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Low-energy data, combined with renormalization group equations, can predict new physics at far higher
energy scales. In this paper, we consider the possibility that the measured Higgs boson mass and top quark
mass hint at a five-dimensional gauge-Higgs unification (5D GHU) model at a scale above TeV. We note
that the vanishing of the Higgs quartic coupling and the proximity of the top quark Yukawa coupling and
weak gauge coupling at high scales, inferred from the experimental data, are in harmony with 5D GHU,
because in 5D GHU models the Higgs quartic coupling is forbidden by the 5D gauge symmetry and the
Yukawa couplings and the weak gauge coupling originate from a common 5D gauge coupling. Based on
the above insight, we propose a 5D GHU model where the Standard Model fermions are embedded in 5D
fermions in a way to tightly relate the top Yukawa coupling with the weak gauge coupling. Also, the model
predicts the presence of vectorlike fermions (other than the Kaluza-Klein modes), which can affect the
renormalization group evolutions of the 4D theory and reconcile the scale of vanishing Higgs quartic
coupling and that of equality of the top Yukawa and weak gauge couplings, thereby achieving a successful
matching of the 4D theory with 5D GHU. We predict the vectorlike fermion mass and the compactification
scale of 5D GHU from the conditions for the successful matching.
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I. INTRODUCTION

In the Standard Model (SM), the Higgs quartic coupling
exhibits an interesting property that it vanishes at an energy
scale below the Planck scale along renormalization group
(RG) evolutions. This property is usually interpreted as
implying metastability of our vacuum [1] as the Higgs
quartic coupling turns negative above that scale. Another
interpretation [2–5] is that the SM is matched, around the
scale of vanishing Higgs quartic coupling, with a model of
gauge-Higgs unification [6–11]1 in five dimensions (5D
GHU), where the SMHiggs field is identified with the fifth-
dimensional component of a gauge field whose quartic
coupling is forbidden by the 5D gauge symmetry.
Although less noted, the top quark Yukawa coupling and

the weak gauge coupling also show an interesting feature
that they become equal at the energy scale of Oð108Þ GeV.
This suggests that the two couplings may have a common
origin in some new physics above that scale. Indeed, in 5D
GHU, the SM Yukawa interactions are part of an extension

of the weak interaction and the Yukawa couplings are tied
with the weak gauge coupling.
Motivated by the above insights, we propose a model in

which the scale where the Higgs quartic coupling vanishes
is reconciled with the scale where the top quark Yukawa
coupling equals the weak gauge coupling, and this common
scale is interpreted as the scale where 5D GHU emerges.
Our model is characterized by the direct embedding of

the SM fermions into 5D bulk fermions. Here, we introduce
5D fermions in 3 representation of SUð3ÞW gauge group
that extends the SUð2ÞW weak gauge group. After orbifold
compactification, one 5D fermion yields one isospin-
doublet and one isospin-singlet 4D fermions of opposite
chiralities as the massless modes, which are directly
identified with an isospin-doublet and an isospin-singlet
SM quarks or leptons. Consequently, all the SM Yukawa
couplings are identical with the weak gauge coupling at this
stage. Small Yukawa couplings other than the top quark
Yukawa coupling are reproduced by introducing 4D vector-
like fermions at an orbifold fixed point that mix with the
massless modes of 5D fermions.2 The above structure
materializes the idea that the Yukawa couplings and the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1For early work on extradimensional models, see, e.g.,
Refs. [12,13].

2In the next section, we will show that it is the square sum of
the up-type and down-type quark Yukawa matrices that is related
to the weak gauge coupling. Hence, the bottom quark Yukawa
coupling can be small without help of the additional 4D vector-
like fermions.

PHYSICAL REVIEW D 105, 015018 (2022)

2470-0010=2022=105(1)=015018(11) 015018-1 Published by the American Physical Society

https://orcid.org/0000-0002-3798-773X
https://orcid.org/0000-0002-5451-247X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.015018&domain=pdf&date_stamp=2022-01-14
https://doi.org/10.1103/PhysRevD.105.015018
https://doi.org/10.1103/PhysRevD.105.015018
https://doi.org/10.1103/PhysRevD.105.015018
https://doi.org/10.1103/PhysRevD.105.015018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


weak gauge coupling are basically the same entity and this
fact is encoded in the value of the top quark Yukawa
coupling. Thus, this structure is aligned with our motivation
to interpret the scale of equality of the top Yukawa coupling
and weak gauge coupling, as the scale of 5D GHU.
Another characteristic of our model is the presence of

vectorlike fermions (other than Kaluza-Klein modes) that is
not arbitrary but is required by the model structure. They
are important not only theoretically, but also phenomeno-
logically; since their mass can be smaller than the com-
pactification scale, they can change the RG evolutions of
the 4D theory and achieve its matching with the 5D GHU
theory. In fact, they can amend a discrepancy in the SM
between the scale of equality of the top Yukawa and weak
gauge couplings and the scale of vanishing Higgs quartic
coupling, thereby making the matching of the 4D and 5D
theories successful.
It should be noted that our model is not intended to solve

the hierarchy problem of the Higgs mass, and the com-
pactification scale can be much larger than TeV scale.
Previously, the unification of the weak gauge coupling

and top quark Yukawa coupling in a high-scale 5D GHU
model has been discussed in Ref. [14] but only in a toy
model. We in this paper investigate the unification of the
two couplings in a complete, realistic model, and further
relate the unification with the high-scale vanishing of the
Higgs quartic coupling.
This paper is organized as follows. In Sec. II, we present

our model. In Sec. III, we determine the mass of the
vectorlike fermions and the compactification scale of 5D
GHU by solving the RG equations of the 4D theory made
of the SM content and the vectorlike fermions and match-
ing it with the 5D GHU theory. Section IV summarizes
the paper.

