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We study the localization properties of the low-lying Dirac eigenmodes in QCD at imaginary chemical
potential μ̂I ¼ π at temperatures above the Roberge-Weiss (RW) transition temperature TRW. We find that
modes are localized up to a temperature-dependent “mobility edge” and delocalized above it and that the
mobility edge extrapolates to zero at a temperature compatible with TRW. This supports the existence of a
strong connection between localization of the low Dirac modes and deconfinement, studied here for the
first time in a model with a genuine deconfinement transition in the continuum limit in the presence of
dynamical fermions.
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I. INTRODUCTION

The interest in gauge theories at nonzero imaginary
chemical potential is due both to practical and theoretical
reasons. On the one hand, they are a means to side-step the
notorious sign problem encountered at real chemical
potential: Being free from the sign problem, they allow
direct numerical simulations with importance sampling
methods, from which one can attempt an analytic continu-
ation to the physically relevant case of real chemical
potential [1–17]. On the other hand, they provide an
interesting testing ground to study the interplay of dynami-
cal fermions and the center symmetry of the pure gauge
theory and how this affects the phase diagram of the theory.
As is well known, the analog of center symmetry in the

case of SUðNcÞ theories with dynamical fundamental
fermions is the Roberge-Weiss (RW) symmetry [18] that
states that the partition function is periodic in the reduced
imaginary chemical potential μ̂I ¼ μI=T with period
2π=Nc. This periodicity is realized differently at low and
at high temperatures: While analytic in μ̂I at low T, at high
T, the partition function displays lines of first order phase
transitions at μ̂I ¼ ð2kþ 1Þπ=Nc. These transitions

correspond to a change in the center sector favored by
the fermions. The RW transition lines and their end points
have been thoroughly investigated by lattice simulations
[1,2,6,19–37] and effective models [38–50]. Depending on
the value of the quark masses, the first order lines end at a
second order point at TRW, or alternatively at a triple
point, which is connected via a (pseudo)critical line to the
(pseudo)critical temperature at vanishing chemical poten-
tial. A schematic representation of the phase structure
depicted above is reported in Fig. 1.
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FIG. 1. Schematic representation of the phase diagram of QCD
in the presence of an imaginary baryon chemical potential. The
vertical lines, ending at TRW, are the first order transition lines
separating phases characterized by different center sectors in the
high-T regime. The end point of such lines is connected with the
pseudocritical temperature Tc at zero baryon chemical potential
through lines whose nature may depend on the flavor spectrum.
The phase structure repeats periodically as a function of μI=T.
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A growing body of evidence indicates that center
symmetry is intimately related also with another aspect
of the physics of fermions that changes radically as the
system transitions to the high-temperature phase, namely
the localization properties of the low-lying eigenmodes of
the Dirac operator (see Ref. [51] for a recent review). It has
been shown in a rather large variety of gauge theories,
including QCD, that as the theory crosses over from the
confined to the deconfined phase, the low Dirac modes turn
from delocalized to localized, up to a “mobility edge” λc
in the spectrum, above which they are again delocalized
[52–68]. The strong connection observed between locali-
zation and deconfinement is clarified by the mechanism
provided by the “sea-islands picture” of localization pro-
posed in Refs. [69–72]. This picture relates localized modes
with local fluctuations of the Polyakov loop away from its
ordered value (i.e., 1) in the high-temperature phase, which
provide “energetically” favorable locations for the fer-
mions. Numerical support for this picture has been obtained
in various cases [62,63,68,69].
Since in QCD the transition is an analytic crossover, the

statement that localization of the low modes and deconfine-
ment happen together can only be of qualitative nature.
Localization in the presence of a sharp transition has been
mostly investigated in pure gauge theories, selecting the
“physical” center sector (i.e., real positive expectation value
of the Polyakov loop) in the spontaneously broken phase.
In these cases, localization and deconfinement have been
shown to coincide within numerical uncertainties [64–68].
The only study with dynamical fermions and a genuine
phase transition is that of Ref. [61], concerning the SUð3Þ
theory in the presence of unimproved staggered fermions
on coarse lattices, where again, localization was found to
appear exactly at the transition. However, while this model
is well defined as a statistical system on the lattice, the
transition is known to be only a lattice artifact [73–75].
An interesting and as yet unexplored scenario is that of a

genuine phase transition in the presence of dynamical
fermions that survives the continuum limit. The
Roberge-Weiss transition precisely provides such a sce-
nario. In fact, the imaginary chemical potential effectively
modifies the “twist” imposed on the Dirac modes by the
antiperiodic boundary conditions and favors configurations
where the Polyakov loops most effectively “neutralize” it.
For gauge group SUð3Þ and μ̂I ¼ π, these correspond to the
two complex sectors e�i2π

