
intensively discussed in Ref. [82].

XIII. CONCLUSION

The Mu-to-Mu transition is one of the interesting probes
for physics beyond the SM. In near future, the search
experiments will be performed in some facilities, such as
J-PARC in Japan and CSNS in China. In anticipation of
those upcoming experiments, we have evaluated their
impact on models and the connection to other experiments.
Assuming appropriate mediators, we are allowed to con-
sider five independent effective operators to induce the
transition. In terms of the effective couplings, we have
shown the general formula of the transition probability in
the zero or nonzero magnetic field. We have pointed out
that the magnetic-field dependence helps us to identify the
type of dominant effective operators.

For each plausible new physics model, we have esti-
mated the maximum size of the induced effective couplings
G, (i=1-5) given in Eq. (2.18), taking into account
current experimental constraints. The result shows that
the Mu-to-Mu transition is most sensitive to the cases
where the mediator has AL, — AL, = £2 interactions in
the model: such as a doubly charged scalar, doubly charged
gauge boson, neutral scalar, and neutral gauge boson. Since
the transition is generated at the tree level by the exchange
of the mediator, the size of the effective couplings can be
|G;|/Gr < O(107%), which is as large as the current
experimental bound (See Egs. (2.29)—(2.33) for the bound).
The severe experimental constraints from LFV decays such
as 4 — ey and u — 3e can be avoided for the mediators
with the AL,— AL, = +2 interactions. The left-right
model with SU(2), triplet is typically the case, for
example. To generate the sizable Mu-to-Mu transition
avoiding the LFV decays, one needs some ideas such as
introducing a discrete flavor symmetry. Thus, the possible
observation of the Mu-to-Mu transition at the near-future
experiment can give us the drastic paradigm change of the
understanding of the lepton flavors.

In the models with AL, — ALM — =+1 interactions, the
Mu-to-Mu transition can be generated by box loop dia-
grams. However, the 4 — ey constraint severely bounds the
transition, and we have obtained |G;|/Gr < O(107%)
at most.

If mass terms violate the (partial) lepton numbers, the
Mu-to-Mu transition can be generated by box loop dia-
grams even without the LFV interactions. The light-heavy
neutrino mixing needs to be large in order to enlarge the
Mu-to-Mu transition induced by the lepton number viola-
tion. However, the large light-heavy neutrino mixing can
induce sizable active neutrino masses radiatively, which
spoils the realization of the sub-eV neutrino mass. In the
sense, the Mu-to-Mu transition induced by the lepton
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number violation is conceptually constrained to realize
the sub-eV neutrino masses. We need to assume the
neutrino masses to be zero by a discrete symmetry at
the tree level, and the sub-eV active neutrino masses are
generated radiatively to obtain a large size of the Mu-to-Mu
transition. We have found |G,|/Gr < O(1073) in such
models.

The existence of the doubly charged scalar can be related
to the neutrino mass generation. As examples of such
models, we have investigated the type-II seesaw, Zee-Babu,
and cocktail models. The Zee-Babu model especially
leaves the possibility of |G,|/Gr~ O(1073), which is
related to 7~ — utu~u~ and 7= — uTe~e”. In the type-
IT seesaw model, the large Mu-to-Mu transition favors
degenerate neutrino masses, which results in |G,|/Gp <
O(107°) if the cosmological neutrino mass bound is
applied. The cocktail model predicts |G,|/Gr < O(1075)
due to the constraints of 7~ — ete”e” and 7= = et u".

The Mu-to-Mu transition is model-independently related
to the measurements of the Mu HEFS interval by the
effective couplings. Although the current sensitivity of
the HFS interval is less than that of the Mu-to-Mu
transition, future excellent upgrades will have the potential
to provide us with a way to check the Mu-to-Mu transition.
Furthermore, through specified models, the Mu-to-Mu

TABLE III.

transition is connected to the other observables in
flavor physics (e.g., neutrino masses, muon/electron g — 2,
LFV searches, and so on) and direct particle searches by
collider experiments. The near-future experiments for the
Mu-to-Mu transition will give us complementary informa-
tion to investigate the detailed structure of high-energy
physics.