II. MODEL

We consider SUð3ÞC × SUð3ÞW ×Uð1ÞV gauge theory
in a flat 5D spacetime whose fifth dimension is compacti-
fied on S1=Z2 orbifold. We write the fifth coordinate as y,
and the S1 is obtained by the identification of y with
yþ 2πR. The S1=Z2 orbifold is then obtained by identify-
ing y with −y. SUð3ÞC is the SM QCD gauge group, and
SUð3ÞW × Uð1ÞV incorporates the electroweak gauge
groups. We denote the SUð3ÞW gauge field by ðWμ;W5Þ
and the Uð1ÞV gauge field by ðVμ; V5Þ, where μ¼0, 1, 2, 3.
The fields transform under the Z2 as

WμðyÞ ¼ PWμð−yÞP†; W5ðyÞ ¼ −PW5ð−yÞP†;

VμðyÞ ¼ Vμð−yÞ; V5ðyÞ ¼ −V5ð−yÞ;

P ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA; ð1Þ

and accordingly SUð3ÞW ×Uð1ÞV is broken into
SUð2ÞW × Uð1ÞW ×Uð1ÞV at y ¼ 0; πR. Gauge group
Uð1ÞW ×Uð1ÞV is further broken into SM hypercharge
Uð1ÞY by a brane-localized scalar field in ð1; 1;− 1

2
ffiffi
3

p ; 1

2
ffiffi
3

p Þ
representation of SUð3ÞC × SUð2ÞW ×Uð1ÞW × Uð1ÞV ,
denoted by ϕ, that develops a vacuum expectation value
(VEV). Accordingly, the hypercharge QY is given in terms
of the Uð1ÞW charge QW and the Uð1ÞV charge QV by

QY ¼ 1ffiffiffi
3

p ðQW þQVÞ: ð2Þ

The four-dimensional components of the SUð2ÞW ×Uð1ÞY
gauge fields have massless modes, which are identified
with the SM electroweak gauge fields. The fifth-dimen-
sional component of the SUð3ÞW=ðSUð2ÞW × Uð1ÞWÞ
gauge field has massless Kaluza-Klein (KK) mode, which
is identified with the SM Higgs field, H, as

W5jmasslessKK ¼ 1ffiffiffi
2

p
�

O H

H† 0

�
: ð3Þ

We introduce three copies of four bulk 5D fermions in
ð3̄; 3;− 1ffiffi

3
p Þ, (3; 3; 0), ð1; 3;− 2ffiffi

3
p Þ, ð1; 3; 1ffiffi

3
p Þ representations

of SUð3ÞC × SUð3ÞW ×Uð1ÞV , denoted by Ψi
uc, Ψi

d, Ψi
e,

Ψi
νc with i ¼ 1; 2; 3. The three copies correspond to the

three generations of the SM. The 5D fermions transform
under the Z2 as3

Ψi
ucð−yÞ ¼ −γ5PΨi

ucðyÞ; ð4Þ

Ψi
dð−yÞ ¼ γ5PΨi

dðyÞ; ð5Þ

Ψi
eð−yÞ ¼ γ5PΨi

eðyÞ; ð6Þ

Ψi
νcð−yÞ ¼ −γ5PΨi

νcðyÞ: ð7Þ

The 5D fermions are summarized in Table I.
From the Z2 charge assignments, we find that the

following chiral fields with SUð3ÞC × SUð2ÞW × Uð1ÞW ×
Uð1ÞV charges possess massless KK modes:

Right-handed

�
3̄;2;

1

2
ffiffiffi
3

p ;−
1ffiffiffi
3

p
�

componentofΨi
uc ; ð8Þ

Left-handed

�
3̄;1;−

1ffiffiffi
3

p ;−
1ffiffiffi
3

p
�

componentofΨi
uc ; ð9Þ

Left-handed

�
3; 2;

1

2
ffiffiffi
3

p ; 0

�
component of Ψi

d; ð10Þ

3Since Ψi
uc , Ψi

d, Ψi
e, Ψi

νc are in 3 representation of SUð3ÞW , the
same P as Eq. (1) enters Eqs. (4)–(7).
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Right-handed

�
3;1;−

1ffiffiffi
3

p ;0

�
componentofΨi

d; ð11Þ

Left-handed

�
1;2;

1

2
ffiffiffi
3

p ;−
2ffiffiffi
3

p
�

componentofΨi
e; ð12Þ

Right-handed

�
1;1;−

1ffiffiffi
3

p ;−
2ffiffiffi
3

p
�

componentofΨi
e; ð13Þ

Right-handed
�
1;2;

1

2
ffiffiffi
3

p ;
1ffiffiffi
3

p
�

componentofΨi
νc ; ð14Þ

Left-handed

�
1;1;−

1ffiffiffi
3

p ;
1ffiffiffi
3

p
�

componentofΨi
νc : ð15Þ

At this stage, there are chiral anomalies with respect to the
Uð1ÞV gauge group. These anomalies should be canceled,
and to achieve the cancellation, we introduce 4D chiral
fermions of Table II at an orbifold fixed point y ¼ 0:
The presence of 4D fermions ψ i

qR, ψ
i
lR is probably a

consequence of more fundamental physics that underlies
the orbifolding. In the present paper, however, we adhere to
the orbifold picture and introduce the 4D fermions by hand.
The most generic 5D action is

