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We study the two scalar leptoquarks capable of generating chirally enhanced, sign-dependent
contributions to lepton magnetic dipole moments (MDMs) and electric dipole moments (EDMs),
R2 ∼ ð3; 2; 7=6Þ and S1 ∼ ð3; 1;−1=3Þ. We consider the case in which the electron and muon sectors
are decoupled, and leptoquark couplings are assigned complex values. Adopting the coupling ansatz that
the electron dipole operator is generated by charm-containing loops, and muon dipole operator by top-
containing loops, we find that both minimal leptoquark models remain viable solutions for reconciling
anomalies in the muon and electron MDMs, accounting for either of the two current (disparate) electron
MDM results from Cs and Rb interferometry experiments. We also examine the correlated corrections to
the muon and electron masses generated by these models, and argue that to minimize fine-tuning this
introduces an upper bound on viable leptoquark (ϕ) masses, mϕ < Oð4Þ TeV. Similar arguments allow us
to make a prediction for the upper bound of the muon EDM generated by these models,
jdμj < Oð10−22Þe cm, which could be within reach of upcoming experimental programs, including Muon
g − 2 at Fermilab (FNAL), and muEDM at Paul Scherrer Institut (PSI).

DOI: 10.1103/PhysRevD.105.015002

I. INTRODUCTION

Lepton magnetic (MDM) and electric (EDM) dipole
moments are sensitive precision probes for physics beyond
the Standard Model (SM). In terms of the effective
interactions of SM fields, the EDM (dl) and MDM (al)
enter via the following

Llγ ¼ l̄
�
al

e
4ml

σμν − dl
i
2
σμνγ5

�
lFμν; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ, and

al ≡ 1

2
ðg − 2Þl; ð2Þ

where this represents the deviation of this observable from
the tree-level value, g ¼ 2.
An accurate determination of the MDMs of

charged-leptons has long been an important test of the

Standard Model (SM). Given the precision of the SM
predictions, any deviation from these could provide a
“smoking gun” for BSM physics—particularly where
these models could generate loop-level, flavor-violating
interactions.
A persistent deviation between experiment and predic-

tion for the muon MDM has garnered significant attention
in the literature. The most recent measurement of aexpμ from
the Fermilab (FNAL) Muon g − 2 collaboration [1] yields
the following global average

Δaμ ¼ aexpμ − aSMμ ¼ ð2.51� 0.59Þ × 10−9; ð3Þ

when combined with the Brookhaven Muon g − 2 results
[2]. The SM prediction is taken from the theory white paper
[3], the result of a combination of work in Refs. [4–23].
This represents 4.2σ evidence for the existence of BSM
physics.
In contrast to this measurement of the muon, the MDM

of the electron can be indirectly probed using spectroscopic
measurements of the fine structure constant, αem, as input
for the SM theory calculation. The result from the most
recent measurement in cesium (Cs) suggests an anomaly in
the electron MDM

ΔaCse ¼ aexpe − aSM;Cs
e ¼ −ð8.8� 3.6Þ × 10−13; ð4Þ
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where this corresponds to a 2.5σ deviation from the SM
[24]. In contrast to this, the result from the most recent
measurement in rubidium (Rb) yields

ΔaRbe ¼ aexpe − aSM;Rb
e ¼ ð4.8� 3.0Þ × 10−13: ð5Þ

which suggests a 1.6σ deviation [25]. These determinations
are not consistent with each other within the stated errors,
so one must conclude that the electron MDM situation
requires clarification. For the moment, we thus treat these
two results as independent cases and remain agnostic about
where the resolution will lie.
It is important to note that were the result of Eq. (4) to be

confirmed, then Δaμ and Δae would be of opposite sign,
which would be an interesting difficulty to be overcome
when searching for a common explanation. Such consid-
erations motivate a search for flavor-violating BSM effects
to achieve a common solution for these two (putative)
anomalies.
Leptonic EDMs add to the MDM information by

providing a probe of CP-violating effects beyond the
SM. Non-zero permanent EDMs of leptons would break
parity (P) and time-reversal (T) symmetry and, by the CPT
theorem, also CP symmetry. The only verified source of
CP violation in the SM is the non-zero phase of the CKM
matrix, which predicts EDMs that are orders of magnitude
below current experimental bounds. Therefore, a measure-
ment of a relatively sizeable leptonic EDMs at future
experiments would necessitate an authentic BSM source
of CP violation.
Given the anomaly or anomalies in the MDMs, we may

speculate as to whether this tension with the SM could also
manifest in the EDMs de and dμ in anticipation of potential
future measurements. The current bounds for the muon [26]
and the electron [27]are given by

jdμj < 1.5 × 10−19e cm 90%CL;

jdej < 1.1 × 10−29e cm 90%CL: ð6Þ

In Ref. [28], we discussed the viability of models of
single-scalar leptoquarks (LQs) to simultaneously amelio-
rate the anomaly inΔaμ, as it stood prior to the FNAL result
quoted in Eq. (3), and the potential anomaly ΔaCse of
Eq. (4). Contributions to de and dμ were rendered negli-
gible in the parameter space explored, by setting the LQ
couplings to solely real values. In the present work, we
explore the implications of these established models in an
extended parameter study where contributions to de and dμ
exist. Lepton EDMs have been studied in the context of
scalar LQ models, for example, in Refs. [29–33].
The outline of this paper is as follows; in Sec. II we

introduce scalar leptoquark models, comment on their
manifestation in leptonic MDMs and EDMs, and outline
our LQ coupling flavor ansatz. In Sec. III, we comment on
the constraints on these models from charged-lepton mass

corrections in the context of fine-tuning, and present the
implications of these constraints on LQ masses and
predictions for the generated EDMs. In Sec. IV, we present
an overview of important additional constraints, and
illustrate the viable parameter space for both LQ models.
Finally, in Sec. V we comment briefly on the implications
of these models on the tau lepton sector, before concluding
in Sec. VI.

II. SCALAR LEPTOQUARKS AND GETTING
CHIRALITY RIGHT

Letoquarks are hypothetical exotic particles that directly
Yukawa couple to SM leptons and quarks. Motivated by the
introduction of direct lepton-quark couplings, rather than
separately considering lepton (L) or baryon (B) number
conservation, these are absorbed into the definition
of a new conserved quantity [34] fermion number:
F ¼ 3Bþ L. Even though vector LQs have also been
considered in the context of magnetic moment anomalies,
we would expect vector LQ to be associated with gauge-
symmetry extensions, complicating the construction of a
full UV-complete model. Therefore, in the interest of
simplicity, we focus only on scalar LQs in this work.
Table I gives an overview of the finite set of scalar LQs,
including their gauge-group transformations and fermion
numbers, adopting the naming convention of Ref. [35].
The fermion number characterises the type of lepton-

quark interactions; for generic charged-leptons (l) and
quarks (q), jFj ¼ 2 LQs couple to fermion bilinears of the
form lq, and jFj ¼ 0 couple to l̄q. The Yukawa couplings
can be expressed as

Ll ¼ lðcÞ½yRPR þ yLPL�qϕ† þ H:c: ð7Þ

for general scalar LQ models. The coupling constants yL

and yR are labeled by the chirality of the quark in the
interaction. Leptoquarks which have both left-handed (LH)
and right-handed (RH) couplings, namely S1 and R2, are
referred to as mixed-chiral. We will see that the chirality of
the LQ couplings is paramount for generating sign-
dependence in contributions to Δal, relevant if Eq. (4)
is correct. Additionally, a mixed-chiral LQ can yield

TABLE I. Scalar LQs and their transformation properties,
under the hypercharge convention Q ¼ I3 þ Y. The second-last
column indicates whether the LQ has mixed-chiral couplings.

