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Effective field theories are useful tools to search for physics beyond the Standard Model (SM). However,
effective theories can lead to nonunitary behavior with fast growing amplitudes. This unphysical behavior
may induce a too large sensitivity to SM deviations, making necessary a unitarization of the amplitudes
prior to a comparison with experiment. In the present work, we focus on all the processes entering two-
Higgs production via longitudinalWW scattering. We perform a one-loop calculation in the Higgs effective
field theory framework of all relevant processes, determining the necessary counterterms in the on-shell
scheme, and we study how the full inclusion of the gauge degrees of freedom modifies the previously
computed masses and widths of the dynamical resonances arising from the unitarization process in the
vector-isovector channel. Altogether, we are able to provide the technical tools that are needed to study the
low-energy couplings in the Higgs effective theory under the requirements of unitarity and causality.
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I. INTRODUCTION

Since the discovery in 2012 of a light scalar by ATLAS
[1] and CMS [2], so far compatible with the Standard
Model (SM) Higgs, a lot of questions have arisen
regarding the origin of such a scalar and hence the
properties of the electroweak symmetry breaking sector
(EWSBS) [3–9].
To explore the nature of EWSBS beyond the SM (BSM),

the scattering of longitudinally polarized electroweak gauge
bosons is one of themost sensitive channels. The appearance
of heavy resonances in the scattering of longitudinally
polarized gauge bosons, for example, will be a clear
indication of the existence of a strong dynamics behind
EWSB [10–14].
The main properties of these resonances can be studied

using effective theory treatment together with partial wave
analysis and unitarization techniques [10,15–20]. Over the
years, the use of inverse amplitude method (IAM) to build
unitarity amplitudes has been successfully applied to
explain the resonances in the pion-pion scattering [21–28].
The IAM allows us to predict mass and width of

dynamically generated resonances from the unitarized
amplitudes of the low-energy effective theory. In turn, this
also allow us to set bounds on the couplings of the
underlying effective theories.
Among the open questions of EWSBS is the nature of

the Higgs potential. Even if one assumes that the Higgs-like
scalar found is truly elementary, are its self-interactions the
ones predicted by the textbook SM?
Indeed, this is one of the main purposes of future

machines such as the future ILC linear collider in Japan
or the planned FCC eþe− at CERN [29]. In all these cases,
setting bounds on effective couplings needs a bona fide and
fair comparison that requires using unitarized amplitudes
when departures from the SM values could be potentially
large. The reason is that deviations of the couplings in the
effective theory from their SM values lead to rapidly
increasing cross sections and this may artificially enhance
the sensitivity to the said couplings.
The purpose of this article is to provide some tools that

wouldmake this comparison possible.More specifically, we
compute the renormalization counterterms at one loop that
are required to calculate the processes WLWL → WLWL,
WLWL → hh, and hh → hh. All these amplitudes enter the
unitarization of the I; J ¼ 0; 0 channel. Moreover, we also
provide for these 2 → 2 processes the corresponding renor-
malized amplitudes. Here, we calculate the full Oðg2Þ
contributions of these processes. This paper thus completes
and extends our previous work in Refs. [10,15,16], where
the analysis was carried out in the limit of no gauge
interactions, g ¼ 0; only the longitudinal parts of the EW
bosons, i.e., Goldstone bosons (GBs), were taken into
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account inside the loops. In the present work, as mentioned,
we relax that approximation and allow transverse modes to
propagate in the process, improving a weak point of the
previous unitarization studies because along with the
assumption g ¼ 0 in [10,15,16], the authors consistently
set MW ¼ 0 for the real part of the loop calculation. With
respect to previous works, we also compute the processes
involving double Higgs production.
The derivation is made in the framework of the Higgs

effective field theory (HEFT) [3–9,12], where the global
symmetries are nonlinearly realized and the complex
doublet structure of the SM is not assumed a priori (see
e.g., the discussions in [30]). The calculation of the 2 → 2
physical amplitudes needed at the one-loop level beyond
the SM is relatively involved. Thus, it is useful to take some
shortcuts in order to have more manageable expressions.
The real part of the amplitudes will be computed using the
equivalence theorem [31–38] (ET), where the longitudinal
components of W in the external states are substituted by
their Goldstone bosons (GBs). This approach is fully
consistent in order to study cross-section of longitudinal
polarized W at energies much larger of the EW scale.
The imaginary part of our amplitude is exactly obtained via
the optical theorem, where physical W are present in the
external legs.
In this work, we make no assumption about the UV

strong dynamics, In our model-independent study, the
effects of the high-energy theory in the low energy regime
are encoded in the so called chiral parameters. When these
parameters do not have a correspondence in the SM, their
presence spoils the unitarity of the amplitudes leading
them, after unitarization, to exhibit resonances, i.e., bound
states presumably resulting from the underlying strong
dynamics.
For the purposes of this study, the custodial symmetry is

assumed to remain exact and the soft breaking of the global
symmetry SUð2ÞL × SUð2ÞR induced by the gauging of the
hypercharge group will be neglected. We believe this
approximation to be well justified by the experimental
results of the ρ parameter. In this limit, the electro-
magnetism is removed from the fundamental interactions
and the gauge bosons transform exactly as a triplet under
the vector (or custodial) subgroup after the global sym-
metry breaking pattern SUð2ÞL × SUð2ÞR → SUð2ÞV ,
where V stands for L ¼ R. The absence of electromagnetic
interactions moves the pole of Z to the very same position
of that of the W, making the ρ parameter exactly equal to
one at every order in perturbation theory.
As mentioned above, a full derivation of the one-loop

counterterms in the HEFT, with a dynamical Higgs, is a
necessary step in the process. A previous calculation of all
the required counterterms does exist in the literature
[39,40]. However, their expressions are not easily translated
to the calculation of physical processes, we are interested
in. For one thing, the renormalization scheme is not the

widely-used on-shell scheme to which we adhere. On the
other hand in [39,40] extensive use is made of the equations
of motion and field redefinitions, including some mixing of
operators with different chiral dimensions. All this makes
their results difficult or impossible to translate to a S-matrix
calculation. Recently, an independent diagrammatic calcu-
lation was published [41], where a large set of counterterms
are derived off shell (but only those needed for elastic
vector boson scattering). We will review below our agree-
ment with these preexisting results. It is worthwhile
emphasizing that our approach is purely diagrammatic
and inspired by the practical requirements needed when
S-matrix elements are to be computed.
In the interest of practicality a number of simplifica-

tions have been made. They do not impact in any
significant way the validity or relevance of the results.
Let us list them here for the sake of clarity: (a) The
equivalence theorem has been used to compute the real
part of the one-loop correction. This does not restrict in
any way the ability to obtain all the appropriate counter-
terms and it is an efficient way of arranging the calcu-
lation. This approximation also bypasses some subtleties
related to crossing that will be pointed out below. (b) The
equations of motion are systematically used; our results
are relevant for on-shell processes and we actually have
nothing to say for off-shell Green functions. Unlike the
previous one, this approximation does reduce the number
of contributing effective operators respect to the full list
that is provided in the references [41,42], many of which
are redundant when the equations of motion are used.
(c) We work within the HEFT under the approximation of
considering only custodially symmetric operators. This
reduces even further the number of required operators and
also implies the so-called isospin limit where MW ¼ MZ.
This approximation is, of course, numerically irrelevant
for physics in the TeV region. But, in fact, there is a
deeper reason that makes this approximation convenient;
we set g0 ¼ 0 and neglect accordingly electromagnetism
because it would not be possible to use the usual isospin
decomposition otherwise and, in addition, long range
interactions are not easily amenable to unitarization
techniques. Obviously, electromagnetism should not be
involved in any strong dynamics that may be present in
the EWSBS. (d) Accordingly, custodially breaking oper-
ators are not included, as previously indicated; it would
be inconsistent to include these and leave out the main
source of weak isospin breaking in the SM. (e) The
calculation is made in the Landau gauge, which simplifies
somewhat the counterterm structure.

II. THE EFFECTIVE LAGRANGIAN

The electroweak chiral Lagrangian is a nonlinear gauged
effective field theory mimicking chiral perturbation theory,
used to investigate low-energy QCD, in the electroweak
sector [43]. It has been used intensively in the context of
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effective field theories since the early days of LEP [43–45]
in order to put to the test extensions of the SM. In the case
of the electroweak sector, it only assumes the local and
global properties known to hold at low energies, and makes
no specific commitment to the underlying physics. The
addition of the Higgs scalar makes this model a Higgs
effective field theory.
This HEFT contains as dynamical fields, the EW gauge

bosons W�; Z; γ; their associated Goldstone partners
ωa ¼ ω�; z; and a light Higgs h (the latter could or could
not be a Goldstone boson). In the HEFT the Goldstones
resulting from the electroweak breaking are described by a
unitary matrix U that takes values in the coset SUð2ÞL ×
SUð2ÞR=SUð2ÞV and the Higgs is a SUð2Þ singlet. This fact
is in contrast to the textbook SM, where the Higgs is part of
a complex doublet and transforms alongside the GBs.
Effective theories describing the Higgs as a part of a
SUð2Þ doubletΦ are termed Standard Model effective field
theories (SMEFT).
The HEFT is fairly general and its form is largely

independent of the details of the EWSBS because it is
based only on the symmetry properties and the fact that
only the light degrees of freedom are retained. The latter
depends on the symmetry breaking pattern G → H and the
way the electroweak gauge group GEW is embedded in G.
In this type of effective theories, the Higgs may or may not
be a Goldstone boson. Having light states other than the
Higgs (such as e.g., additional Goldstone bosons) could be
worrisome from a phenomenological point of view because
it would be very difficult or impossible to find mechanisms
that would make them so massive to be able to escape
detection. We should then exclude such a possibility from
the effective theory.
When can a particular HEFT be written in the form of a

