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We present DarkELF, a PYTHON package to calculate interaction rates of light dark matter in dielectric
materials, including screening effects. The full response of the material is parametrized in the terms of the
energy loss function (ELF) of material, which DarkELF converts into differential scattering rates for both
direct dark matter electron scattering and through the Migdal effect. In addition, DarkELF can calculate the
rate to produce phonons from sub-MeV dark matter scattering via the dark photon mediator, as well as the
absorption rate for dark matter comprised of dark photons. The package includes precomputed ELFs for Al,
Al2O3, GaAs, GaN, Ge, Si, SiO2, and ZnS, and allows the user to easily add their own ELF extractions for
arbitrary materials.
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I. INTRODUCTION

The search for the direct detection of the dark matter has
progressed to a phase where there are numerous experi-
ments aiming to probe sub-GeV dark matter (DM), often by
leveraging electronic excitations, see, e.g., [1–4]. In addi-
tion the next generation of detectors is aiming for energy
thresholds well below the ionization threshold of the target
[5,6], thus opening the path to search for individual phonon
excitations. For all such strategies, the many-body physics
of the target material is important and detailed calculations
at the interface with condensed matter physics are therefore
needed to accurately extract the relevant scattering rates.
Electron excitations may arise from direct DM-electron

scattering [7–11], as shake-off electrons from nuclear
recoils [12–14] or from secondary ionizations as the
recoiling nucleus travels through the target material.
Solid state targets are particularly advantageous because
they can have arbitrarily small gaps to produce electron
excitations. However, because their electron wave func-
tions are delocalized and highly nontrivial, calculations of
the differential scattering rate are often involved and
material dependent. For Si and Ge targets, Essig et al.
[10] performed the first calculation of DM-electron scatter-
ing using electronic wave functions obtained with density

functional theory (DFT). This calculation was subsequently
applied to a broader range of semiconductors [15,16].
It was recently pointed out that the DM-electron scatter-

ing rate can be extracted directly from the energy loss
function (ELF)
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�
−1

ϵðω;kÞ
�

ð1Þ

of the target material [17,18], where ϵðω;kÞ is the
momentum and frequency dependent longitudinal dielec-
tric function. This approach has two main advantages:
(i) In-medium screening effects are automatically included
and were found to reduce the scattering rate by a non-
negligible amount (ii) The ELF is exceptionally well-
studied experimentally and theoretically in the materials
science literature, which means that standard and well
validated tools can be used to extract it for the target of
interest. In [17], we calculated the ELF for Si and Ge using
time-dependent density functional theory (TDDFT) meth-
ods with the GPAW package [19,20] and compared this
method with an approach fitting data to a Mermin oscillator
model [21,22]. We elaborate on these methods and their
advantages and shortcomings in Sec. II. We found both
methods to be in excellent agreement in the regime most
relevant for DM-electron scattering, as discussed in Sec. III.
Even if the DM couples predominantly to nuclei, it can

still leave an electronic signal in the detector. One way
this could happen is if the nucleus “shakes-off” an electron
during the initial hard recoil [12–14]. This is known as the
Migdal effect [23,24], and has been applied extensively to
DM scattering off atomic targets [25–34]. References [35,36]
provided the first full derivation of the Migdal effect for dark
matter scattering in semiconductors, showing that it can be
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treated as an in-medium analog of bremsstrahlung. The ELF
again plays a critical role, as it determines the probability for
the nucleus to shake-off an electron. In Sec. IVwe summarize
our results of [35], present a few new computations, and
discuss their implementation in DarkELF.
Neither the Migdal effect nor direct electron recoils are

available if the kinetic energy of the DM is below the
electron bandgap of the target. In this case the dark matter
can still deposit energy by producing one or more athermal
phonons in the target. Such processes have been studied
extensively in both superfluid He [37–42] and solid state
targets [15,16,43–49]. Given the existing constraints on
models of sub-MeV dark matter, DM scattering through a
dark photon mediator and dark photon DM absorption
appear to be the most promising processes [50]. Both are
most pronounced in polar materials [43,44] and can be
modeled with the ELF, for frequencies below the band gap
of the target. Previous calculations rather heavily relied on
computationally intensive DFT methods, though analytical
approximations are available some instances. Here we
present an intermediate method, where we write the rate
in terms of the ELF, which we subsequently take from
experimental data. For phonon-scattering and absorption
processes we moreover only need to know the ELF in the
low momentum (optical) limit, for which good experimen-
tal measurements are readily available. The ELF method is
more accurate than the existing analytical approximations,
while bypassing the time-consuming DFT calculations.
DM-phonon scattering and dark photon absorption are
discussed in Secs. V and VI, respectively.
DarkELF is available at https://github.com/tongylin/

DarkELF and comes with tabulated ELFs for Al2O3,
GaN, Al, ZnS, GaAs, SiO2, Si, and Ge, allowing the user
to easily calculate differential DM scattering rates in these
materials. Additional materials and ELF extractions may
be added to the repository as the need arises. Users can
compute the rate subject to various fiducial cuts, or
implement their own form factors to study nonstandard
DMmodels. It is also straightforward for a user to add their
own calculations or extractions of the ELF, facilitating fast
comparisons between methods and materials. This makes
DarkELF also a suitable tool for target optimization and to
study the theoretical uncertainties associated with the
scattering rate. In Sec. VII we offer some concluding
remarks and comment on possible future additions to the
code. For instruction on the usage of DarkELF, we refer to
the Appendix and the example jupyter [51] notebooks
in the repository. The example notebooks also contain a
number of additional plots which were omitted in the paper
for brevity.

II. CALCULATING THE ELF

The ELF describes the energy loss of a charged particle
traveling through the material. It is therefore not only of
practical importance, but also provides a window into the

physical mechanisms at play in the target. Furthermore
detailed first-principles calculations of the ELF are now
possible, which can be compared with experimental data.
For our purposes, this means that there a number of
complementary methods which one can use to compute
the ELF, and comparing them can give us some insight in
the uncertainties associated with dark matter interactions
with the target material.
DarkELF is set up independently of the method used to

calculate the ELF, as the real and imaginary components of
the dielectric function (ϵ1, ϵ2) are read in as a look-up table.
The user can therefore supply their own calculation of the
ELF and straightforwardly extract the dark matter inter-
action rates. We also supply a number of precomputed
look-up tables with the code. Note that everywhere in this
work, dielectric function refers exclusively to the longi-
tudinal dielectric function. We will also work in the
approximation that both the ELF and dielectric function
are isotropic in momentum and diagonal in reciprocal
lattice space [17].
In this section, we focus on the ELF for ω > Egap, with

Egap the electron band gap, where the energy loss is
dominated by the electron response of the material.
Below the electron band gap, the leading contribution to
the ELF will generally be phonons, which will be discussed
in Sec. V. For the electron-response regime, we supply
results for three independent methods to compute the ELF:

(i) The Lindhard method is the most simplistic and
uses the Lindhard dielectric function, which models
the material as a noninteracting Fermi liquid. The
main advantage of using the Lindhard dielectric
function is its simplicity, as it depends only on the
plasma frequency (ωp), or equivalently, the Fermi
velocity [52]:

ϵLinðω;kÞ¼1þ 3ω2
p
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with α and me respectively the fine structure con-
stant and the electron mass. The Lindhard dielectric
function approximates the material as homogeneous
and neglects all dissipation effects. This means that
the plasmon pole is infinitely narrow, an approxi-
mation which is badly violated in most semicon-
ductors. For halo DM, however, scattering is
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dominated by the production of electron-hole pairs
far away from the plasmon pole, which can be
modeled qualitatively with the Lindhard ELF. This is
shown in the left-hand panel of Fig. 1. The Lindhard
ELF does not provide an accurate description of
realistic semiconductors at low k and high ω, and
therefore cannot be used for absorption processes.

(ii) The Mermin method is a generalization of the
Lindhard method which includes dissipation and
can also be used for absorption processes. Con-
cretely, a dissipation parameter Γ can be added to the
Lindhard model in a self-consistent way by defining
the Mermin dielectric function [21]

ϵMerðω;kÞ¼1þð1þ iΓωÞðϵLinðωþ iΓ;kÞ−1Þ
1þðiΓωÞϵLinðωþiΓ;kÞ−1

ϵLinð0;kÞ−1
: ð3Þ

In the Mermin method, the ELF is modeled as a
superposition of ELFs obtained with the Mermin
dielectric function, where the plasma frequencies,
dissipation parameters and the weights of the differ-
ent terms are fitted to experimental data. In an ad hoc
way, this weighted linear combination accounts for
the inhomogeneities in the electron number density
within the unit cell. The fitted data typically includes
the measured ELF from reflection electron energy
loss spectroscopy (REELS) and/or optical data
(k ¼ 0 limit), and therefore can reproduce absorp-
tion processes. The theoretically motivated ansatz
in (3) provides a way to perform a controlled
extrapolation of the ELF to finite k, while conserv-
ing local electron number. Experimental collabora-
tions [53–55] moreover occasionally present their
results in terms of fits to models whose parameters
can be reinterpreted in terms of the Mermin model.

