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Muonium is a bound state composed of an antimuon and an electron, and it constitutes a hydrogenlike
atom. Because of the absence of the hadronic matter in the bound state, the muonium is a useful probe to
explore new physics being free from the hadronic uncertainties. The process of the muonium-to-
antimuonium transition is considered to be effective to identify fundamental interactions which relate to the
lepton flavor and lepton number violation. New experiments are being planned at J-PARC in Japan and
CSNS in China, and it is expected to attract more attention in the near future. In this paper, we will study
what kind of model can be verified in the next generation of the muonium-to-antimuonium transition search
experiments while escaping the limitations from other experiments. Though the transition probability is
strongly suppressed by the lepton flavor conservation in the standard model, it can be much larger by the
exchanges of neutral and doubly charged bosons, and by box loop diagrams in new physics beyond the
standard model. We study the neutrino models with heavy Majorana neutrinos at TeV scale, a type-II
seesaw model, left-right models, and models for radiative neutrino masses such as the Zee-Babu model in
particular, in addition to other possible models to induce the sizable transition probability, which can be
tested in the forthcoming experiments.
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I. INTRODUCTION

The muonium (Mu∶ μþe−) to antimuonium (Mu∶ μ−eþ)
transition is an interesting phenomenological possibility
[1–4]. There has been no new experimental result of the
Mu-to-Mu transition since the Paul Scherrer Institute (PSI)
experiment in the late 1990s [5]. The coefficient of the four-
fermion transition operator is bounded to be less than
3 × 10−3 in the unit of the Fermi constant by the experiment.
A brand new idea of the transition experiment is now
planning at Japan Proton Accelerator Research Complex
(J-PARC) [6]. A new experiment is also planning at China
Spallation Neutron Source (CSNS) [7]. It is expected that the
bound will be updated for more than one digit by high-
intensity μþ beam lines. From the theoretical point of view,
the Mu-to-Mu transition is an important ingredient to
accumulate our knowledge on lepton flavor violation and
lepton number violation, and to extract the fundamental
interactions in the lepton sector. For these twenty years, there

are lots of new experimental results: measurements of the
parameters in neutrino oscillations, updated results to bound
the Mu-to-Mu transition indirectly, and direct bounds on the
new particles at the Large Hadron Collider (LHC). We
believe that it is worth organizing the models of the
Mu-to-Mu transition.
The Mu-to-Mu transition resembles K0–K0 mixings in

the quark sector. The box diagrams viaW boson exchanges

generate K0–K0 mixings in the standard model (SM). It is

well known that the K0–K0 mixings are suppressed due to
the unitarity of the quark mixing matrix in the SM, but they
do not vanish completely because the up-type quark masses
are hierarchical, mu ≪ mc ≪ mt ∼MW . Similarly to the

K0–K0 mixings, the Mu-to-Mu transition operator can be
potentially generated by the box diagram via W boson
exchanges in the SM. However, the transition operator is
strongly suppressed ∼10−30 due to the unitarity of the
neutrino mixing matrix and tiny neutrino masses, which is
very different from the quark sector. If there is a new
particle around a TeV scale and it couples to electrons and
muons, the new interaction can induce the Mu-to-Mu
transition in an observable size.
The induced size of the Mu-to-Mu transition via the TeV-

scale particles in the models beyond the SM is indirectly
restricted by the nonobservation of lepton flavor violating
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(LFV) processes [8,9], such as μ → eγ and μþ → e−eþeþ
(μ → 3e). We remark that the severely constrained LFV
decays are ΔLe ¼ −ΔLμ ¼ �1 processes, while the
change of the lepton flavor numbers in the Mu-to-Mu
transition is ΔLe ¼ −ΔLμ ¼ −2. Therefore, if the lepton
flavor numbers that new particles carry are odd, one needs
the multiple flavor violating interactions to induce the
transition operator, and therefore, it turns out that the size of
the Mu-to-Mu transition will be much less than the one
which can be observed in near-future experiments.
However, if the lepton flavor numbers of the new particles
are even, the severe experimental constraints can be
avoided and an observable size of the Mu-to-Mu transition
at near-future experiments can be induced at the tree level.
Those circumstances of the new physics contributions

from flavor violation are similar to the meson mixings in
the models beyond the SM. In the case of the Mu-to-Mu
transition, an additional contribution from the lepton
number violation can be considered. The transition oper-
ators can be generated by box diagrams in which the mass
terms of the fields in the internal lines violate the lepton
numbers, even if the interactions conserve the lepton flavor
numbers. In this case, the size of the Mu-to-Mu transition
relates to the mechanism to generate the proper size of the
tiny active neutrino masses.
The purpose of this paper is to scrutinize the models to

induce the transition operators in eager anticipation of the
new experiments. In particular, we will study in detail those
models with neutrino mass production.
We first review the model-independent issues of the

Mu-to-Mu transition and Mu spectroscopy (Sec. II). We
next classify the new particles and interactions that causes
the Mu-to-Mu transition in the models beyond the SM, and
make introductory remarks on how a sizable transition to be
observed in the near-future experiments can be induced
avoiding the constraints such as LFV processes, which we
have briefly mentioned above (Sec. III). After those tradi-
tional reviews, we start up the Mu-to-Mu transitions in the
orthodox neutrino models: TeV-scale Majorana neutrinos
(Sec. IV), type-II seesaw (Sec. V), and left-right models
(Sec. VI). We learn how the LFV processes restrict the
transition operators in the respective models. The box loop
contribution is restricted by the μ → eγ, and three-body
LFV decays such as μ → 3e restrict the transition operators
generated at the tree level.
We also learn the lepton number violation to induce the

Mu-to-Mu transition in the orthodox models, and one finds
that the Mu-to-Mu transition induced by the lepton number
violation is restricted by the natural realization of the sub-
eV neutrino masses. We thus study the models with the
radiatively generated neutrino masses (Sec. VII), which
will be the main issue of this paper. The radiative neutrino
mass models fall into two broad categories: models with
and without right-handed neutrinos. In the models with

right-handed neutrinos, the Dirac neutrino masses are
forbidden by a discrete symmetry and the tree-level
neutrino mass is absent. The Mu-to-Mu transitions induced
by the lepton number violation in such situations are
discussed. The so-called Zee-Babu model [10–13] is one
of the representative radiative neutrino models without the
right-handed SM singlet fermions. We show that the Zee-
Babu model can produce the largest Mu-to-Mu transition
among the radiative neutrino mass models, which can be
tested in near-future experiments.
We also describe other models of the Mu-to-Mu tran-

sitions via the tree-level mediator exchanges, including the
ones that have been known for a long time: neutral scalar
exchange (Sec. VIII), R-parity violating supersymmetry
(SUSY) (Sec. IX), dilepton gauge bosons (Sec. X), and
flavored neutral gauge bosons (Sec. XI). We will also
investigate the radiative neutrino masses as a version of a
SUSY model with R-parity. Other possible exotics can be
considered (Sec. XII): leptoquarks, vectorlike fermions,
and axionlike particles.

II. MODEL INDEPENDENT DESCRIPTION
OF Mu-to-Mu TRANSITION

We review the model-independent issues on the
Mu-to-Mu transitions. We first describe the quantum
mechanics of the Mu-to-Mu transition and the probability
of the transition. We next introduce the four-fermion
operators of the Mu-to-Mu transition, and we obtain the
transition amplitudes. Since the experiments for the
Mu-to-Mu transition have been done in a magnetic field,
we need to know the magnetic field dependence of the
transition probability in order to decode the experimental
results. We also comment on the corrections to the ground-
state Mu hyperfine structure from the transition operators.

A. Mu −Mu mixings

The Schrödinger equation of the Mu −Mu system is

i
∂
∂t

�
α

β

�
¼

�
M11 M12

M21 M22

��
α

β

�
; ð2:1Þ

for jψðtÞi ¼ αðtÞjMui þ βðtÞjMui. The matrix elements
can be written asMij ¼ Mij − iΓij=2. The CPT symmetry
holdsM11 ¼ M22, andMu andMu can mix largely even if
the off-diagonal element is tiny. Solving the Schrödinger
equation, we obtain the time evolution of the Mu state,
which is purely Mu at t ¼ 0, as

jMuðtÞi ¼ fþðtÞjMui þ ðq=pÞf−ðtÞjMui; ð2:2Þ

where
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q=p ¼
ffiffiffiffiffiffiffiffiffiffi
M21

M12

s
; f�ðtÞ ¼

1

2
ðe−iλþt � e−iλ−tÞ; ð2:3Þ

λ� ¼ M − i
Γ
2
� 1

2

�
ΔM − i

ΔΓ
2

�
;

ΔM − i
ΔΓ
2

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M12M21

p
: ð2:4Þ

Here, M and Γ are the averages of the masses and widths,
respectively, and ΔM and ΔΓ are the differences of them.
The transition probability at a time t can be written as

PðMu → Mu; tÞ ∼ jq=pj2jf−ðtÞj2;
PðMu → Mu; tÞ ∼ jfþðtÞj2; ð2:5Þ

and one can calculate

jf�ðtÞj2 ¼
1

2
e−Γt

�
cosh

ΔΓ
2

t� cosΔMt

�
: ð2:6Þ

If there is CP symmetry or jΓ12=M12j ≪ 1, one obtains
jq=pj ¼ 1. We take a plausible assumption jΓ12=M12j ≪ 1
to describe the following, and M≡M12 ¼ ðΔMÞ=2.
The time-integrated probability of the Mu-to-Mu tran-

sition is obtained by

PðMu→MuÞ¼
Z

∞

0

dtΓe−Γtsin2Mt¼ 2M2

4M2þΓ2
; ð2:7Þ

which corresponds to the probability that the decay of
the Mu produced in the laboratory comes from the
Muðμþe−Þ → Muðμ−eþÞ → ðe− þ ν̄e þ νμÞ þ eþ mode.
For jΔMj ≪ Γ ¼ 1=τ (τ is the Mu lifetime, 2.20 μs),
one can write the time-integrated transition propability as

P ≃ 2τ2M2: ð2:8Þ

B. Operators

The operators which can induce the Mu-to-Mu transition
are [14]

Q1 ¼ ðμ̄γμð1 − γ5ÞeÞðμ̄γμð1 − γ5ÞeÞ; ð2:9Þ

Q2 ¼ðμ̄γμð1þ γ5ÞeÞðμ̄γμð1þ γ5ÞeÞ; ð2:10Þ

Q3 ¼ðμ̄γμð1þ γ5ÞeÞðμ̄γμð1 − γ5ÞeÞ; ð2:11Þ

Q4 ¼ðμ̄ð1 − γ5ÞeÞðμ̄ð1 − γ5ÞeÞ; ð2:12Þ

Q5 ¼ðμ̄ð1þ γ5ÞeÞðμ̄ð1þ γ5ÞeÞ: ð2:13Þ

Any dimension-six four-fermion operators for the
Mu-to-Mu transition can be written by a linear combination

of the above five by using Fierz identities. For example, one
can find

ðμ̄ð1þ γ5ÞeÞðμ̄ð1 − γ5ÞeÞ ¼ −
1

2
Q3; ð2:14Þ

ðμ̄eÞðμ̄eÞ ¼ 1

4
ð−Q3 þQ4 þQ5Þ; ð2:15Þ

ðμ̄γ5eÞðμ̄γ5eÞ ¼
1

4
ðQ3 þQ4 þQ5Þ; ð2:16Þ

ðμ̄σμνeÞðμ̄σμνeÞ ¼ −3ðQ4 þQ5Þ: ð2:17Þ

We denote the terms in the effective Lagrangian as

−LMu−Mu ¼
X

i¼1;…;5

Giffiffiffi
2

p Qi; ð2:18Þ

where the normalization of the coefficients mimics the
Fermi constant GF.
In practice, the state of the produced Mu is a mixture of

four states made by the hyperfine structure. The four states
ðF;mÞ ¼ ð0; 0Þ, (1,0), and ð1;�1Þ are indicated by the
magnitude of the total angular momentum F and the z
component of the total angular momentum m. The F ¼ 0
state is called paramuonium, while the F ¼ 1 state is
called orthomuonium. The amplitudes of the MuðF;mÞ →
MuðF;mÞ transition1 are written as

MF;m ¼
X

i¼1;…;5

Giffiffiffi
2

p hMu;F;mjQijMu;F;mi: ð2:19Þ

Treating the bound leptons nonrelativistically, we obtain

M0;0 ¼ −
8jφð0Þj2ffiffiffi

2
p

�
G1 þ G2 −

3

2
G3 −

1

4
G4 −

1

4
G5

�
;

ð2:20Þ

for the spin-singlet paramuonium, and

M1;0¼M1;�1

¼−
8jφð0Þj2ffiffiffi

2
p

�
G1þG2þ

1

2
G3−

1

4
G4−

1

4
G5

�
; ð2:21Þ

for the spin-triplet orthomuonium. The derivation of
Eqs. (2.20) and (2.21) is given in Appendix A.
Solving the Schrödinger equation for the hydrogenlike

atom, we find that the wave function φðrÞ is

φðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmredαÞ3

π

r
expð−mredαrÞ; ð2:22Þ

1If F ≠ F0 or m ≠ m0, hMu;F;mjQijMu;F0; m0i ¼ 0 for any i.
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where mred ¼ memμ=ðmμ þmeÞ ≃me is the reduced mass
between a muon and an electron and α ≃ 1=137 is the QED
fine structure constant. The value of φðrÞ at the origin is
given by

jφð0Þj2 ¼ ðmredαÞ3
π

: ð2:23Þ

C. Magnetic field dependence

The transition probability of Mu to Mu is changed in a
finite magnetic field B. Since we have to care about the
effects of the external magnetic field to describe the
experimental constraints given by the PSI experiment, let
us review the magnetic field dependence [15,16]. For the
Mu spectroscopy, see Appendix B.
The external magnetic field splits the ð1;�1Þ states and

makes ΔE ¼ M11 −M22 to be nonzero. As a consequence,
the Mu −Mu mixing becomes small and the transition
probability becomes

PðMu → Mu; tÞ ≃ e−Γt
M2

1;�1

M2
1;�1 þ ðΔE=2Þ2

× sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1;�1 þ ðΔE=2Þ2
q

t; ð2:24Þ

and the time-integrated probability is

Z
∞

0

dtΓPðMu → Mu; tÞ ≃ 2τ2jM1;�1j2
1þ ðτΔEÞ2 : ð2:25Þ

The energy splitting ΔE of the ð1;�1Þ states by the
magnetic field can be obtained by Eq. (B3), and one obtains

τΔE ¼ 3.85 × 105 ×
B

Tesla
: ð2:26Þ

Therefore, in the magnetic flux B to be more than 1 μT
(micro Tesla), the transition probability is suppressed for
ð1;�1Þ states. For one’s information, the geomagnetic flux
density is ∼30–60 μT.
We note that the oscillation time without a magnetic field

is Oð1Þ second or longer under the current experimental
bound. Therefore, the Mu-to-Mu “oscillations” do not start
before Mu decays. The behavior of the transition proba-
bility for the m ¼ �1 states near t ¼ 0 is the same as the
one without a magnetic field. However, if the external
magnetic field is ∼1 μT, the oscillation time is the same as
the Mu lifetime, and therefore, the transition probability for
m ¼ �1 is suppressed for B≳Oð1Þ μT.
The Mu −Mu mixing for m ¼ 0 states is (nearly)

maximal even in the magnetic field, contrary to the
m ¼ �1 states. The ðF;mÞ ¼ ð1; 0Þ and (0, 0) states are
mixed due to the magnetic filed, and the transition
amplitudes (halves of the mass differences) are modified as

MB
0;0 ¼

1

2

�
M0;0 −M1;0 þ

M0;0 þM1;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
; ð2:27Þ

MB
1;0 ¼

1

2

�
−M0;0 þM1;0 þ

M0;0 þM1;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
; ð2:28Þ

where X ¼ 6.31 × B=Tesla is defined in Eq. (B6).
The time-integrated transition probability is totally

P ¼ 2τ2
�
jc0;0j2jMB

0;0j2 þ jc1;0j2jMB
1;0j2

þ
X
m¼�1

jc1;mj2
jM1;mj2

1þ ðτΔEÞ2
�
; ð2:29Þ

where jcF;mj2 gives the population of the Mu states. The
experimental result by the PSI experiment at the magnetic
flux density B ¼ 0.1 Tesla is [5]

P < 8.3 × 10−11: ð2:30Þ

The oscillations of the ð1;�1Þ states are dropped in the
magnetic flux density. If G3 ¼ 0, we obtain

P ¼ 64m6
redα

6τ2G2
F

π2

�
G1 þ G2 − 1

4
ðG4 þG5Þ

GF

�
2

×
jc0;0j2 þ jc1;0j2

1þ X2

¼ 2.57 × 10−5
�
G1 þ G2 − 1

4
ðG4 þ G5Þ

GF

�
2

×
jc0;0j2 þ jc1;0j2

1þ X2
; ð2:31Þ

and the experimental result is decoded as����G1 þ G2 −
1

4
G4 −

1

4
G5

���� < 3.0 × 10−3GF: ð2:32Þ

If G3 ≠ 0 and the others are zero, we find

jG3j < 2.1 × 10−3GF: ð2:33Þ

We use the population of Mu states, jc0;0j2 ¼ 0.32,
jc1;0j2 ¼ 0.18. If the operators are turned on containing
Q3, the expression is a little complicated to write down
here, but one can easily calculate the bound from the
expressions above.
The PSI experiment tried to observe the decay product

(electron) from an expected μ− in Mu (μ−eþ) after Mu
(μþe−) is produced in the laboratory. The external magnetic
field is thus needed. The MACE group in China will also
use this method [7]. The time is not specified, and the time-
integrated transition probability is applied. The intrinsic
beam-related and accidental backgrounds disturb the
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detection of the electrons emitted from the Mu decays,
which determines the experimental bound of the Mu-to-Mu
transition.
A new method of the Mu-to-Mu transition search is

proposed using a high-intensity pulsed muon source in
J-PARC and an intense laser [6]. The high-intensity beam
(H-line) will work this summer. In their method, an
expected Mu is ionized by a laser shot at a time and the
dissolved μ− is directly analyzed by a spectrometer. The
transition probability is not time-integrated and is given at a
time t when the laser is shot. Therefore, the number of the
possible transition events will be less (by a factor
ðt=τÞ2 expð−t=τÞ=2 up to the other experimental lacks in
the laboratory) than the time-integrated transitions in the
preceding method. This method, however, is free from the
background noises from the accelerator and messy posi-
trons’ scatterings from μþ decays in the preceding experi-
ment. Their method does not need an external magnetic
flux to detect the decay products from Mu and Mu
decays, and the Mu-to-Mu transition can be observed
with the geomagnetic flux or with shielding it. The
controllability of the external magnetic field has further
advantages to confirm new physics and to investigate the
operator dominance by the characteristic magnetic-field
dependence.