SMEFT? Or in other words, when can a particular HEFT
can bewritten in terms of the SUð2Þ doubletΦ? The answer
is the following [46]; given some four-dimensional HEFT
scalar manifold with metric gαβðωÞ (with h ¼ ω4), it is
possible to find a field reparametrization so that the
Lagrangian can be written in terms of the doublet Φ
whenever there exists a SUð2ÞL × SUð2ÞR invariant point
on the coset G=H. This is not always the case, but it
happens in the SM.
The nonlinearity shows up as momentum-dependent

vertices with an arbitrary high number of Goldstone

boson insertions coming from the expansion of the matrix
field

U ¼ exp

�
iωaσa

v

�
≈ 1þ i

ωaσa

v
þO

�
ω

v

�
2

; ð1Þ

where ω ¼ fω1;ω2;ω3g and σa represents the SUð2Þ Pauli
matrices. The range of validity of the HEFT itself is given
by the parameter controlling the expansion and sets a
cutoff for the theory at Λ ¼ 4πv ≈ 3 TeV. Given this, we
would expect the resonances to emerge at a scale of a few
TeV; values in principle reachable at the LHC but their
detection is difficult by several reasons. The main one is
that they are produced only in vector boson fusion, a
process that is subdominant at the LHC. The fact that the
couplings of these putative resonances to the EWSBS are
a priori unknown is also a serious handicap. In addition,
from previous work we know that the dynamical reso-
nances in question are generically narrow and not very
visible, particularly if the anomalous couplings do not
differ too much from their SM values [10]. However, their
appearance is generic and by now their existence in
extensions of the EWSBS seems well established by
various unitarization methods [17,20]. Yet, detailed stud-
ies indicate that their confirmation may need the full
3000 fb−1 statistics at the LHC [19] if only leptonic
decays (4l) are considered in the final states and about
one order of magnitude less if decays of the vector bosons
in two jets are analyzed too; (2jþ 2l).
The terms of the chiral Lagrangian are organized by the

chiral dimension of its local operators. This counts the
number of masses and derivatives (momenta) and a piece of
the Lagrangian of chiral dimension d, Ld, will contribute
to the process at order OðpdÞ. For our analysis with next to
leading order (NLO) precision, we restrict ourselves to
operators up to Oðp4Þ. The set of operators that participate
in (on-shell) 2 → 2 scattering processes and are invariant
under charge conjugation and parity transformations (CP),
Lorentz, Lorentz invariant, gauge, and custodial sym-
metries are gathered in the following Lagrangians

L2 ¼ −
1

2g2
TrðŴμνŴ

μνÞ − 1

2g02
TrðB̂μνB̂

μνÞ

þ v2

4
F ðhÞTrðDμU†DμUÞ þ 1

2
∂μh∂μh − VðhÞ; ð2Þ

L4 ¼ −ia3TrðŴμν½Vμ; Vν�Þ þ a4ðTrðVμVνÞÞ2 þ a5ðTrðVμVμÞÞ2 þ γ

v4
ð∂μh∂μhÞ2 þ δ

v2
ð∂μh∂μhÞTrðDμU†DμUÞ

þ η

v2
ð∂μh∂νhÞTrðDμU†DνUÞ þ iχTrðŴμνVμÞ∂νGðhÞ; ð3Þ

with the usual definitions
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U ¼ exp

�
iωaσa

v

�
∈ SUð2ÞV; Vμ ¼ DμU†U; F ðhÞ ¼ 1þ 2a

�
h
v

�
þ b

�
h
v

�
2

þ…;

DμU ¼ ∂μU þ iŴμU; Ŵμ ¼ g
W⃗μ · σ⃗

2
; Ŵμν ¼ ∂μŴν − ∂νŴμ þ i½Ŵμ; Ŵν�;

VðhÞ ¼ 1

2
M2

hh
2 þ λ3vh3 þ

λ4
4
h4 þ…; GðhÞ ¼ 1þ b1

�
h
v

�
þ b2

�
h
v

�
2

þ…: ð4Þ

From the last operator in (3), and taking into account the
definitions above, we will just need for this study the first
term in the expansion of ∂νGðhÞ, so we define the new
coupling ζ≡ b1χ. In what concerns the Higgs potential
VðhÞ, we will parametrize the departures from the SM
trilinear and quartic self-couplings using the parameters
d3;4 such that λ3;4 ¼ d3;4λ, with λ being the only SM Higgs
self-interaction λ ¼ M2

h=ð2v2Þ coupling.
The relevant HEFT for our processes up to NLO is then the

sumofL2,L4 and the gauge fixing andFaddeev-Popov terms

L ¼ L2 þ L4 þ LGF þ LFP: ð5Þ

In the custodial limit and using an arbitrary gauge, the last two
pieces are built using the following functions

fi ¼ ∂μW
μ
i −

gvξ
2

ωi þ… i ¼ 1; 2; 3;

LGF ¼ −
1

2ξ

�X3
i¼1

f2i

�
; LFP ¼

X3
a;b¼1

c†a
δf0a
δαb

cb; ð6Þ

where f0 stands for the SUð2ÞL ×Uð1ÞY transformation of
the function f and αa the gauge parameters.
We could enrich the HEFT with additional SUð2Þ

singlets h1ð¼ hÞ; h2; h3;… and a term

1

2
gij∂μhi∂μhj − Vðh1; h2;…Þ: ð7Þ

This possibility will not be considered here. The interested
reader can see [30] for more details.

The explicit gauge transformation is

Ŵ0
μ ¼ gLŴμg

†
L −

1

g
gL∂μg

†
L; U0 ¼ gLU; ð8Þ

with gL ¼ expðiα⃗ðxÞτ⃗=2Þ, SUð2Þ matrix. The custodial
transformation is

U0 ¼ gUg†; ð9Þ
where g is a constant SUð2Þ matrix.
The notation we use roughly follows the conventions of

[16]. In [4] the reader may find a complete list of operators in
theHEFTup to chiral dimension four.1 Only a subset of those
are relevant to us. Even taking this into consideration, the
Lagrangians (2) and (3) contain a number of free parameters.
Not including these already well established by experiments,
we have a and b in the Oðp2Þ Lagrangian, and a3; a4; a5;
γ; δ; η, and ζ in theOðp4Þ Lagrangian. In the SM, a ¼ b ¼ 1
and the rest are identically zero. In addition, and of particular
interest to us, we have λ3 and λ4 in the Higgs potential. We
expect departures from the SM values at most of order 10−3,
possibly less, in all the ‘anomalous’ couplings.
The experimental situation concerning these couplings is

as follows. The situation has been summarized e.g., in [14].
The experimental bounds for the chiral coupling a
have been measured by ATLAS and CMS in the subprocess
h → WW at 95% C.L. to be 0.89 < a < 1.13. Also, the
first experimental bounds on the chiral parameter b have
been set by ATLAS with the subprocess hh → WW. The
result of this analysis, that assumes the absence of new
physics resonances, is −1.02 < b < 2.71. As we see, there
are still large experimental uncertainties regarding the
Higgs couplings to vector bosons. These uncertainties
affect operators of chiral dimension two and are accord-
ingly expected to be the most relevant ones.
The chiral couplings a4 and a5 have received a lot of

attention in the past because, to a large extent they control
the appearance of resonances in the vector-isovector and
scalar-isoscalar channels, at least in the approximation
were the ET is assumed to hold in its most strict version and
the propagation of transverse modes is neglected.2 Using

TABLE I. Current experimental constraints on bosonic HEFT
anomalous couplings at 95% C.L. See the text about the issue to
extract the a4 bound from the CMS analysis of [49].

Couplings Ref. Experiments

0.89 < a < 1.13 [65] LHC
−0.76 < b < 2.56 [66] ATLAS
−3.3λ < λ3 < 8.5λ [54] CMS
ja1j < 0.004 [67] LEP (S-parameter)
−0.06 < a2 − a3 < 0.20 [68] LEP and LHC
−0.0061 < a4 < 0.0063 [48] CMS (from WZ → 4l)
ja5j < 0.0008 [49] CMS (from WZ=WW → 2l2j)

1Some operators are redundant [6] once the bosonic basis
together with the fermionic one is considered, and equations of
motion are used.

2Actually we will see below that the operators and couplings
that survive in this extreme ET limit, i.e., g ¼ 0, aremost relevant.
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only the 8 TeV data, in 2017 ATLAS [47] set the bounds
−0.024 < a4 < 0.030 and −0.028 < a5 < 0.033. More
recently, CMS [48] using the 13 TeV data and only 4l
decays from WZ scattering was able to set the bounds
−0.0061 < a4 < 0.0063, −0.0094 < a5 < 0.0098, about
three times better. In [49], CMS studies 2jþ 2l decays
from both WW and WZ scatterings to set the rather
stringent bound3 ja5j < 0.0008.
The smallness of these values in the case of a4 and a5

justifies, for the range of energies where they have been
applied, the use of a simple approach, without unitarization.
Yet, small as they are, there is still room for new physics
resulting from unitarization. For instance, this range still
allows for the appearance of vector resonances in the range
1.5 TeV < MV < 2.5 TeV,both fora ¼ 1 anda ¼ 0.9 [19].
As for the coupling a3, its range of uncertainty is quite

large and its influence on the location and properties of
resonances in BSM physics has not been assessed yet as
this requires a full computation and subsequent unitariza-
tion studies including transverse modes of the vector
bosons. This will be presented below.
Concerning the Higgs potential parameters, there are not

relevant bounds on λ4 (i.e., on possible departures from the
SM relation λ4 ¼ λ ¼ M2

h=2v
2). In what concerns λ3, and

recalling the parametrization λ3 ¼ d3λ, some recent bounds
have been obtained by ATLAS [53], −2.3 < d3 < 10.3,
combining double and single- Higgs analysis at 95% C.L.,
and by CMS [54], −3.3 < d3 < 8.5, from the subprocess
HH → bb̄γγ. To our knowledge, there are no experimental
studies on the Oðp4Þ chiral parameter ζ. However, as
we stress in our work, this parameter plays a role in the
WW-scattering at one loop.