Symbol SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY Mixed chiral jFj
S̃1 ð3; 1;−4=3Þ ✗ 2
S1 ð3; 1;−1=3Þ ✓ 2
S3 ð3; 3;−1=3Þ ✗ 2
S̄1 ð3; 1; 2=3Þ ✗ 2
R2 ð3; 2; 7=6Þ ✓ 0
R̃2 ð3; 2; 1=6Þ ✗ 0
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enhanced contributions to the effective lepton dipole vertex,
via a mass-insertion on an internal fermion leg.
Note that the jFj ¼ 2 scalar leptoquarks can also have

gauge-invariant diquark couplings, leading to a violation of
baryon number conservation and hence strong constraints
from proton decay. We thus impose global conservation of
baryon number throughout to forbid diquark couplings
of S1.

A. Scalar LQ contributions to MDMs

We comment briefly on this calculation here, but refer
the reader to Ref. [28] for a more extended discussion.
Following from Eq. (1), the following Lagrangian para-

metrizes the contributions to al

Llγ ⊃ el̄
al
4ml

σμνFμνl;

⊃
1

2
el̄σμνFμνðσlLPL þ σlRPRÞl: ð8Þ

where σlL=R parametrize the effective left- and right-chiral

interactions, as PLðRÞ ¼ 1
2
ð1 ∓ γ5Þ. We also note that σlL=R

are not independent: in fact, σlL ¼ ½σlR��. Equation (8)
reveals, via coefficient matching,1 that

Δal ¼ mlðσlL þ σlRÞ ¼ 2mlReðσlLÞ; ð9Þ

The leading-order topologies for these corrections are
illustrated in Fig. 1. Their contributions to σlL=R are well-
established in the literature [35]. For F ¼ 0 scalar LQs
(e.g., R2), via the Lagrangian in Eq. (7), we have that

σlL ¼ −
Nc

16π2m2
ϕ

X
q

½mlðjyRlqj2 þ jyLlqj2Þκ

þyRlqy
L�
lqmqκ

0�; ð10Þ

where

κðxqÞ ¼ QϕfSðxqÞ − fFðxqÞ;
κ0ðxqÞ ¼ QϕgSðxqÞ − gFðxqÞ; ð11Þ

with xq ¼ m2
q=m2

ϕ. These contributions are proportional to
the number of colors, Nc ¼ 3, and are summed over quark
flavors q running in the loop. The electric charge of the
field ϕ is given byQϕ, and the loop functions in Eq. (11) are
given by [35]

fSðxÞ ¼
xþ 1

4ðx − 1Þ2 −
x logðxÞ
2ðx − 1Þ3 ;

fFðxÞ ¼
x2 − 5x − 2

12ðx − 1Þ3 þ x logðxÞ
2ðx − 1Þ4 ;

gSðxÞ ¼
1

x − 1
−

logðxÞ
ðx − 1Þ2 ;

gFðxÞ ¼
x − 3

2ðx − 1Þ2 þ
logðxÞ
ðx − 1Þ3 : ð12Þ

For jFj ¼ 2 LQs (e.g., S1), the above effective contri-
butions to the MDM or EDM are calculated similarly, but
with Qϕ ↦ −Qϕ. For a scalar LQ without mixed-chiral
Yukawa couplings, the yRyL� term in Eq. (10) is not present
and contributions from each propagator are of definite
relative sign. However, for mixed-chiral scalar LQs, there
are terms proportional to κ0, allowing us to vary the sign of
the BSM contribution.
As summarised in Table I, by virtue of their chiral nature

the S1 and R2 leptoquarks are able to induce sign-depen-
dent Δae;μ contributions enhanced by heavy internal quark
masses. These two LQs have also garnered recent attention
in other flavor anomaly studies (see, for example, those of
Refs. [36–56]). The relevant LQ couplings for each
extension, represented here as 3 × 3 Yukawa coupling
matrices, are given by2

LS1
int ¼ ðLc

LλLQQL þ ecRλeuuRÞS†1 þ H:c:; ð13Þ

LR2

int ¼ ðLLλLuuR þ eRλeQQLÞR†
2 þ H:c: ð14Þ

The doublet, R2, can be expressed in terms of its
electric charge-definite components R2 ∼ ðR5=3

2 ; R2=3
2 Þ, with

charges as indicated by the superscripts. We assume
negligible mass-splitting between the components of the

FIG. 1. Dominant contributions to the l → l0γ processes from
scalar LQs—including dl and al corrections, where l ¼ l0. The
photon line could be connected to either of the internal legs.

1Here have defined σlL=R ¼ i½σlL=R�2002.12544, i.e., in contrast
with the definitions used in Ref. [28]. This is to make the
discussion of EDMs clearer, in that imaginary-valued LQ
couplings correspond directly to imaginary-valued effective
interactions.

2We implement the interaction basis with neutrinos in their
flavor eigenstates (i.e., PMNS rotation matrix is set to the identity
throughout) and consider only terms in which these fields couple
as leptoquarks.
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multiplet, i.e., mR2
≈mR5=3

2

≈mR2=3
2

, so as to avoid con-

straints from electroweak oblique corrections [35].
Rotating into the flavor eigenbasis, we adopt the follow-

ing convention

ReλeuRu ↦ ySeu; LeλLQLu ↦ ySLQ;

L†
eλLuRu ↦ yRLu; R†

eλeQLu ↦ yReQ: ð15Þ

Here, L and R represent the basis mapping between the
gauge and flavor eigenstates, and V ¼ L†

uLd is the standard
CKMmatrix. This is the so-called “up-type”mass-diagonal
basis3—a basis choice that we discussed in detail in
Ref. [28]. This leaves us with the following

LS1 ⊃ ySLQij ½ecL;iuL;j − Vjkν
c
L;idL;k�S†1

þ ySeuij ecR;iuR;jS
†
1 þ H:c:; ð16Þ

LR2 ⊃ yRLuij ½νL;iuR;jR2=3;†
2 − eL;iuR;jR

5=3;†
2 �

þ yReQij eR;i½uL;jR5=3;†
2 þ VjkdL;kR

2=3;†
2 � þ H:c: ð17Þ

Matching these Lagrangians onto Eq. (7) gives the equiv-
alences

for S1∶ yR ¼ ySeu and yL ¼ ySLQ; ð18Þ

for R2∶ yR ¼ −yRLu and yL ¼ yReQ: ð19Þ

We note that only R5=3
2 and S1 have couplings of both

chiralities with charged-leptons, and that these couplings
are to up-type SM quarks. Therefore, dominant contribu-
tions to the processes described by Fig. 1 are from up-type
quark loops, and for MDMs via the quark-mass enhanced
mixed chiral term in Eq. (10).