This reinterpretation is done with the +CHAPIDIF+

package [22], which builds on the work in [56–58].
For more details about our procedure we refer to our
earlier work in [17].

The middle panel of Fig. 1 shows the ELF for Si,
as obtained with the Mermin method applied to the
experimental data in [54]. The low k region near
the plasmon pole is much more realistic than for the
Lindhard ELF, as this is the regime where the ansatz
is fit to the experimental data. Even with a finite
width, the plasmon region is still well outside the
kinematically allowed regime for DM-electron scat-
tering, as indicated by the dashed black line. The
Mermin method however does not incorporate the
detailed band structure of the material. In particular,
in the middle panel of Fig. 1 one can see that it
effectively predicts a vanishing band gap, which is of
course not realistic for a semiconductor such as
Si.1As we will see, it is also less appropriate to
model the high momentum (k≳ 15 keV) regime.

(iii) The GPAW method is the most sophisticated of the
three methods we employ, as it relies on a first-
principles TDDFT calculation with the software
package GPAW [19,20]. In this method one approx-
imates the many-body electron wave functions with
a Kohn-Sham (KS) system [62] of effective, single
particle wave functions subject to an effective
potential. This system is then solved numerically
on a periodic lattice. The GPAW method does the
best job in modeling the detailed properties of the
material, in particular for ω near the band gap.

FIG. 1. ELF for Si, calculated using the Lindhard, Mermin, and GPAWmethods, as described in the text. The blue line in the left-hand
panel indicates the location of plasmon pole, which is a Dirac delta-function in the Lindhard method. Only the GPAW method (right-
hand panel) correctly models the low ω regime, close to the band gap. For halo DM scattering off electrons, the accessible phase space is
bounded by ω < kv, which is indicated by the dashed line with v ¼ 2.5 × 10−3.

1The band gap can be approximated by the ad hoc addition of a
Heaviside step function θðω − EgapÞ [59] or with the Mermin-
Levine-Louie ansatz (MLL) [60]. See Refs. [56,61] for compar-
isons between these various approaches.
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This is shown in the right-hand panel of Fig. 1,
where the band gap is now clearly visible at low ω.
The GPAW method is however by far the most
computationally intensive of the three and is most
the difficult to validate for nonexperts in TDDFT
methods. At this time we therefore only provide ELF
look-up tables calculated with the GPAWmethod for
Si and Ge.2 For more details on our calculations of
the ELF in GPAW, we refer the reader to [17].

The limitations and regime of applicability of each
method can be made more manifest by taking slices for
fixed k and ω, as shown in Fig. 2. In the low k regime
(upper left panels) the plasmon peak is clearly visible and
we find excellent agreement between the Mermin and
GPAW methods. The Lindhard method on the other hand
fails spectacularly due to its omission of dissipation effects.
For higher values of k (upper right panels) we are firmly in
the electron-hole pair regime and all three methods are
in fairly good agreement for ω≲ 25 eV. The Lindhard
method remains in qualitative agreement with the others for
higher ω as well, though the approximation is clearly less
suitable. Our calculations with the GPAW method are not
applicable beyond ω≳ 75 eV since only the 70 lowest
laying bands were included for computational reasons.

In the left-hand panel of Fig. 1 and the bottom row of
Fig. 2 we see the well-known fact that the Lindhard model
does not allow for excitations of electron-hole pairs to be
created outside a band in momentum space, whose width is
set by the Fermi momentum. Wewill refer to this band as the
Lindhard electron-hole continuum. In the bottom row of
Fig. 2 we see that all three methods are in good agreement
within this region. In the Mermin and GPAW methods,
excitations outside the Lindhard electron-hole continuum are
allowed. At lower k values, the Mermin and GPAWmethods
are also in reasonably good agreement with each other
provided that ω≳ 5 eV, well above the electron band gap.
For k-values above the Lindhard electron-hole continuum
(k≳ 10 keV) the Mermin and GPAW methods start diverg-
ing rather strongly. Both methods are challenged here: For
the GPAW method one needs an increasingly large grid in
momentum space, which significantly impacts the computa-
tional requirements of the calculation. In our calculations we
restricted the grid to k≲ 22 keV, which corresponds to the
sharp edge in the two bottom right panels of Fig. 2. Beyond
this value we currently do not make a prediction for the ELF,
and DarkELF will automatically restrict the phase space of
all processes to k values satisfying this constraint.
The Mermin method reproduces the measured Compton

spectrum for high momenta (k≳ 20 keV) and high energy
(ω≳ 1 keV) [63], though its validity for high k and low ω
regime that is of interest for dark matter scattering is less
established. In particular, the lower row of Fig. 2 shows that
the Mermin method predicts a substantially larger ELF in
the high k regime than the GPAW method. As we will see
in the next section, this regime is relevant for dark matter
experiments with energy thresholds exceeding roughly

FIG. 2. ELF for Si, calculated using the Lindhard, Mermin and GPAW methods for select values of ω and k.

2At this time, DarkELF only accounts for the diagonal part of
the ELF, which more generally is a matrix in reciprocal lattice
space. Throughout this paper, k therefore indicates an arbitrary
momentum vector which can be outside the first Brillouin zone,
such that k≡ k0 þK with k0 restricted to the first BZ and K a
reciprocal lattice vector. See Ref. [17] for details.
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15 eV. This behavior as predicted by the Mermin method is
likely not accurate and can be traced back to the rather rigid
functional form in (3), as both the k regime above and
below the Lindhard electron-hole continuum are controlled
by the same set of dissipation parameters. Moreover, the
various fits only take into account optical and/or REELS
data, which are both probing the low momentum regime.3

Inelastic x-ray scattering measurements on the other
hand are a good alternative in the high k regime. Weissker
et al. [65] carried out a series of such ELF measurements
for Si at European Synchrotron Radiation Facility (ESRF)
with an 8 keV x-ray beam. Unfortunately, the momentum
transfer they had access to is insufficiently high to diagnose
the discrepancy in Fig. 2. In the regime which they do have
access to, our calculations are in good agreement with
their measurements, see Ref. [17]. They moreover carefully
compare their results with a suite of TDDFT calculations
and find overall good agreement as well. For these reasons,
we assign more credence to our GPAW result in the high k
regime, but independent experimental verification with data
from a high energy synchotron facility would nevertheless
be interesting. In the next sections we will comment in
some detail on how these various uncertainties propagate to
the dark matter scattering rate.

III. DARK MATTER-ELECTRON SCATTERING

In the section,we briefly summarize the formalism for dark
matter-electron scattering as laid out in [17]. We illustrate the
functionality and limitationsof calculationswithDarkELFby
comparing results obtained with the Lindhard, Mermin, and
GPAW methods, as well as a number of different materials.
We do not, however, attempt an exhaustive comparison
between possible target materials in this paper.
To start, we assume that in the nonrelativistic limit, DM

of mass mχ interacts dominantly with the electron number
density n by means of a mediator particle ϕ. The interaction
Hamiltonian is then

H ¼ gχϕχ̄χ þ geϕn ð4Þ
with n the electron number density operator. The mediator
ϕ could represent a scalar mediator or the time-like
component of a vector mediator such as a dark photon.
This approach makes it explicit that the in-medium
response in the nonrelativistic limit is the same for vector
and scalar mediators [66]. For this class of models, the dark
matter scattering can be written in terms of the dynamic
structure factor Sðω;kÞ, which is defined as

Sðω;kÞ≡ 2π

V

X
i;f

Pijhfjn−kjiij2δðωþ Ei − EfÞ; ð5Þ

with n−k the Fourier transform of the electron number
density operator and Pi ≡ e−βEi=Z is the thermal occupa-
tion number. Here β is the inverse temperature (β≡ 1=T), Z
the partition function of the system and V its volume. The
initial and final states of the system are denoted by jii and
hfj respectively, with corresponding energies Ei and Ef.
By making use of the fluctuation-dissipation theorem, one
can show that the dynamical structure function is related to
the ELF by [67]