S¼
Z

d4x
Z

πR

−πR
dy−

1

2
tr½WMNWMN �−1

4
VMNVMN

þ iΨ̄i
ucΓMDMΨi

uc þ iΨ̄i
dΓMDMΨi

dþ iΨ̄i
eΓMDMΨi

e

þ iΨ̄i
νcΓMDMΨi

νc þ δðyÞ½iψ i†
qRσ̄

μDμψ
i
qRþ iψ i†

lRσ̄
μDμψ

i
lR

−ψ iT
qRfAijϕiσ2Ψ

j
uc jRþBijϕ

†Ψj
dj�Lg

−ψ iT
lRfCijϕ

†Ψj
ej�LþEijϕiσ2Ψ

j
νc jRgþH:c:�; ð16Þ

where spacetime indices M, N run as M;N ¼ 0; 1; 2; 3; 5,
and DM, Dμ denote gauge-covariant derivatives. Ψj

uc jR,

Ψj
djL, Ψj

ejL, Ψj
νc jR denote the 4D-decomposed components

of the 5D bulk fermions with the indicated chirality
that are in SUð2ÞW doublet representation, listed in
Eqs. (8), (10), (12), (14). Aij, Bij, Cij, Eij denote their
coupling constants with 4D localized fermions ψ i

qR, ψ
i
lR

and the [Uð1ÞW ×Uð1ÞV]-breaking scalar ϕ. After ϕ
develops a VEV, the fourth line of Eq. (16) yields a quark
mass matrix, which can be recast by a flavor rotation of
ψ i
qR into

ψT
qR

�
M3×3 O3×3

��
U1 U2

U3 U4

��
iσ2Ψuc jR
Ψdj�L

�
; ð17Þ

where M3×3 is a 3 × 3 diagonal matrix, O3×3 denotes the
3 × 3 null matrix, ðU1

U3

U2

U4
Þ is a unitary matrix, and U1, U2,

U3, U4 are its 3 × 3 submatrices. We see that the fields
below are massless chiral modes,

ðU3Þkjiσ2Ψj
uc jR þ ðU4ÞkjΨj

dj�L ≡Qk
L: ð18Þ

Qk
L are identified with the SM isospin-doublet quarks.

[Remember that Ψj
uc jR, Ψj

dj�L have hypercharge QY ¼ 1=6
after the breaking of Uð1ÞW ×Uð1ÞV into Uð1ÞY .] There
also are vectorlike modes with mass M3×3 that comprise

ψk
qR and ðU1Þkjiσ2Ψj

uc jR þ ðU2ÞkjΨj
dj�L ≡ Xk

qL: ð19Þ

They represent new, vectorlike quarks that have the same
charges as the SM isospin-doublet quarks. Other fields
Ψj

uc jL, Ψj
djR are identified with the SM up-type and down-

type isospin-singlet quarks.
The presence of the vectorlike quarks Eq. (19) is an

important prediction of the model. As for theoretical
aspects, their presence is not arbitrary but is required by
the model structure. Accordingly, their number and gauge
charges are uniquely fixed. As for phenomenological
aspects, since their mass M3×3 can be smaller than the
compactification scale, they can modify the RG evolutions
of SM parameters. This modification can fix the discrep-
ancy between the scale of vanishing Higgs quartic coupling
and that of equality of the top Yukawa and weak gauge
couplings, achieving the matching of the 4D theory with
the 5D GHU theory.
The quark Yukawa interactions are derived from the 5D

SUð3ÞW gauge interaction as

S⊃2πR
Z
d4xi

gWffiffiffi
2

p H

�
Ψi

uc j†Liσ2ðU†
3ÞikQk�

L þΨi
djTRðU†

4ÞikQk�
L

�

þH:c:; ð20Þ

where gW denotes the SUð3ÞW gauge coupling. The up-type
and down-type quark Yukawa matrices, Yu, Yd, are
extracted as Yu ¼ i gWffiffi

2
p U�

3, Yd ¼ −i gWffiffi
2

p U�
4. Unfortunately,

TABLE II. The gauge charges and chirality of the 4D fermions
localized at y ¼ 0. i is the flavor index with i ¼ 1; 2; 3.

SUð3ÞC SUð2ÞW Uð1ÞW Uð1ÞV Chirality

ψ i
qR 3 2 0 1

2
ffiffi
3

p Right-handed

ψ i
lR 1 2 0 − 3

2
ffiffi
3

p Right-handed

TABLE I. The gauge and Z2 charges of the 5D fermions. i is the
flavor index with i ¼ 1; 2; 3.

SUð3ÞC SUð3ÞW Uð1ÞV Z2 transformation

Ψi
uc 3̄ 3 − 1ffiffi

3
p Ψi

ucð−yÞ ¼ −γ5PΨi
ucðyÞ

Ψi
d 3 3 0 Ψi

dð−yÞ ¼ γ5PΨi
dðyÞ

Ψi
e 1 3 − 2ffiffi

3
p Ψi

eð−yÞ ¼ γ5PΨi
eðyÞ

Ψi
νc 1 3 1ffiffi

3
p Ψi

νcð−yÞ ¼ −γ5PΨi
νcðyÞ
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these Yukawa matrices are unrealistic because the unitarity
relation U†

3U3þU†
4U4¼diagð1;1;1Þ gives Y†

uYuþY†
dYd¼

g2W
2
diagð1;1;1Þ, which contradicts the smallness of the first

and second generation Yukawa couplings. To reproduce
their smallness, we introduce two generations of 4D
vectorlike fermions of Table III at y ¼ 0.
4D vectorlike fermions χau, χad mix with the massless KK

modes of 5D fermions through the term

−ΔS¼
Z

d4x
Z

πR

−πR
dyδðyÞ

�
Maj

u χaujTLiσ2Ψj
uc jL

þMaj
d χadj†LΨj

djRþH:c:þμauχ̄
a
uχ

a
uþμadχ̄

a
dχ

a
d

�
; ð21Þ

which reduces the Yukawa couplings of two generations by
the ratio μu=Mu or μd=Md.
Even with the above mechanism to reduce the first and

second generation Yukawa couplings, there is a tight
connection between the third generation Yukawa couplings
and the SUð3ÞW gauge coupling. Since the relation