B. S1 and R2 coupling restrictions and the
implications for lepton EDMs

In Ref. [28], we explored S1 and R2 models to tackle the
anomalies in the muon and electron MDMs. There we
restricted the LQ coupling texture to represent a dominant
single charm-loop contribution to the electron dipole
moments, and top-loop to the muon dipole moments

ð20Þ

where only grey-shaded entries are nonzero, and by
convention rows are labeled as charged-lepton, and col-
umns as up-type quark, generations. First-generation quark
couplings are avoided as these are known to be highly
constrained. Allowing both anomalies to be generated by
the same flavored up-type quark leads to dangerous
contributions to μ → eγ [29,57], and the alternative cou-
pling texture associated with a charmphilic solution to Δaμ
was ruled-out at one-sigma in Ref. [58].4

We emphasise that in Ref. [28] we restricted the coupling
entries to be real-valued, in order to avoid constraints from
CP-violating processes. Upon conducting a phenomeno-
logical study, we found that both models could provide
comprehensive solution to the Δae;μ puzzles so long as the
mass of either leptoquark is ≲65 TeV.5 Note also that this
analysis was performed before the latest FNAL result for
Δaμ, and before the publication of the Rb result for Δae.
Considering these updated results, we arrive at the con-
straints on the combinations of couplings shown in
Table II.6

TABLE II. Approximate one-sigma allowed ranges for the
combination of couplings in the chirally enhanced contribution
to leptonic MDMs, and upper bounds for combinations of LQ
couplings for contributions to leptonic EDMs. The Cs and Rb
fine-structure constant implications for ae are treated separately.

Leptoquark Couplings Approx. range ×ðm̂2
ϕÞ

S1 Re½yL;�23 y
R
23� ð3.1� 0.7Þ × 10−3

Re½yL;�12 y
R
12�Cs −ð4.6� 1.9Þ × 10−3

Re½yL;�12 y
R
12�Rb ð2.5� 1.0Þ × 10−3

R2 Re½yL;�23 y
R
23� −ð1.8� 0.4Þ × 10−3

Re½yL;�12 y
R
12�Cs ð4.1� 1.7Þ × 10−3

Re½yL;�12 y
R
12�Rb −ð2.2� 0.9Þ × 10−3

Leptoquark Couplings Upper bound ×ðm̂2
ϕÞ

S1 jIm½yL;�23 y
R
23�j < 1.7

jIm½yL;�12 y
R
12�j < 6.2 × 10−9

R2 jIm½yL;�23 y
R
23�j < 1.1

jIm½yL;�12 y
R
12�j < 5.6 × 10−9

3The alternative basis choice would be to select the down-type
quark couplings to fix, and allow associated up-type quark
couplings to be generated via CKM mixing. This basis encour-
ages ansätze that lead to scenarios for Δaμ;e that are ruled-out by
significant contribution to μ → eγ [29,57], so we prefer the up-
type basis.

4We have performed some estimates of the contributions to
μ → eγ at two-loop level in these models, and find these not to be
very constraining on the parameter space given the current upper-
bound. Nevertheless, this warrants further careful investigation to
determine whether future measurements could provide a sensitive
probe for these effects. For an EFT analysis of renormalization
group running effects on lepton dipole moments, see Ref. [59].

5In Ref. [28], we did not consider the effects of fine-tuning and
leptonic mass corrections which would tighten the upper-bound
on LQ mass, as discussed in Sec. III.

6We acknowledge that there is a negative sign error in the
approximate coupling constraints derived in Eqs. (30)–(33) of
Ref. [28] which has been corrected here. It did not impact any
other derived results in that paper.
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1. Extending the parameter space to complex couplings

Naturally, the next step for exploring the implications of
these models is to loosen this real-valued assumption on the
LQ Yukawa couplings. This opens up a rich parameter
space, most notably leading to non-zero contributions to
lepton EDMs. The authors of Refs. [29,60] utilize an EFT
framework to assess the impact of chirally enhanced
models for the Δae;μ on the size of lepton EDMs. In this
work, we will present a concrete realization of this link in
the context of single scalar LQ models.
Following from Eq. (1), the contribution to the lepton

EDMs can be parametrized by

Llγ ⊃ −
1

2
idll̄σμνγ5lFμν;

⊃
1

2
el̄σμνFμνðσlLPL þ σlRPRÞl: ð21Þ

Matching coefficients in Eq. (21), we find that

dl ¼ e
2i
ðσlL − σl�L Þ ¼ ImðσlLÞe ½GeV−1�: ð22Þ

Note that a consequence of Eq. (10) is that for pure-real
Yukawa couplings, ImðσlLÞ is exactly zero. The parameter
space explored in Ref. [28] is therefore a subspace of that
explored in this work.
In Eq. (22), the squared brackets indicate the units of the

result if masses are input in GeV.7 In Table II we provide an
overview of the approximate upper-bounds on LQ cou-
plings for satisfying the constraints from dl measurements.
Here, and later in this work, we use the following notation
for brevity

m̂ϕ ≡ mϕ

TeV
: ð23Þ

The results in Table II imply a bound on the phase
difference between the input couplings relevant for both
MDM and EDM of each lepton. We may write

yL�ij y
R
ij ¼ jyL�ij yRijj expðiξijÞ; ð24Þ

where ξij ∈ ½0; 2πÞ is given by

ξij ¼ ArgðyRijÞ − ArgðyLijÞ ð25Þ

For electrons, assuming that the central value of either
MDM result is satisfied, the bound implies that

jtanðξ12Þj ≲ 10−6; ð26Þ

This is satisfied for angles very close to ξ12 ¼ 0 or π. In
other words, the relative phase between the RH and LH
couplings is extremely small because satisfying the EDM
constraints severely restricts the size of the imaginary
component. The current bound of the muon EDM consid-
ered together with the MDM anomaly does not restrict the
muon relative phase to the anywhere near the same extent.