3 , which leaves an exact Z2 center
symmetry that can break down spontaneously. This hap-
pens at TRW, where the system undergoes a second order
phase transition to a deconfined phase, where either of
the two complex sectors can be selected, and the local
Polyakov loops prefer to align to either ei

2π
3 or e−i

2π
3 . This

opens a pseudogap of low spectral density in the Dirac
spectrum, equal to the effective Matsubara frequency
ωRW ¼ ð2π=3ÞT. According to the sea-islands picture
(suitably adapted to the case of nonzero imaginary

chemical potential), this pseudogap can be populated by
localized modes living on the fluctuations of the Polyakov
loop away from the ordered value. One then expects the
low-lying Dirac modes to turn from delocalized to localized
as TRW is crossed. Confirming this scenario would lend
more support to the conjectured strong connection between
localization and deconfinement.
In this paper, we study this scenario by means of

numerical simulations on the lattice. In particular, we
consider Nf ¼ 2þ 1 QCD with physical quark masses,
discretized via improved staggered fermions, with a degen-
erate imaginary chemical potential coupled to all quark
flavors; i.e., we consider a purely baryonic imaginary
chemical potential. We then determine the localization
temperature, at which the lowest modes turn from delo-
calized to localized at finite spacing for different values
Nt ¼ 4, 6, 8 of the temporal extension of the lattice. This is
compared to the critical temperature of the Roberge-Weiss
transition at the same Nt, as well as to its continuum
extrapolation, obtained in Ref. [36], adopting the same
discretization used in this study.
The paper is organized as follows. In Sec. II, we provide

details about the system discretization and the numerical
algorithms adopted in our investigation; in Sec. III, we
discuss our numerical results; finally, in Sec. IV, we draw
our conclusions. Systematic effects on the determination of
the mobility edge near the Roberge-Weiss transition are
discussed in the Appendix.

II. NUMERICAL SETUP

A. Dirac spectrum and localization

The staggered operator at nonzero μ̂I ¼ μI=T reads

ðDstagðμ̂IÞÞxy ¼
1

2

X
α

ηαðxÞðei
μ̂I
Nt
δα4UαðxÞδxþα̂y

− e−i
μ̂I
Nt
δα4U†

αðx − α̂Þδx−α̂yÞ; ð1Þ

where UαðxÞ ∈ SUð3Þ, α ¼ 1;…; 4 are the link variables,
and ηαðxÞ are the usual staggered phases. Periodic boundary
conditions in the spatial directions and antiperiodic boun-
dary conditions in the temporal direction are understood.
The operator Dstagðμ̂IÞ is anti-Hermitian and has the chiral
property fη5; Dstagðμ̂IÞg ¼ 0, where ðη5Þxy ¼ η5ðxÞδxy
with η5ðxÞ ¼ ð−1Þ

P
4

α¼1
xα . The spectrum of Dstagðμ̂IÞ is

purely imaginary due to anti-Hermiticity,

Dstagðμ̂IÞψn ¼ iλnψn; ð2Þ

with λn ∈ R, and furthermore symmetric with respect to
zero thanks to the chiral property, since this implies
Dstagðμ̂IÞη5ψn ¼ −iλnη5ψn. This implies in particular that
det½Dstagðμ̂IÞ þm� is real and positive.
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The localization properties of the eigenmodes are deter-
mined by the large-volume scaling of the inverse partici-
pation ratio (IPR), averaged over gauge configurations.
The IPR is defined as

IPRn ¼
X
x

�X
c

jðψnðxÞÞcj2
�

2

; ð3Þ

where c ¼ 1, 2, 3 is the color index. For modes effectively
occupying a region of size Veff , one finds

P
c jðψnðxÞÞcj2 ∼

1=Veff and so qualitatively hIPRni ∼ Veff=V2
eff ¼ 1=Veff.