D. Muonium hyperfine structure

The MuSEUM group is planning measurements of the
1S hyperfine structure (HFS) of Mu using the H-line at
J-PARC [17,18]. The current most accurate experimental
value of the Mu HFS interval is [19]

νexpHFS ¼ 4 463 302 765� 53 Hz; ð2:34Þ

which has been measured in a strong magnetic field. The
MuSEUM group will reduce the systematic errors of the
measurements to a few Hz in both zero and strong magnetic
fields. The theoretical expression of the HFS interval can be
written in Heaviside-Lorentz units as

νthHFS ¼
1

4π

16

3
μμμejφð0Þj2ð1þ δQED þ δweak þ δhadronicÞ;

ð2:35Þ

where μμ and μe are the magnetic moments of the muon and
electron, respectively. The theoretical calculation with
electroweak and intermediate hadronic corrections contains
the uncertainty ∼300–500 Hz [20–22]. Precise measure-
ment by MuSEUM also reduces the uncertainty in the
muon-proton magnetic moment and muon-electron mass
ratios, which can reduce the uncertainty in the theoretical
calculation of the HFS interval. In this subsection, we
describe the corrections from the Mu-to-Mu transition

operators to the HFS interval. For the ground-state Mu
spectroscopy, see Appendix B.
When the external magnetic field is zero B ¼ 0, the HFS

interval is defined as

hνHFSðB ¼ 0Þ≡ EF¼1 − EF¼0; ð2:36Þ

where

EF¼1 ¼ E0 þ
1

4
hνHFS; EF¼0 ¼ E0 −

3

4
hνHFS; ð2:37Þ

and the Planck constant is h ¼ 2π since we are working in
the natural unit ℏ ¼ 1ð¼ 6.582 × 10−25 GeV · sÞ. When
there is a transition operator, the Mu and Mu is maximally
mixed (even if the coefficient of the operator is small). The
energy eigenstates correspond to CP eigenstates. The HFS
interval is measured by using the resonance of microwave
frequency in the cavity. The transitions to the different CP
states are suppressed. As a result, the correction from the
transition operators is given as

ΔνHFSðB ¼ 0Þ ¼ �MF¼1 −MF¼0

2π

¼ � 4m3
redα

3ffiffiffi
2

p
π2

2jG3j: ð2:38Þ

If there is Q3, the mass difference between Mu and Mu is
different for spin-singlet and triplet, and then, it can modify
the Mu HFS interval between the spin-singlet and triplet
[23]. If there is only a Q3 operator, the current bound of the
Mu-to-Mu transition implies

jΔνHFSðB ¼ 0Þj < 1.1 Hz: ð2:39Þ

When there is an external magnetic field, the states split
and thus the definition of the HFS interval should be
modified:

hνHFSðB ≠ 0Þ ¼ hν12 þ hν34

≡ Eð1;1Þ − Eð1;0Þ þ Eð1;−1Þ − Eð0;0Þ: ð2:40Þ

The energy eigenstates are not CP eigenstates in the
magnetic field, and thus there are two resonant frequencies
if there is a transition operator and the measurements
of the frequency are very accurate. The corrections are
given as

Δν12 ≃�MB
1;0

2π

¼ � 4m3
redα

3ffiffiffi
2

p
π2

����G3 þ
G1 þ G2 − 1

2
G3 − 1

4
G4 − 1

4
G5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X2
p

����;
ð2:41Þ
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Δν34 ≃�MB
0;0

2π

¼ � 4m3
redα

3ffiffiffi
2

p
π2

����−G3 þ
G1 þG2 − 1

2
G3 − 1

4
G4 − 1

4
G5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X2
p

����:
ð2:42Þ

The splitting of the resonant frequency is less than about
1 Hz for the current experimental bound of the Mu-to-Mu
transition.
The theoretical calculation of the HFS interval contains

the uncertainty of the fine structure constant, and it will be
hard to reduce the uncertainty of the theoretical prediction
to be less than 1 Hz. Therefore, we cannot say anything
about new physics even if the HFS interval is accurately
measured only in the case of B ¼ 0. The accurate mea-
surements of the HFS intervals for both B ¼ 0 and B ≠ 0
will be important. According to Ref. [18], the HFS intervals
for both B ≃ 0 and B ≠ 0 will be measured with systematic
errors of 2–3 Hz. The accurate measurement of the HFS
intervals will give us an interesting cross-check, though
the accuracy is not enough to say something, and the
Mu-to-Mu transition bound will be updated when the HFS
interval is accurately measured at J-PARC.

III. CLASSIFICATION OF THE MEDIATORS

The purpose of this paper is to study models to induce
the transition operators, Qi. Before moving to the concrete
description of the individual models, we classify them by
the LFV couplings to generate the operators to learn how
the Mu-to-Mu transition can be sizable avoiding the LFV
decay constraints. Though the assignments of the lepton
(flavor) numbers may have ambiguity in respective models,
this classification can specify the mediator in the model.
This classification is useful to make clear what is needed
to obtain the sizable Mu-to-Mu transition in a model-
independent way.
(1) ΔLe ¼ ΔLμ ¼ 0

The interactions do not violate the flavor
numbers, but the mass terms of SM singlet fields
have Le ¼ �2 and Lμ ¼ �2. Total lepton number
conservation is violated in this case. Therefore, this
case is friendly to the models to generate neutrino
masses.
The models with right-handed Majorana neutri-

nos are considered to induce the Mu-to-Mu
transition, which will be studied mainly in Secs. IV,
VII B, and VII C. The transition operators can be
generated by box loop diagrams [e.g., Figs. 1 (right)
and 12 (right)].

(2) ðΔLe;ΔLμÞ ¼ ð�2; 0Þ and ðΔLe;ΔLμÞ ¼ ð0;�2Þ
Interaction terms violate the flavor numbers

separately.

The mediators have the lepton number to be 2,
and they are called dilepton bosons. The mediators
have doubly electric charges. The dilepton doubly
charged scalars will be studied in Secs. V, VI, and
VII A, and dilepton gauge boson will be considered
in Sec. X. The transition operators can be generated
by tree diagrams (e.g., Figs. 3 and 16).

(3) ΔLe ¼ −ΔLμ ¼ �1
Interaction terms violate both flavor numbers.
The mediators are neutral bosons. The neutral

scalars are considered in Secs. VIII and IX A, and
neutral gauge bosons are studied in Sec. XI. The
transition operators can be generated by tree diagram
(e.g., Figs. 15 and 17).
We remark that this mediator should not couple

with quarks to generate the Mu-to-Mu transition to
avoid the μ–e conversion in nuclei induced at the
tree level.

(4) ðΔLe;ΔLμÞ ¼ ð�1; 0Þ and ðΔLe;ΔLμÞ ¼ ð0;�1Þ
The transition operators can be generated by box

loop diagrams [e.g., Figs. 1 (left) and 12 (left)].
However, the interaction can induce μ → eγ and/or
μ → 3e, which restricts the size of coupling con-
stants. Then, the magnitudes of the coefficients of
the transition operators become much less than the
achievement of the planned experiments, as we will
see in many of the models.

In the cases 1, 2, and 3, there are interactions or mass
terms with ΔLe − ΔLμ ¼ �2, which are even numbers.
Even in those cases, the interactions with ΔLe − ΔLμ ¼
�1may be intermingled in the respective models, and then,
the magnitudes of the Mu-to-Mu transition is bounded by
μ → eγ and/or μ → 3e [8,9]:

Brðμ → eγÞ < 4.2 × 10−13; ð3:1Þ

Brðμ → 3eÞ < 1.0 × 10−12: ð3:2Þ

If Zn discrete symmetry can be imposed to suppress the
ΔLe − ΔLμ ¼ �1 interactions (while the ΔLe − ΔLμ ¼
�2 interactions are allowed), the Mu-to-Mu transition can
be as large as the current experimental bound. In other
words, the observation of the Mu-to-Mu transition in the
near-future experiments implies the existence of such
discrete symmetry in the lepton sector.
The new ΔLe − ΔLμ ¼ �2 interactions can induce a

“wrong muon decay”:

μþ → νμ þ eþ þ ν̄e; ð3:3Þ

and thus the couplings and masses of the mediators are
restricted by the universality of the Fermi decay constant [23].
They are also constrained by eþe− → eþe− Bhabha scatter-
ing data. The couplings can also induce muon and electron
anomalous magnetic moments. The couplings and the
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mediator masses to induce the Mu-to-Mu transition which is
allowed by the PSI experiment, do not conflict with those low
energy data at present. Rather, the experimental results of the
Mu-to-Mu transitions restrict them. The data from the high-
luminosity LHC, ILC, and Belle II will cooperate with the
near-future Mu-to-Mu transition experiments.

IV. HEAVY MAJORANA NEUTRINOS

The simplest neutrino model to acquire the Mu-to-Mu
transition may be the models with TeV scale Majorana
neutrinos, which are SM singlets. The coefficient of the
transition operator from the neutrino box loop contribution
is written as [24–27]

G1ffiffiffi
2

p ¼ G2
FM

2
W

16π2
X
I ;J

½UμLIU
�
eLI

UμLJ U
�
eLJ

E0ðxI ; xJ Þ þ ðUμLIÞ2ðU�
eLJ

Þ2E1ðxI ; xJ Þ�

≃
G2

FM
2
W

16π2
X
I;J

½XμIX�
eIXμJX�

eJẼ0ðxI; xJÞ þ ðXμIÞ2ðX�
eJÞ2E1ðxI; xJÞ�; ð4:1Þ

where

xI ¼ M2
I

M2
W
; ð4:2Þ

and see Appendices C and D for the neutrino mixing matrix
U and the loop functions E0 and E1. The E0 term comes
from box diagrams such as Fig. 1 (left), and E1 term comes
from diagrams such as Fig. 1 (right). We ignore the light
neutrino masses xi ¼ m2

i =M
2
W ≃ 0, and one can rewrite the

first line into the second line by using the unitary relation of
the mixing matrix,X

I

UμLIU
�
eLI

¼
X
i

UμiU�
ei þ

X
I

XμIX�
eI ¼ 0; ð4:3Þ

and

Ẽ0ðx; yÞ ¼ E0ðx; yÞ − E0ðx; 0Þ − E0ð0; yÞ þ E0ð0; 0Þ
¼ E0ðx; yÞ: ð4:4Þ

We enumerate the necessary facts to evaluate the loop
contribution.
(1) The mixings are bounded by electroweak precision

data model-independently [28,29]

jXeIj2; jXμIj2 ≲ 0.003; ð4:5Þ
individually (supposing only one of MI is in the
TeV scale).

(2) The product of jXeIXμIj is bounded by LFV proc-
esses, especially μ → eγ.
The μR → eLγ decay amplitude is given as

AR¼
emμ

16π2
GFffiffiffi
2

p
�X

i

UμiU�
eiFðxiÞþ

X
I

XμIX�
eIFðxIÞ

�

¼ emμ

16π2
GFffiffiffi
2

p
X
I

XμIX�
eIF̃ðxIÞ; ð4:6Þ

where

F̃ðxÞ ¼ FðxÞ − Fð0Þ

¼ −
xð1 − 6xþ 3x2 þ 2x3 − 6x2 ln xÞ

ð1 − xÞ4 : ð4:7Þ

One finds2

FIG. 1. The box loop diagrams to generate the transition operator Q1. There are two types of contribution: the momentum parts (p) of
the numerators of neutrino propagators are picked (left), and the mass parts of the propagators are picked (right). The lepton flavors are
changed at the vertices in the left diagram, while the lepton numbers are violated in the neutrino masses in the right diagram.

2The decay width in our convention of the amplitude is

Γðμ → eγÞ ¼ m3
μ

16π2
ðjALj2 þ jARj2Þ: ð4:8Þ

The branching ratio can be written as

Brðμ → eγÞ ¼ 3α

16π
ðjÃLj2 þ jÃRj2Þ; ð4:9Þ

where the dimensionless amplitude ÃL;R is defined by

AL;R ¼ emμ

16π2
GFÃL;R: ð4:10Þ
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Brðμ → eγÞ ¼ 3α

32π

����X
I

XμIX�
eIF̃ðxIÞ

����2; ð4:11Þ

and the bound of Brðμ→eγÞ<4.2×10−13 requires

����X
I

X�
μIXeIF̃ðxIÞ

����≲ 4.4 × 10−5: ð4:12Þ

(3) In the box loop contribution of the Mu-to-Mu
transition in Eq. (4.1), the E0 term is generated
by flavor violation, and therefore, its magnitude is
bounded by μ → eγ. The E1 term, on the other hand,
is generated by the Majorana property of heavy
neutrinos even if there is no flavor violation in
principle, i.e., the E1 term can be enlarged without a
constraint from μ → eγ, if XeI and XμJ (I ≠ J) can
become large.

(4) One finds

E0ðx; yÞ ∼
1

4

xy
x − y

ln
x
y
;

E1ðx; yÞ ∼
1

2

ffiffiffiffiffi
xy

p y ln x − x ln y
x − y

; ð4:13Þ

and

E0ðx; xÞ ∼
1

4
x; E1ðx; xÞ ∼ −

1

2
x ln x; ð4:14Þ

for large x, y. Therefore, “if the neutrino mixings can
be kept the same,” the Mu-to-Mu transition can be
larger for heavier neutrinos. This is due to the
longitudinal modes of gauge bosons in the unitary
gauge (or Nambu-Goldstone bosons in the ’t Hooft-
Feynman gauge).

(5) For one generation (2 × 2 neutrino mass matrix), the
light neutrino mass in type-I seesaw is mν ¼
m2

D=MN , and the mixing is ðXαIÞ2 ¼ m2
D=M

2
N ¼

mν=MN , and therefore, the Mu-to-Mu transition is
tiny. For a three-generation case, there is freedom to
enlarge the mixings, XeI and XμI , while keeping the
active neutrino masses tiny. Therefore, the E0 term
can be larger than the naive expectation from the size
of the light–heavy neutrino mixing in one gener-
ation. If two XαI’s (say Xα1, Xα2) are large, the heavy
neutrino masses need to be degenerate, M1 ¼ −M2

and Xα1 ¼ Xα2 (or conventionally, M1 ¼ M2 and
Xα1 ¼ iXα2), due to the freedom of the mass matrix.
Such degeneracy can eliminate the E1 contribution.
If there are more than three singlet neutrinos, such
degeneracy can be released.

(6) If the light-heavy neutrino mixing is enlarged, a
sizable active neutrino mass can be generated by Z
boson loop [30],

ðMνÞαβ ≃
α2

4πcos2θW

X
I

XαIXβI
M3

I

M2
I −M2

Z
ln
M2

Z

M2
I
:

ð4:15Þ

The loop-induced neutrino mass can be canceled
if the heavy neutrino masses are degenerate
(M1 ¼ −M2). Therefore, the E1 contribution cannot
be enlarged, unless the tree-level and loop-induced
active neutrino masses are miraculously canceled.
(Even if one allows such unnatural cancellation, the
size of the coefficient is jG1j≲Oð10−6ÞGF due to
the constraints of light–heavy neutrino mixings from
precision electroweak data, and near-future experi-
ments cannot reach it.)

In total, the E0 contribution is bounded by μ → eγ
constraint, and the E1 contribution is bounded by the
natural neutrino mass hierarchy.
Since the cancellation between the tree-level and loop-

induced neutrino masses cannot be controlled by symmetry,
an elaborated construction of the neutrino mass model is
needed (e.g., the Dirac neutrinomass is forbidden) to enlarge
the Mu-to-Mu transition naturally from the neutrino
Majorana property, which we will see in Sec. VII. Here,
we exhibit the Mu-to-Mu transition assuming the heavy
neutrino mass degeneracy, which can be controlled by a
flavor symmetry.
We assume that the right-handed neutrino mass matrix

MN is given as

MN ¼

0
B@

0 0 M1

0 M3 0

M1 0 0

1
CA: ð4:16Þ

Then, the light neutrino mass after seesaw is

−ðMνÞαβ ¼
ðmDÞα1ðmDÞβ3 þ ðmDÞα3ðmDÞβ1

M1

þ ðmDÞα2ðmDÞβ2
M3

: ð4:17Þ

The heavy neutrino masses are M1, M2ð¼ −M1Þ, and M3.
The light–heavy neutrino mixings are approximately

Xα1 ¼ Xα2 ≃
ðmDÞα3
M1

; Xα3 ≃ 0: ð4:18Þ

To obtain the proper size of light neutrino masses with
sizable light-heavy neutrino mixings, ðmDÞα1 needs to
be small.
We plot the upper bound of jG1j=GF in the above setup

in Fig. 2. For M1 ≲ 30 TeV, the Dirac mass ðmDÞα3 is
chosen just to satisfy the μ → eγ bound. For M1 ≳ 1 TeV,
the loop function F̃ for μ → eγ does not depend onM1 very
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much (due to the longitudinal modes of the gauge bosons
in the unitary gauge), and thus the maximal value of
jXe1Xμ1j does not depend onM1. Therefore, in the region of
1 TeV≲M1 ≲ 30 TeV, the upper bound of the Mu-to-Mu
transition behaves as jG1j ∝ M2

1 because of 4E0 ∼M2
1=M

2
W

for M1 ≫ MW. For M1 ≳ 30 TeV, the μ → eγ bound can
satisfy for ðmDÞα3 < 100 GeV, and then, the upper bound
behaves as jG1j ∝ 1=M2

1.