III. TREE LEVEL CALCULATION OF THE
RELEVANT 2 → 2 PROCESSES

As mentioned in the introduction in order to implement a
fair comparison with experiment, we are interested in
obtaining unitary amplitudes for the following 2 → 2
processes with one loop precision; WLWL → WLWL,
WLWL → hh, and hh → hh. In the first case, the I ¼ 0,
J ¼ 0 (weak) isospin and angular momentum projection
will be of most interest to us, but we will actually provide
results that can be used for any I, J projection thanks to the
relations resulting from the exact isospin symmetry present
for g0 ¼ 0. For instance, provided that custodial symmetry
remains exact, from the WþW− → ZZ amplitude it is
possible to obtain all the remainingWa

LW
b
L → Wc

LW
d
L ones

thanks to the isospin relations (see e.g., [10] for details).
From Bose and crossing symmetries,

Aabcd ¼ δabδcdAðpa; pb; pc; pdÞ
þ δacδbdAðpa;−pc;−pb; pdÞ
þ δadδbcAðpa;−pd; pc;−pbÞ ð10Þ

which allows us to write

Aþ−00 ¼ Aðpa; pb; pc; pdÞ;
Aþ−þ− ¼ Aðpa; pb; pc; pdÞ þAðpa;−pc;−pb; pdÞ;
Aþþþþ ¼ Aðpa;−pc;−pb; pdÞ þAðpa;−pd; pc;−pbÞ:

ð11Þ

This means that every amplitude with vector bosons as
asymptotic states can be obtained by crossings from the
fundamental amplitude WþW− → ZZ, as mentioned
before. Notice that crossing when longitudinally-polarized
gauge bosons are involved has to be implemented via the
momenta and not via Mandelstam variables because the
polarization vectors do not transform covariantly (see e.g.,
the discussion in [10]).
The fixed isospin projections TI are given by

T0 ¼ 3Aþ−00 þAþþþþ;

T1 ¼ 2Aþ−þ− − 2Aþ−00 −Aþþþþ;

T2 ¼ Aþþþþ: ð12Þ

Taking into account that in this framework the Higgs is a
singlet, we can also write the projections for the crossed
channels with an I ¼ 0 external state and the corresponding
isospin amplitudes

AðWa
LW

b
L → hhÞ ¼ Aabðpa; pb; ph;1; ph;2Þ;

TWh;0 ¼
ffiffiffi
3

p
Aþ−; ð13Þ

3CMS does not provide results for a4 and a5 directly as the
analysis relies on the SMEFT, where the Higgs is treated as a
doublet and the operators contributing to the scattering of fourW
are of dimension eight (unlike in the HEFT where they are of
dimension four). The basis adopted is the one introduced in [50],
namely fS;0=Λ4 and fS;1=Λ4. However, as was later noted in
[51,52], a third operator containing four derivatives of the Higgs
doublet, with coefficient fS;2=Λ4, exists in the SMEFT and
cannot be in general missed. In order to get fS;0=Λ4, fS;1=Λ4,
and fS;2=Λ4 one needs to measureWW andWZ final states. This
was done in the 4l analysis of CMS [48]. However in [49] WW
and WZ are combined together and it is not possible to extract
fS;2 and fS;0 separately. Note that only xthe sum of the operators
corresponding to fS;0 and fS;2 is custodially invariant, but neither
of them is. The sum matches the chiral operator multiplying a4
[52] in the HEFT. Therefore, a valid comparison requires
assuming fS;0 ¼ fS;2 and only then

a4 ¼
v4

8

fS;0
Λ4

����
fS;2¼fS;0

:

On the other hand, fS;1 is custodially invariant and

a5 ¼
v4

16

fS;1
Λ4

:
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Aðhh → hhÞ ¼ Aðph;1; ph;2; ph;3; ph;4Þ ¼ Thh;0; ð14Þ

where the last amplitude has obviously only an I ¼ 0
projection.
All the tree-level amplitudes gathered above have both

leading order (LO) (computed using the Feynman rules from
L2) andtheNLOcontributions (obtainedusing the rulesofL4).
Below we present the tree-level amplitudes for the

different 2 → 2 processes that are important for our study.

We use the following notation; a superindex indicates the
different processes labeled as WW for WþW− → ZZ, Wh
for WþW− → hh, and hh for hh → hh. Also, each ampli-
tude carries a subindex xy that represents a process with a
particle y propagating in the x channel. In the case with
x ¼ c and no y, Ac represents the contact interaction
of the four external particles. For instance, the amplitude
AWW

sh represents a Higgs exchanged in the s-channel of
WþW− → ZZ scattering.

A. W +W − → ZZ

The tree-level amplitude includes contribution from the Oðp2Þ and Oðp4Þ Lagrangian

AWW
c ¼ g2ððð−2a3 þ a4Þg2 þ 1Þððε1ε4Þðε2ε3Þ þ ðε1ε3Þðε2ε4ÞÞ þ 2ðð2a3 þ a5Þg2 − 1Þðε1ε2Þðε3ε4ÞÞ;

AWW
sh ¼ −

a2g2M2
Wðε1ε2Þðε3ε4Þ

ðp1 þp2Þ2 −M2
H

þ ag4ζ
4ððp1 þp2Þ2 −M2

HÞ
½2ðε3ε4Þððp1ε2Þðp2ε1Þ − ðε1ε2Þðp1 þp2Þ2Þ þ 2ðε1ε2Þðp3ε4Þðp4ε3Þ�;

AWW
tW ¼ −

ð1− 2a3g2Þg2
ðp1 −p3Þ2 −M2

W
½−4ððε1ε2Þðp1ε3Þðp2ε4Þ þ ðε1ε4Þðp1ε3Þðp4ε2Þ þ ðε2ε3Þðp3ε1Þðp2ε4Þ þ ðε3ε4Þðp3ε1Þðp4ε2ÞÞ

þ 2ððε2ε4Þððp1ε3Þðp2 þp4Þε1 þ ðp3ε1Þðp2 þp4Þε3Þ þ ðε1ε3Þððp2ε4Þðp1 þp3Þε2 þ ðp4ε2Þðp1 þp3Þε4ÞÞ
−ðε1ε3Þðε2ε4Þððp1 þp3Þp2 þ ðp2 þp4Þp1Þ�;

AWW
uW ¼AtWðp3 ↔ p4; ε3 ↔ ε4Þ; ð15Þ

where εi is the abbreviation for εLðpiÞ.

B. WLWL → hh

AWh
c ¼ g2b

2
ðε1ε2Þ −

g2η
v2

ððε1p4Þðε2p3Þ þ ðp3ε1Þðε2p4ÞÞ −
2g2δ
v2

ðp3p4Þðε1ε2Þ þ
g2ζ
v2

ððε1ε2Þðp1 þ p2Þ2 − 2ðp1ε2Þðp2ε1ÞÞ;

AWh
sh ¼ 3g2M2

h

2ððp1 þ p2Þ2 −M2
hÞ
�
aðε1ε2Þ þ

ζ

v2
ððε1ε2Þðp1 þ p2Þ2 − 2ðp1ε2Þðp2ε1ÞÞ

�
;

AWh
tω ¼ 2a2g2 þ aζg4

2ðp1 − p3Þ2
ððp3ε1Þðp4ε2ÞÞ;

AtW ¼ a2g2M2
W

ððp1 − p3Þ2 −M2
WÞ

�
ε1ε2 þ

ðp4ε2Þðε1p3Þ
ðp1 − p3Þ2

�
þ ag4ζ
2ððp1 − p3Þ2 −M2

WÞ
ð2M2

hðε1ε2Þ

−ðp4ε2Þðp2ε1Þ − ðε1p3Þðε2p3Þ þM2
W
ðp4ε2Þðε1p3Þ
ðp1 − p3Þ2

�
;

AWh
uω ¼ AWh

tω ðp3 ↔ p4Þ;
AWh

uW ¼ AWh
tW ðp3 ↔ p4Þ: ð16Þ

C. hh → hh

Ahh
c ¼ 8γ

v4
ððp1p4Þðp2p3Þ þ ðp1p3Þðp2p4Þ þ ðp1p2Þðp3p4ÞÞ − 6λ4;

Ahh
sh ¼ −

36λ23v
2

ðp1 þ p2Þ2 −M2
h

;

Ahh
th ¼ Ahh

sh ðp2 ↔ −p3Þ;
Ahh

uh ¼ Ahh
sh ðp2 ↔ −p4Þ: ð17Þ
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D. Counterterms

The divergences eventually appearing in all these processes at the one-loop level have to be absorbed by redefining the
parameters appearing at tree level. Namely,

v2 → v2 þ δv2div þ δv2; fh;ωg → Zh;ωfh;W;ωg; M2
h;W → M2

h;W þ δM2
h;W;

λ3;4 → λ3;4 þ δλ3;4; a → aþ δa; b → bþ δb; ai → ai þ δai;

δ → δþ δδ; η → ηþ δη; γ → γ þ δγ; ζ → ζ þ δζ; ð18Þ

where we recall that ζ ≡ χb1.
Even though the gauge coupling g appears in some of the

previous formulas, the relation MW ¼ gv=2 is assumed to
all orders and the renormalization of g is fixed by the ones
of v and MW . On the contrary, we cannot assume the SM
relation M2

h ¼ 2v2λ because this already assumes the
persistence of the SM Higgs potential—something that
we want to eventually test. It is for this reason that we keep
separate notations λ3 and λ4 for the three- and four-point
Higgs vertices.
In general all counterterms have both a divergent and a

finite part, determined by the renormalization conditions.
However, for reasons that will be clear later, we have split
the counterterms for v2 explicitly into divergent and finite
pieces.
As we will see subsequently, we will determine all

counterterms for processes involving only Goldstone
bosons, whose calculation is substantially simpler than
using vector bosons. This is enough to get all the necessary
counterterms. The corresponding tree-level amplitudes for
the Goldstones will be given in the next section.