We conclude with model-by-model tables of the
Mu-to-Mu transition for the convenience of readers, though
there are some overlaps with what we have already
described in this section. In Table III, we list the models
in which the Mu-to-Mu transition operators are generated at
the tree-level and they are tested by the near-future
Mu-to-Mu transition experiments. In Table IV, we list
the models in which the transition operators are generated
by box diagrams via AL, — AL, = +1 interactions, and
the size of the transitions is suppressed by the constraints
from LFV decays. If the active neutrino masses are
generated radiatively, the lepton number violation is
utilized to generate the Mu-to-Mu transitions by box
diagrams avoiding the constraints from LFV decays. We
list those models in Table V. In Table VI, we list the
predictive neutrino mass models with doubly charged
scalars which can induce the Mu-to-Mu transitions at the
tree level.

The models to generate the Mu-to-Mu transition at the tree level and the corresponding coefficients

G;. For each model, a checkmark v is placed in the column where the coefficient can be obtained around the current
experimental bound (|G;|/Gr ~ O(1073)). In the column where the coefficient that is generated but becomes
smaller due to LFV bounds, a triangle mark A is placed. The section column contains the section number in which

the model is described.

Model G, G, Gs Gy Gs Section
Type I+ II hybrid seesaw v v
Left-right model with SU(2)y triplet v e VIB
Inert Higgs doublet .- v A A VI
R-parity violating SUSY 4 e . IXA
Dilepton gauge boson e v X
Neutral flavor gauge boson v v v XI

TABLEIV. The models in which the Mu-to-Mu transitions are induced at the one-loop level by AL, — AL = *l
interactions, and the estimation of the corresponding coefficients. Due to the LFV constraints, the induced size is

tiny in this category of the interaction.

Model |Gl|/GF |G2|/GF |G3|/GF Section
Heavy singlet neutrino <0(107%) e e v
Left-right model without SU(2), triplet <0(107%) <0(107%) <0(10719) VIA
SUSY (Gaugino loop) <0(107%) IXB
Leptoquark <0(107%) <0(107%) <0(107%) XIT A
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TABLE V. The radiative neutrino mass models in which the Mu-to-Mu transitions are induced at the one-loop
level by using the lepton number violation. The constraints from LFV decays via AL, — AL, = 41 interactions can
be avoided. *)In order to realize the size of the active neutrino masses in the KNT model, one needs to consider a
nonperturbative region of the couplings. Then, the induced size of the coefficient can be larger, but the quality of the
estimate is different from others.

Model |G,|/GF |G|/ GF Section
Charged Higgs(ino) <0(1073) e VIIB, IXC
KNT model e <0(10-5) VIIC1
AKS model . <0(107%) VIIC2

TABLE VI. The neutrino mass models in which the Mu-to-Mu transitions are induced at the tree level via
AL, — AL, = &2 interactions with doubly charged scalars. #In the type-II seesaw, the induced size of the
coefficient is bounded by the absolute neutrino mass from the cosmological measurements. If neutrinos are not
stable in the cosmological time, the bound is not applied and the coefficient of |G| can be larger.

Model |G|/Gr |G>|/Gr Section

Type-II seesaw <0(107%)®) . vV

Zee-Babu model e <0(1073) VIIA 1

Cocktail model e <0(1079) VIIA2
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APPENDIX A: TRANSITION AMPLITUDE

Here, we show a calculation for the amplitude of the Mu-to-Mu transition [14].
The charged lepton fields [ = yu, e included in the operators, Q; in Eqgs. (2.9)—(2.13), are explicitly written as

I(x) = /2” \/TZ{QP ui(p)exp (- ipx)—l—b’,"ﬁvf(p)exp(ipx)}, (A1)

where u}(p) and vj(p) are the four-component Dirac spinors. In the nonrelativistic limit, the spinors are given as

S

; > - _\/ﬁ,( ") (A2)