Sðω;kÞ ¼ k2

2πα

1

1 − e−βω
Im
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�
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Also folding in the DM velocity distribution, DM scattering
form factor and the various flux factors, we arrive at our
final expression for the DM scattering rate, in units of
number of counts per unit of exposure

R ¼ 1

ρT
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�
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ð7Þ
where fχðvÞ is the dark matter velocity distribution, which
is taken to correspond to the Standard Halo Model with
vesc ¼ 500 km=s, velocity dispersion v0 ¼ 220 km=s, and
Earth velocity ve ¼ 240 km=s. ρχ is the local DM density,
taken to be 0.4 GeV=cm3. The DM-mediator form factor is
defined as

FDMðkÞ ¼
α2m2

e þm2
ϕ

k2 þm2
ϕ

: ð8Þ

The limiting cases of FDMðkÞ ¼ 1 and FDMðkÞ ¼ α2m2
e=k2

are most frequently studied and are referred to respectively
as the “massive mediator” and “massless mediator”
regimes. The user moreover has access to the double
differential distribution d2R=dkdω, such that more general
form factors can be implemented easily. The effective cross
section is defined as

σ̄e ¼
μ2χeg2eg2χ

πðα2m2
e þm2

ϕÞ2
: ð9Þ

In general, the ELF can depend on the direction of the
momentum transfer k, though for many materials the
isotropic approximation is very good. The current version
of DarkELF therefore assumes the isotropic limit for
Sðω;kÞ and the ELF. The generalization to the nonisotropic
case is left for future work. The functions provided by
DarkELF are summarized in the Appendix. In the functions

3REELS measurements do give access to finite k, see, e.g.,
[64], but the rate is still dominated by low to intermediate k.
The unfolding of the experimental results with the inverse
Monte Carlo method in [64] therefore likely leads to large
systematic uncertainties in the high k regime. Finally, their
results are not publicly available in a suitable format and are
thus currently not included in our analysis.
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which compute the (differential) rate, the velocity integral
has already been performed, by swapping the order of the
integrals in (7).
Figure 3 shows the comparison of the differential

scattering rate obtained with the Lindhard, Mermin, and
GPAW methods for a benchmark model point. As
explained in the previous section, the Lindhard and
Mermin methods are less reliable for ω values near the
band gap (Egap), which results in the disagreement for
ω≲ 5 eV. If we follow the treatment in [10,68] to convert
ω into the observed number of ionization electrons, this
roughly corresponds to the 2e− threshold. Hence, if the
single ionization electron rate is desired, the GPAWmethod
is recommended. That said, even with the GPAW method
our current ELF grids are fairly noisy forω≲ 2Egap, and we
expect there to be Oð1Þ theoretical uncertainties. In most
experiments, however, large backgrounds are expected in
the single electron bin, and the bulk of the sensitivity will
come from events with at least two ionization electrons
[1,3,18]. With a 2e− threshold and a massless mediator, we
find that the Mermin and Lindhard calculations are in good
agreement with the GPAW computations.
The various methods start diverging for ω≳ 15 eV,

which roughly corresponds to 5 ionization electrons in
Si. This behavior is caused by the discrepancy at high
momenta in the bottom row of Fig. 2. We recommend the
GPAW results in this regime. Note that this part of the
spectrum is very subleading and is only relevant for
experiments with a relatively high energy threshold, or
in a post-discovery scenario where one would want to infer
DM properties from the shape of the recoil spectrum.
Finally, the dashed black curve on Fig. 3 indicates the
prediction using the QEDARK code [10]. The discrepancy is
due to screening effects which are neglected in the QEDARK

calculation. We refer to [17] for a more detailed discussion
of this effect. For a massive mediator, the agreement
between the three methods is less satisfactory, since the

rate is weighted more toward the high k part of the phase
space. We thus recommend to use the ELF obtained with
GPAW for the massive mediator. Plots of the differential
rate for this scenario can be found on our github repository.
We compare the overall fiducial cross section reach of a

number of materials in Fig. 4. We hereby assumed the 2e−

threshold for Ge, Si, and GaAs and set the threshold to
twice the band gap for all other materials except for Al. In
the latter case we assumed 5 eV. At present we do not have
GPAW results for materials other than Ge and Si, and we
therefore used the Mermin method for all materials. The
experimental inputs for Si, Al, Al2O3, ZnS, and SiO2 were
taken from the Ding et al. database [54]. For Ge we used
the Novak et al. data [53] and the rates for GaAs and GaN
were extracted from the measurements by Tung et al. [55].
Commonly used targets such as Ge and Si perform

favorably as compared to the other materials considered
here. While screening effects are stronger in lower-gap
semiconductors such as Ge and Si, this is more than
compensated for the lower threshold. The weaker reach
for the other semiconductors is due in part to the higher 2e−

threshold. For instance, the average energy needed per
ionization electron is much higher in GaAs compared to the
otherwise similar material Ge [68], such that the 2e−

threshold is around 6.1 eV as compared to 3.6 eV for
Ge. For the other semiconductors, the bandgaps are also
higher than in Si and Ge.
The results in Fig. 4 were all obtained with the Mermin

method. As noted above, in the massive mediator limit, the
rate is sensitive to the high k regime in Fig. 2, for which
the reliability of the Mermin method is doubtful. For this
reason, we chose to restrict the phase space by imposing
k≲ 12 keV in the massive mediator plot in Fig. 4. The cross
section curves shown should thus be interpreted as
conservative upper bounds. To remedy this problem, a
dedicated DFT calculation would be desirable for all
materials of interest to the experimental community, similar

FIG. 3. Comparison between Lindhard, Mermin, and GPAW calculations of the differential scattering rate for Si and Ge, for the
massless mediator regime. The vertical dashed lines indicate the 2e− and 5e− thresholds. The black dashed line is obtained with the
QEDARK code [10], which does not include screening effects and gives a larger rate.
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to the target comparison performed by Griffin et al. [15]. The
latter results however do not yet include the Oð1Þ screening
effects. We leave such computations for future work.
Details on the usage of DarkELF for electron recoil

processes can be found in the Appendix.

IV. NUCLEAR RECOILS THROUGH
THE MIGDAL EFFECT

The first generations of direct detection experiments
were optimized to discover elastic nuclear recoils in a large
target volume. For mχ ≲ 1 GeV, the energy deposited in
the nuclear recoil can however easily be below the detector
threshold, and one either has to consider a dedicated,
ultralow threshold detector with a low mass target such as
liquid He [5,69,70], or make use of inelastic processes such
as bremsstrahlung [71] or the Migdal effect [12,25]. The
Migdal effect [23,24] refers to the process where the atom
shakes off one or more electrons immediately after being
struck by an external probe, which in our case is the DM.
This process was studied extensively in the context of DM
scattering off atomic targets [12–14,25–34] and estimates
were obtained for semiconductor targets [28,34].
In atomic targets, the calculation can be performed most

conveniently by boosting to the rest frame of the recoiling
atom and writing the matrix element in terms of the

transition dipole moments for the atom. Ibe et al. [26]
comprehensively review this formalism in the context of
DM scattering and numerically calculated the relevant
matrix elements with the Flexible Atomic Code [72].
Whenever we discuss the atomic Migdal effect in this
work, we will be referring to the Ibe et al. computation,
though others are available as well, as referenced above.
DarkELF incorporates the numerical form factors obtained
in [26] and can therefore be used to perform atomic Migdal
calculations for select materials.
The Migdal effect in semiconductors is more subtle, due

to the delocalized nature of the electron clouds. This
prevents one from using the boosting method, as the rest
frame of the lattice is now a preferential frame. A full
calculation in the rest frame of the lattice was completed
simultaneously by us [35] and Liang et al. [36] and
revealed a qualitatively different answer from directly
applying the Ibe et al. method to a crystal. In this work
we also showed that plasmon production [73,74] is
included in the Migdal rate, but is very subleading for a
DM candidate with a standard velocity profile.
Here we only present the final result and discuss its

regime of validity and implementation in DarkELF; for the
full derivation and discussion, see Ref. [35]. For a mon-
atomic material, we found that the rate in number of counts
per unit exposure is given by