2. Counting the free parameters

The CP-violating phases introduced by extending the
parameter space to include complex-valued couplings
a priori yield four additional parameters for each LQ
model. However, by rephasing fields it is straightforward to
show that only two of these phases are physical when
neutrino masses are neglected. They can be taken to be the
relative phases between the exotic RH and LH couplings
for the electron-charm and muon-top subsectors. In the
limit that each such phase approaches zero, an approximate
CP-symmetry is restored to its respective subsector. By this
argument, we can say that setting ξ12 ¼ 0 or π is technically
natural for that subsector considered in isolation, with the
overall technical naturalness of the full theory being an
open question.
For the remainder of this work we proceed in such a way

that we set ξ12 ¼ 0 or π, and therefore do not generate a
contribution to the electron EDM. This is consistent with
the preference of current experimental bounds demon-
strated by Eq. (26). The choice between 0 or π corresponds
to scanning over both positive and negative values for the
relevant couplings between the electron and charm quark.

III. FINE-TUNING AND CORRECTIONS TO THE
MUON AND ELECTRON MASSES

A sizable, chirally enhanced, contribution to lepton
dipole moments also, consequentially, generates a lepton
mass correction.8 Theoretically, this can be absorbed by
adjusting the pole mass, m0

l. However, a critique of these
simple models is that having this correction greater than the
physical lepton mass introduces a fine-tuning problem
[31,62]. In this section, we outline the constraint that this
requirement introduces for our models. Note that for
simplicity we have switched-off quartic couplings between
the Higgs and LQs, but acknowledge that these additional
free parameters could extend the viable parameter space for
these models—although, they may also introduce a new
suite of fine-tuning problems. The Feynman diagram for
this radiative correction is shown in Fig. 2.
Referring again to Fig. 2, the contribution of this

correction to a charged-lepton mass, ml, is defined via a
one-loop self energy, Σl. For the full calculation of these

7We also recognize that GeV−1 ¼ 1.98 × 10−14 cm, for con-
version to appropriate units for EDM measurements.

8See Ref. [61] for a discussion of how these class of models
could be responsible for lepton (specifically, muon) mass
generation.
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corrections, we refer to Ref. [45], but quote the relevant
results here. Up to linear order in the self-energy expansion,
the lepton mass correction is

δml ¼ m0
l

�
1

2
ΣLL
l þ 1

2
ΣRR
l

�
þ ΣLR

l ; ð27Þ

where ΣXY
l ¼ ΣXY

l ðp2 ¼ 0Þ, i.e., we take the momentum
independent contributions of the self-energies to generate a
physical mass correction. Here X and Y refer to the chirality
of the labeled vertices in Fig. 2.
The general expressions for these self-energies evaluated

at energy scale μ are given by

ΣLR
l ¼ −

X
q

mqNc

16π2
I0

�
μ2

m2
ϕ

;
m2

q

m2
ϕ

�
yR�lqy

L
lq; ð28Þ

ΣLL
l þ ΣRR

l ¼ −
Nc

32π2
X
q

I1

�
μ2

m2
ϕ

;
m2

q

m2
ϕ

�
½jyLlqj2 þ jyRlqj2�:

ð29Þ

where the loop functions are given by

I0ðx; yÞ ¼
1

ϵ
þ 1þ logðxÞ þ y logðyÞ; ð30Þ

I1ðx; yÞ ¼
1

ϵ
þ 1

2
þ logðxÞ − y; ð31Þ

and the couplings are as defined in Eqs. (18) and (19).
Evaluating the masses at the LQ scale μ ¼ mϕ, and taking
only the finite contributions to ml, we presume to cancel
the self-energy divergences via MS as per Ref. [45]. This
yields the following:

I0ð1; m2
q=m2

ϕÞ ↦ 1þm2
q=m2

ϕ logðm2
q=m2

ϕÞ ð32Þ

I0ð1; m2
q=m2

ϕÞ ↦ 1 −m2
q=m2

ϕ ð33Þ

Assuming dominance of the mixed-chiral contribution ΣLR
l

and we require for both leptons that

���� δml

m0
l

���� ¼
����Σ

LR
l

m0
l

����≲ 1; ð34Þ

which is to say, it can account for the lepton mass but
should not require significant, tree-level, fine-tuning.
Therefore, now noting that in our model only a single
quark species runs in the loop at a time, we can drop the
summation over q and we arrive at

jδmlj ≃
mqNc

16π2
jyR�lqyLlqj

�
1þ 2m2

q

m2
ϕ

log

�
mq

mϕ

��
: ð35Þ

We take the pole masses of the two leptons at the TeV
scale to be m0

μ ¼ 0.10468806 GeV and m0
e ¼ 4.959016 ×

10−4 GeV [63]. We will explore the implications of the
correction on the electron and muon mass, and their
interplay with dipole moments, below.

A. Preliminary comment on the considered LQ masses

Presently the scalar LQ mass, mϕ, is most strongly
constrained using LHC searches for the decay of pairs
of scalar LQs with couplings predominantly to first-
generation leptons [64],

m̂ϕ > 1.8 at 95%CL: ð36Þ

Given that we allow such couplings in the models detailed
in this work, and these couplings can take order-one values,
we adopt Eq. (36) as a conservative lower-bound on the
LQ mass.
For the remainder of section, we selected three bench-

mark LQ masses for specific study

m̂ϕ ∈ f2; 4; 6g: ð37Þ

which we will see span the allowed regions of parameter
space, and extend to those forbidden by the mass correc-
tions and not preferred by the present dipole measurements.
This is discussed further in forthcoming sections.

B. Electron MDM implications for the electron mass

We elaborate further here on the constraints that the
electron mass, in particular, places on the viability of these
models for explaining the anomalies in the electron AMM.
For this study, we assume that the imaginary component for
both the electron RH and LH couplings are negligible, i.e.,
ξ12 ¼ 0 or π.
Combining the electron result with the central values for

MDM results, we can derive a conservative bound

m̂ϕ ≲ 3.12: ð38Þ

Figure 3 shows a cross section of S1 parameter space. We
find that the upper bound on the couplings from the

FIG. 2. One-loop correction from scalar LQ to the lepton (l)
propagator. Vertex chirality is labeled X and Y ¼ fR;Lg for Ref.
in Sec. III.
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correction to me is largely LQ mass independent for the
considered masses. It is evident from Fig. 3(a), that for
smaller masses this electron mass correction is small for
solutions to both MDM results. For a mass of 4 TeV, this
model can no longer reach the central value for the Cs
anomaly, whereas there is sizeable parameter space remain-
ing to explain the Rb result. At a mass of 6 TeV, it appears
that for the region of parameter space illustrated, the S1
leptoquark cannot accommodate the Rb or Cs MDM result,
within one sigma.
Note that the R2 leptoquark was found to demonstrate

similar behavior in the yL12 − yR12 plane, but with reflection
over the ReðyL12Þ and ReðyL12Þ axes, illustrating the prefer-
ence for opposite-signed coupling combinations.