V. TYPE-II SEESAW MODEL

The doubly charged scalar can couple with two charged
leptons, and the Mu-to-Mu transition can be induced by
the exchange of it at the tree level [31,32] as shown in
Fig. 3. The doubly charged scalar which can couple to
right-handed charged leptons is a SUð2ÞL singlet with
hypercharge Y ¼ 2, while a SUð2ÞL triplet scalar with
hypercharge Y ¼ 1 can couple to the left-handed lepton
doublets l.
In the type-II seesaw model [33–36], the neutrino masses

are generated by a vacuum expectation value (vev) of the
neutral component of the SUð2ÞL triplet scalar:

ðΔLÞab ¼
�

Δþþ
L Δþ

L=
ffiffiffi
2

p

Δþ
L=

ffiffiffi
2

p
Δ0

L

�
: ð5:1Þ

Therefore, the neutrinomass generation in the type-II seesaw
model can be related to the Mu-to-Mu transition [37].

The Lagrangian of the type-II seesaw can be written as

−L ¼
�
1

2
κLijðliLÞcljLΔL þ μΔHHΔ�

L þ H:c:

�
þM2

ΔjΔLj2; ð5:2Þ

whereH is a Higgs doublet with hypercharge Y ¼ 1=2, and
μΔ is a dimensionful scalar trilinear coupling. The “llΔL”
term is written down as

ðliLÞcljLΔL ¼ νciLνjLΔ0
L −

1ffiffiffi
2

p νciLejLΔ
þ
L

−
1ffiffiffi
2

p eciLνjLΔ
þ
L þ eciLejLΔ

þþ
L : ð5:3Þ

By integrating out ΔL, the dimension-five neutrino mass
operator (so-called Weinberg operator, “llHH”) can be
generated, which can be also interpreted to mean that the
vev of Δ0

L is vL ≡ hΔ0
Li ¼ −μΔhH0i2=M2

Δ, and the type-II
neutrino mass is

MII
ν ¼ κLvL: ð5:4Þ

As mentioned, the type-II seesaw Lagrangian contains
the doubly charged scalar couplings to the left-handed
charged leptons. We here describe it using two-component
spinor convention to avoid the complication of the
expressions,3

−L⊃
1

2
κLijeiejΔ

þþ
L þ1

2
κL�ij ēiējΔ−−

L þM2
ΔΔ−−

L Δþþ
L ; ð5:7Þ

where e denotes the two-component spinor. Integrating
out Δþþ

L ¼ ðΔ−−
L Þ� by equation of motion, 1=2κLijeiej þ

M2
ΔΔ−− ¼ 0, one obtains

−L ⊃ −
1

4

1

M2
Δ
κLijκ

L�
kl ðeiejÞðēkēlÞ: ð5:8Þ

Using

δαβδ
_β
_α ¼

1

2
σμβ _ασ̄

_βα
μ ; ð5:9Þ

one finds

FIG. 3. The tree-level exchange of a doubly charged scalar
boson Δþþ to induce the Mu-to-Mu transition.

FIG. 2. The upper bound of jG1j=GF as a function of the heavy
neutrino mass. For the neutrino mass to be less than ∼30 TeV, the
Mu-to-Mu transition is bounded by the μ → eγ constraint.

3

eiej ¼ eci PLej ¼ eTi CPLej: ð5:5Þ

In the chiral representation, the four-component spinor can be
expressed as

e¼
�

e

ec

�
; ec¼

�
ec

ē

�
; ē¼ðec ēÞ; ec¼ðe ec Þ: ð5:6Þ
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ðeiejÞðēkēlÞ ¼
1

2
ðēlσ̄μeiÞðēkσ̄μejÞ: ð5:10Þ

Expressing it in four-component fermion convention, we
obtain

−L ⊃ −
1

8

1

M2
Δ
κLijκ

L�
kl ðelγμPLeiÞðekγμPLejÞ; ð5:11Þ

and the coefficient of the transition operator can be
written as

G1ffiffiffi
2

p ¼ −
κLeeκ

L�
μμ

32M2
Δ
¼ −

1

32v2LM
2
Δ
ðMII

ν ÞeeðMII
ν Þ�μμ: ð5:12Þ

The four-Fermi operator Eq. (5.11) can generate LFV
decays

Brðl−a → lþb l
−
c l−d Þ

¼ 1

2ð1þ δcdÞ
���� κLabκ

L�
cd

4GFM2
Δ

����2 × Brðl−a → l−b νν̄Þ: ð5:13Þ

The μ → 3e decay process gives the most stringent con-
straint to the Mu-to-Mu transition in the model:

Brðμ → 3eÞ < 1.0 × 10−12: ð5:14Þ

We find

jG1j
GF

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brðμ→ 3eÞ

p 1

2
ffiffiffi
2

p
����κLμμκLeμ

����≲3.5×10−7
����κLμμκLeμ

����: ð5:15Þ

We suppose that the type-II term dominates the active
neutrino mass (e.g., there is no right-handed neutrino, or the
type-I contribution is negligible for the right-handed
neutrinos to be very heavy), and the type-II neutrino mass
matrix is

MII
ν ¼ U�

PMNSdiagðm1eiα1 ; m2eiα2 ; m3ÞU†
PMNS; ð5:16Þ

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix given by Particle Data
Group convention [38], and mi’s are the active neutrino
masses. Naively, one obtains

κLeμ
κLμμ

∼O
�
θ13;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol=Δm2
atm

q �
; ð5:17Þ

and jκLeμ=κLμμj is roughly 10%–20%. Then, jG1j=GF is
smaller than Oð10−6Þ, which cannot be observed in
near-future experiments. However, the observed neutrino
mixings can be realized even if κLeμ → 0. From the view-
points of the masses and mixings, κLeμ → 0 can happen if

(1) The neutrino masses are degenerate, m1eiα1 ≃
m2eiα2ð≃m3Þ.

(2)
P

U�
eiU

�
μimieiαi is accidentally canceled, which can

happen since θ13 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol=Δm2
atm

p
and θ23; θ12 ∼

Oð1Þ.
In the case of the degenerate solution, the transition

probability is maximized (for fixed vL and MΔ), and then,
the half-life of neutrinoless double beta decay can be just
above the current bound (if other experimental data allow
the solution).
Let us calculate the numerical upper bounds of jG1j=GF

allowed by the constraints from LFV decays [38]:

fBrðτ → 3eÞ;Brðτ → 3μÞg < f2.7; 2.1g × 10−8; ð5:18Þ

fBrðτ−→eþμ−μ−Þ;Brðτ−→μþe−e−Þg<f1.7;1.5g×10−8:

ð5:19Þ

The LFV decay bounds can give the upper bounds of the
Mu-to-Mu transition as

jG1j
GF

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brðτ→3eÞ
Brðτ→eνν̄Þ

s
1

2
ffiffiffi
2

p
����κLμμκLeτ

����≲1.4×10−4
����κLμμκLeτ

����; ð5:20Þ

jG1j
GF

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brðτ− → μþe−e−Þ

Brðτ → μνν̄Þ

s
1

2
ffiffiffi
2

p
���� κLμμκLμτ

����≲ 1.0 × 10−4
���� κLμμκLμτ

����;
ð5:21Þ

jG1j
GF

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brðτ− → eþμ−μ−Þ

Brðτ → eνν̄Þ

s
1

2
ffiffiffi
2

p
���� κLeeκLeτ

����≲ 1.1 × 10−4
���� κLeeκLeτ

����;
ð5:22Þ

jG1j
GF

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brðτ→3μÞ
Brðτ→μνν̄Þ

s
1

2
ffiffiffi
2

p
����κLeeκLeτ

����≲1.2×10−4
����κLeeκLeτ

����: ð5:23Þ

The μ → eγ (and μ–e conversion [39]) constraint can be
written as4

jκLeτκL�μτ j
M2

Δ
≲ 1 × 10−3 ×

1

ð1 TeVÞ2 ; ð5:25Þ

which is interpreted as

4

Brðμ → eγÞ ¼ 3α

16π

���� κLeiκL�μi3GF

�
1

M2
Δþþ

þ 1

8M2
Δþ

�����2: ð5:24Þ

The SUð2ÞL triplet contains a single charged scalar, which
contributes μ → eγ.
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jG1j
GF

< 3.8 × 10−6
���� κLeeκLμμκLeτκ

L
μτ

����: ð5:26Þ

We solve the equation κLeμ ¼ 0 by m1eiα1 to satisfy the
severe μ → 3e bound. Eliminating m1eiα1 from the equa-
tion, we obtain the neutrino mass matrix as a function of a
Dirac phase δ in the PMNS matrix and a Majorana phase
α2. Therefore, the upper bounds of the Mu-to-Mu transition
are obtained as shown in Fig. 4. Surely, the plot in Fig. 4 is
symmetric under δ → −δ and α2 → −α2, because of
G1 → G�

1. Near δ ∼ 0; π (and α2 ∼ 0), the degenerate
solution can be obtained, and thus, the Mu-to-Mu transition
can be largest there. In the inverted hierarchy case, m1 and
m2 are degenerate by themselves, and the Mu-to-Mu
transition can be large at all the points (if there is a solution
to make κLeμ → 0). In the normal hierarchy case, κLeμ can be
canceled even without mass degeneracy. Actually, both

κLee and κLeμ can be small to reproduce the neutrino
oscillation data. Therefore, there is a band where the
Mu-to-Mu transition is small in the plot.
The current strongest bound of the absolute neutrino

mass is from cosmological measurement: the total neutrino
mass Σmν < 0.12 eV [40]. Therefore, unless there is a
loophole (e.g., the neutrinos are not stable in the cosmo-
logical time scale [41]), the solution of the large degree of
degeneracy is excluded and the Mu-to-Mu transition is
bounded. In Fig. 5, we show the plot of the coefficient of
the Mu-to-Mu transition operator versus the total neutrino
mass. The shown Mu-to-Mu transition in the plot is the
upper bound from LFVas described above, generated by a
mesh of δ and α2. The cosmological measurements bound
the Mu-to-Mu transition as jG1j=GF ≲Oð10−5Þ.
If we adopt the type-I seesaw contributions in addition to

type-II, one can tune κLeμ to be zero irrespective of the
neutrino masses and mixings, and because of the many

FIG. 4. Contour plots of upper bound of log10ðjG1j=GFÞ from LFV decays as a function of δ and α2 (in radian) for normal mass
ordering (left) and inverted mass ordering (right). In the dark blue region, there is no solution to make κLeμ → 0.

FIG. 5. The plot of jG1j=GF allowed by LFV constraints versus the total neutrino mass for normal mass ordering (left) and inverted
mass ordering (right). The vertical red line shows

P
mν ¼ 0.12 eV.
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parameters, any size of the Mu-to-Mu transition can be fit
satisfying experimental constraints in principle [37].
Supposing κLee ∼ κLμμ ∼ 0.3, andMΔ ¼ 600 GeV (the exper-
imental bound of the doubly charged scalar mass can be
found in [42,43]), one finds

jG1j ∼ 1 × 10−3GF; ð5:27Þ

which can be soon tested by the near-future experiments.

VI. LEFT-RIGHT MODEL

The SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−Lð≡G3221Þ
gauge theory (left-right model) to induce the Mu-to-Mu
transition [44,45] is one of the representative models where
the new experimental results in this quarter-century have
brought about changes drastically. In the early 1990s, there
was still room that the active neutrinos can lie around
10–100 keV. Surely, the neutrino oscillations exclude the
room, and a large mixing between left-handed neutrinos
and SM singlet right-handed neutrinos at such mass scale is
not allowed. The meson mixing data pushes up the WR
gauge boson mass to be more than 3 TeV [46,47]. The
direct LHC data from Wþ

R → NRl
þ
R → jjl�

Rl
þ
R processes

gives the lower bound of the WR mass to be more than
4 TeV [48–50]. Therefore, the resume for the Mu-to-Mu
transition in the quarter-century ago is not valid anymore.
Various experimental constraints in the left-right model,

especially on the flavor physics, can be found in [51,52].
We note that the same sign and opposite sign of the two-
lepton signals from the Wþ

R → jjl�
Rl

þ
R processes can be a

probe of the structure in the neutrino mass matrix, which is
related to the degeneracy of the heavy neutrino masses [53].
The Dirac mass of tau neutrino is supposed to be (at

least) of the order of GeV due to left-right symmetry, and
thus, one needs fine-tuning to obtain the sub-eV active
neutrino mass in the TeV-scale left-right model. Therefore,
an extended seesaw model to generate sub-eV active
neutrino mass is often considered in the TeV-scale left-
right model. We employ three SM singlet fermions Si, and
consider the neutrino mass as

−L¼ 1

2
ð ðνcÞR NR ðScÞR ÞM

0
B@

νL

ðNcÞL
SL

1
CAþH:c:; ð6:1Þ

where M is a 9 × 9 mass matrix (in the basis where the
charged-lepton mass matrix is diagonal),

M ¼

0
B@

0 mD 0

mT
D μN MS

0 MT
S μS

1
CA: ð6:2Þ

The light neutrino mass matrix is

Mlight
ν ¼ mDðMSμ

−1
S MT

S − μNÞ−1mT
D

≃mDðMT
SÞ−1μSM−1

S mT
D: ð6:3Þ

We suppose that the Majorana mass μS of the singlet S is
small, and then the active neutrino mass can be sub-eV
easily even in the TeV-scale left-right model. This is
sometimes called an inverse seesaw.
The Dirac mass mD comes from the usual Dirac Yukawa

coupling to Higgs bidoublet: (1; 2; 2; 0) under G3221, and
MS comes from the ΦlRSL coupling with Φ∶ ð1; 1; 2;−1Þ
under G3221. The vev of Φ breaks G3221 down to SM gauge
symmetry. The Majorana mass μN is generated if there is a
SUð2ÞR triplet ΔR∶ ð1; 1; 3; 2Þ and it acquires a vev to
breakG3221. How the Mu-to-Mu transition is induced in the
left-right model depends on with or without the SUð2ÞR
triplet. In the case without the triplet, the Mu-to-Mu
transition is generated at the loop level, while in the case
with the triplet, it can be generated at the tree level since the
triplet contains the doubly charged scalar.
We parametrize5

mD ¼ U�
0diagðm1

D;m
2
D;m

3
DÞV†

0; ð6:4Þ

μN ¼ V�
1diagðμ1N; μ2N; μ3NÞV†

1; ð6:5Þ

MS ¼ V�
2diagðM1

S;M
2
S;M

3
SÞ: ð6:6Þ

The convention in the diagonalization of the neutrino mass
matrix is given in Appendix C. The matrix U in the 9 × 9
diagonalization matrix in Eq. (C9), which corresponds
to nearly the 3 × 3 PMNS matrix, is a diagonalization
matrix of

U�
0m

diag
D V†

0V2ðMdiag
S Þ−1μSðMdiag

S Þ−1VT
2V

�
0m

diag
D UT

0 : ð6:7Þ

In the left-right model, the mixings in U0 and V0 are
expected to be small as CKM mixings, but the structure of
MS and μS can have freedom to generate large neutrino
mixings. Surely, one can also employ a SUð2ÞL triplet and
consider the type-II seesaw contribution for the active
neutrino mass.