R ¼ 8π2αA2ρχσ̄n
mNmχμ

2
χn

Z
d3vfχðvÞ

Z
dω
Z

d3qN

ð2πÞ3
Z

d3pf

ð2πÞ3
Z

d3k
ð2πÞ3

ZionðkÞ2
k2

Im

�
−1

ϵðk;ωÞ
��

1

ω − qN ·k
mN

−
1

ω

�
2

× jFDMðpi − pfÞj2jFðpi − pf − qN − kÞj2δðEi − Ef − EN − ωÞ ð10Þ

with A, mN , and μχn are the mass number of the element, the total mass of the nucleus, and the DM-nucleon reduced mass,
respectively. σ̄n is the DM-nucleon reference cross section that is used to parametrize the reach. For example, assuming a
scalar mediator with universal couplings to protons and neutrons

FIG. 4. For DM-electron scattering, a comparison of the cross sections needed to obtain 3 events for a kg-year exposure. For all for 8
materials, the ELF is obtained with the Mermin method. The threshold was taken to be the 2e− threshold for Ge, Si, and GaAs, 5 eV for
Al and 2 × Egap for the remaining materials. For the massive mediator, we restricted the phase space to k < 12 keV. As such, these cross
sections curves should be viewed as a conservative upper bound.
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H ¼ gχϕχ̄χ þ gnϕðnn̄þ pp̄Þ; ð11Þ

the reference cross section is defined by

σ̄n ¼
μ2χng2ng2χ

πðq20 þm2
ϕÞ2

; ð12Þ

where mϕ is the mass of the mediator and q0 is a reference
momentum, which we take to be q0 ¼ mχv0 with v0 the
DM velocity dispersion. ZionðkÞ is the effective charge of
the ion, which includes the nucleus and bound core
electrons of the atom. In general, the effective charge seen
by an external probe depends on its momentum. We extract
this momentum dependence from experimental data [75].
The user has the option of switching this momentum
dependence off, to facilitate a cleaner comparison with
other results in the literature. qN , pf and k are the momenta
associated with, respectively, the recoiling nucleus, the
outgoing DM particle and the electronic excitations. As
before,ω is the energy deposited into electronic excitations,
while EN ≡ q2N=2mN is the kinetic energy of the recoiling
nucleus. FDMðpi − pfÞ is the DM-mediator form factor,
which was suppressed in [35]. It is defined as

FDMðqÞ≡
q20 þm2

ϕ

q2 þm2
ϕ

: ð13Þ

In a realistic solid, the nucleus is bound to the crystal,
which gives rise to the additional crystal form factor
Fðpi − pf − qN − kÞ in (10). In [35] we worked in the
impulse approximation, which treats the recoiling ion wave
function as a plane wave, but accounts for the binding
potential through the initial state wave functions [76,77].

This is valid as long as EN ≫ ω̄ph, where ω̄ph is the average
acoustic phonon frequency in the crystal, of order several
tens of meV for most materials. In this limit, the crystal
form factor can be approximated by

FðqÞ≡
�
4π

Δ2

�
3=4

e
−q2

2Δ2 ð14Þ

with Δ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNω̄ph

p
. We leave generalizing the calculation

beyond the impulse approximation for future work. To
avoid extrapolating beyond the regime of validity for the
impulse approximation, DarkELF will excise the part of
phase space for which EN is below a threshold value Eth

N .
By default Eth

N is taken to be Eth
N ¼ 4ω̄ph, as explained in

Appendix B of [35], but the user can also test different
values by setting the Enth parameter. Finally, we note that
the notation in (10) slightly differs from the notation in
[35], since here we suppressed the reciprocal lattice vectors,
as explained in Sec. II.
The integral in (10) is rather nontrivial to evaluate due to

its high dimension and nontrivial boundary conditions. The
problem however simplifies substantially if we approxi-
mate the target material as isotropic and work in the soft
limit where jqN · kj ≪ mNω and k ≪ qN . Estimating
qN ∼ vmχ , the soft approximation holds for 10 MeV≲
mχ ≲ 10 GeV and ω≳ eV, which is the parameter space of
interest for the Migdal effect. With these assumptions, (10)
can be written as the double differential rate

dR
dENdω

≈
ρχ

mNmχ

Z
d3vvfχðvÞ

dσqe
dEN

dP
dω

; ð15Þ

where we defined the quasielastic cross section dσqe
dEN

as

dσqe
dEN

≡ 2π2A2σ̄n
vμ2χn

Z
d3qN

ð2πÞ3
Z

d3pf

ð2πÞ3 jFDMðpi − pfÞj2jFðpi − pf − qNÞj2δðEi − Ef − EN − ωÞδ
�
EN −

q2N
2mN

�
. ð16Þ

For ω ¼ 0 this quantity reduces to the elastic nuclear
recoil cross section. In limit where the nucleus is taken to be
a free particle, or ω̄ph → 0, the factor jFðpi − pf − qNÞj2
moreover asymptotes to ð2πÞ3δðpi − pf − qNÞ; then one
recovers the familiar result for the elastic recoil of a free
nucleus.
The quantity dP=dω is the probability density for energy

ω to be deposited into electronic excitations:

dP
dω

¼ 4α

ω4

Z
d3k
ð2πÞ3 ZionðkÞ2

jvN · kj2
k2

Im

�
−1

ϵðk;ωÞ
�

ð17Þ

¼ 4αEN

3π2ω4mN

Z
dkZ2

ionðkÞk2Im
�

−1
ϵðk;ωÞ

�
ð18Þ

where in the second line we have used the isotropic
approximation and v2N ¼ 2EN=mN . The shake-off proba-
bility is shown in Fig. 5 for Si and Ge, as computed with the
Lindhard, Mermin, and GPAW methods. Above the 2e−

threshold all three methods are in good agreement,
especially for Si. (The reasons for the discrepancy for
ω≲ 5 eV were explained in Sec. III.) For comparison,
we also show the shake-off probability as obtained using
the formalism for the atomic Migdal effect, following [26].
In this calculation one effectively approximates the system as
atomic Si/Ge, neglecting the remainder of the lattice. This
approach substantially underestimates the shake-off proba-
bility in Si and Ge semiconductors, especially at low ω.
To perform the phase space integrals, we define the

following auxiliary functions
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IðωÞ≡ 1

EN

dP
dω

ð19Þ

Jðv;ωÞ≡
Z

dENEN
dσqe
dEN

: ð20Þ

where IðωÞ is independent of EN and Jðv;ωÞ is the energy-
weighted quasielastic cross section. Integrating (15) over
EN , the differential rate in ω can be written as

dR
dω

≈
ρχ

mNmχ
IðωÞ

Z
d3vvfχðvÞJðv;ωÞ: ð21Þ

To speed up the integration, DarkELF will tabulate and
interpolate IðωÞ with the default settings whenever a
DarkELF object is initialized. If the flag fast is set to
True in the Migdal rate calculations,DarkELFwill use the
precomputed IðωÞ rather than computing it from scratch for
each point. The tabulate_I() function can be used to
update the precomputed IðωÞ with settings specified by the
user. See the Appendix for more details.
It thus remains to evaluate Jðv;ωÞ. In the free ion

approximation, the crystal form factor squared asymptotes
to a delta function, and we obtain the closed-form
expression

Jðv;ωÞ ¼ A2σ̄n
8v2mNμ

2
χn
ðq20 þm2

ϕÞ2
�
log

�
q2þ þm2

ϕ

q2− þm2
ϕ

�

þ m2
ϕ

q2þ þm2
ϕ

−
m2

ϕ

q2− þm2
ϕ

�
ð22Þ

with

q− ¼ max

"
vμχN

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ω

v2μχN

s !
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNEth

N

q #

qþ ¼ vμχN

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ω

v2μχN

s !
ð23Þ

with Eth
N the energy threshold for the nuclear recoil and μχN

the DM-nucleus reduced mass. Experimentally, Eth
N can

effectively be zero if one is only interested in the ionization
signal. However, theoretically, both the free ion and
impulse approximations break down for Eth

N → 0 and we
therefore use a nonzero Eth

N , as discussed below (14). In the
massive (mϕ → ∞) and massless (mϕ → 0) limits, Jðv;ωÞ
reduces to

J∞ðv;ωÞ ¼
A2σ̄n

16v2mNμ
2
χn
ðq4þ − q4−Þ ð24Þ

J0ðv;ωÞ ¼
A2σ̄nq40

4v2mNμ
2
χn
log

�
qþ
q−

�
ð25Þ

where the∞ and 0 subscripts refer to the massive mediator
and massless mediator limits, respectively.
The expression for Jðω; vÞ in the impulse approximation

is more complicated:

Jðv;ωÞ ¼ A2σ̄n
16

ffiffiffi
π

p
v2mNμ

2
χn

Z
qþ

q−
dqjFDMðqÞj2

× ðGðq; qþNÞ − Gðq; q−NÞÞ ð26Þ
with

Gðq;qNÞ≡ 2Δðq2−qqN þq2N þΔ2Þe−
ðqþqN Þ2

Δ2

− 2Δðq2þqqN þq2N þΔ2Þe−
ðq−qN Þ2

Δ2

þ ffiffiffi
π

p
qð2q2þ 3Δ2ÞErf

�
q−qN
Δ

;
qþqN

Δ

�
ð27Þ

where the incomplete error function is defined as

Erfðx; yÞ≡ 2ffiffiffi
π

p
Z

y

x
dte−t

2

: ð28Þ

The boundary conditions are given by

FIG. 5. Shake-off probability for Si and Ge semiconductors as computed with the Lindhard, Mermin, GPAW methods, and for Si and
Ge atomic targets using Ibe et al. [26]. For comparison, we also show the result in Si semiconductors by Essig et al. [28].
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q� ¼ vμχN

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ω

v2μχN

s !

qþN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mN

�
vq −

q2

2mχ
− ω

�s

q−N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNEth

N

q
: ð29Þ

The momentum integral in (26) must be evaluated numeri-
cally. As a result, the computation for the impulse approxi-
mation is substantially slower than for the free ion
approximation.
The cross section plots for a rate of 3 events/kg-year are

shown in Fig. 6, where we computed the ELF with the
GPAW method and assumed a 2e− threshold. The dashed
line is the free ion approximation with Eth

N ¼ 4ω̄ph. The
shaded bands represent the impulse approximation, where
we varied Eth

N between 4ω̄ph and 9ω̄ph in order to illustrate
the sensitivity to the phase space cut on EN . For mχ ≲
30 MeV this sensitivity becomes very severe and we chose
to discontinue the curves. This means that the impulse

approximation is not valid in most of the phase space for
mχ ≲ 30 MeV, and the wave function of the ion in the
crystal must be accounted for in this regime. In other words,
the energy scale of the DM-nucleus collision is now of the
same order as the typical energy scale of acoustic excita-
tions in the crystal, and the Migdal effect must be described
in terms of multiphonon processes. At lowmχ, the soft limit
we assumed, k ≪ qN , also breaks down, since dP=dω has
non-negligible contributions from k up to Oð10Þ keV.
These sources of uncertainty are much more severe for
the massless mediator case, as the DM-mediator form
factor biases the rate toward lower momentum transfers
and EN . Similar considerations likely also apply to the
Migdal effect in liquid Xe, which may affect the limits
in [28,78].
For reference, Fig. 6 also shows the result in the impulse

approximation where we boldly took Eth
N ¼ 0 (dotted lines).

We emphasize that is an uncontrolled extrapolation,
which should not be used to obtain sensitivity estimates
or limits. It is however useful to understand the robustness
of our calculations: In particular, for the massive mediator
we see that the dotted line merges with the others for

FIG. 6. Upper row: cross section plots for three events with a kg-year exposure, assuming a 2e− threshold, computed with the GPAW
method. We show the massive (left) and massless (right) mediator limits. The dashed lines use the free ion approximation with threshold
Eth
N ¼ 4ω̄ph. The shaded bands use the impulse approximation, varying Eth

N between 4ω̄ph and 9ω̄ph, which roughly indicates the
uncertainty of the approximation. The dotted lines are an (uncontrolled) extrapolation, where we set Eth

N ¼ 0 in the impulse
approximation formulas. (See text for details.) The dark gray shaded regions represent nuclear recoil bounds from XENON1T [78],
LUX [79], CRESST III [80], and CDEX [81], while the light gray region is the recent XENON1T limit using the Migdal effect [82]. The
hashed regions are recasted XENON limits in terms of the Migdal effect by Essig et al. [28]. Bottom row: same as top row, but for a
wider range of materials, using the Mermin method and the free ion approximation. For materials with multiple types of atoms, we
approximate the rate as coming from the heavier atom.
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mχ ≳ 70 MeV. In this regime, the part of phase space
removed with the EN cut is a negligible contribution to the
total rate, and we expect the result to be unchanged even if
one generalizes the computation beyond the impulse
approximation. The same is not true for the massless
mediator, where the rate is much more heavily weighted
toward lower EN. In this case, it is necessary to understand
the Migdal effect in the multiphonon regime and away from
the soft limit to obtain the total rate. Our current calculation
can therefore only be used as a conservative estimate for the
massless mediator case.
Finally, the lower panels of Fig. 6 show the cross section

curves in a wider range of materials, where we assume the
free ion approximation with Eth

N ¼ 4ω̄ph. In materials where
there are multiple types of atoms, we estimate the rate by
calculating the recoil from the heaviest element only, since
we assume that the DM-nucleus cross section scales as A2.
The lighter element can contribute a comparable amount,
so there are Oð1Þ uncertainties in making this approxima-
tion. Still, Si and Ge again have the best reach among
semiconductors due to the lower 2e− threshold.

V. DARK MATTER-PHONON SCATTERING

For energies below the electron band gap, the ELF of a
material is dominated by energy loss into phonon excita-
tions. In this section, we discuss how DM-induced phonon
excitations can also be treated with the same approach as
introduced in [17] and discussed in Sec. III above. (See
also Ref. [18].)
The idea is similar to that of Sec. III, where now we must

consider how the mediator couples to protons, neutrons,
and electrons. If the mediator couples to these particles in
the same proportions as the SM photon, then we can
directly extend the formalism of Sec. III and apply (7)
below the electron band gap. The intuition behind this
result is that an external source can create charge fluctua-
tions in both electrons and ions. The total size of those
charge fluctuations determines the dielectric response
function ϵ−1ðk;ωÞ and thus the energy loss rate. For ω
above the electron band gap, the response is dominated by
electrons since the perturbation to the system happens
quickly compared to the characteristic timescale of the ion
motion in the crystal, ∼1=ω̄ph. For energy deposits below
the electron band gap, we are in the opposite regime: The
response of the electrons is effectively instantaneous on the
timescale of the external perturbation. They therefore act as
a perfect, dissipationless dielectric. The kinematic degrees
of freedom of the ions are now responsible for any energy
dissipation in the crystal.
If the mediator couples to the charge fluctuations differ-

ently from the SM photon, then the direct relationship to the
dielectric response and ELF will be broken. In the most
general case, the dynamic structure factor for phonon
excitations must be calculated from first principles

according to the mediator couplings. This was discussed
in the initial work on this subject [43,44], where it was
shown for instance that a kinetically mixed dark photon
will lead to optical phonon excitations in polar materials,
while a scalar mediator will generally lead to acoustic
phonon excitations. The formalism is based closely on the
theory of neutron scattering in crystals [83], and further
studies of DM-phonon excitations in numerous target
materials can be found in Refs. [15,16,49,84].
Therefore, in this work we focus on vector mediators

which couple to nucleons and electrons in the same way as
SM photon. We will work in the massless mediator limit,
motivated by cosmological relic benchmarks such as
freeze-in [10,85,86] in this mass range. The data on the
ELF in this regime comes from optical measurements at
momentum transfer k → 0, and we will approximate the
ELF as being independent of k for this calculation. This is a
good approximation for sub-MeV dark matter scattering
via ultralight mediators, which is strongly weighted at low
momentum transfers k ≪ keV, and we show below good
agreement with the DFT calculations of [44,84]. With these
assumptions, (7) simplifies to

R ¼ 1

ρT

ρχ
mχ

σ̄e
μ2χe

q40
4πα

Z
d3v

fχðvÞ
v

Z
dω
2π

× Im

�
−1
ϵðωÞ

�
log

2
641þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ω=v2mχ

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ω=v2mχ

q
3
75 ð30Þ

with the reference momentum q0 ≡ αme. We also drop the
k dependence in the ELF when taking the optical limit.
To make contact with earlier work, we recall that in polar

materials, longitudinal optical (LO) phonons generate a
long-range polarization in the material, allowing for
enhanced interactions with charged particles. For a material
such as GaAs with only one LO phonon, the effective
coupling of a charged particle with optical phonons is
particularly simple and given by the Fröhlich Hamiltonian
[87]. The coupling strength of this effective interaction is
given by

CF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωLO

2

�
1

ϵ∞
−

1

ϵ0

�s
: ð31Þ

This coupling was discussed in Refs. [43,44] and applied
there to DM scattering into single LO phonons. We now
show how to obtain the same Fröhlich coupling and DM
scattering rate from the ELF, and also generalize it to
include multiple optical phonon branches.
To establish the relationship between the ELF and the