E. Auxiliary processes: h → ωω, h → hh and h → Wω

In this subsection we collect a series of 1 → 2 tree-level
processes that are useful to uniquely determine the counter-
terms. One of the processes (h → hh) cannot take place on
shell, but it has to be rendered finite through the renorm-
alization procedure. They are

(i) h → ωω process. The tree-level amplitude of this
decay up to NLO is (withph the Higgs four-moment)

Ah→ωω
tree ¼ −

ap2
h

v
; ð19Þ

which leads to the on-shell renormalization condition

M2
h

2v3
ðaδv2 − 2v2δaÞ þ divðAh→ωω

1−loopÞ ¼ 0: ð20Þ

From (19) and with the substitutions that will be
specified later, we find the relation between δa and
δv2, being the counterterms associated to the chiral
parameter a and to the vacuum expectation value
(vev), respectively. Note that obviously ph does not
get a counterterm even though on shell, p2

h ¼ M2
h.

(ii) h → hh process. At tree level, the corresponding
amplitude reads

Ah→hh
tree ¼ −6λ3v: ð21Þ

From the cancellation of the divergences of this
process at one loop, we get a relation between δλ3
and δv2

−
3

2v3
ðd3M2

hδv
2þ4v4δλ3ÞþdivðAh→hh

1−loopÞ¼0: ð22Þ

Note that this (off-shell) process cannot be modified
by using the equation of motion for h.

(iii) h → Wω process

Ah→Wω
tree ¼ ig

�
aþM2

Wζ

v2

�
εWph: ð23Þ

From the cancellation of the divergences of this
process at one-loop level and with the assumption
that the relation MW ¼ 1

2
gv is satisfied at every

order, we obtain a relation among δv2, δM2
W , δa,

and δζ,

− iðaM2
Wδv

2 − 2M4
Wδζ − av2δM2

W

− 2M2
Wv

2δaÞ εWph

MWv3
þ divðAh→Wω

1−loopÞ ¼ 0: ð24Þ

IV. ONE LOOP CALCULATION OF THE
RELEVANT 2 → 2 PROCESSES AND

COUNTERTERMS

In this section we present the one loop calculation of the
relevant amplitudes. The amplitudes cannot be expressed in
terms of elementary functions as they are given by
Passarino-Veltman integrals and they are quite cumber-
some. For this reason we just show here the divergent parts
(only present in the real part of the amplitude) and the
explicit expression for the counterterms.
The calculation of quantum corrections for the processes

requires gauge fixing and the inclusion of the Faddeev-
Popov ghosts. The results presented below will be given in
the Landau gauge ξ ¼ 0. Obviously, physical amplitudes
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should be independent of the gauge choice, but some
renormalization constants do depend on the gauge election.
In the gauge-fixing processes several differences are
present in the HEFT [55,56] with respect to the textbook
SM. On one hand, the Higgs is a singlet so it does not play
any role in the symmetry and thus it is not present either in
the gauge fixing piece, or in the Faddeev-Popov one, i.e.,
there are no Higgs-ghost interactions. On the other hand,
the gauge condition in (6) translates into ghost-antighost
pairs coupled to an arbitrary number of Goldstone inser-
tions with a strength depending on the gauge parameter.
As mentioned before, the calculation of the 2 → 2

amplitudes we are interested in is relatively involved, even
at the one-loop level. Recall that we will be interested both
in the divergent part (to determine counterterms) but also in
the much more involved finite part. This is particularly so
because there are several free parameters that have to be
considered when one moves away from the SM. For this
reason it has become customary starting with the work of
[10] to split the one-loop calculation into two parts. The
imaginary part is computed exactly from the tree-level
results described in Sec. III using the optical theorem,
including only the Oðp2Þ pieces. The real part is computed
making use of the equivalence theorem, replacing the
longitudinal vector bosons in the external legs with the
corresponding Goldstone bosons. However, the full set of
polarizations (including of course transverse modes) will be
kept internally inside the loops in the present study. We
emphasize that this procedure is done only for efficiency
reasons and there is no fundamental reason to do so.
Two reasons for concern might arise if this splitting

between the real and imaginary parts is used. The first one
is whether this actually preserves unitarity for unitarized
amplitudes. A reassuring check will be presented in Sec. V,
but the verification is actually guaranteed because the ET is
working quite accurately provided that s ≫ M2

W , which is
the regime we are actually interested in. In any case,
unitarity should not be confused with the concept of
’perturbative unitarity’ that relates the real and imaginary
part up to a given order in perturbation theory and that only
implies the consistency of the calculation in a field theory
(even if this theory is nonunitary) and it is therefore
automatic and of no interest to us; we have nevertheless
verified that perturbative unitarity is well reproduced at the
level of a few per cent as a check of the calculation by
comparing the imaginary parts obtained in either way.
A second concern could be whether gauge invariance is

preserved by doing this splitting. The answer is obviously
in the affirmative in the following sense. The ET is derived
from gauge invariance by requiring that in and out states
fulfill the gauge condition (see e.g., [57]). A precise
implementation of the ET tells us that corrections to the
leading term (i.e., the one where the longitudinal gauge
boson amplitude is approximated by the corresponding
Goldstone boson scattering) are given by a succession of

subleading contributions, each one lower with respect to
the previous by a power of momenta.4 When translated into
partial waves this implies that each of these successive
corrections is suppressed by one more power of s. Taking
into account that the one-loop amplitude is nominally of
order s2, corrections might change the OðsÞ contribution
only. However, the OðsÞ contribution to the amplitude is
computed exactly, without appealing to the ET. Therefore
gauge invariance is guaranteed at the order we are comput-
ing. Having said that, it is safe to use the ’t Hooft-Landau
gauge which considerably simplifies the calculation. Where
a comparison can be made, all counterterms agree with
those computed in a general gauge as we will see below.

A. Real part: The equivalence theorem

The ET states that at high energies compared to the
electroweak scale, the longitudinal projection of the vector
boson can be substituted by the associated Goldstone boson
allowing an error

εμLðkÞ ¼
kμ

MW
þO

�
MWffiffiffi
s

p
�
: ð25Þ

This error assumed at the TeV scale, the cutoff of our
theory, is then, nominally, lower than 10% but actually
much lower because MW can appear only quadratically.
The calculation carried out in Ref. [15] just allowed the

longitudinal part of the gauge bosons running inside the
loops but for this study a fullOðgÞ calculation is performed
and the number of diagrams that needs to be taken into
account scales to more that 1500. This calculation has been
done with the help of FeynArts [58], FeynCalc [59], and
FeynHelpers [60] Mathematica packages. These routines
are able to evaluate the one-loop integrals in the Passarino-
Veltman notation [61] and extract just the divergent part of
the diagrams when is required.
The expressions (10)–(13) are also valid within the

equivalence theorem but now the symmetry will be
manifest at the level of the Mandelstam variables them-
selves in the absence of polarization vectors that do not
transform as four vectors under Lorentz transformations
[16], which is a nice simplification.

4The ET relies on the splitting of the polarization vector
ϵμL ¼ kμ=MW þ vμ. Here vμ is of order MW=E. Substituting the
splitting into the amplitude leads to corrections with higher and
higher powers of E in the denominator. When summed up they all
reproduce the original WL amplitude. The reader can see [57] for
details. We note that the ET is used here for the one-loop
correction only, not for the tree -level contribution—different
orders of ℏ. The one-loop correction to the partial wave is of
Oðs2Þ and the corrections implied by the ET might change the
OðsÞ contribution, but the latter—tree level—is calculated ex-
actly without appealing to the ET. Therefore gauge invariance is
respected even if the splitting is itself not gauge invariant.
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After use of the ETwe have to consider the (real part of)
the following processes.