A. Case 1: Without SUð2ÞR triplet

If there is no SUð2ÞR triplet, the Mu-to-Mu transition is
generated by a box loop diagram. In addition to the
WL–WL loop diagram in Fig. 1, we have WR–WR box
loop contributions:

5Since the singlet S does not have a reference current basis, one
can parametrize the matrix MS to be given in Eq. (6.6) without
loss of generality and μS to be a general 3 × 3 matrix.
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G2ffiffiffi
2

p ¼ G2
FM

2
WL

16π2
g4R
g4L

1

z

X
I;J

½Y�
μIYeIY�

μJYeJE0ðx̃I; x̃JÞ

þ ðY�
μIÞ2ðYeJÞ2E1ðx̃I; x̃JÞ�; ð6:8Þ

and WL–WR box loop contributions:

G3ffiffiffi
2

p ¼ −
G2

FM
2
WL

8π2
g2R
g2L

X
I;J

½XμIY�
μIX

�
eJYeJE0ðxI; xJ; zÞ

þ XμIYeIX�
eJY

�
μJE1ðxI; xJ; zÞ�; ð6:9Þ

where

x̃I ¼
M2

NI

M2
WR

; xI ¼
M2

NI

M2
WL

; z ¼ M2
WR

M2
WL

: ð6:10Þ

The loop functions E0 and E1 are given in Appendix D.
Strictly speaking, since there is a WL–WR mixing due to
vevs of Higgs bidoublet, the mass eigenstates should be
quoted as their mixed states. We here neglect their mixing
in the box contributions.
One can find that E1 term in G2 and E0 term in G3

correspond to the Mu-to-Mu transition utilized by the
Majorana property of the heavy neutrinos. If there is no
SUð2ÞR triplet, the Majorana mass of the right-handed
neutrino μN is absent, and the heavy neutrino masses are
degenerate in the setup of the inverse seesaw. Then, their
contributions are canceled. Therefore, our concerns are E0

term in G2 and E1 term in G3, which are bounded by
μ → eγ. The μR → eLγ amplitude via WL loop is

ARðWLÞ ¼
emμ

16π2
GFffiffiffi
2

p
X
I

X�
μIXeIF̃ðxIÞ; ð6:11Þ

where F̃ is given in Eq. (4.7), and the μL → eRγ amplitude
via WR loop is

ALðWRÞ ¼
emμ

16π2
GFffiffiffi
2

p g2R
g2L

1

z

X
I

YμIY�
eIF̃ðx̃IÞ: ð6:12Þ

Because there is a WL–WR mixing ξLR, the chirality
can flip at the internal line in the loop and the decay
amplitudes are

ARðWL–WRÞ

¼ e
16π2

ξLR
gR
gL

GFffiffiffi
2

p
X
I

YμIXeIMNI

�
GðxIÞ −

1

z
Gðx̃IÞ

�
;

ð6:13Þ
ALðWL–WRÞ

¼ e
16π2

ξLR
gR
gL

GFffiffiffi
2

p
X
I

X�
μIY

�
eIMNI

�
GðxIÞ −

1

z
Gðx̃IÞ

�
;

ð6:14Þ

where

GðxÞ ¼ 2ð4 − 15xþ 12x2 − x3 − 6x2 ln xÞ
ð1 − xÞ3 : ð6:15Þ

The μ → eγ experimental result implies

����X
I

X�
μIXeIF̃ðxIÞ

����;
g2R
g2L

1

z

����X
I

YμIY�
eIF̃ðx̃IÞ

����≲ 4 × 10−5; ð6:16Þ

if we assume that there is no cancellation in each AL and
AR. These two constraints restrict the Mu-to-Mu transition
operators from WL–WL box and WR–WR box diagrams,
respectively. The μ → eγ bound via the WL–WR mixing is
written as

����X
I

Y�
μIX

�
eIMNI

GðxIÞ
����;����X

I

Y�
eIX

�
μIMNI

GðxIÞ
����≲ 40 MeV ×

gL
gR

×
10−4

ξLR
; ð6:17Þ

which restricts the Mu-to-Mu transition from the WL–WR
box diagram. Because of

X
I

X�
αIY

�
βIMNI

≃ ðmDÞαβ; ð6:18Þ

those roughly correspond to the bounds of the eμ and μe
elements of the Dirac neutrino mass matrix. We remark that
the restriction to the Mu-to-Mu transition via WL–WR box
(G3) is severer due to the internal chirality flipping in the
μ → eγ diagram.
In the case without a SUð2ÞR triplet, the Majorana mass

μN ¼ 0 at the tree level. The flavor violation of the right-
handed neutrino is characterized by V2 in Eq. (6.6). To
show the evaluation of the size of the Mu-to-Mu transition,
we assumeM1

S ≃M2
S and ðV2Þ13 ¼ ðV2Þ23 ¼ 0 (so thatM3

S
does not contribute). In Fig. 6, we show the upper bound of
the Mu-to-Mu transition by the WR box loop allowed by
μ → eγ constraint. We suppose gL ¼ gR in the plot. When
MNð¼ M1

SÞ is fixed, the μ → eγ bound to the mixing
ðV2Þ12 is relaxed for a heavier WR. The upper bound of the
Mu-to-Mu transition becomes the largest for a mass of WR
just when the maximal mixing is allowed. The largest upper
bound (for fixed MN) becomes larger for larger MN
because of the behavior of the box loop function. The
mass MN comes from Φl̄RSL coupling and the vev of Φ
gives WR mass. Therefore, the mass MN should not be
much larger than MWR

, and the bound of the Mu-to-Mu
transition is estimated as jG2j=GF ≲Oð10−8Þ.
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As we have remarked, the μ → eγ bound is stronger in
the case of internal chirality flipping. The Mu-to-Mu
transition viaWL–WR diagram is bounded to be jG3j=GF ≲
Oð10−10Þ as long as ξLR ≳ 0.01M2

WL
=M2

WR
. We note that

the WL–WR mixing ξLR is proportional to M2
WL

=M2
WR

, and
the proportionality coefficient is determined by the ratio of
the vevs of Higgs bidoublet, though we do not describe it in
detail in this paper.

B. Case 2: With SUð2ÞR triplet

If there is SUð2ÞR triplet Higgs to break SUð2ÞR×
Uð1ÞB−L, Majorana masses of the right-handed neutrinos
can be generated:

−L ⊃
1

2
κRijliRðlc

jÞLΔR þ H:c:; ð6:19Þ

μN ¼ κRhΔ0
Ri: ð6:20Þ

The box loop contribution can be larger than in case 1. In
this case, however, the coupling to induce the Majorana
mass can generate the transition operator at the tree level,
which can be surely larger than the box loop:

−L ⊃ −
1

8

1

M2
Δ
κRijκ

R�
kl ðeiγμPRelÞðejγμPRekÞ; ð6:21Þ

and

G2ffiffiffi
2

p ¼ −
κR�ee κRμμ
32M2

Δ
: ð6:22Þ

When we parametrize the Majorana mass matrix as

μN ¼ ṼdiagðμN1; μN2; μN3ÞṼT; ð6:23Þ

the κR matrix is written as

κRαβ ¼ ṼαIṼβIμNI: ð6:24Þ

The μ → 3e bound, Brðμ → 3eÞ < 1.0 × 10−12, restricts
the Mu-to-Mu transition similarly to the previous,

jG2j
GF

≲ 10−6 ×
1

2
ffiffiffi
2

p
���� κRμμκReμ

����: ð6:25Þ

There are three ways to suppress κReμ ¼ Ṽe1Ṽμ1μN1 þ
Ṽe2Ṽμ2μN2 þ Ṽe3Ṽμ3μN3.
(1) The mixings are small: Ṽ ≃ 1.
(2) The right-handed neutrino masses are degener-

ate: μN1 ≃ μN2.
(3) The mixings are not small, and the masses are not

degenerate, but the κReμ is accidentally canceled by
the μN3 contribution.

In models with “left-right parity” (exchange symmetry
lL ↔ ðlRÞc), one obtains

κL ¼ κR; ð6:26Þ

and Yukawa matrices are symmetric. Therefore, in the case
of the type-II dominance (μS → 0), κR is also related to the
neutrino masses and mixings:

κR∝Mν¼U�
PMNSdiagðm1eiα1 ;m2eiα2 ;m3ÞU†

PMNS; ð6:27Þ

and the Mu-to-Mu transition is estimated in parallel to the
analysis in the type-II seesaw.
In general, there is no reason that Ṽe2 and Ṽμ1 are small

in the model construction in the left-right model. Rather,
the mixing is not small in the unification scenarios, and the
Mu-to-Mu transition is much smaller than the near-future
experimental reach. If we do not go beyond the left-right
symmetry, a global discrete flavor symmetry to suppress
LFV can be assigned in the lepton sector and Ṽ ≃ 1. (Large
neutrino mixings can originate from a hidden sector with
singlet fermions, where the discrete symmetry is broken.)
The right-handed neutrinos (more precisely, mass eigen-
states of the heavy neutrinos from NR and S for μN ∼MS),
as well asWR gauge boson, should be heavier than 4–5 TeV
to satisfy the bound from the Wþ

R → NRl
þ
R → jjl�

Rl
þ
R

processes at the LHC [48–50]. The doubly charged scalar
mass, on the other hand, can be around 1 TeV [42,43], and
thus, the Mu-to-Mu transition with jG2j=GF ∼ 10−3 can be
obtained, which can be tested by the near-future Mu-to-Mu
transition experiments along with the direct search at high-
luminosity LHC experiment.

FIG. 6. The upper bound of jG2j=GF as a function of MWR
and

the heavy neutrino mass MN .
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VII. RADIATIVE NEUTRINO MASS

There are plenty of models in which the neutrino masses
are induced radiatively. The models can be roughly
classified into two groups.
(1) There is no SM singlet fermion.
(2) There are SM singlet fermions, but the Dirac

neutrino Yukawa coupling, NHl, is forbidden by
a discrete symmetry.

The representative model for (1) is called Zee-Babu
model [10–13,54–56]. The improved version of the model
has a hypercharge �2, SUð2ÞL singlet scalar, which is a
doubly charged scalar and can be a mediator to induce the
transition operator. Neutrino masses are generated at the
two-loop level. The model where the neutrino masses are
induced at a three-loop level is also considered (so-called
cocktail model) [57,58].
In the models for (2), the tree-level active neutrino

masses are forbidden by discrete symmetries. Because
the discrete symmetries can be exploited, the models are
often discussed together with dark matter candidates [59].
As we have studied in Sec. IV, the enlargement of the
Mu-to-Mu transition from the Majorana property suffers
from the natural neutrino mass hierarchy due to the light–
heavy neutrino mixings induced by the Dirac neutrino
masses. Because of the absence of the Dirac neutrino mass,
the models are also suitable to discuss the Mu-to-Mu
transition from the Majorana property. The model for
(2) has a Yukawa coupling Nηlð¼ NηþeL − Nη0νLÞ to
generate the neutrino mass at the one-loop level, where the
neutral component of the SUð2ÞL doublet η does not
acquire a vev (η is often called an inert Higgs doublet).
Alternatively, the model has a NSþeR type coupling (Sþ is
a hypercharge þ1 SUð2ÞL singlet scalar), and the neutrino
masses are generated at the three-loop level [58,60,61]. The
NηþeL and NSþeR couplings can induce the transition
operators via box diagrams.

A. Models with doubly charged scalar

1. Zee-Babu model

In the Zee-Babu model, there are SUð2ÞL singlet scalars,
hþ and kþþ, with hypercharge Y ¼ 1 and Y ¼ 2, respec-
tively. The couplings to the leptons and the masses of the
scalars are given as

−L ⊃ ðfijlc
i · ljhþ þ gijeiecjk

−− þ μhhkhþhþk−− þ H:c:Þ
þm2

hh
−hþ þm2

kk
−−kþþ; ð7:1Þ

where “·” stands for the contraction of the SUð2ÞL doublet:
A · B≡ ϵabAaBb ¼ A1B2 − A2B1. The coupling matrix f is
antisymmetric under the flavor index, and g is symmetric.
The scalar trilinear coupling μhhk violates the lepton
number symmetry.

The neutrino mass can be induced by two-loop diagram
in Fig. 7, and the mass matrix is given as

Mν ¼
1

M0

fMegMefT; ð7:2Þ

where Me ¼ diagðme;mμ; mτÞ,

1

M0

¼ μhhk
48π2maxðm2

h; m
2
kÞ
Ĩ; ð7:3Þ

and the loop function is approximately given as [54–56]

Ĩ ≃

8<
:

1 for mk ≪ mh;

1þ 3
π2

�
ln2

m2
k

m2
h
− 1

�
for mk ≫ mh:

ð7:4Þ

Because f is anti-symmetric, the neutrino mass matrix is
rank 2 (i.e., m1 ¼ 0), and the neutrino mass matrix in the
normal mass hierarchy is given by the PMNS matrix U as

Mν ¼ U�diagð0; m2; m3ÞU† ¼ m2u�2u
†
2 þm3u�3u

†
3; ð7:5Þ

where mi’s are the active neutrino masses as used through-
out this paper, and u2 and u3 are column vectors in
U ¼ ðu1; u2; u3Þ:

u1 ¼

0
B@

c12c13
−s12c23 − eiδc12s13s23
s12s23 − eiδc12s13c23

1
CA;

u2 ¼

0
B@

s12c13
c12c23 − eiδs12s13s23
−c12s23 − eiδs12s13c23

1
CA;

u3 ¼

0
B@

e−iδs13
c13s23
c13c23

1
CA: ð7:6Þ

FIG. 7. The diagram to induce the neutrino masses in the Zee-
Babu model. The symbol hHi stands for the vev of the SM
Higgs boson.
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We parametrize the antisymmetric matrix f as

f ¼

0
B@

0 f3 −f2
−f3 0 f1
f2 −f1 0

1
CA; ð7:7Þ

and then,

ff† ¼ jvfj2I − v�fv
T
f ; ð7:8Þ

where vf is a column vector, vf ¼ ðf1; f2; f3ÞT , and I is an
identity matrix. Suppose that vf is orthogonal to u2 and u3,
i.e., vTfu

�
2 ¼ vTfu

�
3 ¼ 0, which means that vf ¼ f0u1 (f0 is a

coefficient). Then, one finds

ff†Mνf�fT ¼ jf0j4Mν; ð7:9Þ

and

fu1 ¼ 0: ð7:10Þ
One can also obtain

f†u�2 ¼ −f�0u3; f†u�3 ¼ f�0u2: ð7:11Þ

Therefore, we find that the solution of Eq. (7.2) is

f ¼ f0

0
B@

0 Uτ1 −Uμ1

−Uτ1 0 Ue1

Uμ1 −Ue1 0

1
CA; ð7:12Þ

and

f20
M0

MegMe ¼ m2u3uT3 þm3u2uT2 þ a1u1uT1

þ a2ðu1uT2 þ u2uT1 Þ
þ a3ðu1uT3 þ u3uT1 Þ; ð7:13Þ

where ai’s are arbitrary coefficients with mass dimension.
Because any vectors can be given by a linear combination
of ui, there are three free complex parameters ai (and one
parameter f0 in f) in the solution.
Roughly, we obtain (supposing ai ¼ 0)

f20m
2
μgμμ

M0

∼ ðUμ2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

q
; ð7:14Þ

and the size of the scalar mass is estimated as

M0

48π2
¼maxðm2

h;m
2
kÞ

μhhkĨ
∼420GeV×

f20gμμ=ðUμ2Þ2
10−3

: ð7:15Þ

The coupling f can generate μ → eγ process by feτf�μτ
product:

Brðμ → eγÞ ¼ 3α

16π

���� feτf�μτ3GFm2
h

����2; ð7:16Þ

and therefore, the magnitude of f0 is bounded to satisfy
the μ → eγ experimental constraint: roughly, jf0j2 ≲
0.002 × ðmh=1 TeVÞ2.
Since there are three free parameters ai, one can

eliminate all off-diagonal elements of the coupling matrix
g to suppress the LFV three-body decays of charged
leptons. In that case, however, gee becomes larger than 1
since geem2

e ∼ gμμm2
μ. Therefore, using one degree of free-

dom, we need to adjust the ee element of MegMe. Then,
one of the three off-diagonal elements of g cannot be
eliminated. Because it is expected that gμτ is small
(gμτ ≃ gμμmμ=mτ), τ → 3μ bound can be satisfied and the
other bounds of LFV processes can be satisfied by
eliminating eμ and eτ elements of MegMe using the
remaining two degrees of freedom.
In Fig. 8 (left), we show the contour plot of jG2j=GF as a

function of the Dirac phase δ and the Majorana phase α2,
by adjusting geμ ¼ geτ ¼ 0 and gee ¼ gμμ. The Majorana
phase α2 defined in the convention by Particle Data Group
[38] is α2 ¼ argðm2=m3Þ here. We choose f20 ¼ 0.002,
mk ¼ 1.2 TeV, and M0=ð48π2Þ ¼ 500 GeV. In Fig. 8
(right), we show Brðτ → 3μÞ. Because gee ¼ gμμ is chosen,
we obtain Brðτ− → μþe−e−Þ ¼ Brðτ → 3μÞ. As can be
seen in Fig. 8 (left), jG2j=GF can be as large as the current
experimental bound shown in Eq. (2.32).
We comment on the model-parameter dependence of the

Mu-to-Mu transition. The coefficient of the transition
operator is roughly proportional to the model parameters as

jG2jffiffiffi
2

p ¼ jgeegμμj
8m2

k

∝
1

f40

maxðm4
k; m

4
hÞ

μ2hhkm
2
k

gee
gμμ

: ð7:17Þ

Here we use Eq. (7.15) to include the constraint to
reproduce the neutrino mass. The nonobservation of μ →
eγ gives the lower bound of m4

h=f
4
0. If f0 (namely f)

becomes smaller, the coupling gμμ needs to be larger to
reproduce the size of neutrino mass m3, and thus, the
Mu-to-Mu transition becomes larger. The scalar trilinear
coupling μhhk should not be much larger than mh and mk to
avoid a charge breaking global minimum. Therefore, the
search of the Mu-to-Mu transition gives a good test of the
Zee-Babu model in the range of gee ∼ gμμ.
Since gμτ cannot be eliminated, the τ → 3μ and τ− →

μþe−e− processes are generated:

fBrðτ → 3μÞ;Brðτ− → μþe−e−Þg

¼ 8

���� G2

GF

����2Brðτ → μνν̄Þ ×
����� gμτgee

����2;
���� gμτgμμ

����2
	
: ð7:18Þ
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Because of gμτ ≃ gμμmμ=mτ, if the Mu-to-Mu transition is
observed at G2=GF ∼ 10−3, those two LFV tau decays will
be observed.
We note on the case of inverted mass hierarchy.

Similarly, the rank-2 neutrino mass matrix (m3 ¼ 0 in this
case) is given as

Mν ¼ m1u�1u
†
1 þm2u�2u

†
2; ð7:19Þ

and the solution of Eq. (7.2) is

f ¼ f0

0
B@

0 Uτ3 −Uμ3

−Uτ3 0 Ue3

Uμ3 −Ue3 0

1
CA; ð7:20Þ

and

f20
M0

MegMe ¼ m1u2uT2 þm2u1uT1 þ a1ðu3uT1 þ u1uT3 Þ

þ a2ðu3uT2 þ u2uT3 Þ þ a3u3uT3 : ð7:21Þ

The size of gμμ becomes larger than the one in the normal
hierarchy to make ee, eμ, and eτ elements of MegMe to be
small, under the same model parameters above. This is
because Ue3 is small compared to the other elements, and
a3 needs to be larger. Consequently, the coefficient G2

becomes larger than the current bound unless gee is made to
be much smaller than gμμ.