& -

where £t1/2 = (1,0)7, &1/2 = (0,1)7, y*/2 = (0, 1)7, and ="/ = (—=1,0)". The creation and annihilation operators
satisfy the anticommutation relation,

i =i

{anarh = {me ) = eopoip-po o (A3)
Using the creation operators, we define the Mu state as
d’ q . s Syt
M) Fon) = 300/ 2.8, 1/2.5.1Fm) | S plap o) (A4

where P and ¢ are the total and relative momentums of the muon-electron system, respectively, so that p, =
m,/(m, +m,)P+q and p, = m,/(m, + m,)P —q. Here, (1/2,s,,1/2,5,|F,m) is the Clebsch-Gordan coefficient.
The wave function @(q) of the ground state in the momentum space is normalized to be
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&g
| Gslotar =1 (A3)
With the above definition, the Mu state obeys
(Mu(P); F,mMu(P"); F',m') = (27)*6®) (P = P8 8y - (A6)

On the other hand, the Mu state is defined by the charge conjugation of Eq. (A4,

3
MU(P); Fom) = 3 (1/2.5,0 12,5,/ F.m) / <6217§3¢(‘1) s e ), (A7)

SesSy
We show the calculation for the transition amplitude via the operator Q,
(Mu; F.m|Qy[Mu; F,m) = (Mu; F. m|(fy, (1 = ys)e) (7" (1 = ys)e) [Mu; F. m), (A8)

as an example. By substituting the explicit form of the field into the equation and using the anticommutation relation, we
obtain

- 0)[?
(Mu; F, m|Q,|Mu; F, m) = %—m)'Z(l/z, S 1/2.5F.om) ~(1/2.5,.1/2.5,|F.m)

€ 5,5, SesSy
< [=(wraProt ) (s Poe ) = (srvpod ) (i pyok)
+(17,S/}/QPL1J?) (b’tff}’“PLu?> + (b’tf/}’apwi"> (T?;”V“PLU?’)}, (A9)

where ¢ is the wave function in the coordinate space,
d*q
o) = [ 5 Lo exslia 1) (A10)
(27)
The first term in the square bracket of Eq. (A9) reduces to

<f"s‘”“PL”Z”> <@i”wmi"> — mm, Tel 416, Telgens 5], (AL1)

where 6% = (6, =0} ) and o) is the 2 x 2 identity matrix, and ¢ (i = 1, 2, 3) is the Pauli matrix. The products of spinors,

n and &, can be replaced with the Pauli matrices by

5m
1/2,5,,1/2, 5,|F, m)&epst = —£ Al2
gﬁ:( /2.8, 1/2. 5. |F.m)&n 7 (Al12)
. o'
1/2,5,.1/2,5,|F, m)pe&t = -~ Al3
Z( /2.5, 1/2,5,|[F.m)n*e& 7 (A13)
where 68 = 68 is the 2 x 2 identity matrix, and o' (m = 0, £1) in those equations represents the Pauli matrix in the
spherical basis: 61! = —6]! = (Fo, — i6,)/V/2, and 6 = —&) = 3. After calculating the traces, we obtain
S (12,5, 1/2.5,|F. m)> " (1/2.8,,1/2, 5, [F. m) (i v PLvi ) (B y*Prui) = 2m,m,. (A14)

*We note that the definition of the charge conjugations of the creation and annihilation operators can have unphysical sign freedom.
We define the Mu state by Eq. (A7).
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By the Fierz transformation, the third term is changed into
(B 7aPLve )@l v P ) = =( voPyLoe ) (@ v PLUE). (A15)
The second and fourth terms are the same as the first and third ones in the case of the operator Q;. Thus, we obtain

(Mu; F, m|Q,[Mu; F, m) = =8|¢p(0)

2, (A16)

for (F,m) = (1,+1), (1,0), and (0,0).
By applying the similar procedure, we also find the amplitudes for Q,—Qs,