Y†
uYu þ Y†

dYd ¼ g2W
2
diagð1; 1; 1Þ is still valid for the third

generation quarks, by neglecting the mixing between the
third generation and other generation quarks, we get

y2t þ y2b ≃
1

2
g2W; ð22Þ

where yt, yb denote the top and bottom quark Yukawa
couplings. As yt is dominantly large, and gW matches with
the weak gauge coupling, Eq. (22) materializes the idea that
equality of the top quark Yukawa coupling and the weak
gauge coupling hints at 5D GHU.
As for the lepton sector, the charged lepton Yukawa

matrix and the neutrino Dirac Yukawa matrix are derived in
the same fashion. The fourth line of Eq. (16) gives a lepton
mass matrix, which can be recast into the form

ψT
lRðM0

3×3 O3×3 Þ
�
V1 V2

V3 V4

�� Ψej�L
iσ2Ψνc jR

�
; ð23Þ

where M0
3×3 is a 3 × 3 diagonal matrix, ðV1

V3

V2

V4
Þ is a unitary

matrix, and V1, V2, V3, V4 are its 3 × 3 submatrices. The
massless chiral modes below

ðV3ÞkjΨj
ej�L þ ðV4Þkjiσ2Ψj

νc jR ≡ Lk
L ð24Þ

are identified with the SM isospin-doublet leptons. The
vectorlike modes with mass M0

3×3 that comprise

ψk
lR;

ðV1ÞkjðΨj
ejLÞ� þ ðV2Þkjiσ2Ψj

νc jR ≡ Xk�
lL ð25Þ

represent new, vectorlike leptons, which have the same
charges as the SM isospin-doublet leptons. Other fields
Ψj

ejR, Ψj
νc jL are identified with the SM charged leptons

and isospin-singlet neutrinos, respectively. The realistic
charged lepton Yukawa couplings and tiny active neutrino
masses are obtained by introducing vectorlike fermions
analogous to those of Table III.
As with the vectorlike quarks, the presence of the

vectorlike leptons Eq. (25) is an important prediction of
the model.

III. ESTIMATION OF VECTORLIKE FERMION
MASS AND COMPACTIFICATION SCALE

The presence of vectorlike quarks Eq. (19) and vector-
like leptons Eq. (25) can modify the RG evolutions of SM
parameters and amend the discrepancy between the scale of
vanishing Higgs quartic coupling and that of equality of the
top Yukawa and weak gauge couplings, enabling us to
match the 4D theory with the 5D GHU theory. Noting this
fact, we estimate the mass of the vectorlike fermions with
which the matching conditions of the 4D theory with the
5D GHU theory are satisfied. Additionally, we obtain the
compactification scale from the matching scale.
The matching relates the radiatively generated potential

for the fifth-dimensional component of SUð3ÞW gauge
boson in 5D GHU with the Higgs potential in the 4D
theory. It also relates the SUð3ÞW gauge coupling in the
former with the weak gauge coupling and quark Yukawa
couplings in the latter. For the Higgs potential, we adopt the
general result [2] that the scale of vanishing Higgs quartic
coupling λ at one loop equals the compactification scale of
5D GHU models as

λ

�
1

2πR

�
¼ 0: ð26Þ

Note that Eq. (26) has been derived by considering one-
loop threshold corrections from all the Kaluza-Klein modes
of the SUð3ÞW gauge field and bulk fermions in a general
5D GHU model. Hence, we can use Eq. (26) without
further including threshold corrections from Kaluza-Klein
modes. Note also that the 4D fermions localized at y ¼ 0 do
not alter Eq. (26) at one-loop level because these fermions
do not couple to the Higgs field at tree level. For the weak
gauge coupling and quark Yukawa couplings, we perform a
tree-level matching around the compactification scale as

TABLE III. 4D vectorlike fermions localized at y ¼ 0. Index a
runs as a ¼ 1; 2.

SUð3ÞC SUð2ÞW Uð1ÞW Uð1ÞV
χau 3 1 1ffiffi

3
p 1ffiffi

3
p

χad 3 1 − 1ffiffi
3

p 0
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gW ¼ gSUð2ÞW ;

1

2
g2W ¼ y2t þ y2b; at μ ¼ 1

2πR
; ð27Þ

where gSUð2ÞW denotes the weak gauge coupling, and the
second condition is based on Eq. (22).
We numerically estimate the value of the vectorlike

fermion mass with which Eqs. (26), (27) are simultaneously
satisfied at one unique scale and the matching is successful.
This scale is then identified with the compactification scale
1=ð2πRÞ. To this end, we solve the two-loop RG equations
[15–17] of the 4D theory (comprising the SM content and
the vectorlike fermions) by varying the vectorlike fermion
mass. The masses of the vectorlike quarks and leptons are
assumed degenerate, for simplicity. As for the SM param-
eters used as inputs of the RG equations, since the top quark
pole mass significantly affects the RG evolution of the
Higgs quartic coupling, we vary it in the 3σ range of the
latest measurement of the CMS Collaboration, 170.5�
0.8 GeV [18].4 The strong gauge coupling is fixed at the
central value of the same measurement, and the other
parameters are fixed at their central values in accordance
with Ref. [20]. The pole masses of the top quark, Higgs
particle, and W, Z particles are translated into the input
values of the top Yukawa coupling, the Higgs quartic
coupling and the weak mixing angle for the RG equations
by using the code [21], based on the results of [22–28].
In Fig. 1, we give a contour plot of

log10 ðμλ=μgyÞ; ð28Þ

where

λðμλÞ ¼ 0; ð29Þ

1

2
g2SUð2ÞW jμ¼μgy

¼ y2t þ y2bjμ¼μgy
; ð30Þ

on the plane of the vectorlike fermion massMvec versus the
top quark pole mass Mt.
The contour of log10 ðμλ=μgyÞ ¼ 0 is the region where