2. Cocktail model

In the cocktail model [57], an inert Higgs doublet η
(which does not acquire a vev) and a hypercharge Y ¼ 1
SUð2ÞL singlet Sþ are introduced in addition to the doubly
charged scalar kþþ. Contrary to the Zee-Babu model, the

Sþ scalar does not couple to leptons directly, and the
μ → eγ induced by Sþ loop does not bother us. The
neutrino masses are generated by three-loop diagrams,
which look like a cocktail glass as shown in Fig. 9. The
mass matrix is given as

ðMνÞαβ ¼
1

ð16π2Þ3mαgαβmβ
Fcocktail

mk
; ð7:22Þ

where g is a doubly charged scalar coupling to right-handed
charged leptons (same as in Zee-Babu model), mα (α ¼ e,
μ, τ) is the charged lepton mass, mk is a doubly charged
scalar mass, and Fcocktail stands for a loop function
containing couplings in the model.

FIG. 9. A diagram to induce the neutrino mass in the cocktail
model. The charged scalar in the inert doublet η and the SUð2ÞL
singlet scalar Sþ are mixed to be Hþ

1;2. By splitting the masses of
the real and imaginary parts (H0, A0) of the neutral scalar in η,
neutrino masses are generated. The symbol hHi stands for the vev
of the SM Higgs boson.

FIG. 8. The contour plots of jG2j=GF (left), Brðτ → 3μÞ (right) as functions of the Dirac phase δ and the Majorana phase α2. The
choices of parameters in the Zee-Babu model are given in the text.
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The mass scale to generate the neutrino mass matrix,
Mν ¼ U�diagðm1; m2; m3ÞU†, in the normal mass ordering
is estimated as

mk

Fcocktail
∼

1

ð16π2Þ3
m2

μgμμ
m3U2

μ3

∼ 100 GeV × gμμ: ð7:23Þ

A large value of Fcocktail is needed for a realistic model to
satisfy the experimental constraints. More numerical works
to obtain the scale bymodel parameters can be found in [58].
One can immediately notice that the magnitude of ee and eμ
elements of the neutrino mass matrix Mν should be much
smaller than the magnitude of μμ element unless gee and geμ
are much larger than 1. Indeed, we want to make geμ → 0 to
obtain a reachable Mu-to-Mu transition while suppressing
the μ → 3e process. If the ee and eμ elements of Mν are
much smaller than the μμ element, neutrino mixings and
mass ratio, and phases are constrained. The analytic relation
of the neutrino mixings and mass ratio is given in Ref. [62].
In Fig. 10, we show the relation between the PMNS phase δ
and θ23. We vary θ12 since the relation is sensitive to it. The
3σ range of θ12 is 31.3°–35.9° by NuFIT 5.0 [63]. Because
θ23 is in the 3σ range of 40°–52°, it predicts that δ is preferred
to be in the second or third quadrant roughly.
Let us choose θ12 ¼ 33.4°, θ13 ¼ 8.57°, Δm2

sol ¼
7.42 × 10−5 eV2, and Δm2

atm ¼ 2.52 × 10−3 eV2. Then,
we can choose θ23 ¼ 45° and δ ≃ π as a benchmark point.
For gee ¼ gμμ and geμ ¼ 0, we obtain

gαβ ¼

0
B@

1 0 −4.57
0 1 0.0454

−4.57 0.0454 0.00321

1
CAgμμ: ð7:24Þ

Because of me ≪ mμ, the numerical values of the elements
are insensitive to gee to reproduce the neutrino mass matrix.

It is important to notice that geτ is large, and the Mu-to-Mu
transition is bounded by the τ → 3e process:

jG2j
GF

¼ Brðτ → 3eÞ
Brðτ → eνν̄Þ

1

2
ffiffiffi
2

p
���� gμμgeτ

���� < 3 × 10−5: ð7:25Þ

The μ → eγ process also bounds the Mu-to-Mu transition
similarly to Eq. (5.26) as

jG2j
GF

< 3.8 × 10−6
���� geegμμgeτgμτ

���� ¼ 1.8 × 10−5×

���� geegμμ

���� ð7:26Þ

in this benchmark point. We note that the Zee-Babu model
has freedom to suppress geτ, while in the cocktail model,
geτ is needed to generate θ12 and θ13 neutrino mixings.
Consequently, the Mu-to-Mu transition is bounded in the
cocktail model rather than the Zee-Babu model.

B. Charged Higgs contribution

The Dirac mass is supposed to be forbidden by Z2

symmetry. Namely, the Dirac Yukawa coupling with the
SM Higgs doublet Φ is absent, but couplings with an
additional inert doublet η are allowed:

−L ⊃ yαilαPRNiηþ
1

2
MiNc

i Ni þ H:c: ð7:27Þ

If the scalar potential contains the λ5 term,

V ⊃
λ5
4
ðηΦ†Þ2 þ H:c:; ð7:28Þ

the masses (mH and mA) of the real and imaginary parts
(H0 and A0) of the neutral Higgs boson in the inert doublet
η are split:

m2
H −m2

A ¼ λ5v2; ð7:29Þ

where v is the vev of the SM Higgs boson. Then, the active
neutrino masses are generated radiatively by the diagram
given in Fig. 11 as [59]

FIG. 11. The diagram to generate the neutrino mass radiatively
in the model without the Dirac neutrino masses. The symbol hHi
stands for the vev of the SM Higgs boson.

FIG. 10. The relation between δ (radian) and θ23 for various θ12
in the case of ðMνÞee;eμ → 0. We use central values for the 1–3
neutrino mixing and mass squared differences: θ13 ¼ 8.57°,
Δm2

sol ¼ 7.42 × 10−5 eV2, and Δm2
atm ¼ 2.52 × 10−3 eV2 [63].
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ðMνÞαβ ¼
1

16π2
yαiyβiMi

�
m2

H

m2
H−M2

i
ln
m2

H

M2
i
−

m2
A

m2
A−M2

i
ln
m2

A

M2
i

�

≃
λ5v2

16π2
yαiyβi
Mi

�
M2

i

m2
H−M2

i
−

M4
i

ðm2
H−M2

i Þ2
ln
m2

H

M2
i

�
:

ð7:30Þ

The charged Higgs boson in η can generate the
Mu-to-Mu transition by the box diagrams in Fig. 12:

G1ffiffiffi
2

p ¼ y�eiyμiy
�
ejyμj

512π2m2
η

I2ðxi; xjÞ

þ ðy�eiÞ2ðyμjÞ2
256π2m2

η

ffiffiffiffiffiffiffiffi
xixj

p
I1ðxi; xjÞ; ð7:31Þ

where xi ¼ M2
i =m

2
η, and Inðxi; xjÞ’s are the box loop

functions given in Appendix D, and mη stands for the
charged Higgs boson mass. The first term is bounded by
μ → eγ. Let us consider whether the Mu-to-Mu transition
from the second term can be generated avoiding the μ → eγ
constraint. To do that, we consider

yαi ¼

0
B@

ye1 0 0

0 yμ2 0

yτ1 yτ2 yτ3

1
CA ð7:32Þ

to eliminate the one-loop μ → eγ amplitude via η loop. (For
the purpose to eliminate μ → eγ, one of he3 and hμ3 can be
nonzero. We here suppose that both are zero to reduce the
number of parameters.) Then the neutrino mass matrix is

Mν ¼
λ5v2

16π2

0
BBBBB@

y2e1
M̃1

0 ye1yτ1
M̃1

0
y2μ2
M̃2

yμ2yτ2
M̃2

ye1yτ1
M̃1

yμ2yτ2
M̃2

y2τ1
M̃1

þ y2τ2
M̃2

þ y2τ3
M̃3

1
CCCCCA; ð7:33Þ

where M̃i is defined to beMi divided by a loop function so
that the neutrino mass matrix is ∝ yαiyβi=M̂i. The size of
the coupling is estimated as

λ5y2μ2 ∼ 10−10 ×
M̃2

1 TeV
: ð7:34Þ

Because there are four complex parameters (up to nor-
malization), one can fit three neutrino mixings, one mass
ratio, and phases, in principle. The lightest neutrino mass
m1 (with its phase) is a function of the other parameters
since the eμ element is chosen to be zero.
Though the couplings have been chosen to eliminate the

μ → eγ process, one needs to care about τ → lαγ (lα ¼ e, μ)
processes since yτ1 and yτ2 are needed to reproduce the
neutrino mixings:

Brðτ → lαγÞ ¼
3α

16π

���� yαiy�τiFNðxiÞ
GFm2

η

����2Brðτ → lανν̄Þ; ð7:35Þ

where

FNðxÞ ¼
1 − 6xþ 3x2 þ 2x3 − 6x2 ln x

12ð1 − xÞ4 : ð7:36Þ

We also need to care about muon g − 2 since the loop
contribution gives a negative contribution to it:

Δaμ ¼ −
1

8π2
m2

μ

m2
η
jyμij2FNðxiÞ: ð7:37Þ

We can check that the experimental bound can be
satisfied even if the nonzero elements of yαi are Oð1Þ
for mη ¼ 500 GeV. The transition amplitude can be maxi-
mal for Mi ≃mη, and we find jG1j=GF ≲Oð10−5Þ for
mη ¼ 500 GeV and jyαij < 1.

C. NS+ eR coupling

We consider models with right-handed charged lepton
couplings to SM singlet fermion N:

−L ¼ hαiecαPRNiSþ þ 1

2
MiNc

i Ni þM2
SS

þS−; ð7:38Þ

where Sþ is a SUð2ÞL singlet with hypercharge Y ¼ 1. The
transition operator Q2 is generated and the coefficient is

FIG. 12. The box loop diagrams to generate the Mu-to-Mu transition via the charged Higgs bosons.
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G2ffiffiffi
2

p ¼ heih�μihejh
�
μj

512π2M2
S

I2ðxi; xjÞ

þ ðheiÞ2ðh�μjÞ2
256π2M2

S

ffiffiffiffiffiffiffiffi
xixj

p
I1ðxi; xjÞ; ð7:39Þ

where xi ¼ M2
i =M

2
S.

1. KNT model

In the model by Krauss-Nasri-Trodden (KNT) [60], two
Y ¼ 1 SUð2ÞL singlet scalars (we call them S1 and S2) are
introduced:

−L ⊃ fαβlc
α · lβS

þ
1 þ hαjecαPRNjS

þ
2

þ λSðSþ1 S−2 Þ2 þ H:c: ð7:40Þ

The neutrino mass is generated by a three-loop diagram
shown in Fig. 13:

ðMνÞαβ¼
λS

ð16π2Þ3M2
S2

fαα0mα0hα0i

×FKNTðMNi=MS2 ;MS1=MS2Þhβ0imβ0fββ0 ; ð7:41Þ

wheremα ¼ ðme;mμ; mτÞ and FKNT is a loop function. The
equation can be solved just similarly to the Zee-Babu
model. However, the coupling h becomes large to be in a
nonperturbative region if one assumes that the observed
neutrino masses are all covered by this contribution.
Actually, in the Zee-Babu model in which the neutrino
masses are generated by the two-loop diagram, the cou-
pling can be Oð1Þ for several hundred GeV scalar masses,
and thus, one can imagine that the coupling needs to be
large to generate the neutrino mass by three-loop. This is
because the antisymmetric coupling f needs to be small to
avoid μ → eγ constraint. Of course, it is possible to give up
on explaining the entire neutrino mass matrix with this
loop-induced contribution and assume that the neutrino
masses come primarily from somewhere else. In such a
situation, the h couplings can be Oð1Þ without a contra-
diction with observables, and they can induce the

Mu-to-Mu transition, potentially as large as the current
bound, from the second term in Eq. (7.39).

2. AKS model

In the model by Aoki-Kanemura-Seto (AKS) [61], two
Higgs doubletsΦ1 andΦ2 to have a physical charged Higgs
scalar (H) in the loop, and one real scalar singlet η0 are
introduced. The neutrino mass is generated by three-loop
diagrams such as shown in Fig. 14:

ðMνÞαβ ¼
κ2tan2β
ð16π2Þ3mαmβhαihβi

FAKSðMNi;Mη;MS;MHþÞ
MNi

;

ð7:42Þ

where κ is Φ1Φ2ηS coupling.
Let us consider if the observed parameters of neutrino

oscillations can be reproduced with satisfying the μ → eγ
constraint, and see if the Mu-to-Mu transition can be
induced by the hαi coupling. To do that, let us consider

hαi ¼

0
B@

he1 0 0

0 hμ2 0

hτ1 hτ2 hτ3

1
CA; ð7:43Þ

similarly to Eq. (7.32), in order to eliminate the one-loop
μ → eγ amplitude via hαi coupling. Then the neutrino mass
matrix is

Mν ¼
κ2tan2β
ð16π2Þ3

0
BBBBB@

m2
eh2e1
M̃1

0 memτhe1hτ1
M̃1

0
m2

μh2μ2
M̃2

mμmτhμ2hτ2
M̃2

memτhe1hτ1
M̃1

mμmτhμ2hτ2
M̃2

m2
τ

�
h2τ1
M̃1

þ h2τ2
M̃2

þ h2τ3
M̃3

�

1
CCCCCA;

ð7:44Þ

FIG. 13. A diagram to induce the neutrino mass in the KNT
model. The symbol hHi stands for the vev of the SM Higgs
boson.

FIG. 14. A diagram to induce the neutrino mass in the AKS
model. The symbol hHi stands for the vev of the SM Higgs
boson.
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where M̃i ¼ MNi=FAKSðMNiÞ. We obtain the mass scale of
M̃2 as

M̃2 ≃ 100 GeV × h2μ2κ
2tan2β: ð7:45Þ

There are two types of solutions:
(1) Naive solution: hμ2 ≪ he1 ∼ 1.

If there is no cancellation in the ττ element ofMν,
one needs hμ2 ≪ he1 to realize the neutrino mixings.
This is due to me ≪ mμ. Since hμ2 is small, a large
value of κ tan β is needed to obtain the proper size of
the neutrino mass in this solution. Any observed
neutrino mixings (within errors) and a PMNS phase
δ can be realized. The Mu-to-Mu transition is
estimated as jG2j=GF ≲Oð10−7Þ. (If one allows a
nearly nonperturbative value of he1 ∼ 10, the
Mu-to-Mu transition can be enlarged, though.)

(2) he1 ∼ hμ2.
If we allow a tuning of the ττ element of Mν

(h2τ1=M̃1 þ h2τ3=M̃3 ≪ h2τ2=M̃2) to obtain the atmos-
pheric mixing properly, he1 ∼ hμ2 can be allowed.
Both ee and eμ elements of Mν are much smaller
than μμ element in this solution, and therefore, the
neutrino mixings and the Dirac phase δ are related as
shown in Fig. 10. To realize the solar neutrino
mixing, one needs to enlarge hτ1 compared to the
naive solution. Since hτ1 becomes Oð1Þ, one needs
to care about τ → eγ process. Our estimation of the
Mu-to-Mu transition is jG2j=GF ≲Oð10−6Þ.

VIII. NEUTRAL SCALAR EXCHANGE

The Mu-to-Mu transition induced by the neutral scalar
exchange shown in Fig. 15 is considered [64].
In general two-Higgs-doublets model, so-called type-III,

the Yukawa couplings can be written as

−L ¼ ðY1ÞijliLejRΦ0
1 þ ðY2ÞijliLejRΦ0

2 þ H:c: ð8:1Þ

and the vevs of the neutral components are hΦ00
1 i ¼

v cos β0, hΦ00
2 i ¼ v sin β0. Redefining the Higgs fields so

that Φ1 does not acquire a vev,

�Φ2

Φ1

�
¼

�
sin β0 cos β0

− cos β0 sin β0

��Φ0
2

Φ0
1

�
; ð8:2Þ

we can rewrite the Yukawa interaction as

−L ¼ ðYeÞijliLejRΦ2 þ ρijliLejRΦ1 þ H:c:; ð8:3Þ

where

Ye ¼ Y1 sin β0 þ Y2 cos β0;

ρ ¼ −Y1 cos β0 þ Y2 sin β0: ð8:4Þ

We can redefine sin β ¼ 1. The Yukawa coupling Ye
generates the charged lepton masses, and thus, we work
on the flavor basis where Ye is diagonal, Ye ¼
diagðye; yμ; yτÞ. The neutral physical Higgs interaction
can be written as

−L ¼ 1ffiffiffi
2

p ðYecα þ ρsαÞijeiLejRh

þ 1ffiffiffi
2

p ðYesα − ρcαÞijeiLejRH

þ i
1ffiffiffi
2

p ρijeiLejRAþ H:c:; ð8:5Þ

where sα ¼ sin α and cα ¼ cos α are the mixings of CP-
even Higgs bosons (h and H). Integrating out the neutral
Higgs bosons, h, H, and A, we extract the terms which can
be the transition operators:

−L ¼ −
1

4
ðρ221ðμLeRÞ2 þ ρ�212ðμReLÞ2Þ

�
s2α
m2

h

þ c2α
m2

H
−

1

m2
A

�

−
1

2
ρ21ρ

�
12ðμLeRÞðμReLÞ

�
s2α
m2

h

þ c2α
m2

H
þ 1

m2
A

�
þ H:c:; ð8:6Þ

and

G3ffiffiffi
2

p ¼ 1

16
ρ21ρ

�
12

�
s2α
m2

h

þ c2α
m2

H
þ 1

m2
A

�
; ð8:7Þ

G4ffiffiffi
2

p ¼ −
1

16
ρ�212

�
s2α
m2

h

þ c2α
m2

H
−

1

m2
A

�
; ð8:8Þ

G5ffiffiffi
2

p ¼ −
1

16
ρ221

�
s2α
m2

h

þ c2α
m2

H
−

1

m2
A

�
: ð8:9Þ

If we suppose that ρ21 and ρ12 are not zero with the other
ρij ¼ 0 and sin αð¼ cosðβ − αÞÞ → 0 (alignment limit),
LFV processes such as μ → eγ and μ → 3e do not occur.
In the limit, one obtains G4, G5 → 0. Actually, in that case,

FIG. 15. The tree-level exchange of a neutral scalar boson (H0,
here) to induce the Mu-to-Mu transition.