Delocalized modes are extended all over the space, i.e.,
Veff ∼ V, and so hIPRni ∼ 1=V → 0 as V → ∞, while for
localized modes, Veff ∼ V0 is finite and V independent, so
that one expects IPRn to remain constant as V → ∞. Since
ψn and η5ψn have the same IPR, it suffices to focus on
λn ≥ 0 only.
The localization properties of the eigenmodesψn aremost

easily studied by exploiting their connection with the
statistical properties of the spectrum [76]. In fact, localized
modes are expected to fluctuate independently, and so the
corresponding eigenvalues are expected to obey Poisson
statistics. For delocalized modes, the corresponding eigen-
values are expected instead to obey the same statistics
as the appropriate Gaussian ensemble of random matrix
theory (RMT) [77], once model-dependent features are
removed by the unfolding procedure. For Dstag and
SUð3Þ gauge fields, the right ensemble is the Gaussian
unitary ensemble (GUE) [78]. The unfolded spectrum is
defined by the mapping,

xn ¼
Z

λn
dλ0ρðλ0Þ; ð4Þ

where ρðλÞ ¼ hPn δðλ − λnÞi is the spectral density. In
practice, x is the expected ranking of an eigenvalue equal
to λ if this is found on a configuration. Convenient
observables are obtained from the probability distribution
pðs; λÞ of the unfolded level spacings sn ¼ xnþ1 − xn,
computed locally in the spectrum,

pðs; λÞ ¼ hPnδðλ − λnÞδðs − snÞi
hPnδðλ − λnÞi

: ð5Þ

For localized, independently fluctuatingmodes, one expects
pðs; λÞ to be that corresponding to Poisson statistics,

pPoissonðsÞ ¼ e−s; ð6Þ
while for delocalized modes, pðs; λÞ should be equal to that
of the GUE, which is well approximated by the so-called
Wigner surmise,

pRMTðsÞ ¼
32

π2
s2e−

4
πs

2

: ð7Þ
The transition from localized to delocalized modes can be
monitored by looking at how the features of pðs; λÞ change

across the spectrum. To this end, in this paper, we have used
the integrated probability distribution [79],

Is0ðλÞ ¼
Z

s0

0

dspðs; λÞ; ð8Þ

where s0 ≃ 0.508 is chosen to maximize the difference
between Poisson and RMT-type statistics. For these statis-
tics, one finds Is0;Poisson ≃ 0.398 and Is0;RMT ≃ 0.117.
Moreover, the critical value at the mobility edge is known
for this observable, Is0;crit ¼ Is0ðλcÞ ¼ 0.1966ð25Þ [57], and
is expected to be universal. This can be used to identify the
position of the mobility edge λc with good precision without
the need for a finite-size scaling study, by simply looking at
the crossing point of some interpolation of the numerical
data and Is0;crit.

B. Simulation details

We studied Nf ¼ 2þ 1 QCD on N3
s × Nt hypercubic

lattices using two-stout improved [80] rooted staggered
fermions with physical quark masses, at finite temperature
T ¼ 1=ðaNtÞ and in the presence of an imaginary chemical
potential μI . Gauge configurations were generated using a
rational hybrid Monte-Carlo algorithm running on GPUs
[81]. Details about the implementation can be found in
Ref. [36]. For what follows, it is useful to remember that the
bare parameters, including the quark masses, are tuned so
as to stay on a line of constant physics while changing the
ultraviolet cutoff of the theory, following the determination
reported in Refs. [82–84].
To study localization above the Roberge-Weiss point, we

set μ̂I ¼ π and performed a scan in temperature at T > TRW.
We then computed the low modes of the staggered Dirac
operator numerically using the ARPACK library [85]. We
started using Nt ¼ 4 and doing a preliminary check for
finite-volume effects, comparing the mobility edges obtained
at a given temperature according to the procedure discussed
above on lattices of increasing spatial dimension (this
procedure is described in more detail in Sec. III). In
particular, we used Ns ¼ 24, 32, 40 at T ¼ 394 MeV and
Ns ¼ 24, 32 at T ¼ 197 MeV, finding in both cases
compatible results for λc from the various volumes. This
means that an aspect ratio rst ≡ Ns=Nt ¼ 24=4 ¼ 6 is
expected to already reproduce well the thermodynamic limit.
We then used also Nt ¼ 6, 8 to check for finite-spacing
effects. Compatibly with the numerical effort, we used
rst ¼ 8 for Nt ¼ 4 and rst ¼ 6 for Nt ¼ 6, 8.
At μ̂I ¼ π, the dynamics favors equally the two complex