Eqs. (26) and (27) are simultaneously satisfied at one scale
and the matching is successful. Thus, this contour is the
model’s prediction on the vectorlike fermion massMvec and
the precise top quark pole mass. Since the contour exists
only for Mt ≳ 171.4 GeV, if future measurements of the
top quark pole mass exclude this range of Mt, the present
model is falsified. To confirm the model, one should test the
relation between the vectorlike fermion mass and the top
quark pole mass given by the contour. This is not possible
in near-future collider experiments, since the vectorlike

fermion mass is predicted to be above 103 TeV. On the
contour of log10 ðμλ=μgyÞ ¼ 0, the value of μλ ¼ μgy, which
corresponds to the compactification scale 1=ð2πRÞ, varies
from 1011.6 GeV to 1010.2 GeV from the upper left to the
lower right. The above range is the model’s prediction on
the compactification scale.
The contour of log10 ðμλ=μgyÞ ¼ 0 is interrupted at Mt ≃

171.4 GeV because for lower values of the top quark pole
mass, the Higgs quartic coupling remains positive along
RG evolutions and hence μλ is not defined. There are no
contours in the area under the contour of log10 ðμλ=μgyÞ ¼ 0

because the Higgs quartic coupling remains positive there.
The reason that the Higgs quartic coupling tends to remain
positive for smaller values of the vectorlike fermion mass is
that the presence of the vectorlike fermions increases the
weak gauge coupling along RG evolutions, which changes
the beta function of the Higgs quartic coupling positive. To
visualize the situation, we show in Fig. 2 the plot of
log10 ðμλ=μgyÞ for a fixed value of the top quark pole mass
Mt ¼ 172.1 GeV. One sees that as the vectorlike fermion
mass decreases, log10 ðμλ=μgyÞ increases and becomes
about 0, and then the plot line vanishes because μλ is
not defined for lower values of the vectorlike fermion mass.

FIG. 1. Contour plot of log10 ðμλ=μgyÞ Eq. (28), which is the
logarithm of the ratio of the scalewhere the Higgs quartic coupling
vanishes and the scale where the quark Yukawa couplings and
weak gauge coupling satisfy Eq. (27). The vertical axis is the
logarithm of the vectorlike fermion mass log10ðMvec=GeVÞ, and
the horizontal axis is the top quark pole massMt. The range of the
horizontal axis corresponds to the 3σ range of the top quark pole
mass measured by the CMS Collaboration, and the range between
the two vertical dashed lines corresponds to the 2σ range. On the
contour of log10 ðμλ=μgyÞ ¼ 0, Eqs. (26) and (27) are simulta-
neously satisfied at one scale and the matching is successful.

4The latest measurement of the top quark pole mass of the
ATLAS Collaboration is 171.1þ1.2

−1.0 GeV [19], which favors large
values compared to the CMS result.
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Interestingly, those parameter sets that yield μλ=μgy ¼ 1
are critical in the sense that the Higgs quartic coupling
nearly remains positive for such sets. To illustrate this,
we present in Fig. 3 the RG evolutions of the Higgs
quartic coupling, the square sum of Yukawa couplings,
and the weak gauge coupling for a parameter set
ðMt; log10ðMvec=GeVÞÞ ¼ ð172.1 GeV; 6.6Þ. The solid
purple, blue, and green lines are the RG evolutions of
the Higgs quartic coupling, the Yukawa coupling square
sum, and half the weak gauge coupling squared, respec-
tively. The dashed lines are their RG evolutions if the 4D
theory were valid at high scales. One confirms μλ=μgy ¼ 1

and that the Higgs quartic coupling nearly remains positive.
For such parameter sets, even a slight decrease in the

vectorlike fermion mass enhances the weak gauge coupling
and the Higgs quartic coupling along RG evolutions,
rendering the Higgs quartic coupling nonvanishing.

IV. SUMMARY

The vanishing of the Higgs quartic coupling and the
proximity of the top Yukawa and weak gauge couplings at
high energy scales hint at 5D GHU. Based on the above
idea, we have proposed a model where the scale of
vanishing Higgs quartic coupling and equality of the square
sum of the top and bottom Yukawa couplings y2t þ y2b and
half the weak gauge coupling squared ð1=2Þg2SUð2ÞW is

interpreted as the compactification scale of 5D GHU.
The model is characterized by the embedding of the SM
fermions in 3 representation of the SUð3ÞW gauge group.
This embedding leads to the equality of y2t þ y2b and
ð1=2Þg2SUð2ÞW that must be satisfied at the compactification

scale. The model structure necessitates the presence of
isospin-doublet vectorlike quarks and leptons. These
vectorlike fermions modify the RG evolutions of the 4D
theory and reconcile the scale of vanishing Higgs quartic
coupling and that where y2t þ y2b ¼ ð1=2Þg2SUð2ÞW holds,

thereby achieving the successful matching of the 4D theory
with 5D GHU. Based on this property, we have calculated
the RG equations of the 4D theory and obtained a
prediction for the vectorlike fermion mass, the precise
top quark pole mass, and the compactification scale. The
prediction for the former two is given by the 0 contour in
Fig. 1, and that for the compactification scale varies from
1011.6 to 1010.2 GeV as one moves from the upper left to the
lower right on the contour. About experimental testability
of the model, if future measurements of the top quark pole
mass exclude the region above about 171.4 GeV, the model
is ruled out. The model can be confirmed by testing the
relation between the vectorlike fermion mass and the top
quark pole mass given by the 0 contour in Fig. 1, but this is
not possible in near-future collider experiments, since the
vectorlike fermion mass is predicted to be above 103 TeV.
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APPENDIX: MATCHING CONDITION
FOR THE HIGGS QUARTIC COUPLING

We rederive the one-loop matching condition for the
Higgs quartic coupling in Ref. [2] utilized in the main text,

FIG. 2. log10 ðμλ=μgyÞ versus the logarithm of the vectorlike
fermion mass, for a fixed value of the top quark pole mass
Mt ¼ 172.1 GeV. The plot line vanishes for lower values of the
vectorlike fermion mass because μλ is not defined.