1. ω+ω− → zz

From the isospin point of view, this is the fundamental
amplitude for elastic ωω scattering. In this process
294 1PI diagrams participate at one-loop level. The
divergences that appear need to be absorbed by redefi-
nitions of coefficients of the tree-level amplitude up to
NLO. When the WL are replaced by the ω, following the

equivalence theorem, the amplitude tree-level amplitude
reads

Aωω
tree ¼ −

sðM2
h − sð1 − a2ÞÞ
ðs −M2

hÞv2
þ 4

v4
ða4ðt2 þ u2Þ þ 2a5s2Þ

þ
�
g2

4

u − s
t −M2

W

�
1þ 8a3t

v2

�
þ u ⇔ t

�
; ð26Þ

with the infinitesimal substitutions

M2
h → M2

h þ δM2
h; M2

W → M2
W þ δM2

W; v2 → v2 þ δv2;

a → aþ δa; a4 → a4 þ δa4; a5 → a5 þ δa5; a3 → a3 þ δa3: ð27Þ

Besides, a redefinition of the Goldstone fields in the Lagrangian needs to be used for the divergent corrections of the
external legs

fω�; zg →
ffiffiffiffiffiffiffiffiffiffiffi
Zω�;z

p fω�; zg ≈
�
1þ 1

2
δZω�;z

�
fω�; zg: ð28Þ

2. ω +ω− → hh

This scattering requires computing 505 one-loop 1PI diagrams. The tree-level amplitude is

Aωh
tree ¼ −b

s
v2

−
6aλ3s
s −M2

h

−
�

g2

4ðt −M2
WÞ

�
2a2sþ a2

t
ðt −M2

hÞ2
�
þ t ⇔ u

�

−
1

v2

�
ζag2

2ðt −M2
WÞ

ðtðs − uÞ þM4
hÞ þ t ⇔ u

�
−

1

v2

�
a2

t
ðt −M2

hÞ2 þ t ⇔ u

�

þ 1

v4
ð2δsðs −M2

hÞ þ ηððt −M2
hÞ2 þ ðu −M2

hÞÞÞ: ð29Þ

To get rid of the divergences of this process, the following substitutions for the couplings are needed

M2
h → M2

h þ δM2
h; M2

W → M2
W þ δM2

W; v2 → v2 þ δv2; a → aþ δa;

b → bþ δb; λ3 → λ3 þ δλ3; δ → δþ δδ; η → ηþ δη; ζ → ζ þ δζ: ð30Þ

Now, apart from (28), we will also need the redefinition of
the classical Higgs field

h →
ffiffiffiffiffiffi
Zh

p
h ≈

�
1þ 1

2
δZh

�
h: ð31Þ

3. hh → hh

This process at the one-loop level contains 654 1PI
diagrams and the divergences must be canceled from the
parameters of the amplitude (17) once the usual
Mandelstam definitions have been applied,

Ahh
tree ¼ −6λ4 − 36λ23v

2

�
1

s −M2
h

þ 1

t −M2
h

þ 1

u −M2
h

�

þ 8γ

v4

��
s
2
−M2

h

�
2

þ
�
t
2
−M2

h

�
2

þ
�
u
2
−M2

h

�
2
�
: ð32Þ

The universal counterterms

M2
h→M2

hþδM2
h; v2→v2þδv2; λ3→ λ3þδλ3;

λ4→ λ4þδλ4; γ→ γþδγ; ð33Þ
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are required for absorbing the divergences, plus the Higgs
redefinition (31).

B. Determination of counterterms

The real absorptive part has both finite and divergent
parts. The divergences are reabsorbed in the amplitudes via
new parameters from redefinitions of couplings and fields
of the bare theory (5) given in the previous subsections.
The counterterms of our theory are not uniquely defined

and depend on the choice of physical inputs to define the
finite part of the amplitude. In this study the so-called on-
shell scheme (see e.g., [62]) has been used. It states that the
physical mass is placed in the pole of the renormalized
propagator with residue 1. This means

Re½Πh;WT
ðq2 ¼ M2

h;WT
Þ − δM2

h;WT
� ¼ 0;

Re

�
dΠh;ω;W

dq2
ðq2 ¼ M2

h;W;ωÞ þ δZh;W;ω

�
¼ 0; ð34Þ

where Πðq2Þ is the one-loop correction to the respective
propagator. The on shell, first used in the context of LEP
physics, has the advantage that many relevant radiative
corrections involve only two-point functions. This is
obvious for the masses and wave-function renormalization.
After the splittings δM2

h;W ¼ δM̄2
h;W þ δM2

h;W;div, and
δZh;ω ¼ δZ̄h;ω þ δZh;ω;div we obtain

δM2
h;div ¼

Δ
32π2v2

ð3½6ð2a2 þ bÞM4
W − 6a2M2

WM
2
h þ ð3d23 þ d4 þ a2ÞM4

h�Þ;

δM2
W;div ¼

Δ
48π2v2

ðM2
W ½3ðb − a2ÞM2

h þ ð−69þ 10a2ÞM2
W �Þ;

δZh;div ¼
Δ

16π2v2
ð3a2ð3M2

W −M2
hÞÞ;

δZω;div ¼
Δ

16π2v2
ððb − a2ÞM2

h þ 3ða2 þ 2ÞM2
WÞ; ð35Þ

where Δ≡ 1
ϵ þ logð4πÞ þ γE and the dimensionality is set

to 4þ 2ϵ.
The one-loop level propagator mixing between the gauge

boson and its associated Goldstone is protected by the
gauge fixing condition in (6) and no extra counterterms will
be needed for this. In the absence of electromagnetic
interactions assuming an exact custodial symmetry,
no Z − γ mixing in the gauge propagator can occur
either.
Besides, the condition of vanishing tadpole is assumed.

There is an extra counterterm δT that cancels the Higgs
tadpole contribution at one loop satisfying the usual
relation [15]

δT ¼ −vðδM2
h − 2v2δλ − 2λδv2Þ ¼ −Ah

tad: ð36Þ

With our parametrization for the Higgs potential, λ
does not appear in any of the processes but its counterterm
can be determined using (36) once δM2

h and δv2 are
obtained.
The matrix field (1) containing the Goldstones in the

HEFT should retain its unitarity and hence it cannot receive
any multiplicative renormalization. Perturbatively, the rede-
finitions of the n-th term of the expansion of U

1

n!

�
i
ω

v

�
n
→

1

n!

�
i
ω

v

�
n
þ 1

2ðn− 1Þ!
�
δZω −

δv2

v2

��
i
ω

v

�
n
:

ð37Þ

It turns out that to absorb the one-loop divergences, the
counterterms for the Goldstone fields (

ffiffiffiffiffiffi
Zω

p
) and the vev

(
ffiffiffiffiffiffiffi
δv2

p
) are equal so they cancel each other at every order in

the expansion. The finite part of
ffiffiffiffiffiffiffi
δv2

p
is fixed, at every

order, by the condition

δZω ¼ δv2

v2
: ð38Þ

The counterterms of the HEFT whose renormalization is
not determined by the OS scheme conditions, are obtained
in the MS scheme. Since this is a mass independent
scheme, the counterterms corresponding to operators of
dimension four (such as a3, a4, etc.) are independent
of MW .
The complete list of counterterms allowing us to get rid

of the divergences of the three amplitudes in the previous
subsections is
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δv2div ¼
Δ

16π2
ððb − a2ÞM2

h þ 3ða2 þ 2ÞM2
WÞ; δTdiv ¼ −

Δ
32π2v

3ðd3M4
h þ 6aM4

WÞ;

δa ¼ Δ
32π2v2

ð6að−2a2 þ bþ 1ÞM2
W þ ð5a3 − að2þ 3bÞ − 3d3ða2 − bÞÞM2

hÞ;

δb ¼ Δ
32π2v2

ð6ð3a4 − 6a2bþ bðbþ 2ÞÞM2
W − ð21a4 − a2ð8þ 19bÞ þ bð4þ 2bÞ

þ 6ad3ð1þ 2b − 3a2Þ − 3d4ðb − a2ÞÞM2
hÞ;

δλdiv ¼
Δ

64π2v4
ðð5a2 − 2bþ 3ðd3ð3d3 − 1Þ þ d4ÞÞM4

h − 12ð2a2 þ 1ÞM2
WM

2
hþ18ðað2a − 1Þ þ bÞM4

WÞ;

δλ3 ¼
Δ

64π2v4
ð36abM4

W þ 6ð3a3 − 3ab − d3ð5a2 þ 1ÞÞM2
WM

2
h þ ð−9a3 þ 3abþ d3ð10a2 − bÞ þ 9d3d4ÞM4

hÞ;

δλ4 ¼
Δ

64π2v4
ð36b2M4

W − 12ða2 − bÞð8a2 − 2b − 9ad3ÞM2
WM

2
h

þ ð96a4 þ 4b2 − d3ð114a3 − 42abÞ þ 9d24 þ a2ð−64bþ 27d23 þ 12d4ÞÞM4
hÞ;

δa3 ¼ −
Δ

384π2
ð1 − a2Þ; δa4 ¼ −

Δ
192π2

ð1 − a2Þ2;

δa5 ¼ −
Δ

768π2
ð5a4 − 2a2ð3bþ 2Þ þ 3b2 þ 2Þ;

δγ ¼ −
Δ

64π2
3ðb − a2Þ2; δδ ¼ −

Δ
192π2

ðb − a2Þð7a2 − b − 6Þ; δη ¼ −
Δ

48π2
ðb − a2Þ2;

δζ ¼ Δ
96π2

aðb − a2Þ: ð39Þ

For completeness we include the counterterm for δg2 even though this is not an independent input of the theory anymore in
the renormalization scheme used here,

δg2 ¼ g2
�
δM2

W

M2
W

þ δv2

v2

�
¼ Δ

12π2v4
M2

Wðð−51þ 19a2ÞM2
W þ 6ðb − a2ÞM2

hÞ: ð40Þ

Notice that our prescription is different from the usual one
where one requires the renormalized Z, γ two-point
function to vanish at zero momentum. This condition
cannot be implemented without electromagnetism, obvi-
ously. However, the different result for δg is of no
consequence in the on-shell scheme.