C. Interplay of corrections to the muon mass
and muon dipole moments

We first consider the muon EDM and the relationship
between dipole contributions and the muon mass correc-
tion, without considering the muon AMM. Following from
Eq. (35), we can derive a bound on the muon coupling
magnitudes,

jyL23yR23j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ImðyL;�23 y

R
23Þ2 þ ReðyL;�23 y

R
23Þ2

q
≲ 0.04; ð39Þ

which is roughly independent of mass for the considered
mass-range. Now, we can arrive at a conservative
upper bound on the imaginary component by letting
ReðyL23yR23Þ → 0,

jImðyL;�23 y
R
23Þj ≲ 0.04 ð40Þ

Following from Eq. (22), we can derive a prediction for
the upper bound for the S1 and R2 muon EDM, and

therefore a measure of at what point future experiments
will be sensitive to these models. This gives the following

jdμjS1 ≲

8>><
>>:

2.77; m̂ϕ ¼ 2

0.96; m̂ϕ ¼ 4

0.50; m̂ϕ ¼ 6

9>>=
>>;

× 10−22e cm; ð41Þ

jdμjR2
≲

8>><
>>:

3.91; m̂ϕ ¼ 2

1.25; m̂ϕ ¼ 4

0.62; m̂ϕ ¼ 6

9>>=
>>;

× 10−22e cm: ð42Þ

The Paul Scherrer Institut (PSI) muEDM experiment is
projected to have a sensitivity within the ballpark of
5 × 10−23e cm [65,66]. Similarly, the FNAL Muon g − 2

experiment aims to probe muon EDMs of order 10−21e cm
[67]. Therefore, muon EDMs generated by these models
are well within the reach of the PSI experiment, and maybe
even by FNAL depending on the value of ξ23. Projected
reach of both experiments can be seen in Fig. 4 as
horizontally bound regions, such that the colored regions
represent the remaining parameter space that would gen-
erate an EDM beyond their future sensitivity.
We now analyze the implications for the muon MDM

from the fine-tuning issue raised by muon mass corrections.
This interplay can be seen explicitly in Fig. 4. We cannot
immediately assume the relative suppression of the imagi-
nary component of the coupling component to the real, as
we did for the electron as a result of current experimental
bounds. We can, however, recognize that a similar logic to
that which goes into deriving Eq. (40) can be applied here,
to achieve the bound (agnostic to masses within the
considered range),

(a) (b) (c)

FIG. 3. Implications of the constraint on the electron mass correction on S1 LQ solutions to the electron MDM, for (a) mS1 ¼ 2 TeV,
(b)mS1 ¼ 4 TeV and (c)mS1 ¼ 6 TeV. These illustrations of parameter space assume that the imaginary components of the electron LQ
couplings are negligible. The shaded grey region, common in all plots, shows the allowed points by restriction on the electron mass
correction in Eq. (34). For the Cs and Rb MDM results, solid lines show the central values, shaded regions are the one sigma region, and
the two sigma region is denoted by a dashed line.

REFLECTING ON CHIRALITY: CP-VIOLATING … PHYS. REV. D 105, 015002 (2022)

015002-7



jReðyL;�23 y
R
23Þj≲ 0.04; ð43Þ

which is required to ensure that the muon mass correction is
not too large. Combining this with the bounds quoted in
Table II we can arrive at the following mass constraint for
these models for explaining the muon AMM: for the S1 LQ,

m̂S1 ≲

8>><
>>:

4.08; at CV

4.71; at 1σ

4.85; at 2σ

9>>=
>>;
; ð44Þ

and for the R2 leptoquark,

m̂R2
≲

8>><
>>:

3.59; at CV

5.36; at 1σ

6.32; at 2σ

9>>=
>>;
: ð45Þ

where CV denotes the present central value for the muon
MDM anomaly, followed by the one and two sigma limits.
These upper mass limits are generally applicable to any S1
or R2 LQ model whose contribution to the muon MDM is
generated by a top-containing loop. Note that for either of
our models, these mass constraints are less stringent than
that derived from the electron mass correction in Eq. (38).
The interplay of above constraints can be seen in Fig. 4.

In Fig. 4(c) we focus on a LQ mass of m̂ϕ ¼ 2 and show
contours representing benchmark values of the phase
parameter

ξ23 ¼
�
0;
π

4
;
π

3

	
for S1 ð46Þ

ξ23 ¼
�
π;
2π

3
;
3π

4

	
for R2; ð47Þ

consistent with the sign preference for each model, as
detailed in Table II. Contours representing the trivial phases
ξ23 ¼ 0ðπÞ are not explicitly shown, but would lie along the
positive (negative) x axis. For the nontrivial phases shown,
an EDM generated by either of the LQ models satisfying
the muon MDM central value, could feasibly be probed by
either PSI or the FNAL experiment.

IV. ADDITIONAL CONSTRAINTS

Many of the additional constraints considered in this
work overlap with those considered in Ref. [28], particu-
larly in the kaon sector, for high pT tails, and for leptonic
Z decays. Here we provide an overview of these and
additional constraints, as well as indicating the importance
of some future probes of our models. A summary of present
experimental values for the pertinent constraints can be
found in Table III.

A. Contributions to composite EDM measurements

The contributions of the LQ couplings to QCD effective
interactions at μ ¼ mϕ are very small, as αðmϕÞ is small.
Nevertheless, the RGE evolution of the generated four-
fermion interactions permit mixing into these contributions
as they evolve to the low-scale. This makes the contribu-
tions from the effective quark and gluon (chromo) EDMs
important to consider, as these could lead to nonzero

(a) (b)

(c)

FIG. 4. Implications of the constraint on the muon mass correction on S1 and R2 LQ solutions to the muon dipole moments. Subfigure
(a) (S1) and subfigure (b) (R2) demonstrate the interplay of constraints for benchmark masses m̂ϕ ¼ 2, 4, 6. For each mass, solid lines
show the central values, shaded regions are the one sigma region, and the two sigma region is denoted by a dashed line. Horizontally
bound regions show the projected reach of PSI and FNAL, such that the colored regions represent parameter space that would generate
an EDM beyond their reach. In subfigure (c) we depict benchmark phases ξ23 for a mass of m̂ϕ ¼ 2, demonstrate the overlap with viable
muonMDM solutions, for each LQ. Contours representing the trivial phases ξ23 ¼ 0ðπÞ are not explicitly shown, but would lie along the
positive (negative) x axis.
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predictions for nucleon EDMs, and those of paramagnetic,
polar molecular systems [31].
Thus far, EDM searches in general have null results, yet

they yield stringent upper bounds. For muon-top couplings
of LQs, Dekens et al [30] find that the muon EDM provides
stronger constraints than the composite measurements.
Similarly, for the electron-charm couplings, the de con-
straint is most constraining.
With improved modelling of composite structures these

constraints may become tighter, but for now and in the
foreseeable future our model couplings are most strongly
constrained by the charged-lepton EDMs. For this reason,
we do not discuss these additional EDM contributions
further. A detailed discussion on how the R2 and S1
leptoquarks can generate fundamental and composite
EDMs is provided in Ref. [30].