FIG. 3. RG evolutions of the Higgs quartic coupling λ, the
square sum of Yukawa couplings y2t þ y2b, and half the weak
gauge coupling squared ð1=2Þg2SUð2ÞW for Mt ¼ 172.1 GeV and

log10ðMvec=GeVÞ ¼ 6.6, colored in purple, blue, and green,
respectively. μ denotes the renormalization scale. The solid lines
are the RG evolutions in the current model, and the dashed lines
are those if the 4D theory were valid at high scales.
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λ

�
1

2πR

�
¼ 0:

First, we study a general SUð3ÞW gauge theory in a five-
dimensional spacetime compactified on S1=Z2 orbifold,
with 5D bulk fermions in the fundamental representation,
and without 4D chiral fermions localized at y ¼ 0 or πR.
The action with the gauge-fixing term is given by

S ¼
Z

d4x
Z

πR

−πR
dy −

1

2
tr½WMNWMN �

−
1

ξ
tr½ð∂μWμ − ξD̄5W5Þ2�

þ 2tr½bð∂μDμ − ξD̄5D5Þc�

þ i
2
Ψ̄ΓMDMΨ −

i
2
ðDMΨ̄ÞΓMΨ; ðA1Þ

where ξ is the gauge-fixing parameter, b, c are ghost fields,
and Ψ represents multiple bulk fermions in the 3 repre-
sentation of SUð3ÞW gauge group. Also, in the first line, D̄5

denotes a covariant derivative whose gauge field part is
replaced by the VEV of W5 field. We restrict ourselves to
the case when Ψ is Z2 even, as Z2-odd bulk fermions give
the same contribution as Z2-even ones to the one-loop
effective potential. The gauge field, ghost fields, and bulk
fermions transform under the Z2 as

WμðyÞ ¼ PWμð−yÞP†; W5ðyÞ ¼ −PW5ð−yÞP†;

bðyÞ ¼ Pbð−yÞP†; cðyÞ ¼ Pcð−yÞP†;

ΨðyÞ ¼ γ5PΨð−yÞ;

P ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA: ðA2Þ

The Z2 transformation property above breaks SUð3ÞW
into SUð2ÞW × Uð1ÞW . The massless mode of the
SUð3ÞW=ðSUð2ÞW × Uð1ÞWÞ component of W5 is identi-
fied with a Higgs field. Unlike Ref. [2], we do not impose
any nontrivial condition for the periodic change y →
yþ 2πR.
We compute the one-loop effective potential for the W5

VEV. To this end, we extract the quadratic part of the action
Eq. (A1) in the presence of the W5 VEV parametrized as

hW5i ¼
1

2gR

0
B@

0 0 0

0 0 a

0 a 0

1
CA: ðA3Þ

The quadratic part is found to be

Sjquad ¼
Z

d4x
Z

πR

−πR
dytr

�
Wμ

�
ημν□ −

�
1 −

1

ξ

�
∂μ∂ν

�
Wν −WμD̄2

5W
μ−W5□W5 þ ξW5D̄2

5W5 þ b□c − ξbD̄2
5c

�

þ iΨ̄ðγμ∂μ þ iγ5D̄5ÞΨ ðA4Þ

þ2

�Z
d4xtr½2ð∂μWμÞW5 þWμD̄5Wμ − ξW5D̄5W5� − Ψ̄γ5Ψ

�
y¼πR

y¼0

; ðA5Þ

where D̄5 is a covariant derivative whose gauge field part is
given by hW5i of Eq. (A3). From the Z2 transformation
property and the periodicity, the fields obey the following
boundary conditions at y ¼ 0; πR:

WμðyÞ ¼ PWμðyÞP†; W5ðyÞ ¼ −PW5ðyÞP†;

D̄5WμðyÞ ¼ −PD̄5WμðyÞP†; W5ðyÞ ¼ PD̄5W5ðyÞP†;

bðyÞ ¼ PbðyÞP†; cðyÞ ¼ PcðyÞP†;

D̄5bðyÞ ¼ −PD̄5bðyÞP†; D̄5cðyÞ ¼ −PD̄5cðyÞP†;

ΨðyÞ ¼ γ5PΨðyÞ;
D̄5ΨðyÞ ¼ −γ5D̄5PΨðyÞ; at y ¼ 0; πR: ðA6Þ

Note that given the above boundary conditions, the
boundary action Eq. (A5) vanishes, and the ghost term

is Hermite. We calculate the eigenvalues of the quadratic
operators in the bulk Eq. (A4) under the condition that the
eigenfunctions fulfill the boundary conditions Eq. (A6).
The eigenvalue equations are given by

�
ημν□ −

�
1 −

1

ξ

�
∂μ∂ν

�
Wν − D̄2

5W
μ ¼ λWμ

Wμ;

−□W5 þ ξD̄2
5W5 ¼ λW5

W5;

□c − ξD̄2
5c ¼ λcc;

□b − ξD̄2
5b ¼ λbb;

ðiγμ∂μ − γ5D̄5Þ2Ψ ¼ λΨΨ: ðA7Þ

The solutions to the above equations, before the boundary
conditions are imposed, are in the form,
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Wμ ¼ e�ipxΩðyÞfCTL
μ cosðmyÞ þ STLμ sinðmyÞgΩ†ðyÞ