Fröhlich coupling, we use an analytic approximation for the
dielectric function in polar materials. This analytic form is
also convenient for materials where suitable low temper-
ature ELF data or first principles calculations are not
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readily available. Concretely, we approximate the dielectric
function by [88]:

ϵðωÞ ¼ ϵ∞
Y
ν

ω2
LO;ν − ω2 − iωγLO;ν

ω2
TO;ν − ω2 − iωγTO;ν

; ð32Þ

where ν labels an optical phonon branch containing both
longitudinal (LO) and transverse (TO) modes. ων and γν
are the energy and width of the phonon mode, respec-
tively. ϵ∞ is the high-frequency dielectric constant which
describe the contribution of electrons to dielectric
response below the band gap; that is, this is the dielectric
constant at frequencies well above the phonon energies
but still below the electron band gap. Using (32) allows
for excellent fits to optical data along high-symmetry
directions of polar crystals, but note that for arbitrary
wave vectors the notion of purely transverse and longi-
tudinal optical modes may not be well defined. In this
work, we will mainly work in the isotropic approximation.
In general, first-principles approaches to phonon spectra
are needed to calculate the full direction-dependent
response function, similar to what was done in
Refs. [44,49,84].
As can be seen from the form of (32), the ELF will be

dominated by LO phonon resonances. Example ELFs for
the polar materials GaAs and SiO2 (quartz) are shown in
Fig. 7. SiO2 is a birefringent material where the dielectric
response depends on the polarization of the incident field
with respect to the optical axis (or c-axis), with ordinary
rays corresponding to E⃗⊥ c-axis and extraordinary rays
corresponding to E⃗ k c-axis. For transverse photon modes,
this therefore corresponds to optical phonon modes with

k k c-axis (ordinary response) or k⊥ c-axis (extraordinary
response). To determine the response to DM scattering, we
must average over the response in different directions for
materials which have anisotropic response, which in
principle requires determining the full direction-dependent
ELF. However, we find in practice that the rate predictions
are very similar whether the ordinary or extraordinary
response is used. The same conclusion applies to Al2O3

and GaN, which are also birefringent. This is because the
rate is usually dominated by a few strong optical phonon
modes that do not vary significantly along different
directions. For instance, we see that the four strongest
modes in the ELF for SiO2 in Fig. 7 are only shifted slightly
between the ordinary and extraordinary response.
To see the connection between the approach here and

previous calculations of phonon excitations, note that we
can take the narrow phonon width limit since γν ≪ ων for
all materials here. In this limit, we obtain the loss function

lim
γ→0

Im

�
−1
ϵðωÞ

�
¼
X
ν

πδðω − ωLO;νÞ
ω2
LO;ν − ω2

TO;ν

2ϵ∞ωLO;ν

×
Y
μ≠ν

ω2
LO;ν − ω2

TO;μ

ω2
LO;ν − ω2

LO;μ
: ð33Þ

For materials with just a single optical phonon branch, such
as GaAs, this simplifies to

lim
γ→0

Im

�
−1
ϵðωÞ

�
¼ πδðω − ωLOÞ ×

ωLO

2

�
1

ϵ∞
−

1

ϵ0

�
¼ πδðω − ωLOÞ × C2

F; ð34Þ

FIG. 7. Examples of the ELF in the phonon regime and in the optical limit (k → 0). For polar materials, the ELF is dominated by
longitudinal optical phonon resonances. Left: the solid line shows the response obtained from the calculation of absorption at 10 Kelvin
[89], combined with the real index of refraction [90]. The calculation includes both the optical phonon resonance as well as anharmonic
contributions away from the peak. The dashed line shows the response obtained using the analytic approximation of (32), which only
partly captures the multiphonon response away from the resonance. Right: we show the response in SiO2 using (32) with measured
parameters of Ref. [91]. The response is shown for ordinary rays (E⃗⊥ c-axis) and extraordinary rays (E⃗ k c-axis) at room temperature.
The widths of the resonances depend on temperature and will be smaller at zero temperature; however, since the width drops out in the
narrow width limit, this has a negligible impact on the DM-phonon scattering rate.
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where in the second line we have identified the Fröhlich
coupling CF discussed above. We have also introduced the
static dielectric constant ϵ0 ¼ ϵð0Þ ¼ ϵ∞ω

2
LO=ω

2
TO. While

CF as defined here strictly applies only for simple materials
with a single optical phonon branch, we can use (33) more
generally given data on the optical phonon frequencies.
Figure 8 compares different approaches to calculating

the cross section reach in polar materials. We find good
agreement whether we use the full ELF or take the narrow
width approximation. (For simplicity, for Al2O3 we use the
ordinary dielectric response.) Furthermore, our results line
up very well with first-principles numerical calculations
of phonon scattering, here taken from Ref. [44] for GaAs
and Al2O3 and from Ref. [84] for SiC. Note that in the case
of GaAs, all approaches agree well for masses above
∼10 keV. However, the reach determined by numerically
integrating the ELF extends to lower masses, because in
this case we use a calculation of the ELF that includes the
anharmonic multiphonon response below the optical pho-
non resonance, as shown in Fig. 7. In general, determining
the multiphonon response is more challenging, and we only
include such contributions where it has been calculated or
measured at low temperatures appropriate for a direct
detection experiment.
For nonpolar crystals, such as Si and Ge, the optical

phonon does not have a long-range polarization and the
ELF is instead determined entirely by multiphonon exci-
tations. The ELF determined by theory and experiment is
shown in Fig. 9. Note the overall loss rate is several orders
of magnitude smaller than for a polar material.
Figure 10 summarizes the phonon excitation reach for all

materials considered here, and Table I gives the source of

the ELF used. Materials like ZnS, SiO2, and Al2O3 have
particularly good reach, due to the fact that they contain
strong optical phonon modes down to low energies and
because they have a relatively low ϵ∞. In particular,
ϵ∞ ¼ 5.13 in ZnS, ϵ∞ ¼ 2.4 in SiO2, and ϵ∞ ¼ 3.2 in
Al2O3; this correlates with the higher electron band gap
in those materials, thus illustrating the mild tension in
optimizing the electron recoil signal vs the optical phonon
signal in a material.

FIG. 9. For nonpolar materials, the optical phonons do not have
a long-range polarization and the ELF is instead dominated by
multiphonon excitations below the electron band gap. We show
the result of optical measurements at 6 K for Si [92] and at 2 K for
Ge [93]. The dotted lines show the result of DFT calculations
done assuming a temperature of 6 K [94].

FIG. 8. Comparison of reach in polar materials, taking different
approaches to calculating phonon excitations. The lines shown
are the 95% CL cross section reach with kg-yr exposure and zero
background. The result of numerically integrating the ELF over
energy (solid lines) agrees well with the narrow width approxi-
mation of (33) (dashed lines). These further agree well with first-
principles numerical calculations of phonon scattering (dotted
lines), from Refs. [44,84]. In the GaAs, the multiphonon response
included in the ELF extends the reach to lower masses.

FIG. 10. Comparison of phonon-based reach from DM scatter-
ing in all materials considered here. The lines shown are the
95% CL cross section reach with kg-yr exposure and zero
background. For Si and Ge, we show both the results obtained
using a DFT calculation and using a measurement of the ELF; the
region in between is shaded to indicate a rough uncertainty on the
true reach. The thick blue line is the predicted cross section if all
of the DM was produced by freeze-in [7,85,86]. The grey shaded
region corresponds to stellar cooling bounds on this DM
candidate [95].
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Compared to previous studies of the reach in various
target materials, the main advantage here is the inclusion of
multiphonon excitations, which are challenging and expen-
sive to compute using first-principles phonon codes. Here
we make use of previous studies of multiphonon absorption
to determine the multiphonon scattering rate in Si, Ge,
and GaAs at low masses. Importantly, the approach
described here can give a fast and accurate way to estimate
the phonon excitation reach given data or theory on the
dielectric response in the phonon regime.

VI. ABSORPTION OF BOSONIC DARK MATTER

Dark matter could also be made up of sub-keV bosons, in
which case it can be absorbed by the material into phonon
or electron excitations. For the specific case where dark
matter is comprised of kinetically mixed dark photons4 of
mass mV , the absorption rate per unit target mass is also
determined by the ELF in the zero-momentum limit and
given by [44,100–103]

R ¼ 1

ρT

ρDM
mV

κ2mVIm

�
−1

ϵðmVÞ
�

ð35Þ

where κ is the kinetic mixing parameter between the dark
and Standard Model photon. Since optical measurements
directly probe the zero momentum limit of the dielectric
function, previous works used this data to obtain the
absorption rate.