MODELS OF THE MUONIUM TO ANTIMUONIUM TRANSITION PHYS. REV. D 105, 015026 (2022)

015026-21



there is a global discrete Z4 symmetry, and the charge
assignments are

eL∶ 1; eR∶ 1; μL∶ 3; μR∶ 3; Φ1∶ 2; ð8:10Þ

and the charges of the others are 0. Therefore, once the
selection of ρ with the alignment limit is given, LFV is not
generated perturbatively. We note that the electron mass can
have a loop correction from ρ12ρ21. The ρ terms can also
induce the electron g − 2 and electric dipole moment
(therefore, ρ12ρ21 should be real). The coefficient G3 can
be generated satisfying the LFV constraints in the align-
ment limit, and the Mu-to-Mu transition can be around the
current experimental bound.

IX. SUSY

Similarly to the meson mixings, the box diagram in
which superparticles propagate can generate the transition
operators. Indeed, the minimally extended SUSY standard
model (MSSM) contains Majorana particles known as
gauginos: bino B̃ and wino W̃0. Though the Majorana
property of gauginos can be utilized to generate the
Mu-to-Mu transition, the transition probability is bounded
by the μ → eγ constraint as we have seen in various
models.
In the MSSM, the left-handed slepton doublet and the

down-type Higgs doublet have the same quantum numbers,
and thus, so-called R-parity is introduced to distinguish
them. The R-parity is also needed to avoid rapid proton
decays. If the R-parity is broken in the lepton sector, the
Mu-to-Mu transition can be induced at the tree-level
sneutrino exchange [65], as a simple corollary of the
neutral Higgs exchange (in the alignment limit) in the
previous section.
In this section, we first briefly describe the previously

well-known Mu-to-Mu transition in the R-parity violating
SUSY model, and then study the box contribution of the
neutralinos and charginos in extended models.

A. R-parity violation

If we consider R-parity violating terms, the transition
operators can be induced at the tree level [65]. The
superpotential is

W ¼ 1

2
λijkli · ljeck; ð9:1Þ

where λjik ¼ −λijk. We introduce only λ312 and λ321:

W ¼ λ312ðν3e1 − e3ν1Þec2 þ λ321ðν3e2 − e3ν2Þec1; ð9:2Þ

and Lagrangian contains

−L⊃ ðλ312ν̃τμ̄PLeþλ321ν̃τēPLμþH:c:Þþm2
ν̃τ
jν̃τj2; ð9:3Þ

where mν̃τ is a SUSY breaking tau-sneutrino mass. By the
tau-sneutrino exchange, one obtains

G3ffiffiffi
2

p ¼ λ�321λ312
8m2

ν̃τ

: ð9:4Þ

The tau-neutrino mass can be generated by loop:

mντ ∼
λ231λ132
16π2

Amemμ

m2
l̃

; ð9:5Þ

where A is a SUSY breaking trilinear scalar coupling.

B. Gaugino contribution

In this subsection, we describe how large Mu-to-Mu
transition can be induced by box contribution in the MSSM
with R-parity.
Though gauginos are new Majorana particles in the

MSSM, the Mu-to-Mu transition is strongly restricted by
μ → eγ constraints as we have seen several times since the
gaugino interactions are ðΔLe;ΔLμÞ ¼ ð�1; 0Þ, ð0;�1Þ
processes. Therefore, it is not very worth describing it in
detail, and we here note the rough estimation of the bound
of the Mu-to-Mu transition from the μ → eγ bound.
Using mass insertion approximation [66,67], the μ → eγ

constraints of the off-diagonal elements of slepton mass
matrix can be written as

g22 tan βjδLL12 j
m2

l̃
G2

F
≲Oð10−5Þ ð9:6Þ

with

δLL12 ¼ ðM2
l̃
Þ12=m2

l̃
: ð9:7Þ

Here, M2
l̃
is a 3 × 3 SUSY breaking left-handed slepton

squared mass matrix, and ml̃ is an averaged left-handed
slepton mass. This LL constraint mainly comes from the
chargino loop diagram, and the neutralino loop can
also constrain δRR;LR;RL12 similarly. The coefficient G1 of
the transition operator from wino loop can be roughly
written as

G1ffiffiffi
2

p ∼
g42ðδLL12 Þ2
512π2m2

l̃

I2ðx; xÞ þ
g42ðδLL12 Þ2
256π2m2

l̃

xI1ðx; xÞ; ð9:8Þ

where x ≃m2
W̃
=m2

l̃
. One should notice that the Mu-to-Mu

transition needs the mass insertion twice irrespective of
whether the Majorana property of wino is used or not.
Because Gb

2ðx; xÞ ≃ xGb
1ðx; xÞ ≲ 1, it is estimated as

jG1j
GF

≲Oð10−8Þ g
2
2jδLL12 j
tan β

: ð9:9Þ
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Therefore, the Mu-to-Mu transition becomes the largest if
δLL12 ∼ 1 is allowed for the slepton mass to be several times
10 TeV. The bino and charged wino box loop contribution
with RR, LR mass insertions can be also estimated
similarly. The coefficients can depend on the detail of
the superparticle spectrum, but we do not survey the
numerical detail since the Mu-to-Mu transition is tiny.
The chargino and neutralino contribution of μR → eLγ
amplitude can be canceled, but the μ–e conversion is not
simultaneously canceled, and thus, it constrains the
Mu-to-Mu transition.

C. Charged Higgsino contribution

If ΔL ¼ �2 neutrino mass can be utilized, the
Mu-to-Mu transition can be potentially generated avoiding
the μ → eγ constraint. However, as we have seen, the size
of neutrino mass restricts the Mu-to-Mu transition. This is
because Dirac neutrino masses induce light-heavy neutrino
mixings, and large active neutrino masses can be generated
at the loop level, even if we adjust the tree-level neutrino
masses to be zero. In the situation that the loop-induced
mass is suppressed by a flavor symmetry, the box con-
tribution of the Mu-to-Mu transition is also suppressed. In
the SUSY limit, the loop-induced masses are zero due to
the nonrenormalization theorem. By soft terms of SUSY
breaking, the neutrino masses are induced but the size of
the loop-induced mass can be suppressed compared to the
non-SUSY case [68]. As a result, the Dirac mass or the
light–heavy neutrino mixing can be larger than the one in
the non-SUSY case, and the Mu-to-Mu transition can be
larger. Although it can be larger, it is not large enough to
observe in near-future experiments. Therefore, similarly to
the non-SUSY model, let us consider a model with inert
Higgs doublets and Dirac mass is forbidden by discrete
symmetry.

The model we now consider is the SUSY version of the
model in Sec. VII B. We introduce additional Higgs
doublets η and η0 (because of gauge anomaly, we need
to introduce a pair of Higgs doubles in the SUSY model),
and the Yukawa coupling to η with hypercharge Y ¼ 1=2:

W ¼ yαiη · lαNi ¼ yαiðηþeα − η0ναÞNi: ð9:10Þ

We suppose that η0 does not acquire a vev and the Dirac
neutrino mass is absent. In order to avoid too large neutrino
masses, we introduce a discrete symmetry to forbid a η ·Hd
mass term. In the SUSY model, the so-called λ5 term
ðηHdÞ2 is absent in the F-term and D-term scalar potentials
in the SUSY limit, and the neutrino mass shown in Sec. VII
B is not generated. Introducing the ðηHdÞ2 term in the
superpotential, one obtains the λ5 term by bino and wino
dressing, and the tiny neutrino masses can be generated.
Alternatively, one can apply the type-II seesaw to generate
the neutrino mass.
The box loop via the charged scalar ηþ is the same as in

Sec. VII B. We here consider the box loop via the charged
Higgsino η̃þ and sneutrino Ñ. The sneutrino masses are
given as

−L ⊃ ðm2
Ñ
ÞijÑiÑ

†
j þ

�
1

2
BijÑiÑj þ H:c:

�
; ð9:11Þ

where m2
Ñ
contains the SUSY breaking squared mass and

Majorana mass of N, 1=2MiNiNi, and Bij’s are the
coefficients of the SUSY breaking bilinear terms. For
simplicity, we assume that ðm2

Ñ
Þij and Bij are flavor

diagonal. By a field redefinition, Bii can be made to be
real and positive. Then, masses of the sneutrinos forffiffiffi
2

p
ReÑ and

ffiffiffi
2

p
ImÑ are ðm2

Ñ
Þii � Bii. The coefficient of

the Mu-to-Mu transition operator from the sneutrino box
loop diagram is obtained as

G1ffiffiffi
2

p ¼ 1

2048π2m2
η̃

ðyeiy�μiyejy�μjðI2ðxRi; xRjÞ þ I2ðxRi; xIjÞ þ I2ðxIi; xRjÞ þ I2ðxIi; xIjÞÞ

þðyeiÞ2ðy�μjÞ2ðI2ðxRi; xRjÞ − I2ðxRi; xIjÞ − I2ðxIi; xRjÞ þ I2ðxIi; xIjÞÞÞ; ð9:12Þ

where

xRi ¼
ðm2

Ñ
þ BÞii
m2

η̃

; xIi ¼
ðm2

Ñ
− BÞii
m2

η̃

: ð9:13Þ

We suppose that the Yukawa coupling is given in Eq. (7.32) to eliminate μ → eγ. Then, the first term of G1 in Eq. (9.12)
becomes zero, and the second term remains if Bii ≠ 0 (which reminds us the B-term violates lepton number conservation).
The Yukawa coupling can generate τ → μðeÞγ:

Brðτ → lαγÞ ¼
3α

16π

����y�αiyτi
�
FNðxRiÞ þ FNðxIiÞ

2GFm2
η̃

−
FNðxiÞ
GFm2

η

�����2Brðτ → lανν̄Þ; ð9:14Þ
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where xi ¼ M2
i =m

2
η, and the loop function FNðxÞ is

given in Eq. (7.36). The Mu-to-Mu transition can be
the largest when xIi ≪ 1 ≪ xRi, and our estimation is
jG1j=GF ≲Oð10−5Þ.

X. DILEPTON GAUGE BOSONS

In a gauge extension model where the left- and
right-handed charged leptons are in one multiplet, a
doubly-charged dilepton gauge boson can be introduced
[23,69–73]:

L ¼ g3lffiffiffi
2

p ðYþþ
μ eciσ̄μei þ Y−−

μ eciσμēiÞ

þM2
YY

þþ
μ Yμ−−: ð10:1Þ

The gauge coupling g3l is the same as the SUð2ÞL gauge
coupling g2 (up to a renormalization correction) in the
SUð3Þc × SUð3ÞL ×Uð1ÞX model. The tree-level exchange
of the doubly-charged dilepton gauge boson in Fig. 16 can
induce the Mu-to-Mu transition. Integrating out the gauge
boson, one obtains

L ¼ −
g23l
2M2

Y
ðeciσ̄μeiÞðecjσμējÞ

¼ −
g23l
M2

Y
ðeciējÞðecjeiÞ: ð10:2Þ

In four-component convention, it is written as

L ¼ −
g23l
M2

Y
ðējPReiÞðējPLeiÞ

¼ þ g23l
2M2

Y
ðējγμPReiÞðējγμPLeiÞ: ð10:3Þ

Assuming that the current eigenstates ei, eci correspond to
the mass eigenstates of charged leptons, one finds that the
transition operator Q3 is generated and the coefficient is

G3ffiffiffi
2

p ¼ −
g23l
8M2

Y
: ð10:4Þ

The transition bound, Eq. (2.33), implies

MY > 1.8 ×
g3l
g2

TeV: ð10:5Þ

In general, the current eigenstates are not the same as the
mass eigenstates. Writing the four-component charged
leptons of the mass eigenstates as

ei ¼
�

ei
ðV†ecÞi

�
; ð10:6Þ

we obtain the gauge interaction as

L⊃−
g3l
2

ffiffiffi
2

p
�
Vij−Vji

2
eTi Cγ

μejþ
VijþVji

2
eTi Cγ

μγ5ej

�
Yþþ
μ

þH:c: ð10:7Þ

Due to the anti-commutation of the fermions, the vector
term is anti-symmetric and the axial-vector term is sym-
metric under the flavor indices. Therefore, LFV decays
such as μ → 3e are induced by the gauge boson exchange
in general. If the charged lepton mass matrix Mij is
symmetric (where Mijeiecj is the mass term) and no extra
fields are mixed with the charged leptons, one finds that the
current eigenstates correspond to the mass eigenstates and
Vij ¼ δij. Then, LFV decays are not induced by this term.

XI. FLAVORED GAUGE BOSONS

If there is a neutral gauge boson whose interaction is
ΔLe ¼ −ΔLμ ¼ �1, the Mu-to-Mu transition can be
induced by its exchange at the tree level as in Fig. 17.
The gauge boson should have a flavor-dependent charge.
For example, the Mu-to-Mu transition in non-Abelian
flavor gauge symmetry is discussed in Ref. [74]. We here
consider an Abelian flavor gauge symmetry to induce the
Mu-to-Mu transition.
As an example, the extra Uð1Þ charges of the lepton

doublets l ¼ ðνL; eLÞ and scalars ϕi are assigned as in
Table I, and the charges of the other fields are zero. We
introduce vectorlike lepton doublets L, L̄. The mass terms
for the first and second generations can be written as

FIG. 16. The tree-level exchange of the doubly charged gauge
boson to induce the Mu-to-Mu transition.

FIG. 17. The tree-level exchange of a neutral gauge boson to
induce the Mu-to-Mu transition.
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−L ¼ y1ϕ1LRl1 þ y2ϕ2LRl2 þMLL̄Lþ ȳ1e1RLLHd

þ ȳ2e2RLLHd: ð11:1Þ

Integrating out the vectorlike lepton doublets, we obtain the
Yukawa interactions of the first and second generations of
charged leptons. The electron and muon mass eigenstates
are given by

eL ¼ cos θe1 þ sin θe2;

μL ¼ − sin θe1 þ cos θe2; ð11:2Þ

where tan θ ¼ −y1ϕ1=ðy2ϕ2Þ. Denoting the extra Uð1Þ
gauge field as Xμ, we can write the gauge interaction as

L ¼ gXXμðl̄1γ
μl1 − l̄2γ

μl2Þ þ
1

2
M2

XXμXμ: ð11:3Þ

The gauge interaction of the electron and muon is

gXXμðē1γμe1 − ē2γμe2Þ
¼ gXXμððēLγμμL þ μ̄Lγ

μeLÞ sin 2θ
þ ðēLγμeL − μ̄Lγ

μμLÞ cos 2θÞ: ð11:4Þ

The sin 2θ term can induce the Mu-to-Mu transition,

L ⊃ −
g2Xsin

22θ

2M2
X

ðμ̄LγμeLÞðμ̄LγμeLÞ; ð11:5Þ

and

G1ffiffiffi
2

p ¼ g2X sin
2 2θ

8M2
X

: ð11:6Þ

We need to assume j cos 2θj ≪ 1 to suppress μ → 3e.
(Surely, we assume that the mixings of X to photon and Z
boson are negligibly small). Naively, Brðμ → 3eÞ < 10−12

provides a bound:

G1

GF
j cot 2θj≲ 1

2
ffiffiffi
2

p × 10−6: ð11:7Þ

Since the signs of ee and μμ couplings to Xμ in the above
are opposite, the constraint of cos 2θ from μ → eγ is loose
for me;mμ ≪ MX. Theoretically, if there is an exchange

symmetry ϕ1 ↔ ϕ2, l1 ↔ l2 in the Lagrangian, one finds
that j tan θj ¼ 1 and the unwanted LFV is absent.
One can similarly consider a model where Xμ can couple

to both left- and right-handed electron and muons. In that
model, the bounds of the diagonal couplings to electrons
and muons are stronger. The right-handed operators for
μ → 3e are simply added at the tree level, while the bound
becomes stronger due to the chirality flipping in the internal
line for μ → eγ. In any cases, the models are free from LFV
constraints by a choice that the diagonal couplings are
absent. Even in the choice, the electron and muon g − 2 can
be induced. If Xμ couples only to the left-handed leptons (as
the example above), the ratio of the induced anomalous
magnetic moments6 is

Δae
Δaμ

¼ m2
e

m2
μ
: ð11:10Þ

If Xμ couples to both left- and right-handed ones, the muon
and electron mass can be hit at internal lines, and thus, the
above flavor relation is violated. One can find that the
magnitude of Δae=m2

e can be much larger than Δaμ=m2
μ.