(Mu: F, m| 0y [Mu: F, m) = —8|g(0). (A17)
(Mu;0,0[05|Mu; 0,0) = 12]p(0)[*,  (Mu; 1,m|Q3Mu; 1, m) = —4|9(0)|?, (A18)
(Mu; F, m|Q4|Mu; F,m) = (Mu; F, m|Qs|Mu; F, m) = 2|¢(0)]>. (A19)

We now easily obtain Egs. (2.20) and (2.21).9

APPENDIX B: MUONIUM GROUND-STATE SPECTROSCOPY
The Zeeman effect splits the energy levels of the Mu states. The spin Hamiltonian of Mu is given as
H=aS,-S.—p-B—-p,B. (B1)
Here, a = hvyps = 2nvyps is the HES coupling constant, and p,-, p,+ are the magnetic moments of the electron and
antimuon:
mL’
He- = _ge/’lBSev Kyt = Gy m_/’lBS/u (Bz)
U

where pp is the Bohr magneton, and g, , are g-factors of the electron and muon.
We first ignore the Mu — Mu mixing interactions. The energy eigenvalues of Mu states |Mu; F, m), are given as

EB(Mu;l,il):EOJrZ(;i Y>, (B3)
EB(Mu;l,O):EO—i—%(—%—F 1+X2>, (B4)
Ej(Mu;0,0) :E0+g (—%— \/1+—X2> (BS)
Here, Ej ~ —m,.qa*/2 is the 1S binding energy and
X_’%B(gﬁz_;g”)z@m%, (B6)
Y:”ZB(ge—Z:g,,) 26.25%, (B7)

where we have used up ~ 5.788 x 107 eV/Tesla, a ~ 1.846 x 10~ eV, and g, ~ g, ~2.002. Since the response of Mu to
the magnetic field is opposite to that of Mu, we obtain the formulas for Mu by replacing X and Y with —X and -V,
respectively. It is found that the energy values for Mu are

“Reference [14] includes some typos in the signs of amplitudes.
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- 1
Es(Mu; 1,+1) = E, +g (5 ¥ Y),
S a 1 >
EB(MU;1’0>:EO+§ —E‘f‘ 1+X°),

- 1
Ey(Mu;0,0) = Ey + 2 <—§— V1 +X2>.

2

We note that the (0,0) and (1,0) states for the zero magnetic field are mixed as
(|Mu;1,0>3> B (C —S) <|Mu;1,0>>
Mu;0,0),/  \s ¢ )\ |Mu;0,0) )
(|M_u;1,0>3> B < C S><|M_u;1,0>>
Mu;0,0),/ \=S C/\|Mu;0,0)/
where the mixing is given as

1 IR 1 1

CZ%(”W)’ S‘ﬁ(“ﬁ)'

The experimental measurement of the HFS interval in the strong magnetic field is obtained as

2

a = hvj, + hvyy,

where

hl/]2 = EB(MU, 1, 1) - EB(MU, 1,0) =

(1 +y -1 +x2),

a
2

hvsy = Eg(Mu; 1, —1) — E(Mu;0,0) = g (1 Y+ V1 +X2>.

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

Now we switch on the Mu — Mu mixing interactions and M, # 0. To calculate the energy states, we drop the I'j, part
of M, = M, — il'1,/2 and we denote the M, parts of F' = 0 and F = 1 states as M, and M, which can be made to be

real by rephasing of the states.

If the external magnetic field is zero, Mu and Mu are maximally mixed and the energy eigenstates correspond to the CP

eigenstates:
1 S
+:F,m)=—(|Mu; F,m) & |Mu; F,m)). B17
| ) ¢§ﬂ )t ) (B17)
The energy matrix of (|Mu, 1,1), [Mu, 1, 1)) can be written as
ajay M
E01+<4 S ) (B18)
e 1
The energy eigenvalues are
a a_\? )

E(l,l),:t :E0+Zi EY +M y (B19)
and AE ~ aY. The Mu — Mu mixing becomes small in the magnetic field due to AE > M. The m = —1 state is similar to

the m =1 state.
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The energy matrix of m = 0 states (|Mu; 1, 0), |[Mu; 0, 0), [Mu; 1, 0), [Mu; 0, 0)) in an appropriate sign convention can be
written as