DarkELF comes with tabulated ELFs in the optical
regime and can therefore be used to quickly obtain the
absorption rate. Figure 11 shows the reach obtained for
both phonon and electron excitations for materials included
in this work. For electron excitations, the data-driven
Mermin method includes optical measurements among
the data that is being fitted, and we can take the k → 0
limit of the resulting ELF. Because the Mermin dielectric
function does not include an electron band gap, we only use
the Mermin ELF for ω > Egap.
For phonon excitations, we use the same ELF as

discussed in Sec. V and summarized in Table I. Note that
some of the data was taken at room temperature and the
width of the resonances at sub-Kelvin temperatures will
be even smaller. Another caveat to note is that for the

FIG. 11. A comparison of the reach for absorption of kinetically mixed dark photon dark matter. The lines shown are the 95% CL cross
section reach with kg-yr exposure and zero background. Left: for phonon excitations, we show here the reach obtained using data on
the ELF. As noted in the text, a number of these curves are approximate, given that there is limited data available at zero temperature.
Right: we show here the reach for electron excitations using the Mermin oscillator method for the ELF, and there can be small
differences in comparing with DFT methods or direct optical measurements. The grey shaded regions are limits from XENON10/100
[104] and SENSEI [1].

TABLE I. Sources of the ELF in the phonon regime, for
different materials. Analytic model refers to (32), where the
references cited have fitted optical data in order to determine the
parameters in (32) or calculated some of those parameters. Other
cases correspond either to direct measurement or DFT-based
calculations of dielectric response.

Material ELF in phonon regime

Si 6 K data from [92] 6 K calculation from [94]
Ge 2 K data from [93] 6 K calculation from [94]
GaAs 10 K calculation of [89], combined with [90]
Al2O3 Analytic model, using data from [88,96]
α − SiO2 Analytic model, using 300 K data from [91]
GaN Analytic model, using 300 K data from [97]
ZnS Analytic model, using 300 K data from [98]
SiC Analytic model of [84], with data from [99]

4The dielectric function is however also relevant for more
general absorption processes such as for scalar mediators, as it
parametrizes a reduction in rate due to the screening effects [66].
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birefringent materials (Al2O3, GaN, and SiO2) we have
taken an average over extraordinary and ordinary response,
similar to what was done in Ref. [44]. This is only
approximate and properly accounting for the anisotropy
of the material would require a first-principles calculation
of the ELF, as discussed in Sec. V. However, the strongest
resonances in the ELF have only a mild direction depend-
ence (see Fig. 7), so we expect that the averaging done here
gives a good approximation.

VII. CONCLUSIONS

We presented DarkELF, a PYTHON package to calculate
rates for a broad range of DM scattering and absorption
processes of interest for direct detection in solid state
targets. The unifying feature of these processes is that they
are determined by the energy loss function (ELF) of the
target material, which characterizes energy loss of Standard
Model particles. DarkELF computes energy loss rates of
dark matter particles using tabulated ELFs. At this time, we
include ELF data tables for Al2O3, GaN, Al, ZnS, GaAs,
SiO2, Si, and Ge assembled from a combination of data,
phenomenological models fitted to data, and first-principles
calculations. We aim to add more ELF tables in the future,
and our package makes it convenient for users to import
their own extractions of the ELF as well.
The currently available dark matter processes, the regime

of validity of the calculations, and possible future directions
are summarized below:

(i) DM-electron scattering is determined by the ELF
above the electron band gap. We provide ELFs
computed in the isotropic limit with a DFT-based
method (GPAW) and a data-driven approach
(Mermin). Both these approaches start to have
large uncertainties at high momentum transfer
(k≳ 20 keV) which impacts DM-electron scattering
at high energies (ω≳ 15 eV) and for scattering via
massive mediators. In this regime, improved theo-
retical calculations and/or data extractions are
needed. For instance, to increase the reliability of
the Mermin method, a dedicated fit to high k data
from a high energy synchrotron facility would be
desirable. It is also possible to generalize beyond the
isotropic approximation and obtain directionally
dependent scattering rates, which would give
rise to a daily modulation in strongly anisotropic
materials.

(ii) DM-nucleus scattering with Migdal electrons de-
pends on the ELF through the probability for a
recoiling ion to produce Migdal electrons. The rate
to produce Migdal electrons is calculated here for
the mass range 30 MeV≲mχ ≲ GeV. This restric-
tion in mass is due in part to the impulse approxi-
mation, which treats the recoiling ion wave function
as a plane wave. For low nuclear recoil energies that
are comparable to typical acoustic phonon energies,

a calculation of the Migdal effect with multiphonon
production is needed. This will be important if we
wish to obtain accurate rates for DM-nucleus scat-
tering via massless mediators and for DM masses
below 30 MeV.

(iii) DM-phonon scattering is determined by the ELF in
the phonon regime, below the electron band gap.
Our calculations are valid for DM coupled to a
massless kinetically mixed dark photon mediator,
since we use ELF data in the optical limit. While
there are already many studies with DFT-based
calculations of this process, using existing measure-
ments or calculations of the ELF gives a fast and
accurate alternate approach. This approach also
incorporates multiphonon contributions, which
dominate for nonpolar materials and are more
challenging to calculate.

(iv) Absorption of dark photon DM has a rate propor-
tional to the ELF in the optical limit (k ¼ 0). Except
for the DFT-based calculations in a few cases, the
ELFs included are generally obtained either by
fitting to optical data or directly from optical data
itself. As a result, the ELFs included should describe
absorption well in both the phonon and electron
regimes.
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APPENDIX: USING DARKELF

Here we briefly describe how to run a calculation with
DarkELF; for details and examples we refer to the
github page.
a. Conventions: Natural particle physics units, with

c ¼ ℏ ¼ 1. All masses, momenta and energies are in units
of eV. Cross sections are to be specified in units of cm2.
b. Dependencies: DarkELF requires PYTHON3.6 or

higher, equipped with the numpy [105], scipy [106],
pyyaml [107], and pandas [108] packages. The tutorial
notebooks require a jupyter [109] installation, but this is
in general not needed for DarkELF itself.
c. Setting up calculation: First be sure that DarkELF

directory is in your PYTHON path. To set up a calculation,
the user must first load the package
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from darkelf import darkelf
and subsequently create a darkelf object, which represents
a specific target material. This is done by calling the
constructor, e.g.,

Si=darkelf(mX=1e8,mMed=0.0,target=’Si’,
filename=’Si_mermin.dat’,
phonon_filename=’Si_epsphonon_data6K
.dat’)

where the filename refers to the precomputed look-up
table for the dielectric function in the electronic regime, and
phonon_filename sets the look-up table for the phonon
regime. The former is tabulated as a function of both ω and
k, while the latter only in terms of ω, assuming k ¼ 0. For
some materials, DarkELF provides multiple look-up tables
for the same ELF, but obtained with different methods,
e.g., Mermin vs GPAW. The filename and phonon_-
filename flags allow the user to specify the ELF
computation of their choice. It is possible to leave pho-
non_filename and filename unspecified, however
in this case the various functions relying on the omitted
look-up table will be unavailable. For example, users only
interested in e− recoils or the Migdal effect can leave the
phonon_filename flag unspecified but must specify
filename. The dark matter mass and mediator type
will also be set at this stage, respectively with the mX
and mMed flags. If they are left unspecified, DarkELF will
set them to the default values. The user must create a
separate darkelf object for each target material under
consideration.
The dark matter and mediator masses stored in the

darkelf object can be updated by running the upda-
te_params method, for example

Si.update_params(mX=1e7,mMed=1e6)
sets the DM and mediator masses to 10 and 1 MeV
respectively. As an alternative to setting the mediator mass
with the mMed flag, the mediator=’massless’ or
mediator=’massive’ flags can be used to specify the
massless and massive mediator limits respectively.
The real and imaginary parts of the dielectric function

and the ELF can be accessed by running

Si.eps1(om,k,method=’grid’)
Si.eps2(om,k,method=’grid’)
Si.elf(om,k,method=’grid’)