Let us consider the model where both left- and right-
handed leptons couple to the extra gauge boson in the
absence of the diagonal couplings:

L ¼ gXXμðeLγμμL þ aeRγμμR þ ðμ ↔ eÞÞ; ð11:11Þ

where a is a Uð1Þ charge for the right-handed charged
leptons. In this case, we obtain

G1ffiffiffi
2

p ¼ g2X
8M2

X
;

G2ffiffiffi
2

p ¼ a2g2X
8M2

X
;

G3ffiffiffi
2

p ¼ 2ag2X
8M2

X
: ð11:12Þ

The contributions to ðg − 2Þ=2 of the muon and electron
can be calculated as

Δaμ ¼ −m2
μ
ð1þ a2Þg2X
32π2M2

X
×
8

3
; ð11:13Þ

Δae ¼ memμ
2ag2X

32π2M2
X
GX

�
m2

μ

M2
X

�
; ð11:14Þ

TABLE I. An example of the extraUð1Þ charge assignments for
the flavored gauge model.

l1 l2 ϕ1 ϕ2

1 −1 −1 1

6The current muon g − 2 measurement [75] implies

Δaμ ¼ ð2.51� 0.59Þ × 10−9: ð11:8Þ
The values of the anomalous electron g − 2 are reported by
Berkeley [76] and Laboratoire Kastler Brossel (LKB) [77]
groups:

ΔaeðBerkeleyÞ ¼ ð−8.8� 3.6Þ × 10−13;

ΔaeðLKBÞ ¼ ð4.8� 3.0Þ × 10−13; ð11:9Þ
which seem to depend on the fine structure constant extracted
from the Rydberg constant.
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where the loop function is

GXðxÞ ¼
4 − 3x − x3 þ 6x ln x

ð1 − xÞ3 : ð11:15Þ

The contribution of the neutral gauge boson to the muon
g − 2 is negative. The experimental bound of the Mu-to-Mu
transition implies

−Δaμ ≲ 2 × 10−11: ð11:16Þ

Therefore, the muon g − 2 anomaly cannot be explained. In
Fig. 18, we show the electron g − 2 as a function of a when
the Mu-to-Mu transition is just on the current experimental
bound. The magnitude of the electron g − 2 is one digit
smaller than the current central value. Though the electron
g − 2 can be larger than the naive expectation without
flavor violation, the Mu-to-Mu transition constrains the
magnitude of it.

XII. OTHER MODELS

A. Leptoquark

If there are F̄PLliS and/or F̄PReiS types of interactions
(F: fermion, S: boson), the Mu-to-Mu transition can be
induced by a box diagram. As an example, we consider a
“leptoquark” scalar,

D∶
�
3; 1;−

1

3

�
; ð12:1Þ

and we allow the following interactions7:

−L ¼ ȳijliqjD� þ yijeci u
c
jDþ H:c: ð12:2Þ

We must forbid “diquark” interactions (qqD and ucdcD�
terms) to avoid a rapid proton decay. There is a fairly merit
to introduce the leptoquark coupling: it induces the
b → seþe−, b → sμþμ− for lepton nonuniversality at the
tree level [78,79].
Let us consider μ → eγ constraints. We suppose yij → 0.

Then, the bound is roughly

ȳ�1iȳ2i
M2

DGF
F1 ≲Oð10−5Þ; ð12:3Þ

where F1 is a form factor. If both yij and ȳij are switched
on, the chirality can flip at an internal line, and the bound
can be roughly

mui

mμ

y1iȳ2i
M2

DGF
F2 ≲Oð10−5Þ; ð12:4Þ

where F2 is a form factor. Therefore, for y; ȳ < Oð1Þ, the
μ → eγ constraints roughly give the bound,

jG1;2;3j
GF

≲Oð10−8Þ: ð12:5Þ

This is a consequence when only ðΔLe;ΔLμÞ ¼ ð�1; 0Þ;
ð0;�1Þ interactions are introduced.

B. Vectorlike fermions

Vectorlike fermions are often introduced in flavor
models. Via the box diagram in which the vectorlike
fermions propagate, the Mu-to-Mu transition can be gen-
erated. Here, we consider a minimal version to illustrate the
essence. We introduce SUð2ÞL singlet fermions:

Ēc∶ ð1; 1;−1Þ; Ec∶ ð1; 1; 1Þ; ð12:6Þ

and SM singlet flavon complex scalars ϕe and ϕμ. The
global Uð1Þ charges are assigned as in Table II, and
Lagrangian is

−L ¼ heϕeecĒc þ hμϕμμ
cĒc

þ
X
i¼1;2

yiliHEc þMEĒcEc: ð12:7Þ

The mass matrix is given as

FIG. 18. The contribution to the electron g − 2 (Δae) is shown
as a function of the Uð1Þ charge a for the right-handed charged
leptons when the Mu-to-Mu transition is assumed to be just the
same as the experimental upper bound.

TABLE II. The global Uð1Þ charge assignments for the model
with vectorlike fermions discussed in Sec. XII B.

ec μc ϕe ϕμ Ēc Ec

a b −a −b 0 0
7In this section, we use two-component fermion convention to

avoid complicated expressions.
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−L ⊃ ðe μ Ēc Þ

0
B@

0 0 y1v

0 0 y2v

heϕe hμϕμ ME

1
CA
0
B@

ec

μc

Ec

1
CA: ð12:8Þ

The muon mass is generated as

mμ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðheϕeÞ2 þ ðhμϕμÞ2

q
ME

v: ð12:9Þ

Even if the Yukawa couplings are Oð1Þ, the smallness
of muon mass is explained by the vev hierarchy
ϕe ≪ ϕμ ≪ ME. Surely, the electron is massless at this
stage, unless we introduce additional heavier vectorlike
fermions. To suppress μ → eγ via the vectorlike fermions,
ϕe ≪ ϕμ is needed.
The ϕe field has partial lepton numbers as

ðLe; LμÞ ¼ ð−1; 1Þ. Once ϕe and ϕμ acquire vevs, partial
lepton number symmetry is broken (while total lepton
number symmetry is kept). Then, the Mu-to-Mu transition
can be generated as

G2ffiffiffi
2

p ¼ h�2e h2μ
2048π2M2

E
ðI2ðxRe; xRμÞ − I2ðxRe; xIμÞ

− I2ðxIe; xRμÞ þ I2ðxIe; xIμÞÞ; ð12:10Þ

where

xRα ¼
m2

Reϕα

M2
E

; xIα ¼
m2

Imϕα

M2
E

: ð12:11Þ

If soft breaking terms of the global Uð1Þ symmetry are
absent, the imaginary parts are massless. Because the
masses of real and imaginary parts split, G2 becomes
nonzero.

C. Axionlike particle

If a global flavor symmetry is broken spontaneously, the
following flavored axionlike coupling can be considered
[80–82]:

L ¼ ∂μa

2fa
f̄iγμðvij þ γ5aijÞfj: ð12:12Þ

By a field redefinition f, one can consider the axionlike
coupling as

af̄ðySij þ γ5yPijÞf: ð12:13Þ

Therefore, one can think that the coupling can be a global
symmetry version of the model in Sec. XI, or the Higgs
scalar has a Peccei-Quinn-like global charge in the model in
Sec. VIII. The Mu-to-Mu transition can be induced by the

exchange of the axionlike particle at the tree level. The
Mu-to-Mu transition induced by the axionlike particle is
intensively discussed in Ref. [82].

XIII. CONCLUSION

The Mu-to-Mu transition is one of the interesting probes
for physics beyond the SM. In near future, the search
experiments will be performed in some facilities, such as
J-PARC in Japan and CSNS in China. In anticipation of
those upcoming experiments, we have evaluated their
impact on models and the connection to other experiments.
Assuming appropriate mediators, we are allowed to con-
sider five independent effective operators to induce the
transition. In terms of the effective couplings, we have
shown the general formula of the transition probability in
the zero or nonzero magnetic field. We have pointed out
that the magnetic-field dependence helps us to identify the
type of dominant effective operators.
For each plausible new physics model, we have esti-

mated the maximum size of the induced effective couplings
Gi (i ¼ 1–5) given in Eq. (2.18), taking into account
current experimental constraints. The result shows that
the Mu-to-Mu transition is most sensitive to the cases
where the mediator has ΔLe − ΔLμ ¼ �2 interactions in
the model: such as a doubly charged scalar, doubly charged
gauge boson, neutral scalar, and neutral gauge boson. Since
the transition is generated at the tree level by the exchange
of the mediator, the size of the effective couplings can be
jGij=GF ≲Oð10−3Þ, which is as large as the current
experimental bound (See Eqs. (2.29)–(2.33) for the bound).
The severe experimental constraints from LFV decays such
as μ → eγ and μ → 3e can be avoided for the mediators
with the ΔLe − ΔLμ ¼ �2 interactions. The left-right
model with SUð2ÞR triplet is typically the case, for
example. To generate the sizable Mu-to-Mu transition
avoiding the LFV decays, one needs some ideas such as
introducing a discrete flavor symmetry. Thus, the possible
observation of the Mu-to-Mu transition at the near-future
experiment can give us the drastic paradigm change of the
understanding of the lepton flavors.
In the models with ΔLe − ΔLμ ¼ �1 interactions, the

Mu-to-Mu transition can be generated by box loop dia-
grams. However, the μ → eγ constraint severely bounds the
transition, and we have obtained jGij=GF ≲Oð10−8Þ
at most.
If mass terms violate the (partial) lepton numbers, the

Mu-to-Mu transition can be generated by box loop dia-
grams even without the LFV interactions. The light-heavy
neutrino mixing needs to be large in order to enlarge the
Mu-to-Mu transition induced by the lepton number viola-
tion. However, the large light–heavy neutrino mixing can
induce sizable active neutrino masses radiatively, which
spoils the realization of the sub-eV neutrino mass. In the
sense, the Mu-to-Mu transition induced by the lepton

MODELS OF THE MUONIUM TO ANTIMUONIUM TRANSITION PHYS. REV. D 105, 015026 (2022)

015026-27



number violation is conceptually constrained to realize
the sub-eV neutrino masses. We need to assume the
neutrino masses to be zero by a discrete symmetry at
the tree level, and the sub-eV active neutrino masses are
generated radiatively to obtain a large size of the Mu-to-Mu
transition. We have found jGij=GF ≲Oð10−5Þ in such
models.
The existence of the doubly charged scalar can be related

to the neutrino mass generation. As examples of such
models, we have investigated the type-II seesaw, Zee-Babu,
and cocktail models. The Zee-Babu model especially
leaves the possibility of jG2j=GF ∼Oð10−3Þ, which is
related to τ− → μþμ−μ− and τ− → μþe−e−. In the type-
II seesaw model, the large Mu-to-Mu transition favors
degenerate neutrino masses, which results in jG1j=GF ≲
Oð10−5Þ if the cosmological neutrino mass bound is
applied. The cocktail model predicts jG2j=GF ≲Oð10−5Þ
due to the constraints of τ− → eþe−e− and τ− → eþμ−μ−.
The Mu-to-Mu transition is model-independently related

to the measurements of the Mu HFS interval by the
effective couplings. Although the current sensitivity of
the HFS interval is less than that of the Mu-to-Mu
transition, future excellent upgrades will have the potential
to provide us with a way to check the Mu-to-Mu transition.
Furthermore, through specified models, the Mu-to-Mu

transition is connected to the other observables in
flavor physics (e.g., neutrino masses, muon/electron g − 2,
LFV searches, and so on) and direct particle searches by
collider experiments. The near-future experiments for the
Mu-to-Mu transition will give us complementary informa-
tion to investigate the detailed structure of high-energy
physics.
We conclude with model-by-model tables of the

Mu-to-Mu transition for the convenience of readers, though
there are some overlaps with what we have already
described in this section. In Table III, we list the models
in which the Mu-to-Mu transition operators are generated at
the tree-level and they are tested by the near-future
Mu-to-Mu transition experiments. In Table IV, we list
the models in which the transition operators are generated
by box diagrams via ΔLe − ΔLμ ¼ �1 interactions, and
the size of the transitions is suppressed by the constraints
from LFV decays. If the active neutrino masses are
generated radiatively, the lepton number violation is
utilized to generate the Mu-to-Mu transitions by box
diagrams avoiding the constraints from LFV decays. We
list those models in Table V. In Table VI, we list the
predictive neutrino mass models with doubly charged
scalars which can induce the Mu-to-Mu transitions at the
tree level.

TABLE IV. The models in which the Mu-to-Mu transitions are induced at the one-loop level by ΔLe − ΔLμ ¼ �1
interactions, and the estimation of the corresponding coefficients. Due to the LFV constraints, the induced size is
tiny in this category of the interaction.

Model jG1j=GF jG2j=GF jG3j=GF Section

Heavy singlet neutrino ≲Oð10−8Þ � � � � � � IV
Left-right model without SUð2ÞR triplet ≲Oð10−8Þ ≲Oð10−8Þ ≲Oð10−10Þ VI A
SUSY (Gaugino loop) ≲Oð10−8Þ � � � � � � IX B
Leptoquark ≲Oð10−8Þ ≲Oð10−8Þ ≲Oð10−8Þ XII A

TABLE III. The models to generate the Mu-to-Mu transition at the tree level and the corresponding coefficients
Gi. For each model, a checkmark✓ is placed in the column where the coefficient can be obtained around the current
experimental bound (jGij=GF ∼Oð10−3Þ). In the column where the coefficient that is generated but becomes
smaller due to LFV bounds, a triangle mark △ is placed. The section column contains the section number in which
the model is described.

Model G1 G2 G3 G4 G5 Section

Type Iþ II hybrid seesaw ✓ � � � � � � � � � � � � V
Left-right model with SUð2ÞR triplet � � � ✓ � � � � � � � � � VI B
Inert Higgs doublet � � � � � � ✓ △ △ VIII
R-parity violating SUSY � � � � � � ✓ � � � � � � IX A
Dilepton gauge boson � � � � � � ✓ � � � � � � X
Neutral flavor gauge boson ✓ ✓ ✓ � � � � � � XI
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APPENDIX A: TRANSITION AMPLITUDE

Here, we show a calculation for the amplitude of the Mu-to-Mu transition [14].
The charged lepton fields l ¼ μ, e included in the operators, Qi in Eqs. (2.9)–(2.13), are explicitly written as

lðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p X
s

n
ap;sl usl ðpÞ exp ð−ipxÞ þ bp;s†l vsl ðpÞ exp ðipxÞ

o
; ðA1Þ

where usl ðpÞ and vsl ðpÞ are the four-component Dirac spinors. In the nonrelativistic limit, the spinors are given as

usl ¼
ffiffiffiffiffiffi
ml

p �
ξs

ξs

�
; vsl ¼

ffiffiffiffiffiffi
ml

p �
ηs

−ηs

�
; ðA2Þ

where ξþ1=2 ¼ ð1; 0ÞT , ξ−1=2 ¼ ð0; 1ÞT , ηþ1=2 ¼ ð0; 1ÞT , and η−1=2 ¼ ð−1; 0ÞT . The creation and annihilation operators
satisfy the anticommutation relation,�

ap;sl ; ap
0;s0†
l0

	
¼

�
bp;sl ; bp

0;s0†
l0

	
¼ ð2πÞ3δð3Þðp − p0Þδs;s0δl;l0 : ðA3Þ

Using the creation operators, we define the Mu state as

jMuðPÞ;F;mi ¼
X
se;sμ

ð1=2; sμ; 1=2; sejF;mÞ
Z

d3q
ð2πÞ3 φ̃ðqÞa

pe;se†
e b

pμ;sμ†
μ j0i; ðA4Þ

where P and q are the total and relative momentums of the muon-electron system, respectively, so that pe ¼
me=ðme þmμÞPþ q and pμ ¼ mμ=ðme þmμÞP − q. Here, ð1=2; sμ; 1=2; sejF;mÞ is the Clebsch-Gordan coefficient.
The wave function φ̃ðqÞ of the ground state in the momentum space is normalized to be

TABLE V. The radiative neutrino mass models in which the Mu-to-Mu transitions are induced at the one-loop
level by using the lepton number violation. The constraints from LFV decays viaΔLe − ΔLμ ¼ �1 interactions can
be avoided. ð�ÞIn order to realize the size of the active neutrino masses in the KNT model, one needs to consider a
nonperturbative region of the couplings. Then, the induced size of the coefficient can be larger, but the quality of the
estimate is different from others.

Model jG1j=GF jG2j=GF Section

Charged Higgs(ino) ≲Oð10−5Þ � � � VII B, IX C
KNT model � � � ≲Oð10−5Þð�Þ VII C 1
AKS model � � � ≲Oð10−6Þ VII C 2

TABLE VI. The neutrino mass models in which the Mu-to-Mu transitions are induced at the tree level via
ΔLe − ΔLμ ¼ �2 interactions with doubly charged scalars. ð#ÞIn the type-II seesaw, the induced size of the
coefficient is bounded by the absolute neutrino mass from the cosmological measurements. If neutrinos are not
stable in the cosmological time, the bound is not applied and the coefficient of jG1j can be larger.