C. Cross checks and comparison with previous results

All these counterterms above have the correct SM limit.
When a ¼ b ¼ d3 ¼ d4 ¼ 1, all the parameters that are not
present in the SM vanish, and we are left with δv2div, δλdiv,
δλ3, and δλ4. In the SM limit, δλ, δλ3, and δλ4 have been
checked to be exactly equal, as it should since they all
derive from the unique SM Higgs potential coupling λ
present in the tadpole, triple, and quartic self-couplings. In
particular

δλdiv;SM ¼ δλ3;SM ¼ δλ4;SM

¼ Δ
16π2v4

3ð3M4
W − 3M2

WM
2
h þM4

hÞ: ð41Þ

As explained before, it can be seen just by direct com-
parison with (35), that the relation (38) is satisfied.

We can also compare our counterterms with the results
previously reported in the literature. As mentioned before,
the authors in Ref. [15] made a complete study of the elastic
ωω scattering at one-loop level, allowing only longitudinal
modes in the internal lines. That is, they set g ¼ 0 for the
whole process and therefore they set the value MW ¼ 0 for
the vector boson mass. Our results (35) and (39) have been
checked with those relevant for the process in [15] in the
limit MW ¼ 0.

A cruder approximation was taken in [63] where they
studied all the processes including the I ¼ 0 final states but,
besides setting g ¼ 0 and neglecting physical vector bosons
in the loops, the authors took the limitMh ¼ 0. In this limit
where the self-interactions of the Higgs are absent, there is
no need for redefinitions of a, b, and v to absorb the one-
loop divergences and we are left with a4, a5, γ, δ, η. Our
results agree with theirs in the limit MW ¼ Mh ¼ 0, so the
inclusion of the transverse gauge modes does not modify
these counterterms.
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We also find agreement with the results of [42], where
the authors carried out the renormalization of the off-shell
Green functions of the three processes studied in this work
for the purely scalar sector of the custodial preserving
HEFT with a light Higgs in the limit g ¼ 0, g0 ¼ 0 (i.e.,
MW ¼ 0). For the comparison with our on-shell calcula-
tion, we have made use of the equations of motion for the
Higgs and the Goldstone fields, omitting the leptonic
contribution

□ω ¼ −
2a
v
∂μω∂μhþ � � � ;

□h ¼ −V 0ðhÞ þ
�
a
v
þ b
v2

h

�
∂μω∂μωþ � � � ; ð42Þ

leading to the following redefinitions of the electroweak
and chiral parameters.

M2
h ¼ M̃2

h − 2c□H
M̃4

h

v2
; a ¼ aC þ 2M̃2

h

v2
ðc7 − aCc□HÞ;

b ¼ bC þ 2μv3ðc7 − aCc□HÞ þ
M̃2

h

v2
ð8a7 − 8aCa□H − 4bCc□H þ aCcΔHÞ;

λ3 ¼
μv3
3!

−
M̃2

h

v2
μv3c□H þ M̃4

h

v4

�
1

2
cΔH − 2a□H

�
;

λ4 ¼
λ̃

3!
− ðμv3Þ2c□H þ M̃2

h

v2

�
μv3

�
5

3
cΔH − 8a□H

�
−
4

3
λ̃c□H

�
þ 4M̃4

h

v4

�
2

3
aΔH − b□H

�
;

a4 ¼ c11; a5 ¼ c6 −
aC
2
c7 þ

a2C
4
c□H; δ ¼ −c20 þ

1

2
aCcΔH;

η ¼ −c8 þ 2aCc10 − 4a2Cc9; γ ¼ cDH; ð43Þ

where μv3 ≡ μ3
v and all the quantities of the form X̃ represent

the parameters from their Lagrangian that have a direct
counterpart in ours.
It is worth commenting on the relevance of off-shell

calculations. First we see at once that the number of
parameters simply explodes; trying to do phenomenology
is in practice nearly impossible. Secondly, there is a large
arbitrariness in using totally or partially the equations of
motion so some degree of arbitrariness is unavoidable.
Finally, we have to remember that off-shell couplings in an
effective theory are devoid of any physical meaning. A
glance at the lhs and the rhs of the previous equivalences
should suffice to convince oneself that this is not the way
to go.
We have also compared our results with the more recent

study [41] where the authors performed a full (off-shell)
renormalization of the one-loop Green functions involved
in WZ scattering (all polarizations considered) including
custodially nonpreserving operators too. When we restrict
our set of counterterms to those relevant for WLWL
scattering and take into account that custodially nonpre-
serving contributions are omitted, we find our results
compatible with those of [41] with two differences origi-
nating from the inclusion by these authors of two Oðp4Þ
operators,

a□□

□h□h
v2

; a□VV
□h
v

TrðVμVμÞ: ð44Þ

These operators can be reduced by using the equation of
motion of the Higgs field at leading order in Eq. (42), and
are for our purposes redundant. The first of these two
operators enters directly in the renormalization of the
propagator of the Higgs so, even with the same on-shell
renormalization condition as ours, δZh and δM2

h differ in a
consistent way. After using the equations of motion, both
operators are actually redundant and change the coeffi-
cients Mh, a, and a5 following Eq. (43) with a□□ ¼ c□H

and a□VV ¼ c7. As mentioned before, from this reference
we are able to compare only those counterterms partici-
pating in our elastic WLWL scattering within the custodial
limit (g0 ¼ 0,MZ ¼ MW) and in the Landau gauge (ξ ¼ 0):
v2, M2

h, M
2
W , a, a3, a4, a5, and ζ (called ad2 in their

notation).
δTdiv is also compatible up to a different sign in the

renormalization condition for the Higgs tadpole. We do not
find agreement, though, in the counterterm associated to the
SUð2ÞL coupling g, coming from the fact that in our case it
is a derived quantity as shown in (40).
One can check easily that all our additional or ‘anoma-

lous’ counterterms do vanish in the SM limit, while this is
not in general the case for the off-shell calculations
in [41,42].
The authors in [6] also obtained the divergences of the

HEFT local operators with the heat kernel formalism for the
path integral. To this purpose, they needed to make
redefinitions of the quantum fields, in particular the
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Higgs field, so they were present in the canonical nor-
malization. These redefinitions alter the UV divergences of
some operators with respect to those in our Lagrangian. All
the Oðp4Þ divergences, not affected by field renormaliza-
tions, have been checked to coincide after some repar-
ametrization of the chiral couplings.

D. Imaginary part: The optical theorem

The imaginary part of the NLO amplitude is obtained
exactly using the optical theorem. The fact that some states
can go on shell in the process forces the presence of a
physical cut in the analytic structure of an amplitude that
depends on the variable s promoted to a complex quantity.
This amplitude is obtained after the analytical continuation
to the whole complex plane of the Feynman amplitude
depending on the center of mass energy, a real variable.
Given a physical amplitude AðsÞ, once we know the

discontinuity of the complex amplitude across the physical
cut with the usual Cutkosky rules, we find

ImAðsÞ ¼ σðsÞjAðsÞj2; ð45Þ

where σðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðM1þM2Þ2

s

q
is the two-body phase space.

This allows us to compute the imaginary part of any
amplitude at the one-loop level from the tree-level result.
As an example, if we are interested in computing the full

I ¼ 1 isospin amplitude in the process Wþ
LW

−
L → ZLZL

AðWþ
LW

−
L → ZLZLÞ ¼ Að2Þ

tree þAð4Þ
tree þAð4Þ

loop; ð46Þ

where Að2Þ
tree þAð4Þ

tree is the amplitude (15) and Að4Þ
loop is the

full one-loop amplitude

Að4Þ
loop ¼ Re½Að4Þ

loopðωþω− → zzÞ� þ iσðsÞjAð2Þ
treej2: ð47Þ

This procedure is not necessary but speeds up the
calculation.

V. UNITARIZATION

Departures from the SM such as those described by the
HEFT unavoidably result in a loss of unitarity. Amplitudes
typically exhibit a bad ultraviolet behavior leading to cross
sections that grow too fast with the energy

ffiffiffi
s

p
and quickly

violate the unitarity bounds. While this is well known, it is
sometimes forgotten that this fast growth of the amplitudes
results in a hypersensitivity to deviations of the coefficients
of the HEFT with respect to their SM values. We analyze
this in some more detail in the next subsections.
Once we have built the fixed isospin amplitudes using

Eq. (12), we can obtain the amplitude with J total angular
momentum with the corresponding partial wave

tIJðsÞ ¼
1

32Kπ

Z
1

−1
dðcos θÞPJðcos θÞTIðs; cos θÞ; ð48Þ

using the center of mass relations t ¼ −ðs − 4M2
WÞð1 −

cos θÞ=2 and u ¼ −ðs − 4M2
WÞð1þ cos θÞ=2. K is a con-

stant whose value is K ¼ 2 or 1 depending on whether the
particles participating in the process are identical or not.
The way we compute the fixed isospin amplitudes using

Feynman diagrams from the Lagrangian (5), leads to a
perturbative expansion of the form

tIJðsÞ ≈ tð2ÞIJ þ tð4ÞIJ þ…; ð49Þ

which for the I; J ¼ 1, 1 case satisfies perturbatively the
optical theorem (45)

Imðtð2Þ11 Þ ¼ 0

Imðtð4Þ11 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
W

s

r
jtð2Þ11 j2 ð50Þ

A. Amplitudes at high energies

In Fig. 1 we plot the modulus computed at the tree plus
one-loop level for the process WLWL → ZLZL for various
values of the parameter a at a fixed scattering angle
cos θ ¼ 0.3. Departures from the SM value a ¼ 1 result
in a clear bad high-energy behavior. This same behavior is
seen in the remaining 2 → 2 processes. For instance the
modulus of the amplitude for the process WLWL → hh is
depicted in the left panel of Fig. 2 for the same values of the