B. Leptonic Z and Higgs decays

Given the chirally enhanced nature of contributions to
the lepton effective dipole vertex, correlations with other
observables sensitive to electroweak symmetry breaking
are to be expected [70]. In particular, Z-boson decays to
dilepton final states are expected to constrain the same set
of LQ couplings that are sensitive to lepton dipole
moments. Also, given the sizable corrections to the lepton
masses established above, we would expect BSM effects to
also be present in the dilepton decays of the Higgs, in
particular h → μμ. We discuss these two sets of con-
straints below.

1. Z effective couplings

The couplings gfLðRÞ are the effective LH and RH
couplings of the Z boson to fermions, f. The effective
Lagrangian for describing the BSM contributions to these
interactions is given by:

LZ
eff ¼

g
cosðθWÞ

X
i;j

fi γμ½gijfLPL þ gijfRPR�fjZμ; ð48Þ

where θW is the weak-mixing angle. For this study, we use
constraints from corrections to effective vector and axial-
vector couplings about their central values, where

gijfVðAÞ ¼ gijfL � gijfR : ð49Þ

For i ¼ j, we relabel the coupling giifAðVÞ ≡ gfiAðVÞ We follow

the calculation of effective Z couplings to charged-leptons
l, and associated observables, from Ref. [71]. For TeV
scale LQs, the top-mass enhancement of the contribution to
the effective coupling to the muons gives

δgμAðVÞ ≃ −
Nc

32π2
m2

t

m2
ϕ

�
1þ log

m2
t

m2
ϕ

�
ðjyR23j2 � jyL23j2Þ ð50Þ

Moreover, the axial vector couplings are the most tightly
constrained, so we focus on these for constraining these
models. These constraints are quoted in Table III.
Complementary constraints on the LQ interaction with

neutrinos can be inferred from the effective number of light
neutrino species, NEff

ν , which parametrizes the decay rate of
the Z to invisible final states (Z → νν). These are particu-
larly important for the R2 leptoquark, where the neutrinos
also couple to up-type quarks and these couplings are not
subject to CKM suppression. Again, the top-quark con-
tribution is dominant and following Ref. [71], the R2

contribution is calculated as

NEff
ν ≃ 3 − Nc

jyRLu23 j2
8π2

m2
t

m2
ϕ

�
1þ log

m2
t

m2
ϕ

�
: ð51Þ

For S1, neutrinos only couple to down-type quarks, there-
fore, no top-mass enhancement, and also these couplings
are generated via the CKM. Therefore, for this LQ, Z → νν
does not provide a competitive constraint.

2. Higgs dilepton decays

The LQ contribution to Higgs decay to the dilepton final
state is strongly correlated to the aforementioned lepton
mass corrections, and to the electric and magnetic dipole
moments.9 For years LHC measurements of Higgs decays
to two charged-leptons were limited to the those of the
third generation. Recently, the first evidence for decays
h → μþμ− from the ATLAS and CMS collaborations
[74,75] indicate that there is an enhancement of the signal
strength over the SM prediction, although there is consid-
erable uncertainty.

TABLE III. Processes most constraining on this model. Values
quoted without citation are from PDG [68]. Constraints from
pp → ll are derived from Table 1 of Ref. [69].

PROCESS OBSERVABLE CONSTRAINT

Z → lilj geA=g
e;SM
A

0.999681� 0.000698227

gμA=g
μ;SM
A

0.99986� 0.00107726
Z → νν NEff

ν 2.9840(82)
Kþ → πþνν Br ð1.7� 1.1Þ × 10−10

K0
L → π0νν Br < 2.6 × 10−8

K0
L → eþe− Br ð9þ6

−4 Þ × 10−12

K0
L → μþμ− Br ð6.84� 0.11Þ × 10−9

K0
L → μþe− Br < 4.7 × 10−12

K0-K0 mixing jϵK j ð2.228� 0.011Þ × 10−3

ΔMK ð3.484� 0.006Þ × 10−12

pp → ll jySeu12 j < 0.648m̂ϕ

[69] jyRLu12 j < 0.524m̂ϕ

9Correlations in the context of the EFT between h → μμ and
Δaμ were considered in Refs. [45,72], and h → ττ and Δaτ in
Ref. [73].
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Following the derivation in Ref. [76], we find the precise
approximation for the contribution of the S1 leptoquark
from a loop containing the quark q

Brðh→lþl−Þ
Brðh→lþl−ÞSM

≈
����1þ m3

q

8ml

Nc

8π2
yR�lqy

L
lq

m2
ϕ

J
�
m2

h

m2
ϕ

;
m2

q

m2
ϕ

�����;

≈1þ m3
q

8ml

Nc

8π2
ReðyL�lqyRlqÞ

m2
ϕ

J
�
m2

h

m2
ϕ

;
m2

q

m2
ϕ

�
;

ð52Þ

where the second line follows from assuming that the
magnitude of the LQ correction is small. The form of
Eq. (52) is identical for R2 except that we switch
yLlq ↔ yRlq.

10 The loop function here is given by:

J ðx; yÞ ¼ 2ðx − 4Þ logðyÞ − 8þ 13

3
x: ð53Þ

For the dimuon final state, LQ couplings in Eq. (52), Re
(yR�23 y

L
23), also appears in, and is constrained by, the

expression for Δaμ. Moreover, the sign of this coupling
combination required for the R2 and S1 LQ to generated the
measured result for the muon Δaμ is opposite. This means
that the observable Brðh → μþμ−Þ provides a probe for
distinguishing the effects of these two scalar LQs.
Following Table II, observing an enhancement over the
SM would be consistent with an S1 model for Δaμ, and a
suppression would be consistent with that of R2.
We will not discuss this notion further here as the current

measurements are not yet sensitive enough to provide a
definitive test, but note that this is discussed in detail in
Refs. [72,76].
We may ponder whether that same probing capacity

would be true of Brðh → eþe−Þ. This is such an extraor-
dinarily rare process in the SM that any measurement of
this decay would signal BSM physics [77]. If this process
were to be measured at high precision in future experi-
ments, these two scalar LQ models of Δae could be
distinguished, but only once the sign conflict of this
anomaly is resolved.