þ e�ipxΩðyÞfCS
μ cosðmyÞ þ SSμ sinðmyÞgΩ†ðyÞ;

W5 ¼ e�ipxΩðyÞfC5 cosðmyÞ þ S5 sinðmyÞgΩ†ðyÞ;
c ¼ e�ipxΩðyÞfCc cosðmyÞ þ Sc sinðmyÞgΩ†ðyÞ;
b ¼ e�ipxΩðyÞfCb cosðmyÞ þ Sb sinðmyÞgΩ†ðyÞ;
Ψ ¼ e�ipxΩðyÞfCL cosðmyÞ þ SL sinðmyÞg

þ e�ipxΩðyÞfCR cosðmyÞ þ SR sinðmyÞg; ðA8Þ

where

ΩðyÞ ¼ exp

�
ig
Z

y

0

hW5idy0
�

¼ exp

2
64i
2

0
B@

0 0 0

0 0 a

0 a 0

1
CA y

R

3
75: ðA9Þ

Here p denotes a four-momentum, and m denotes the mass
of Kaluza-Klein modes determined from the boundary
conditions. The zero-modes correspond to the case where
m ¼ 0. The Cs and Ss are constants satisfying pμCTL

μ ¼
pμSTLμ ¼ 0, CS

μ ∝ STLμ ∝ pμ, γ5CL ¼ −CL, γ5SL ¼ −SL,
γ5CR ¼ CR, γ5SR ¼ SR. The corresponding eigenvalues
are given by

λWTL
μ

¼ −p2 þm2; λWS
μ
¼ −p2=ξþm2;

λW5
¼ p2 − ξm2;

λc ¼ −p2 þ ξm2;

λb ¼ −p2 þ ξm2;

λΨ ¼ −p2 þm2: ðA10Þ

Now we impose the boundary conditions Eq. (A6) on the
solutions Eq. (A8) and determine the value of m. The
boundary conditions are equivalent to the following con-
straints on the constants:

PCTL
μ P† ¼ CTL

μ ; PSTLμ P† ¼ −STLμ ;

PΩðπRÞfCTL
μ cosðmπRÞ þ STLμ sinðmπRÞgΩ†ðπRÞP† ¼ ΩðπRÞfCTL

μ cosðmπRÞ þ STLμ sinðmπRÞgΩ†ðπRÞ;
PΩðπRÞf−CTL

μ sinðmπRÞ þ STLμ cosðmπRÞgΩ†ðπRÞP† ¼ −ΩðπRÞf−CTL
μ sinðmπRÞ þ STLμ cosðmπRÞgΩ†ðπRÞ; ðA11Þ

ðthe same forCS
μ; SSμ; Cc; Sc; Cb; Sb; and the sign is flipped forC5; S5Þ;

and

PCL ¼ −CL; PSL ¼ SL;

PΩðπRÞfCL cosðmπRÞ þ SL sinðmπRÞg ¼ −ΩðπRÞfCL cosðmπRÞ þ SL sinðmπRÞg;
PΩðπRÞf−CL sinðmπRÞ þ SL cosðmπRÞg ¼ ΩðπRÞf−CL sinðmπRÞ þ SL cosðmπRÞg;

PCR ¼ CR; PSR ¼ −SR;

PΩðπRÞfCR cosðmπRÞ þ SR sinðmπRÞg ¼ ΩðπRÞfCR cosðmπRÞ þ SR sinðmπRÞg;
PΩðπRÞf−CR sinðmπRÞ þ SR cosðmπRÞg ¼ −ΩðπRÞf−CR sinðmπRÞ þ SR cosðmπRÞg: ðA12Þ

In Eq. (A11), nonzero solutions for the set
ðCTL

μ cosðmyÞ; STLμ sinðmyÞÞ exist when

m¼ n
R
;

n�a=2
R

;
n�a
R

; ðn¼ 0;�1;�2;…Þ; ðA13Þ

and when n > 0 there are one solution for m ¼ n=R, two
solutions for each of m ¼ ðn� a

2
Þ=R, and one solution for

each of m ¼ ðn� aÞ=R. The solutions when n < 0 are
degenerate with those when n > 0. When n ¼ 0, there are
one solution for m ¼ 0, two common solutions for
m ¼ � a

2
=R, and one common solution for m ¼ �a=R,

which, respectively, correspond to the photon, W� bosons,
and Z boson with the wrong Weinberg angle. The values of
m and the number of solutions for each m are the same for
ðCS

μ; SSμÞ, ðCc; ScÞ, ðCb; SbÞ, and ðC5; S5Þ.
In Eq. (A12), nonzero solutions for the set

ðCL cosðmyÞ; SL sinðmyÞÞ exist when

m ¼ n
R
;

n� a=2
R

; ðn ¼ 0;�1;�2;…Þ; ðA14Þ

and when n > 0 there are one solution for m ¼ n=R and
one solution for each of m ¼ ðn� a

2
Þ=R. The solutions
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when n < 0 are degenerate with those when n > 0. When
n ¼ 0, there are one solution for m ¼ 0 and one common
solution form ¼ � a

2
=R, which, respectively, correspond to

one Weyl fermion that does not have a Yukawa coupling
with the Higgs field5 and one of a pair of Weyl fermions
that have a Yukawa coupling.
Nonzero solutions for the set ðCR cosðmyÞ; SR sinðmyÞÞ

exist when

m ¼ n
R
;

n� a=2
R

ðn ¼ 0;�1;�2;…Þ; ðA15Þ

and when n > 0 there are one solution for m ¼ n=R and
one solution for each of m ¼ ðn� a

2
Þ=R. The solutions

when n < 0 are degenerate with those when n > 0. When
n ¼ 0, there only is one common solution for m ¼ � a