9 -5X M, O
—-4X -3a 0 M,
Efd+ | 27 & (B20)
M, 0 ¢ 5X
0 My, %X -3a
The energy eigenstates in the magnetic field are
|+:1,0) cos B, — |—:0,0) sin 6, ~ (|Mu; 1,0) 5 + [Mu; 1,0),)/V2, (B21)
45 1,0) sin 0y, + |—;0,0) cos By, = ([Mu; 0,0), — [Mu;0,0),)/v2, (B22)
—:1,0) cos 0 — |+:0,0) sin 0 ~ (|[Mu; 1,0) 5 — [Mu; 1,0),)/V2, (B23)
|=;1,0) sin O + |+;0,0) cos O ~ (]Mu; 0, 0) 5 + [Mu; 0, 0>B)/\/§, (B24)
where
X X
@n2y = — = an2y=— o (B25)
a+M1+M0 a—Ml—MO
The energy eigenvalues are
o a Ml _MO 1 2 2
E(I.O),j: —EO—Z:ET‘FE\/((Z:EMI Zl:Mo) +<aX)
a a Ml _MO Ml +M0>
~FEy——+— 1+X2i( , B26
P42 2 2V1+ X2 (B26)
- a Ml —Mo 1 2 2
E(O,O).:t —EO—Zi?—E\/((ZiMI Zl:Mo) +(CIX)
a a M, -M, M +M,
~F ————\/1+X2:|:<— L0, 71 > B27
4 2 2 21+ X2 (B27)

The precise development is described by the 4 x 4 matrix, but the transitions can approximately happen only [Mu; 1,0) 5 —
[Mu; 1,0), and [Mu;0,0); — |[Mu;0,0),, and the mass differences are

AMB M, -M, M;+M
L0 (= mB) = M, — $2My = -0 ST (B28)
2 2 2/1+ X2

AMg, B ” ” My-My M+ M,

APPENDIX C: DIAGONALIZATION OF NEUTRINO MASS MATRIX

We work on the basis where the charged-lepton mass matrix is diagonal. The 6 x 6 neutrino mass matrix M is written as

I, — L
_'szi((yc)R NR>M((NC)L>+HC’ (Cl)

where v and N are current-basis left- and right-handed neutrinos, and
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M= (,: ) ()

The mass eigenstates /, N’ are given as

(wo) =)@
and
UT MU = diag(M1) = diag(m;, M;). (C4)

We choose phases in I/ so that M 7’s are real. We use index i
for the light neutrino mass eigenstates, index / for the
“heavy” neutrino mass eigenstates, and index Z for both
states. We use the Greek characters a, f for the generation
index in the current basis. For convenience, we define

U X
U= < ) (C5)
vV Y
Namely,
(VL)a = Uail/g + XaIN/’ (C6)
(NZ)a = Vaiyi‘ + YaIN/I‘ <C7)

In the following, the mass eigenstates v; and N, are defined
as Majorana fermions, e.g., v; = v; + (1/})°.

The interactions to the W; and Wy gauge bosons are
written as

9L

V2
+

WﬁzV”(Uail/i + XuNi)L

IR

\/E Wﬁj%yﬂ(vl’;iyi + YZINI)R + H.c.

(C8)

If one adds three gauge singlets S, the expressions can be
easily extended. We define so that the 9 x 9 mass matrix M
for N' = (v, (N¢),,S)T is diagonalized by 9 x 9 diago-
nalization unitary matrix

U X
u=\v v|. (C9)
w Z

where U, V, W are 3 x 3 matrices, and X, Y, Z are 3 X6
matrices. Then, the expression of the gauge interaction is
unchanged under this convention, but the indices of the
“heavy” neutrinos are summed by / = 1,2, ...,6.