with om and k the energy and momentum, both in units of
eV. The method flag can take values grid, Lindhard
or phonon, with grid being the default. If the method is
grid, then ϵ1;2 are obtained from an interpolation of the
grid supplied in the filename flag, Si_mermin.dat in
the example above. (As the filename indicates, this par-
ticular grid was computed with the Mermin method.) This
grid applies to the electronic ELF and can be a pre-
computed grid with the Mermin or GPAW method, or a
grid supplied by the user. The Lindhard flag invokes the
Lindhard model in (2), which only relies on the plasma
frequency. The latter is set in the .yaml file associated
with the target material. Finally, if the phonon flag is set,
DarkELF will use the phonon ELF, which must be set with
the phonon_filename flag in the object constructor.
The phonon ELF is always computed or measured in the
optical limit, and the momentum parameter k is therefore
ignored for the method=phonon setting.
d. Electron recoils: DarkELF can compute the overall

rate and differential distributions for DM-electron recoils,
with the functions listed in Table II. The rate functions
allow for optional arguments sigmae, withscreen-
ing and method. sigmae allows the user to change
the reference cross section, which is by default set to
σ̄e ¼ 10−38 cm2. The boolean flag withscreening
enables the user to turn off screening effects, to facilitate
comparison with earlier results in the literature. The default
value is withscreening=True. Finally, the method
flag allows the user to specify the method used for
computing the ELF, which must be either grid or
Lindhard (see above).
In addition, dRdomega_electron(omega), dRdQ_

electron(Q) and R_electron()+ have the optional
argument kcut, which specifies the upper bound on the
momentum k that is included in the phase space integral.
By default, DarkELF will use the kinematical boundary
condition or the endpoint of the ELF grid to cut off the k

TABLE II. List of public functions in DarkELF that relate to electron recoils. Only mandatory arguments are shown; for optional
arguments and flags we refer to the text and the documentation in repository. Some functions are only available for select materials, as
indicated in the righthand column. HereQ indicates the number of ionization electrons andQχ the effective milicharge of the DM, in the
massless mediator limit.

Electron recoils

Function Description Available for

dRdomegadk_electron(omega,k) d2R=dωdk: counts/kg-year × eV2 All except Xe, SiC, and C
dRdomega_electron(omega) dR=dω: counts/(kg-year ×eV) All except Xe, SiC, and C
dRdQ_electron(Q) dR=dQ: counts/(kg-year), binned in number of ionization e− Si, Ge, and GaAs
R_electron() R: counts/kg-year All except Xe, SiC, and C
electron_yield(omega) Converts energy to number of ionization electrons Si, Ge, and GaAs
sigmaebar(Qx,mX) σ̄e in terms of mχ and Qχ for massless dark photon mediator All except Xe, SiC, and C
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integration, whichever is lower. kcut allows the user to
overwrite this behavior, which can be useful if one is
interested in comparing rates for the low momentum part
of phase space only. Finally, R_electron() has the
optional flag threshold, which specifies the lower thresh-
old when integrating over ω. By default, this value is the two
e− threshold for Si, Ge, and GaAs and twice the band gap for
the remaining materials. DarkELF also has a few small
auxiliary functions which converts the energy ω to the
number of ionization electrons following [10], and the a
method to convert the effective millicharge of the dark matter
to the reference cross section σ̄e, in the massless media-
tor limit.
e. Migdal effect: DarkELF can compute the shake-off

probability as well as the overall and differential rate for
the Migdal effect. The public functions related to the
Migdal effect are listed in Table III. The dPdomegadk,
dPdomega and tabulate_I functions have the
optional arguments method, kcut, Nshell and
Zionkdependence. method can take on the values
Lindhard, grid and Ibe. The former two method, as
well as the kcut flag, work as described above. The Ibe
option returns the shake-off probability computed using the
atomic wave functions in Ibe et al. [26]. The Nshell flag
must be set to an integer and denotes the number of shells
included in the atomic calculation. It is ignored if method
is set to Lindhard or grid. Zionkdependence is a
boolean, which determines whether the momentum
dependence of the effective ion charge is accounted for.
If set to true (default), ZionðkÞ is interpolated from a

look-up table. If set to False,DarkELF assumes Zion to be
the total number electrons of the element minus its valence
electrons, independent of k. This flag only applies for the
Lindhard and grid methods.
In addition, dRdomega_migdal also takes the

optional arguments Enth, sigma_n, approximation
and fast. Enth corresponds to threshold nuclear recoil
energy Eth

N and sigma_n is the reference DM-nucleon
cross section σ̄n. The approximation flag can be set to
free or impulse, to toggle between the free ion and
impulse approximations. The latter is more accurate though,
the former is substantially faster. The fast flag is a Boolean
which specifies whether or not the pre-tabulated values for
the shake-off probability are used. Setting fast=True
speeds up the calculation but can be inconvenient if one
desires to compare different settings for the shake-off
probability for a small number of example points. Finally,
R_migdal takes the same arguments as dRdomega_
migdal, in addition to threshold, which sets the energy
threshold for the electronic excitations. Note that currently
the Migdal calculation in DarkELF only accounts for the
heaviest element in multi-atomic materials such as Al2O3

and GaAs, assuming that it dominates when the DM-nucleus
cross section scales as A2. Generalizing this to include all
elements in the crystal is left for future developments.
f. DM-phonon scattering: The double differential, differ-

ential, and total DM-phonon scattering rate is computed
with the functions dRdomegadk_phonon, dRdomega_
phonon, and R_phonon respectively (see Table IV).
All three routines accept the optional flag sigmae, which

TABLE III. List of public functions in DarkELF that relate to the Migdal effect. Only mandatory arguments are shown; for optional
arguments and flags, see text and the documentation in the repository. Some functions are only available for select materials, as indicated
in the righthand column. The Ibe option only is available for Si, Ge, C, and Xe. For C and Xe the grid option is unavailable.

Migdal effect

Function Description Available for

dPdomegadk(omega,k,En) d2P=dωdk: shake-off probability, in units of 1=eV2 All except SiC
dPdomega(omega,En) dP=dω: shake-off probability, in units of 1/eV All except SiC
tabulate_I() Tabulates shake-off probability for faster computations All except SiC
dRdEn_nuclear(En) dR=dEN for elastic nuclear recoils, in units of counts/(kg-year × eV) All
dRdomega_migdal(omega) dR=dω for Migdal effect, in units of counts/(kg-year × eV) All except SiC
R_migdal() R for Migdal effect, in units of counts/kg-year All except SiC

TABLE IV. List of public functions in DarkELF related to DM-phonon scattering. Only mandatory arguments are shown; for optional
arguments and flags, see text and the documentation in repository. Some functions are only available for select materials, as indicated in
the righthand column.

DM-phonon scattering

Function Description Available for

dRdomegadk_phonon(omega,k) Double differential phonon rate dR=dωdk in 1=kg=yr=eV2 All except Al, C, and Xe
dRdomega_phonon(omega) Differential phonon rate dR=dω in 1/kg/yr/eV All except Al, C, and Xe
R_phonon() Total phonon rate in 1/kg/yr All except Al, C, and Xe
R_phonon_Frohlich() Total phonon rate in 1/kg/yr with analytic approximation All except Al, C, and Xe
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sets the effective electron cross section defined in (9), in
units of cm2. The R_phonon_Frohlich function is the
same as R_phonon but uses the Fröhlich analytic approxi-
mation instead of the ELF method. Note that these rates
should only be applied for the massless mediator limit since
data at large k is not included for the ELF in the phonon
regime.
g. Dark photon absorption: DarkELF can compute the

absorption rate for dark photon DM into both phonons and
electronic excitations. The computation can be accessed
through the R_absorptionroutine (see Table. V), which
has one optional parameter kappa, which sets the mixing
parameter between the dark photon and the SM photon.
DarkELF uses the dark matter mass to automatically
determine whether the phonon or electron ELF must be
used. R_absorptionreturns 0 if mχ is outside the range
of the available ELF grids.
h. Adding new materials and/or look-up tables: To add a

new ELF look-up table, simply add the file to the data

folder of the relevant material and load the new grid in the
constructor of the darkelf object with the filename or
phonon_filename flag, as described above. For ELF
in the electronic regime, the data format of the look-up
table should be a 4 column, tab separated text file, where
the columns represent ω, k, ϵ1 and ϵ2, with ω and k in
units of eV. For ELFs in the phonon regime, the format is
instead ω, ϵ1 and ϵ2. To add a new target material, first
create a new subfolder in the data folder named after the
material of interest. Then add a .yaml file to the new
folder in which one should specify the various global
properties of the material, such as the plasma frequency,
mass density etc. The name of the .yaml file must match
the name of the folder. Any precomputed ELF look-up
tables also go in this folder. Finally, the material can be
loaded by the setting target flag in the darkelf
constructor to the name of the folder corresponding to the
new material.
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