2
=R,

which corresponds to one of a pair of Weyl fermions that
have a Yukawa coupling.
Substituting Eqs. (A13)–(A15) into Eq. (A10), we obtain

the true eigenvalues.
From the eigenvalues and their duplications found

above, the one-loop effective potential for the W5 VEV
a is computed as

VeffðaÞ − Veffð0Þ ¼ −
i
2

Z
d4p
ð2πÞ4

X∞
n¼1

�
3

�
2 log

−p2 þ ðnþ a
2
Þ2=R2

−p2 þ n2=R2
þ 2 log

−p2 þ ðn − a
2
Þ2=R2

−p2 þ n2=R2

þ log
−p2 þ ðnþ aÞ2=R2

−p2 þ n2=R2
þ log

−p2 þ ðn − aÞ2=R2

−p2 þ n2=R2

�

−2NΨ

�
2 log

−p2 þ ðnþ a
2
Þ2=R2

−p2 þ n2=R2
þ 2 log

−p2 þ ðn − a
2
Þ2=R2

−p2 þ n2=R2

��

þ 3

�
2 log

−p2 þ ða
2
Þ2=R2

−p2
þ log

−p2 þ a2=R2

−p2

�
− 4NΨ log

−p2 þ ða
2
Þ2=R2

−p2
: ðA16Þ

After summation over n and a Wick rotation with p0 ¼ ip0
E, one gets

VeffðaÞ − Veffð0Þ ¼
1

2

Z
d4pE

ð2πÞ4 3
�
2 log

�
1þ sin2ðπ a

2
Þ

sinh2ðπRpEÞ
�
þ log

�
1þ sin2ðπaÞ

sinh2ðπRpEÞ
��

− 4NΨ log

�
1þ sin2ðπ a

2
Þ

sinh2ðπRpEÞ
�
; ðA17Þ

where p2
E denotes the Wick-rotated momentum squared, and pE denotes its square root. Note that the above effective

potential is finite.
We are interested in the Higgs quartic coupling derived from the effective potential Eq. (A17). We have the formula

d4

da4

Z
d4pE

ð2πÞ4 log
�
1þ sin2ðπaÞ

sinh2ðπRpEÞ
�

¼ 3

4π2
1

R4
log ð4 sin2ðπaÞÞ: ðA18Þ

Applying Eq. (A18) to (A17), we find that the quartic coupling for the physical Higgs boson h is derived as

d4

dh4
VeffðaÞ ¼ ðgRÞ4 d4

da4
VeffðaÞ

¼ 3

8π2
g4
�
3 · 2 ·

1

24
log

�
4sin2

�
π
a
2

��
þ 3 log ð4sin2ðπaÞÞ − 4NΨ ·

1

24
log

�
4sin2

�
π
a
2

���
: ðA19Þ

This should be compared with the Higgs quartic coupling derived from the one-loop effective potential of a 4D model that
contains W� bosons with mass m ¼ a

2
=R, Z boson with mass m ¼ a=R, NΨ Dirac fermions with mass m ¼ a

2
=R, and a

Higgs boson whose quartic coupling vanishes at tree level. In the 4D model, the Higgs quartic coupling derived from the
one-loop effective potential reads

5In the model of the main text, this fermion gains a vectorlike mass with a 4D fermion localized at an orbifold fixed point.
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d4

dh4
VpSMeff ¼ λðμÞ þ 3

8π2

�
3 · 2

�
g
2

�
4

log
1
4
g2h2

μ2
þ 3g4 log

g2h2

μ2
− 4NΨ

�
g
2

�
4

log
1
4
g2h2

μ2

�
; ðA20Þ

where μ denotes the renormalization scale and λðμÞ is
the Higgs quartic coupling generated from RG evolutions.
In Eq. (A19), when a ≪ 1 but log a is still Oð1Þ (note
that a need not correspond to the true Higgs VEV 246 GeV
when deriving the matching condition for the Higgs
quartic coupling), one can make approximations of
logð4 sin2ðπaÞÞ ≃ logð4π2a2Þ and logð4 sin2ðπ a

2
ÞÞ≃

logðπ2a2Þ, while perturbation theory remains valid.
Given these approximations, and noting that h in
Eq. (A20) is related to a as h ¼ a=ðgRÞ, we obtain from
the comparison of Eqs. (A19), (A20) the following one-
loop matching condition for the Higgs quartic coupling:

λ

�
1

2πR

�
¼ 0:

In addition to the field content of the above general
model, the model of the main text contains extra Uð1ÞV
gauge group that is involved in the breaking of
Uð1ÞW ×Uð1ÞV → Uð1ÞY , and 4D chiral fermions

localized at y ¼ 0 that mix with 4D-decomposed compo-
nents of the 5D bulk fermions along the breaking. However,
the presence of the Uð1ÞV gauge group and the 4D
chiral fermions has negligible impact on the matching
condition λð 1

2πRÞ ¼ 0, as shown below. The scale of the
Uð1ÞW ×Uð1ÞV → Uð1ÞY breaking is given by the VEVof
a scalar ϕ localized at y ¼ 0. When coupling constants
Aij; Bij; Cij; Eij in Eq. (16) are Oð1Þ, we have

Mvec ∼ hϕi: ðA21Þ

As seen in Sec. III, the model predicts Mvec < 107.5 GeV
and 1=ð2πRÞ > 1010.2 GeV, and hence there is a large
hierarchy between hϕi and the compactification scale given
by hϕi=ð2πRÞ≲ 10−2.7. Consequently, the mixing of the
Uð1ÞV and Uð1ÞW gauge bosons and that of the 4D chiral
fermions and 4D-decomposed components of the 5D bulk
fermions, induced by hϕi, change the scale of λ ¼ 0 only by
a negligible amount of about 10−2.7 or below.
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