center sectors z ¼ e�i2π
3 over the real sector z ¼ 1. In the

thermodynamic limit (taken in the presence of a suitable
infinitesimal perturbation breaking the residual Z2 sym-
metry), only one of the two complex sectors survives. In a
finite volume, instead, the system tunnels between the two
complex sectors (and with a much smaller probability, it
can also tunnel to the real sector). For what concerns the
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staggered spectrum, however, one need not treat them
separately to obtain the correct result in the thermodynamic
limit. In fact, the spectrum of Dstagðμ̂I ¼ πÞ ¼ DPBC

stag (i.e.,
with periodic boundary condition in the temporal direction)
on configuration U belonging to the center sector z is equal
to the spectrum on configurationU� belonging to the center
sector z�. If λ, ψ is an eigenpair on configurationU, one has

DPBC
stag ½U��η5ψ� ¼ ð−η5DPBC

stag ½U�ψÞ� ¼ iλη5ψ�: ð9Þ

In particular, this means that U and U� have the same
Boltzmann weight (in the absence of Z2-breaking pertur-
bations). Any configuration belonging to the sector e−i

2π
3

appearing in the simulation history can then be treated
effectively as just another configuration in the sector eþi2π

3

(and vice versa), with the same spectrum, and with the
correct weight if one restricted the configuration space to a
single center sector (up to finite-size effects due to con-
taminations from the real sector). We have then not
imposed any restriction on the configurations to be ana-
lyzed and included them all in the analysis. Since we
observed no tunneling to the real sector in our simulation
histories, the corresponding finite-size effects are absent.

III. NUMERICAL RESULTS

A. Determination of the mobility edge

To unfold the spectrum, we collected all the eigenvalues
in the ensemble of configurations obtained for a given
lattice setup, ranked them by magnitude, and replaced them
by their rank divided by the number of configurations. We
then divided the spectrum in bins and computed Is0ðλÞ in
each bin separately, assigning the result to the central point
of the bin. To ensure that bins are sufficiently small to
reliably capture the local behavior of Is0ðλÞ, we have
computed the average unfolded spacing hsiλ in each bin.
This should equal 1, and we have checked that this is the
case in the relevant spectral regions.1

Results of this procedure are shown in Fig. 2, for
T ¼ 394 MeV, Nt ¼ 4, and the three different spatial
volumes. The presence of localized modes at the low
end of the spectrum is signaled by Is0 ≈ Is0;Poisson, while
in the bulk, Is0 ≈ Is0;RMT indicates that modes are delocal-
ized. At the mobility edge λc where the Anderson transition
from localized to delocalized modes takes place, Is0 takes
the critical value Is0 ¼ Is0;crit.
To determine λc, we constructed two cubic spline

interpolations of Is0 � δIs0 , where δIs0 is the statistical
error on Is0 , and looked for the crossing points of the
spline interpolations with Is0;crit. We then determined λc
as the average of the crossing points, with an associated
error equal to the semidispersion. We also checked that
changing the order of the spline interpolation leads to
negligible effects on the determination of λc. The
procedure is illustrated for T ¼ 394 MeV, Nt ¼ 4,
and the three different volumes in Fig. 3. Strictly
speaking, the mobility edge is the point in the spectrum
where Is0 is volume independent. Figure 3 shows that our
procedure yields consistent values for the three volumes,
thus providing an accurate estimate for λc, and that
statistical fluctuations dominate over the finite-size
effects.

B. Localization properties at the Roberge-Weiss
phase transition

The results for the mobility edge, determined as dis-
cussed above, are collected in Fig. 4. There we show the
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FIG. 2. Integrated probability distribution of the unfolded level
spacings, computed locally in the spectrum, at T ¼ 394 MeV on
N3

s × 4 lattices (a represents the lattice spacing). Horizontal lines
correspond to the expectation for Poisson statistics (correspond-
ing to localized modes), RMT statistics (corresponding to
delocalized modes), and critical statistics. An Anderson transition
in the Dirac spectrum is found at the mobility edge where the
curve intersects the critical value Is0;crit.