APPENDIX D: BOX LOOP FUNCTION

In the box loop calculation, one encounters an integral such as

(0"

Il’l(

x,y,z;é)ZA dl(t+x)(t+y)(t+z)(t+1)(t+§1)a'(l+§2z)uz’

(D1)

where a; = 0 or 1, and &; is a gauge parameter for R; gauge, e.g., §; = &, = & and z = 1 in the box diagram with W, -W

exchanges. Since

2 X

Y Xy
1= - + , D2
e R R S e ) 2
one finds
Zlilj1n+2(xiyxjvz;f) = Zﬂiﬂjxilen(xhxj,ﬁf)» (D3)
ij ij
if >, 4; = 0. Due to this equation, the & dependence in the box loop calculation can vanish. For example, for
A= ViV m; (D4)
. = Vi X = s
1 at [ 1 M%V

> 4 = 01is satisfied due the unitarity of the mixing matrix V, and thus, the box loop contribution of the meson mixings is

gauge independent [83].

015026-34



MODELS OF THE MUONIUM TO ANTIMUONIUM TRANSITION

PHYS. REV. D 105, 015026 (2022)

We define
. (-1
I,(x,y,2) = dt
(x.3.2) A TSI
x"Inx y'Iny Z"Inz
= + + . D5
=DEx=y)x=-2) O0-DO-x)r-2) (E-DE-x(z-y) (3)
for n =0, 1, 2, and the loop functions of the box diagrams are given as
1 1
Eo(x.y.2) = xy{ Lo(x.y.2) = { 1+ J1i(x.3.2) + - La(x.9.2) ). (D6)
Xy 1 1
Ei(x.y.2) =2vay| Lixy.2) + - Li(xy.2) =g (142 ) By 2) ). (D7)

where E, is a function for the contributions where
momentums (}) are picked in the fermion propagators,
and E; is a function for the ones where masses (M7) are
picked. The coefficients of the transition operators can be
written by E, and E; terms. The gauge invariance of the E,,
term is assured by the unitarity of the neutrino mixing
matrix (/. On the other hand, E; term is not necessarily
gauge invariant. For the W;—W; exchange diagram in the
type-I seesaw case, the function E; is gauge invariant due to

U Mgt = M, (D8)
and

U MIiey™, =0, (UMY —~=0. (D9)

er.ey HLbL

Similarly, for the Wz—Wp exchange diagram in the left-
right model without SU(2) triplet, the E| term is gauge
invariant. However, for the Wz—Wp exchange with SU(2),
triplet, and W; W exchange box diagrams, the E| term is
not gauge invariant. In those cases, adding the loop
corrections of the triplet and bidoublet Higgs scalar

|
See Refs. [84,85] for the gauge invariance in the case
of the K—K mixing. (Strictly speaking, in the case of the
type-II seesaw with SU(2), triplet, the box loop is not
gauge invariant similarly unless the light neutrino masses
are ignored.) The loop function E; above is given in the
't Hooft-Feynman gauge.

The loop function E| is usually redefined as given by the
Inami-Lim function [83],

EO(XJ”Z) = EO(x’yvz) - E0<X’O’Z) - EO(()?y’Z)
+ E(0,0,2). (D10)

The function E, above is already redefined using
Eq. (D3) by the unitarity of the mixing matrix, and thus,
Eo(x,y,2) = Eo(x,y,2).

To express the loop functions for W;—-W; and Wr-W,
box diagrams shortly, we define

Eo(x,y) = Eo(x,y,1),  Ei(x,y)=E(x,y,1). (DI1)

exchange diagram, the gauge dependence is canceled. = We note
|
I(x.y) = I1,(x,y.1)
x"Inx "In 1
_ . n Y . Y i
(I-x)*x—y) (I-y)2-x) (A-x)(1-y)
1 "1 "1 1 1
_ S - , (D12)
x=y\(I-x)* (I-y) I-x 1=y
and
Z"Inz ¥ 1+nlnx) (2x—1-z)x"Inx
I,(x,x,z) = - s D13
AR e R eV g o1
1+ 211 1 2x"1
I(x,x) = +x" (1 +nlnx) 2x"Inx (D14)

(—xf (-2
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