Model jG1j=GF jG2j=GF Section

Type-II seesaw ≲Oð10−5Þð#Þ � � � V
Zee-Babu model � � � ≲Oð10−3Þ VII A 1
Cocktail model � � � ≲Oð10−5Þ VII A 2
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Z
d3q
ð2πÞ3 jφ̃ðqÞj

2 ¼ 1: ðA5Þ

With the above definition, the Mu state obeys

hMuðPÞ;F;mjMuðP0Þ;F0; m0i ¼ ð2πÞ3δð3ÞðP − P0ÞδF;F0δm;m0 : ðA6Þ

On the other hand, the Mu state is defined by the charge conjugation of Eq. (A4),8

jMuðPÞ;F;mi ¼
X
se;sμ

ð1=2; sμ; 1=2; sejF;mÞ
Z

d3q
ð2πÞ3 φ̃ðqÞb

pe;se†
e a

pμ;sμ†
μ j0i: ðA7Þ

We show the calculation for the transition amplitude via the operator Q1,

hMu;F;mjQ1jMu;F;mi ¼ hMu;F;mjðμ̄γμð1 − γ5ÞeÞðμ̄γμð1 − γ5ÞeÞjMu;F;mi; ðA8Þ

as an example. By substituting the explicit form of the field into the equation and using the anticommutation relation, we
obtain

hMu;F;mjQ1jMu;F;mi ¼ jφð0Þj2
mμme

X
s̄e;s̄μ

ð1=2; s̄μ; 1=2; s̄ejF;mÞ
X
se;sμ

ð1=2; sμ; 1=2; sejF;mÞ

×
h
−
�
ū
s̄μ
μ γαPLv

s̄e
e

��
v̄
sμ
μ γαPLu

se
e

�
−
�
v̄
sμ
μ γαPLu

s̄e
e

��
ū
s̄μ
μ γαPLv

se
e

�
þ
�
v̄
sμ
μ γαPLv

s̄e
e

��
ū
s̄μ
μ γαPLu

se
e

�
þ
�
ū
s̄μ
μ γαPLu

se
e

��
v̄
sμ
μ γαPLv

s̄e
e

�i
; ðA9Þ

where φ is the wave function in the coordinate space,

φðrÞ ¼
Z

d3q
ð2πÞ3 φ̃ðqÞ expðiq · rÞ: ðA10Þ

The first term in the square bracket of Eq. (A9) reduces to�
ū
s̄μ
μ γαPLv

s̄e
e

��
v̄
sμ
μ γαPLu

se
e

�
¼ mμmeTr½ηs̄eξs̄μ†σ̄α�Tr½ξseηsμ†σ̄α�; ðA11Þ

where σ̄α ¼ ðσ00;−σi1Þ and σ00 is the 2 × 2 identity matrix, and σi1 (i ¼ 1, 2, 3) is the Pauli matrix. The products of spinors,
η and ξ, can be replaced with the Pauli matrices by

X
se;sμ

ð1=2; sμ; 1=2; sejF;mÞξseηsμ† ¼ σ̄mFffiffiffi
2

p ; ðA12Þ

X
s̄e;s̄μ

ð1=2; s̄μ; 1=2; s̄ejF;mÞηs̄eξs̄μ† ¼ −
σmFffiffiffi
2

p ; ðA13Þ

where σ00 ¼ σ̄00 is the 2 × 2 identity matrix, and σm1 (m ¼ 0;�1) in those equations represents the Pauli matrix in the
spherical basis: σ�1

1 ¼ −σ̄�1
1 ¼ ð∓σ1 − iσ2Þ=

ffiffiffi
2

p
, and σ01 ¼ −σ̄01 ¼ σ3. After calculating the traces, we obtain

X
s̄e;s̄μ

ð1=2; s̄μ; 1=2; s̄ejF;mÞ
X
se;sμ

ð1=2; sμ; 1=2; sejF;mÞðūs̄μμ γαPLv
s̄e
e Þðv̄sμμ γαPLu

se
e Þ ¼ 2mμme: ðA14Þ

8We note that the definition of the charge conjugations of the creation and annihilation operators can have unphysical sign freedom.
We define the Mu state by Eq. (A7).
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By the Fierz transformation, the third term is changed into

ðv̄sμμ γαPLv
s̄e
e Þðūs̄μμ γαPLu

se
e Þ ¼ −ðūs̄μμ γαPLv

s̄e
e Þðv̄sμμ γαPLu

se
e Þ: ðA15Þ

The second and fourth terms are the same as the first and third ones in the case of the operator Q1. Thus, we obtain

hMu;F;mjQ1jMu;F;mi ¼ −8jφð0Þj2; ðA16Þ
for ðF;mÞ ¼ ð1;�1Þ, (1,0), and (0,0).
By applying the similar procedure, we also find the amplitudes for Q2–Q5,

hMu;F;mjQ2jMu;F;mi ¼ −8jφð0Þj2; ðA17Þ

hMu; 0; 0jQ3jMu; 0; 0i ¼ 12jφð0Þj2; hMu; 1; mjQ3jMu; 1; mi ¼ −4jφð0Þj2; ðA18Þ

hMu;F;mjQ4jMu;F;mi ¼ hMu;F;mjQ5jMu;F;mi ¼ 2jφð0Þj2: ðA19Þ

We now easily obtain Eqs. (2.20) and (2.21).9

APPENDIX B: MUONIUM GROUND-STATE SPECTROSCOPY

The Zeeman effect splits the energy levels of the Mu states. The spin Hamiltonian of Mu is given as

H ¼ aSμ · Se − μe− · B − μμþ · B: ðB1Þ
Here, a ¼ hνHFS ¼ 2πνHFS is the HFS coupling constant, and μe− , μμþ are the magnetic moments of the electron and
antimuon:

μe− ¼ −geμBSe; μμþ ¼ gμ
me

mμ
μBSμ; ðB2Þ

where μB is the Bohr magneton, and ge;μ are g-factors of the electron and muon.
We first ignore the Mu −Mu mixing interactions. The energy eigenvalues of Mu states jMu;F;miB are given as

EBðMu; 1;�1Þ ¼ E0 þ
a
2

�
1

2
� Y

�
; ðB3Þ

EBðMu; 1; 0Þ ¼ E0 þ
a
2

�
−
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
; ðB4Þ

EBðMu; 0; 0Þ ¼ E0 þ
a
2

�
−
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
: ðB5Þ

Here, E0 ≃ −mredα
2=2 is the 1S binding energy and

X ¼ μBB
a

�
ge þ

me

mμ
gμ

�
≃ 6.31

B
Tesla

; ðB6Þ

Y ¼ μBB
a

�
ge −

me

mμ
gμ

�
≃ 6.25

B
Tesla

; ðB7Þ

where we have used μB ≃ 5.788 × 10−5 eV=Tesla, a ≃ 1.846 × 10−5 eV, and ge ≃ gμ ≃ 2.002. Since the response of Mu to
the magnetic field is opposite to that of Mu, we obtain the formulas for Mu by replacing X and Y with −X and −Y,
respectively. It is found that the energy values for Mu are

9Reference [14] includes some typos in the signs of amplitudes.
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EBðMu; 1;�1Þ ¼ E0 þ
a
2

�
1

2
∓ Y

�
; ðB8Þ

EBðMu; 1; 0Þ ¼ E0 þ
a
2

�
−
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
; ðB9Þ

EBðMu; 0; 0Þ ¼ E0 þ
a
2

�
−
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
: ðB10Þ

We note that the (0,0) and (1,0) states for the zero magnetic field are mixed as

� jMu; 1; 0iB
jMu; 0; 0iB

�
¼

�
C −S
S C

�� jMu; 1; 0i
jMu; 0; 0i

�
; ðB11Þ

� jMu; 1; 0iB
jMu; 0; 0iB

�
¼

�
C S

−S C

�� jMu; 1; 0i
jMu; 0; 0i

�
; ðB12Þ

where the mixing is given as

C ¼ 1ffiffiffi
2

p
�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X2
p

�1
2

; S ¼ 1ffiffiffi
2

p
�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�1

2

: ðB13Þ

The experimental measurement of the HFS interval in the strong magnetic field is obtained as

a ¼ hν12 þ hν34; ðB14Þ

where

hν12 ≡ EBðMu; 1; 1Þ − EBðMu; 1; 0Þ ¼ a
2

�
1þ Y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
; ðB15Þ

hν34 ≡ EBðMu; 1;−1Þ − EBðMu; 0; 0Þ ¼ a
2

�
1 − Y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p �
: ðB16Þ

Now we switch on the Mu −Mu mixing interactions andMF;m ≠ 0. To calculate the energy states, we drop the Γ12 part
of M12 ¼ M12 − iΓ12=2 and we denote the M12 parts of F ¼ 0 and F ¼ 1 states as M0 and M1, which can be made to be
real by rephasing of the states.
If the external magnetic field is zero, Mu and Mu are maximally mixed and the energy eigenstates correspond to the CP

eigenstates:

j�;F;mi≡ 1ffiffiffi
2

p ðjMu;F;mi � jMu;F;miÞ: ðB17Þ

The energy matrix of ðjMu; 1; 1i; jMu; 1; 1iÞ can be written as

E01þ
� a

4
þ a

2
Y M1

M1
a
4
− a

2
Y

�
: ðB18Þ

The energy eigenvalues are

Eð1;1Þ;� ¼ E0 þ
a
4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a
2
Y

�
2

þM2
1

s
; ðB19Þ

and ΔE ≃ aY. The Mu −Mu mixing becomes small in the magnetic field due to ΔE ≫ M1. Them ¼ −1 state is similar to
the m ¼ 1 state.
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The energy matrix ofm ¼ 0 states ðjMu; 1; 0i; jMu; 0; 0i; jMu; 1; 0i; jMu; 0; 0iÞ in an appropriate sign convention can be
written as

E01þ

0
BBBBB@

a
4

− a
2
X M1 0

− a
2
X − 3

4
a 0 M0

M1 0 a
4

a
2
X

0 M0
a
2
X − 3

4
a

1
CCCCCA: ðB20Þ

The energy eigenstates in the magnetic field are

jþ; 1; 0i cos θM − j−; 0; 0i sin θM ≃ ðjMu; 1; 0iB þ jMu; 1; 0iBÞ=
ffiffiffi
2

p
; ðB21Þ

jþ; 1; 0i sin θM þ j−; 0; 0i cos θM ≃ ðjMu; 0; 0iB − jMu; 0; 0iBÞ=
ffiffiffi
2

p
; ðB22Þ

j−; 1; 0i cos θM̄ − jþ; 0; 0i sin θM̄ ≃ ðjMu; 1; 0iB − jMu; 1; 0iBÞ=
ffiffiffi
2

p
; ðB23Þ

j−; 1; 0i sin θM̄ þ jþ; 0; 0i cos θM̄ ≃ ðjMu; 0; 0iB þ jMu; 0; 0iBÞ=
ffiffiffi
2

p
; ðB24Þ

where

tan 2θM ¼ aX
aþM1 þM0

; tan 2θM̄ ¼ aX
a −M1 −M0

: ðB25Þ

The energy eigenvalues are

Eð1;0Þ;� ¼ E0 −
a
4
�M1 −M0

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�M1 �M0Þ2 þ ðaXÞ2

q

≃ E0 −
a
4
þ a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
�
M1 −M0

2
þ M1 þM0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
; ðB26Þ

Eð0;0Þ;� ¼ E0 −
a
4
�M1 −M0

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�M1 �M0Þ2 þ ðaXÞ2

q

≃ E0 −
a
4
−
a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
∓

�
−
M1 −M0

2
þ M1 þM0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
�
: ðB27Þ

The precise development is described by the 4 × 4matrix, but the transitions can approximately happen only jMu; 1; 0iB →
jMu; 1; 0iB and jMu; 0; 0iB → jMu; 0; 0iB, and the mass differences are

ΔMB
1;0

2
ð¼ MB

1 Þ ¼ C2M1 − S2M0 ¼
M1 −M0

2
þ M1 þM0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p ; ðB28Þ

ΔMB
0;0

2
ð¼ MB

0 Þ ¼ C2M0 − S2M1 ¼ −
M1 −M0

2
þ M1 þM0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p : ðB29Þ

APPENDIX C: DIAGONALIZATION OF NEUTRINO MASS MATRIX

Wework on the basis where the charged-lepton mass matrix is diagonal. The 6 × 6 neutrino mass matrixM is written as

−Lm ¼ 1

2
ð ðνcÞR NR ÞM

�
νL

ðNcÞL

�
þ H:c:; ðC1Þ

where ν and N are current-basis left- and right-handed neutrinos, and
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M ¼
�

0 mD

mT
D MN

�
: ðC2Þ

The mass eigenstates ν0, N0 are given as

�
νL

ðNcÞL

�
¼ U

�
ν0L
N0

L

�
; ðC3Þ

and

UTMU ¼ diagðMIÞ ¼ diagðmi;MIÞ: ðC4Þ

We choose phases in U so thatMI ’s are real. We use index i
for the light neutrino mass eigenstates, index I for the
“heavy” neutrino mass eigenstates, and index I for both
states. We use the Greek characters α, β for the generation
index in the current basis. For convenience, we define

U ¼
�
U X

V Y

�
: ðC5Þ

Namely,

ðνLÞα ¼ Uαiν
0
i þ XαIN0

I; ðC6Þ

ðNc
LÞα ¼ Vαiν

0
i þ YαIN0

I: ðC7Þ

In the following, the mass eigenstates νi and NI are defined
as Majorana fermions, e.g., νi ¼ ν0i þ ðν0iÞc.
The interactions to the WL and WR gauge bosons are

written as

gLffiffiffi
2

p Wμ
Ll̄

α
LγμðUαiνi þ XαINIÞL

þ gRffiffiffi
2

p Wμ
Rl̄

α
RγμðV�

αiνi þ Y�
αINIÞR þ H:c: ðC8Þ

If one adds three gauge singlets S, the expressions can be
easily extended. We define so that the 9 × 9mass matrixM
for N ¼ ðνL; ðNcÞL; SÞT is diagonalized by 9 × 9 diago-
nalization unitary matrix

U ¼

0
B@

U X

V Y

W Z

1
CA; ðC9Þ

where U, V, W are 3 × 3 matrices, and X, Y, Z are 3 × 6
matrices. Then, the expression of the gauge interaction is
unchanged under this convention, but the indices of the
“heavy” neutrinos are summed by I ¼ 1; 2;…; 6.

APPENDIX D: BOX LOOP FUNCTION

In the box loop calculation, one encounters an integral such as

Inðx; y; z; ξÞ ¼
Z

∞

0

dt
ð−tÞn

ðtþ xÞðtþ yÞðtþ zÞðtþ 1Þðtþ ξ1Þa1ðtþ ξ2zÞa2
; ðD1Þ

where ai ¼ 0 or 1, and ξi is a gauge parameter for Rξ gauge, e.g., ξ1 ¼ ξ2 ¼ ξ and z ¼ 1 in the box diagram withWL–WL
exchanges. Since

t2

ðtþ xÞðtþ yÞ ¼ 1 −
x

tþ x
−

y
tþ y

þ xy
ðtþ xÞðtþ yÞ ; ðD2Þ

one finds

X
i;j

λiλjInþ2ðxi; xj; z; ξÞ ¼
X
i;j

λiλjxixjInðxi; xj; z; ξÞ; ðD3Þ

if
P

i λi ¼ 0. Due to this equation, the ξ dependence in the box loop calculation can vanish. For example, for

λi ¼ VαiV�
βi; xi ¼

m2
i

M2
W
; ðD4Þ

P
i λi ¼ 0 is satisfied due the unitarity of the mixing matrix V, and thus, the box loop contribution of the meson mixings is

gauge independent [83].
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We define

Inðx; y; zÞ ¼
Z

∞

0

dt
ð−tÞn

ðtþ xÞðtþ yÞðtþ zÞðtþ 1Þ
¼ xn ln x

ðx − 1Þðx − yÞðx − zÞ þ
yn ln y

ðy − 1Þðy − xÞðy − zÞ þ
zn ln z

ðz − 1Þðz − xÞðz − yÞ ; ðD5Þ

for n ¼ 0, 1, 2, and the loop functions of the box diagrams are given as

E0ðx; y; zÞ ¼ xy

�
I0ðx; y; zÞ −

�
1þ 1

z

�
I1ðx; y; zÞ þ

1

4z
I2ðx; y; zÞ

�
; ðD6Þ

E1ðx; y; zÞ ¼ 2
ffiffiffiffiffi
xy

p �
I1ðx; y; zÞ þ

xy
4z

I1ðx; y; zÞ −
1

4

�
1þ 1

z

�
I2ðx; y; zÞ

�
; ðD7Þ

where E0 is a function for the contributions where
momentums (=k) are picked in the fermion propagators,
and E1 is a function for the ones where masses (MI ) are
picked. The coefficients of the transition operators can be
written by E0 and E1 terms. The gauge invariance of the E0

term is assured by the unitarity of the neutrino mixing
matrix U. On the other hand, E1 term is not necessarily
gauge invariant. For the WL–WL exchange diagram in the
type-I seesaw case, the function E1 is gauge invariant due to

U�MdiagU† ¼ M; ðD8Þ

and

ðU�MdiagU†ÞeL;eL ¼ 0; ðU�MdiagU†ÞμL;μL ¼ 0: ðD9Þ

Similarly, for the WR–WR exchange diagram in the left-
right model without SUð2ÞR triplet, the E1 term is gauge
invariant. However, for theWR–WR exchange with SUð2ÞR
triplet, andWL–WR exchange box diagrams, the E1 term is
not gauge invariant. In those cases, adding the loop
corrections of the triplet and bidoublet Higgs scalar
exchange diagram, the gauge dependence is canceled.

See Refs. [84,85] for the gauge invariance in the case
of the K–K̄ mixing. (Strictly speaking, in the case of the
type-II seesaw with SUð2ÞL triplet, the box loop is not
gauge invariant similarly unless the light neutrino masses
are ignored.) The loop function E1 above is given in the
’t Hooft-Feynman gauge.
The loop function E0 is usually redefined as given by the

Inami-Lim function [83],

Ẽ0ðx; y; zÞ ¼ E0ðx; y; zÞ − E0ðx; 0; zÞ − E0ð0; y; zÞ
þ E0ð0; 0; zÞ: ðD10Þ

The function E0 above is already redefined using
Eq. (D3) by the unitarity of the mixing matrix, and thus,
Ẽ0ðx; y; zÞ ¼ E0ðx; y; zÞ.
To express the loop functions for WL–WL and WR–WR

box diagrams shortly, we define

E0ðx; yÞ≡ E0ðx; y; 1Þ; E1ðx; yÞ≡ E1ðx; y; 1Þ: ðD11Þ

We note

Inðx; yÞ≡ Inðx; y; 1Þ

¼ xn ln x
ð1 − xÞ2ðx − yÞ þ

yn ln y
ð1 − yÞ2ðy − xÞ þ

1

ð1 − xÞð1 − yÞ

¼ 1

x − y

�
xn ln x
ð1 − xÞ2 −

yn ln y
ð1 − yÞ2 þ

1

1 − x
−

1

1 − y

�
; ðD12Þ

and

Inðx; x; zÞ ¼
zn ln z

ðz − 1Þðx − zÞ2 þ
xn−1ð1þ n ln xÞ
ðx − 1Þðx − zÞ −

ð2x − 1 − zÞxn ln x
ðx − 1Þ2ðx − zÞ2 ; ðD13Þ

Inðx; xÞ ¼
1þ xn−1ð1þ n ln xÞ

ð1 − xÞ2 þ 2xn ln x
ð1 − xÞ3 : ðD14Þ
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