FIG. 1. Plot of the modulus of the elastic vector boson
scattering amplitude in longitudinal polarization (WLWL →
ZLZL) versus the center of mass energy

ffiffiffi
s

p
for some values

of the chiral parameter a at a fixed scattering angle cos θ ¼ 0.3. It
can be seen how small departures for the SM value (a ¼ 1) leads
to a quick violation of unitarity within the HEFT regime of
validity. All the Oðp4Þ couplings contributing to the process
(a3; a4; a5; ζ) are set to zero.
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parameter a parameterizing the Higgs-vector boson cou-
pling in the HEFT.
On the contrary, this same modulus of the WLWL → hh

amplitude (Fig. 2) shows a milder dependence on the
parameter λ3 of the Higgs potential. For the SM value
a ¼ 1, modifying λ3 does not show obvious signs of bad
high-energy behavior. At this level, this derives from the
fact that this coupling is momentum independent. Note that
this coupling is very poorly constrained so the overall
uncertainty of the amplitude is accordingly large.
Higher-loop calculations will only worsen the high-

energy behavior. It is thus clear that, except for tiny
deviations from the SM, as soon as one enters the multi
TeV region, the perturbative treatment is unreliable.
Therefore, checking for constraints on the anomalous
couplings present in the HEFT by just looking at growing
cross sections is risky but may be justified (if the deviations
are small) or plain wrong (if the anomalous coupling
constants deviate significantly from their SM values). It is
clear that physical amplitudes—even beyond the SM—are
necessarily unitary, meaning that in the HEFT higher-loop
contributions have to be somehow summed up to render a
reasonable high-energy behavior, which of course will be
different from the SM one, but still in accordance with the
general principles of field theory. We conclude that unitar-
ization is necessary to compare the predictions of the HEFT
with those of the SM vis-à-vis the experiments at very high
energies, particularly when we are close to the HEFT UV
cutoff.
The bad-energy behavior can also be seen at the partial

wave level before unitarization. The modulus of the vector-
isovector contribution up to the NLO in the expansion (49)
is shown in Fig. 3 for a small departure from the SM values
via the parameter a4 ¼ 10−4 (the rest of the parameters are

set to their corresponding SM values). In that same figure
(in the right axis), the contribution in percentage (in
absolute value) to the one-loop partial wave is shown with
respect to the full tree level [Oðp2Þ þOðp4Þ] with the
following definition

Δ1−loop ¼ 100 ·

���� jt
treeþloop
11 j − jttree11 j

jttree11 j
����: ð51Þ

The contribution of the one-loop level to the full partial
wave turns out to be negative as it can be seen in the figure
(the green dot-dashed line representing the full amplitude is

FIG. 2. Plot of the modulus of theWLWL → hh amplitude versus the center of mass energy
ffiffiffi
s

p
for some values of the chiral parameter

a (left) and the trilinear Higgs coupling λ3 ¼ d3λ (right) at a fixed scattering angle cos θ ¼ 0.3. It can be seen how departures from the
SM limit do not lead to an obvious bad UV behavior of the amplitude in the second case. Although it could seem that in the left panel
there is no bad high-energy limit for the case a ¼ 0.99, the reality is that the amplitude acquires an unphysical behavior for a scale just
above the cutoff of the theory (around 4 TeV), a region not shown in the plot. In each figure, the remaining parameters do not vary and
are set to the corresponding SM values.

FIG. 3. (Left axis) Plot of the modulus of the vector-isovector
partial wave at tree level (solid red line) and tree + one-loop level
(dot-dashed green line) versus the center of mass energy

ffiffiffi
s

p
.

(Right axis) Plot of the percentage represented by the 1-loop
contribution (purple dashed line), Δ1−loop in Eq. (51) versus the
center of mass energy

ffiffiffi
s

p
in absolute value. The curves are

depicted for a4 ¼ 10−4 and the rest of the parameters are set to
their SM values.
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always below the tree level contribution in solid red),
reaching a maximum value ∼6% around the 2 TeV region.
Here the tree level contribution includes, as mentioned,
both the Oðp2Þ and the Oðp4Þ pieces. As was already
notice in previous works [15], as soon as one departs from
the SM the later quickly dominate the real part of theOðp4Þ
contribution (yet another reason why using the ET is
justified).

B. The inverse amplitude method

The expansion in terms of the external momentum
typically leads very quickly to a violation of unitarity
and, in order to make realistic predictions, unitarization
techniques need to be used. In our case we choose to make
use of the IAM [18,20,22–28] in order to unitarize the
partial waves (and, eventually, the amplitudes). The IAM is
really successful in predicting the features of the rho meson
resonance studying low-energy QCD with pion-pion scat-
tering and it has also been extensively used in HEFT
analysis.
The method consists in building the following IAM

amplitude up to NLO

tIAMIJ ≃
ðtð2ÞIJ Þ2

tð2ÞIJ − tð4ÞIJ

; ð52Þ

which perturbatively satisfies (49) and the desired unitarity
condition tIJðsÞ ¼ i

2
ð1 − ηðsÞe2iδðsÞÞ, where 0 < η < 1 is

the ineslasticity.
A pole in the unitary amplitude (52) appears when, for

some complex value of sR (53),

tð2ÞIJ ðsRÞ − tð4ÞIJ ðsRÞ ¼ 0: ð53Þ

This pole, if present, is interpreted as a resonance with
quantum numbers I, J and features MR and ΓR, these lasts
given a laWigner by the position of the pole in the complex
plane sR ¼ ðMR − i

2
ΓRÞ2. We will consider for this study

and future ones only the lowest partial wave in I ¼ 0, 1
channels and refer to these resonances as scalar-isoscalar
for the poles in tIAM00 and vector-isovector for tIAM11 .
One nicety of the IAM, besides assuring unitarity, is that

the poles can be interpreted as dynamically generated
resonances appearing after the resummation of infinite
bubbles chain WW → ZZ → WW → … → ZZ (in the
I ¼ 1 channel) as it can be understood diagrammatically
from the perturbative expansion of (52).
An example of the recovery of unitarized amplitudes by

the IAM is depicted in Fig. 4. In that illustration we show
both IAM and partial wave amplitudes for the two bench-
mark points defined in the next section; Table II, BP10 and
BP20. It can be seen how the inclusion of the NLO
contribution leads to an even quicker violation of the
unitarity of the partial wave in the UV regime of the

theory. This unphysical high-energy behavior is tamed by
means of the IAM amplitude defined in Eq. (52), exhibiting
resonances for a BSM model. Figure 4 also shows the
importance of the next to leading order versus the leading
order contribution, reaching a 40%–60% relative size
difference near the cutoff of the theory.
In the I ¼ 0 channel, two Higgs intermediate states are

possible and for that one needs the machinery of coupled
channels.
The IAM method can be extended to the coupled channel

case too (see [25,64]), particularly if all the different channels
have the same thresholds. From the perturbative expansion

TIJ ¼ Tð2Þ
IJ þ Tð4Þ

IJ þ…; ð54Þ

a natural generalization of the IAM gives

TIAM
IJ ¼ Tð2Þ

IJ ðTð2Þ
IJ − Tð4Þ

IJ Þ−1Tð2Þ
IJ ; ð55Þ

which satisfies exact multichannel elastic unitarity on the
right cut

ImTIAM
IJ ¼ TIAM

IJ ðTIAM
IJ Þ†: ð56Þ

FIG. 4. Plot of the inverse amplitude method and partial wave
amplitudes of the vector-isovector channel I; J ¼ 1, 1 for the two
benchmark points BP10ðdashedÞ and BP20ðsolidÞ defined in
Table II as a function of the center of mass energy

ffiffiffi
s

p
. The

notation of LO corresponds to the chiral order two ðtð2Þ11 Þ and the

NLO to the chiral order four ðtð4Þ11 Þ partial waves in Eq. (49). Since
the two benchmark points represented here share the value of a,
the two LO lines, independent of theOðp4Þ parameters, coincide.

TABLE II. Values for the location of the vector poles
ffiffiffiffiffi
sV

p ¼
MV − i

2
ΓV found in all the benchmark points of reference [19]

once the transverse modes are included (g ≠ 0).

ffiffiffiffiffi
sV

p ðGeVÞ g ¼ 0 g ≠ 0 a a4 · 104 a5 · 104

BP1 1476 − i
2
14 1503 − i

2
13 1 3.5 −3

BP2 2039 − i
2
21 2087 − i

2
20 1 1 −1

BP3 2473 − i
2
27 2540 − i

2
27 1 0.5 −0.5

BP10 1479 − i
2
42 1505 − i

2
44 0.9 9.5 −6.5

BP20 1981 − i
2
97 2025 − i

2
98 0.9 5.5 −2.5

BP30 2481 − i
2
183 2547 − i

2
183 0.9 4 −1
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The IAM has been extensively used to describe low-energy
meson-meson scattering where it has proven to be extremely
successful. With a very small set of parameters, it is able to
describe many different channels including their first reso-
nances [17,20,25,64]. In the case of coupled channels, the
different amplitudematrix elements (partialwaves) ðTIJÞijðsÞ
correspond to different reactions having the same quantum
numbers IJ. Clearly, if there is a resonance in one of the
channels it should appear also in all theothers since physically
these resonances can be produced in any of the reactions.
While for single-channel unitarization the IAM is well

grounded and relies on a minimal set of assumptions (see
e.g., [17,21,25,64]), there is no really unambiguous way of
applying the IAM to the case where there are coupled
channels with different thresholds. We shall adhere to the
simplest choice that consists in assuming the previous
expressions to remain valid also in the present analysis.
This can be justified heuristically on the grounds thatMW is
not too different fromMh. This is again a good justification
of the need to include all polarizations of the vector boson
with a mass MW in the calculation.
In addition, it should be stated that the decoupling of the

two I ¼ 0 channels in the case a2 ¼ b taking place when
the equivalence theorem is used and physical WL are
replaced by the corresponding Goldstone bosons does
not hold in the exact calculation.
The results for the IJ ¼ 00 channel will be reported in a

separate publication. Here we will concentrate in the
modifications that the inclusion of the transverse mode
propagation of the vector bosons with a mass MW and the
appearance of new effective couplings in the HEFT induce
in the IJ ¼ 11 channel.