1The relation hsiλ ¼ 1 follows from the fact that for infinite
statistics and in the large-volume limit, the average level spacing
hΔλiλ in an infinitesimal spectral region around λ equals 1=ρðλÞ,
and this is identically 1 for the unfolded spectrum by construc-
tion. For finite statistics and volume, one has necessarily to use
sufficiently large finite bins in order to collect sufficiently many
eigenvalues, and in regions where ρðλÞ is small, the bin size may
be comparable or even exceed the scale over which ρðλÞ varies
appreciably. This leads to ρðλÞhΔλiλ ≠ 1 and, in turn, to hsiλ ≠ 1
in that region [65]. This happens in the lowest part of the
staggered spectrum at high temperature where the spectral density
is small. This region is problematic also due to the effects of the
approximate taste symmetry of staggered fermions at finite lattice
spacing, which distorts the spectral statistics from Poissonian
[56,86]. Moreover, since we computed a limited and fixed
number of eigenvalues for each configuration, cutoff effects lead
to hsiλ ≠ 1 also at the highest end of the spectral region being
explored. However, both these spectral regions are irrelevant to
our analysis and were discarded.
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renormalization-group-invariant ratio λ̃c ¼ λc
mud

,2 with mud
the bare light-quark mass, for all the temperatures and
lattice spacings used in this work. The dependence on the
lattice spacing is indeed mild, with λ̃cðT;NtÞ depending
little on Nt.
It is evident that the mobility edge tends to vanish as T

decreases toward TRW. As the Roberge-Weiss transition, at
least for Nf ¼ 2þ 1 QCD with physical quark masses and
close enough to the continuum limit, is a continuous
transition [36,37], we also expect λ̃c to vanish continuously.
To leading order, we then expect

λ̃cðT;NtÞ ¼ AðNtÞ½T − T locðNtÞ�BðNtÞ: ð10Þ

For each Nt, we separately determined the localization
temperature T locðNtÞ where the mobility edge vanishes by
fitting the data to the functional form Eq. (10). Fit results
are reported in Table I. In doing so, we have excluded the
lowest temperature, closest to the transition, from each set.
As we show in the Appendix, the determination of λc is still
affected by systematic effects at the lowest temperature for
the Nt ¼ 6, 8 ensembles, which could be due to finite size
effects becoming more visible as the continuum limit is
approached (see the Appendix for more details). Since this
data point affects the outcome of the fit and may distort the
result for T locðNtÞ, we have preferred to use only the more

reliable results obtained at temperatures fairly and well
above TRW.
Results for T locðNtÞ are shown in Fig. 5, together with

the critical temperatures TRWðNtÞ at finite spacing and the
band corresponding to the continuum-extrapolated result0.22 0.224 0.228 0.232
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FIG. 3. Spline interpolations of Is0 � δIs0 used for the deter-
mination of the mobility edge. The horizontal line corresponds to
Is0;crit, and its crossing points with the spline interpolations
determine the error band for λc. Different spatial volumes yield
consistent results.

TABLE I. Coefficients of the best fit of the renormalized
mobility edge to the functional form λ̃cðTÞ ¼ AðT − T locÞB.
Nt A B T loc([MeV)

4 0.51(1) 1.0(1) 183(4)
6 0.98(3) 0.91(5) 198(6)
8 0.8(4) 0.94(2) 193(10)
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T [MeV]
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λ c/m
ud

N
t
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N
t
 = 6

N
t
 = 8

FIG. 4. Temperature dependence of the renormalized mobility
edge. Dashed lines are best fits to the data at fixed Nt with the
functional form Eq. (10), excluding the lowest temperature from
each set.
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FIG. 5. Localization temperature T locðNtÞ, where λ̃c vanishes,
for the various Nts. For comparison, we show also the Roberge-
Weiss temperatures TRWðNtÞ at finite spacing (slightly shifted
horizontally) and the error band corresponding to its continuum
extrapolation, obtained in Ref. [36].