C. Constraints from the kaon sector

Interactions involving strange-mesons are generated by
these LQ couplings via SUð2ÞL invariance of the associated
interaction, explicitly manifest in Eqs. (16) and (17). This
also means that the constraints here are most directly
relevant for refining the parameter space for LH LQ
couplings. The implications for scalar LQ models from

constraints in the kaon sector have been studied in
Refs. [78–80].
Following the derivations in Ref. [80], we rederive the

relevant constraints for each LQ model. As S1 is jFj ¼ 2
and R2 is jFj ¼ 0, this makes identifying the strongest
constraints heavily model-dependent. We find that the R2

parameter space is much more tightly constrained by the
kaon sector than that of S1.
Additionally, because of the CKM dependence of

couplings between the LQs and down-type quarks, we
find that these constraints do not tightly constrain param-
eter phases. This follows from the discussion in Sec. II B 2,
where we have argued that the only physical phases can be
phrased as the difference between the LH and RH cou-
plings’ phase. Physical observables should be independent
of the basis choice, and we can choose a basis in which the
phases can all lie in the RH LQ couplings. Thus, we do not
expect phase constraints to arise from considering the kaon
sector, as a consequence of our coupling ansatz.

1. K + → π + νν̄

Contributions to the theoretically clean rare process
BrðKþ → πþνν̄Þ are found to give competitive constraints
for the S1 model. As the effective interaction here is purely
vector in nature, it does not run in QCD. Taking the
leading-order contribution and following the derivation in
Ref. [80], we obtain the following bound from the lepton-
flavor conserving contribution:

jySLQ12 j < 0.041m̂ϕ; ð54Þ

and for the flavor-violating contribution:

jySLQ12 ySLQ23 j < 0.0467m̂ϕ
2: ð55Þ

We find constraints on these couplings are stronger for
this process in contrast with the alternative decay
K0

L → π0νν̄. We also note that given that we permit lepton
flavor violating processes, the Grossman-Nir (GN) bound
does not directly apply to this model [81,82].The final
state contributions that violate lepton flavor can generate
CP-conserving contributions to K0

L → π0νν̄, otherwise
negligible in the SM. This makes future measurements
of this process very likely to generate competitive con-
straints for the relevant LQ couplings. Nevertheless, given
the relatively low statistics for the current KOTO [83] and
NA62 [84], we refrain from discussing the GN bound
further here.

2. K0
L → ll0

These decays are forbidden at tree-level in the SM, and
therefore Ref. [80] conservatively assumes that the LQ
contribution saturates the upper limit. Conversely, for the
R2 model the strongest constraint from the kaon sector

10Reference [76] adopts the labeling of the chirality of the
interaction by that of the lepton in the LQ interaction, hence the
relabeling required.
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comes from tree-level leptoquark exchange to the helicity
suppressed K0

L → eþe− transition. Noting the vector nature
of the effective contribution to this process, and following
again from Ref. [80], we derive an upper bound at
90% confidence on the associated coupling:

jyReQ12 j ≲ 0.0956m̂ϕ: ð56Þ

Similarly for the muon coupling, the significantly less-
suppressed process K0

L → μþμ− yields:

jyReQ23 j≲ 0.367m̂ϕ; ð57Þ

and for the lepton-flavor violating decayK0
L → e�μ∓ yields:

jyReQ23 yReQ12 j < 3.78m̂ϕ
2 × 10−4: ð58Þ

For each of these contributions, the couplings involved are
between down-type and charged-leptons, generated viaCKM
mixing. This means that, due to the refined coupling texture,
the constraints enter for the magnitudes of these couplings
rather than having phase-dependence. These combinations of
constraints carve out viable parameter-space for thesemodels
in the magnitude jyReQ23 j − jyReQ12 j plane.

3. Kaon mixing: jϵKj
An additional constraint on these models arises from

considering neutral kaon mixing. Because of the restricted
coupling structure, dependence on the phases of the input
couplings drop out, however the relative sizes are con-
strained by the parameter ϵK, such that

jyL23j2ðjyL12j2 − 0.0016jyL23j2Þ
∈ ½−0.077; 0.232� × m̂ϕ

2: ð59Þ

The above relation holds for both S1 and R2, derived
following Ref. [80]. In both instances, this constraint is
found to be stronger for this model than the complementary
constraint from neutral kaon mixing ΔMK. For the con-
sidered mass range, the effects on kaon mixing are a less
stringent constraint than those from other kaon sector
observables discussed above. This is based on the current
constraints listed in Table III.

D. High pT leptonic constraints

We briefly comment here on the constraints from
contributions to pp → ll (dilepton production) and pp →
lν (monolepton production) via tree-level t-channel proc-
esses. These can be probed directly in the high-pT tails of
Drell-Yan processes at the LHC [85]. For these processes,
numerical analyses find minimal interference between NP
effective operator contributions and a priori several NP
operators can be simultaneously constrained [69].

In Ref. [28] we presented an outline of the impact of
these constraints on the magnitudes of couplings in both the
R2 and S1 model. As these constraints also apply to the
parameter space explored in this paper, we refrain from
discussing the details of these calculations here but direct
the reader there for further detail. Only RH coupling
constraints as consequence of the dilepton high-pT study
are listed in Table III. The LH couplings are more tightly
constrained by the meson decays discussed earlier. Of the
constraints from charm monolepton decays derived from
Ref. [86], none were found to be more constraining than the
requirement for the LQ couplings to generate the MDM
experimental values.
Note that with increased LHC luminosity, the allowed

regions for the effective interactions manifest in high-pT
leptonic tails are forecast to shrink significantly [69,86],
further restricting parameter space for both models.
However, we limit our consideration here to present
high-pT constraints.

E. Summary of additional constraints

We select a benchmark mass of m̂ϕ ¼ 2 to provide
demonstrative cross sections of these models’ parameter
space. Our aim here is to show the interplay between
different additional constraints discussed in this section,
together with the constraints from lepton mass correction
and satisfying the MDM experimental values.
Firstly, Figs. 5(a) and 6(a) show the plane of yL coupling

magnitudes, jyL23j and jyL12j. The constraints appearing here
originate from the kaon sector. We see that the R2

leptoquark parameter space is much more strongly con-
strained than that of S1, as discussed in Sec. IV C.
In Figs. 5 and 6 we show the jyLijj and jyRijj parameter

space separately for electron and muon sectors, in sub-
figures (b) and (c) respectively. The hashed contours show
parameter space that is ruled-out by an array of constraints
detailed in this section. In the central plots, we illustrate
regions that satisfy the electron MDM constraints for Cs
and Rb, to within one-sigma. For the muon sector in Figs. 5
(c) and 6(c), we show contours representing the benchmark
values of ξ23, consistent with the sign preference for each
model—as per Eqs. (46) and (47).
One way to interpret the results in Figs. 5 and 6 is as

follows:
(1) Identify a point on subfigure (c) that is consistent

with the muon MDM, and within experimental
constraints. Note the LH coupling at this point;

(2) Move to subfigure (a) and use the LH muon
coupling to find a LH electron coupling consistent
with constraints;

(3) Use the electron coupling to check subfigure (b) for
compatibility with either electron MDM result.