C. Vector resonances

In order to see the relevance of including the propagation
of transverse modes, we focus on vector resonances with
quantum numbers I; J ¼ 1, 1 in vector boson scattering
(VBS). We shall compare the new results with those
obtained previously.
From Eqs. (11) and (12), the fixed isospin amplitudes in

the chiral expansion, Tð2Þ
1 and Tð4Þ

1 are obtained. Tð2Þ
1 using

Að2Þ
treeðp1; p2; p3; p4Þ and Tð4Þ

1 with Að4Þ
treeðp1; p2; p3; p4Þþ

Re½Aloopðωþω− → zzÞ�ðp1; p2; p3; p4Þ. Using Eqs. (48)
and (50) perturbatively, we find the partial wave for
I; J ¼ 1; 1

tð2Þ11 ¼ 1

64π

Z
1

−1
dðcos θÞ cos θTð2Þ

1 ðs; cos θÞ;

Re½tð4Þ11 � ¼
1

64π

Z
1

−1
dðcos θÞ cos θTð4Þ

1 ðs; cos θÞ;

Im½tð4Þ11 � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
W

s

r
jtð2Þ11 j2; ð57Þ

where the Legendre polynomial P1ðcos θÞ ¼ cos θ has
been used.
The vector-isovector resonances, if present, are located

by searching for poles of the unitary IAM amplitude (52)
i.e., looking for solutions of Eq. (53).
Let us first of all investigate how the proper inclusion of

the transverse modes (i.e., g ≠ 0) influence the results
obtained in the extreme ET limit. Below we provide results
for g ¼ 0 and g ¼ 2MW=v. The benchmark points corre-
spond to those used in [19]. As it can be seen ceteris paribus
the inclusion of the gauge boson masses systematically
increases the masses of the resonances by a few per cent. The
modifications in the widths are not significant. In these
calculations b ¼ a2, and both a3 and ζ have been set to zero.

D. Checking unitarity

As a check of the good unitarity behavior of the
amplitudes obtained in the IAM and the validity of the
approximations made we plot the partial wave for complex
values of the kinematical variable s in the IJ ¼ 11 channel.
There are no threshold in this channel beyond the elastic
channel and the results must lie accordingly in a circum-
ference of radius 1=2 centered at s ¼ i=2. This is shown in
Fig. 5.We also plot the results obtained for the same IJ ¼ 11
channel in perturbation theory—without resummation.
They obviously violate the unitarity bound. The plot
correspond to the values of the benchmark point BP20 from
Table II, corresponding to a ¼ 0.9, a4 ¼ 5.5 × 10−4, and
a5 ¼ −2.5 × 10−4, within the recent CMS experimental
bounds of Table I.

FIG. 5. Argand plot showing the unitary VBS amplitude (red
points) for the values of BP20 from Table II. Due to the elasticity
of the process, the IAM amplitude lies exactly on the unitarity
limit, i.e., the circumference of radius 1=2 centered at ð0; 1=2Þ.
The amplitude before applying the IAM is also present (blue
points) and obviously lies entirely outside the unitarity condition.
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E. Influence of the new HEFT constants

The inclusion of transverse modes in the calculation of
the dispersive real part of the amplitude leads unavoidably
to consider the case where M ≠ 0. We have seen how this
changes to some extent the location and widths of the
amplitudes. On the other hand, the inclusion of the trans-
verse modes leads to the appearance of new counterterms in
the HEFT. In the channel IJ ¼ 11 two new low-energy
(‘anomalous’) couplings appear; a3 and ζ. Let us see how
their presence may affect the previous results.
For this analysis we focus in the four lightest resonances

of Table II. This is BP1, BP2, BP10, and BP20 We see from
the previous results that, of the two new parameters (not
previously considered in unitarization analysis), a3 is most
relevant as it can be seen in Tables III and IV. Positive
values of a3 tend to increase the mass of the vector
resonance and make it even narrower, making its detection
harder. Negative values of a3 work in the opposite
direction. Although the bounds on a3 allow it, the value
ja3j ¼ 0.1 may be too large, and we also provide MV and
ΓV for ja3j ¼ 0.01. If a3 happened to be of the same order
as the current bounds for a4 and a5, its effect would be
subleading. The influence of ζ appears to be less than that
of a3 but the qualitative behavior remains.

VI. CONCLUSIONS

One of the main results of this paper is the determination
of the one-loop quantum corrections to all the relevant
2 → 2 processes that are relevant to two-Higgs production
via the scattering of electroweak gauge bosons in the
HEFT. The calculation has been explicitly performed in
the ’t Hooft-Landau gauge, although physical amplitudes
are gauge independent.

In our work, for the first time, a diagrammatic compu-
tation of all the on-shell 2 → 2 processes relevant for two-
Higgs production is presented. In the one-loop calculation,
both transverse and longitudinal polarized modes are
included. In the on-shell scheme this necessarily leads to
considering the physical values for the Higgs and weak
gauge boson masses.5 The resulting amplitudes are then
unitarized and we analyze the characteristics of the
dynamical resonances appearing. An interesting result is
that, after unitarization of the partial waves, the effect of
including the gauge boson masses is small but significant
increasing the mass of the vector resonances typically in the
range 2% to 3%. The widths are unchanged.
The introduction of the transverse degrees of freedom of

thegauge bosons also implies the need to consider additional
effective couplings that had not been previously considered
in unitarization studies. In elastic WW → WW scattering,
there are two new effective couplings that become relevant.
While traditionally the effective couplings a4 and a5 have
been regarded as driving the masses of dynamical reso-
nances, it turns out that the couplinga3 (that plays a role only
if the a priori subdominant transversemodes are included) is
relevant too. It should also bementioned thatwhilea4 anda5
are by now fairly constrained by LHC analysis, the bounds
on a3 are still rather loose.We believe this makes the present
study particularly relevant.
The calculation is done on shell, which is what is required

for a useful experimental comparison. Keeping redundant
operators results in a proliferation of couplings of which
only a handful are useful. We also see that the most

TABLE IV. Values for location of the vector poles
ffiffiffiffiffi
sV

p ¼ MV − i
2
ΓV found in all the benchmark points of reference [19] for different

values of ζ and g ≠ 0. The chiral parameter a3 is set to zero.

ffiffiffiffiffi
sV

p ðGeVÞ ζ ¼ 0 ζ ¼ 0.1 ζ ¼ −0.1 ζ ¼ 0.01 ζ ¼ −0.01

BP1 1503 − i
2
13 1637 − i

2
13 1377 − i

2
14 1516 − i

2
13 1489 − i

2
13

BP2 2087 − i
2
20 2393 − i

2
18 1809 − i

2
22 2117 − i

2
20 2058 − i

2
21

BP10 1505 − i
2
44 1570 − i

2
46 1439 − i

2
43 1510 − i

2
45 1497 − i

2
45

BP20 2025 − i
2
98 2136 − i

2
100 1915 − i

2
94 2036 − i

2
98 2014 − i

2
97

TABLE III. Values for the location of the vector poles
ffiffiffiffiffi
sV

p ¼ MV − i
2
ΓV found in all the benchmark points of reference [19] for

different values of a3 and g ≠ 0. The chiral parameter ζ is set to zero.

ffiffiffiffiffi
sV

p ðGeVÞ a3 ¼ 0 a3 ¼ 0.1 a3 ¼ −0.1 a3 ¼ 0.01 a3 ¼ −0.01

BP1 1503 − i
2
13 1795 − i

2
11 1215 − i

2
15 1532 − i

2
13 1474 − i

2
13

BP2 2087 − i
2
20 2721 − i

2
15 1505 − i

2
23 2150 − i

2
19 2025 − i

2
21

BP10 1505 − i
2
44 1663 − i

2
46 1335 − i

2
43 1520 − i

2
44 1488 − i

2
44

BP20 2025 − i
2
98 2278 − i

2
104 1752 − i

2
89 2052 − i

2
98 1999 − i

2
97

5However, in order to be able to use safely exact isospin
relations we work in the custodial limit neglecting electromag-
netism, i.e., g0 ¼ 0.

INTRODUCING TOOLS TO TEST HIGGS BOSON … PHYS. REV. D 105, 015009 (2022)

015009-17



influential coefficients in the effective Lagrangian are those
surviving the extreme ET limit. There is some logic behind
this, but it is reassuring to check it in a detailed calculation.
In the present paper, we have focused on the impact of

the new contributions in the vector-isovector channel and
have postponed the consideration of the more involved
scalar-isoscalar one to a future publication. Unitarization of
the latter, that requires a full use of the coupled channel
formalism, is most relevant in order to be able to constraint
some of the Higgs couplings.
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