2Roughly speaking, the eigenvalues of the Dirac operator
renormalize multiplicatively with the same renormalization con-
stant as the quark mass [87,88] and so is expected to do the
mobility edge [56]. A proof that this is actually the case will be
presented elsewhere [89]. Therefore, taking its ratio with the
quark mass, which is tuned so as to stay on a line of constant
physics, returns a renormalization-group invariant quantity.
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TRW ¼ 208ð5Þ MeV for the Roberge-Weiss temperature,
obtained in Ref. [36]. We find that T locðNtÞ is compatible
with TRWðNtÞ for all Nts. A continuum extrapolation via
a fit linear in 1=N2

t gives T loc ¼ 204ð7Þ MeV, in good
agreement with TRW.

IV. CONCLUSIONS

We have studied the localization properties of the low-
lying modes of the staggered operator at imaginary chemi-
cal potential μI=T ¼ π in Nf ¼ 2þ 1 QCD above the
Roberge-Weiss temperature TRW, by means of numerical
lattice simulations with rooted staggered fermions at
physical quark masses. We found that the low modes are
localized up to a temperature- and spacing-dependent
mobility edge λc, which is extrapolated to vanish at
T locðNtÞ. For the renormalized mobility edge λc=mud,
and sufficiently above TRW, we observed only a mild
dependence on Nt, as expected. For the localization
temperatures T locðNtÞ where the mobility edge vanishes
for the various Nts, we obtained values in agreement with
the determination of the critical temperatures TRWðNtÞ of
Ref. [36]. The same is true for their continuum extrapo-
lations. This supports the expectation that localized modes
appear precisely at the deconfinement transition of a gauge
theory, when such a transition is sharp. In particular, this is
the first case when the close connection between localiza-
tion of the low Dirac modes and deconfinement is dem-
onstrated for a genuine deconfinement transition in the
presence of dynamical fermions that survives the con-
tinuum limit.
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APPENDIX: SYSTEMATIC EFFECTS NEAR TRW

To further check for finite size and other systematic
effects near the transition, for each Nt, we compared the
results of fits to λ̃cðT;NtÞ performed including or excluding
the lowest temperature from each set. The temperature
closest to the Roberge-Weiss transition is in fact the one
affected the most by finite-size effects due to the larger
correlation length. In particular, taste-violating effects
become milder as the lattice becomes finer, leading to
the formation of multiplets of low modes that distort the

spectral statistics. This can affect our determination of the
mobility edge when this is close to zero, especially on our
finer Nt ¼ 6, 8 ensembles.
It is already evident from Fig. 4 that including the lowest

temperature in a fit of the form Eq. (10) will alter the result
for T locðNt ¼ 6; 8Þ. The results are reported in Table II. For
Nt ¼ 4, the two results are compatible; this is not surprising,
given the relative coarseness of the lattice and the larger
aspect ratio. For Nt ¼ 6 and Nt ¼ 8, instead, the difference
is substantial and around 4% and 6%, respectively.
To show explicitly that the determination of T locðNt ¼ 6Þ

is inaccurate if the lowest temperature T ¼ 215 MeV is
included,we havedone a short run atT ¼ 200 MeVon three
volumes, Ns ¼ 24, 28, 32. Below aλ ≃ 0.01, the size of
the modes, Veff ¼ IPR−1, is compatible within 1σ for the
Ns ¼ 28, 32 ensembles (see Fig. 6). This is a clear indication
that the lowest modes are localized and so that necessarily
T locðNt ¼ 6Þ < 200 MeV.We take this as an indication that
our sample of Nt ¼ 6 configurations at T ¼ 215 MeV is
affected by strong systematic effects, which are likely a
combination of finite-size effects and limited statistics.
Instead, the value obtained excluding the lowest temperature
is compatible with this finding.

TABLE II. T loc obtained from fits excluding or including the
lowest temperature Tmin for the various Nt.

Nt Tmin (MeV) T loc (MeV)
(Tmin excluded)

T loc (MeV)
(Tmin included)

4 197 183(4) 183(2)
6 215 198(6) 206(2)
8 220 193(10) 205(3)
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FIG. 6. Size Veff ¼ IPR−1 of low modes on Nt ¼ 6 lattices at
T ¼ 200 MeV for V ¼ N3

s ¼ 243; 283; 323. For the lowest modes
aλ≲ 0.01, this is approximately the same for the two largest
volumes, indicating that they are localized.
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