Following this procedure, it is easy to verify that there is
viable parameter space for both S1 and R2 models under our
prescribed coupling ansatz, capable of explaining the muon
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and electron MDM results—regardless of whether we take
the Cs or Rb result to be true. Taking these results together
with Fig. 4(c), we can infer the predicted muon EDM from
the determined viable parameters.

V. A BRIEF COMMENT ON THE THIRD
LEPTON FLAVOR

One may notice at this point that there has been no
mention of the couplings to the tau lepton. This is because
the precision with which the tau MDM can be measured is
not yet sensitive enough to be directly contrasted with the
SM prediction [87].

Nevertheless, consider the case that a LQ coupling exists
between the tau lepton and either the charm or the top
quark. If it were to couple directly to the up quark, we
would expect it would rapidly approach bounds from
couplings to the first generation of quarks, however the
below bounds would not be applicable.
Considering first the case that the tau lepton couples

solely to the top quark. We note that LQ corrections to the
branching ratio Brðτ → μγÞ are also generated in the case of
nonzero Δaτ [29] such that

Br½τ → μγ� ¼ α

16Γτ

m2
τ

mμ
jΔaμΔaτj < 4.2 × 10−8; ð60Þ

(a)

(b)

(c)

FIG. 6. An overview of the constraints on the magnitude of the R2 LQ couplings for a benchmark mass of 2 TeV. The plots show
(a) the yL coupling plane, (b) electron couplings and (c) muon couplings. The hashed regions indicate that the region is ruled out in the
direction of the hashing. The yL couplings are subject to stronger bounds, so their axes are logarithmic while the RH couplings are
shown on a linear axis. For the electron couplings, the shaded region around the indicated MDM lines show the one-sigma region about
the central value on the experimental values, from Eqs. (4) and (5). For the muon couplings, the central value is indicated for a number of
benchmark angles ξ23.

(a)

(b)

(c)

FIG. 5. An overview of the constraints on the magnitude of the S1 LQ couplings for a benchmark mass of 2 TeV. The plots show (a) the
yL coupling plane, (b) electron couplings and (c) muon couplings. The hashed regions indicate that the region is ruled out in the direction
of the hashing. The yL couplings are subject to stronger bounds, so their axes are logarithmic while the RH couplings are shown on linear
axes. For the electron couplings, the shaded region around the indicated MDM lines show the one-sigma margin of error on the
experimental values, from Eqs. (4) and (5). For the muon couplings, the central value is indicated for a number of benchmark angles ξ23.
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where we have sourced the upper-bound on Br½τ → μγ�
from the Belle collaboration [46]. This implies the follow-
ing bound onΔaτ, if the experimental value ofΔaμ remains
at its current value:

jΔaτjtop < 2.5 × 10−9 ð61Þ

Alternatively, if the LQ model couples the tau solely
to the charm quark, we can relate the branching ratio
Brðτ → eγÞ to Δae and Δaτ, such that

Br½τ → eγ� ¼ α

16Γτ

m2
τ

me
jΔaeΔaτj < 3.3 × 10−8; ð62Þ

again sourcing the upper-bound from the Belle collabora-
tion [46]. Assuming that jΔaej remains of order 10−13, this
implies that

jΔaτjcharm ≲ 2.3 × 10−7: ð63Þ

The results above show that if an anomaly in the tau MDM
is established, then these single LQ solutions could be
extended to the third family, and be probed using charged-
lepton flavor violating decays. These results can be used to
guide model building with scalar LQs in the context of
lepton flavor violation. Tau leptons also have strong
prospects for the measurement of CP-violating observables
on the horizon [88], which could lead to an interesting
study of parameter space considering the implications of
complex LQ couplings in this sector—see, for example,
Refs. [32,43].

VI. CONCLUSIONS

In this paper, we have studied the two mixed-chiral scalar
leptoquarks S1 and R2, and the interplay between their
contributions to MDMs, EDMs and radiative charged-
lepton mass corrections. For each LQ, we adopted a flavor
ansatz such that the LQ’s contribution to the muon dipole
operator was generated (at leading-order) by a top-
containing loop, and the electron by a charm-containing
loop. We allowed LQ couplings to take complex values,
and thus built upon the parameter space studied under a
similar framework in Ref. [42]. This extension of parameter
space was represented via the difference in phase between
LH and RH electron-charm (ξ12) and muon-top (ξ23)
couplings—a quantity directly probed by the measurement
of lepton electric dipole moments. For the electron-charm
sector, current experimental constraints prefer a phase
difference very close to ξ12 ¼ 0 or π. For this reason, we
restricted electron-charm couplings to real values.
We also addressed a common critique of these chirally

enhanced models for lepton dipole moments, specifically
the fine-tuning required to suppress radiative corrections to
the associated lepton masses. To quantify what we assessed
not to be fine-tuned, we imposed the requirement that the

magnitude of the LQ correction not exceed the lepton pole
mass. Using this, we argued that the corrections to the
electron mass considered together with satisfying either Cs
or Rb MDM results, led to an upper bound for either LQ
mass of

mϕ ≲ 3.12 TeV: ð64Þ

The combination of muon mass constraint and the muon
MDM generated weaker bounds on the LQ mass, but these
were provided as they are applicable for any R2 or S1
models with top-mass enhanced contributions to Δaμ, such
as have become common in the literature.
Utilizing the fine-tuning restriction on the muon mass,

we derived indicative upper-bounds on the magnitude of
the muon EDM generated by our models,

jdμj < Oð10−22Þe cm; ð65Þ

which are within reach of future experiments, such as
muEDM at PSI, and even FNAL Muon g − 2 (depending
on the value of ξ23). The extension of these simple
scalar LQ models to address MDM anomalies with CP-
violating couplings can thus be probed directly in the near
future.
We also performed a comprehensive study of parameter

constraints, including those from electroweak processes,
the kaon sector, and high pT dilepton tails. Our results
establish that both S1 and R2 remain viable BSM candidates
for explaining both Δaμ and Δae anomalies, regardless of
whether the results for Cs or Rb are confirmed. The future
of muon EDM experiments provide exciting prospects for
probing such models in the case of nonzero CP violation in
the LQ coupling matrices.
Note that the structure of preferred nonzero LQ

couplings in the textures proposed in this work could be
motivated by flavor symmetry models. Approaches can
be explored to generate such coupling structures in
UV-complete BSM models; for example, Froggatt-
Nielson mechanisms [89]. Embedding these textures in a
UV-complete model is beyond the scope of this
work, although we identify it as an avenue for future
exploration.
Considering our analysis in the context of wider flavor

studies, we motivated future exploration of these LQs’
novel parameter spaces. We addressed the viability of
extensions to our outlined models for explaining potential
anomalies in the τMDM, if these were to be measured with
precision in future experimental programs. Our work here
can be straightforwardly incorporated into broader studies
of lepton-flavor violation in scalar LQ models.
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