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We present results of the first lattice QCD calculations of the weak matrix elements for the decays
Bþ
c → D0lþνl, Bþ

c → Dþ
s lþl− and Bþ

c → Dþ
s νν̄. Form factors across the entire physical q2 range are then

extracted and extrapolated to the continuum limit with physical quark masses. Results are derived from
correlation functions computed on MILC Collaboration gauge configurations with three different lattice
spacings and including 2þ 1þ 1 flavors of sea quarks in the highly improved staggered quark (HISQ)
formalism. HISQ is also used for all of the valence quarks. The uncertainty on the decaywidths from our form
factors for Bþ

c → D0lþνl is similar in size to that from the present value for Vub. We obtain the ratio
ΓðBþ

c → D0μþνμÞ=jηEWVubj2 ¼ 4.43ð63Þ × 1012 s−1. Combining our form factors with those found

previously by HPQCD for Bþ
c → J=ψμþνμ, we find jVcb=Vubj2ΓðBþ

c → D0μþνμÞ=ΓðBþ
c → J=ψμþνμÞ ¼

0.257ð36ÞBc→Dð18ÞBc→J=ψ . We calculate the differential decay widths of Bþ
c → Dþ

s lþl− across the full q2

range and give integrated results in q2 bins that avoid possible effects from charmonium and uū resonances.
For example, we find that the ratio of differential branching fractions integrated over the range q2 ¼
1 GeV2–6 GeV2 forBþ

c → Dþ
s μ

þμ− andBþ
c → J=ψμþνμ is 6.31ð90ÞBc→Ds

ð65ÞBc→J=ψ × 10−6.We also give

results for the branching fraction ofBþ
c → Dþ

s νν̄. Prospects for reducing our errors in the future are discussed.

DOI: 10.1103/PhysRevD.105.014503

I. INTRODUCTION

In this paper, we use lattice QCD methods to calculate
the form factors that capture the nonperturbative physics of
the pseudoscalar Bþ

c meson decaying weakly into either
D0lþνl, Dþ

s lþl− or Dþ
s νν̄. This is the first time that these

calculations have been performed. To ascertain the suc-
cesses and shortcomings of the Standard Model’s descrip-
tion of the physics observed in experiment, it is essential to
produce predictions from the Standard Model at high
precision that fully incorporate the nonperturbative strong
interaction phenomenology of hadrons. Lattice QCD

provides a route towards achieving this for the weak matrix
elements studied here.
We present the first lattice QCD calculation of the form

factors f0 and fþ for the vector current matrix elements for
Bþ
c → D0lþνl throughout the entire range of physical

momentum transfer squared, q2. An accurate prediction
from the Standard Model of the normalization and shape of
the form factors for Bþ

c → D0lþνl will complement
observations of this process from experiment and ulti-
mately lead to a new exclusive determination of the CKM
matrix element jVubj in the future. LHCb expects [1] that
Upgrade II will make it possible to have a measurement of
Bþ
c → D0μþνμ with sufficient accuracy to offer a competi-

tive determination of Vub. Further scrutiny of Vub is needed
to address the long-standing unresolved tension between
inclusive and exclusive determinations (for example, see
world averages of Vub from both inclusive and exclusive
determinations in [2]). Exclusive determinations of Vub
using form factors from lattice QCD have so far been
focused on the semileptonic decays B → π, Bs → K and
Λb → p, so determining Vub via semileptonic Bc → D will
offer another data point. We also consider the branching
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fraction ratio of Bc → D and, using form factors from [3],
the process Bc → J=ψ . This allows the combination
Vub=Vcb to be examined given experimental information
on this ratio.
Alongside our calculation of the form factors for

Bþ
c → D0lþνl, we also carry out a lattice QCD calculation

of the form factors f0, fþ and fT for the vector and tensor
current matrix elements of the rare processes Bþ

c →
Dþ

s lþl− and Bþ
c → Dþ

s νν̄. These semileptonic decays are
examples of flavor-changing, neutral current (FCNC) proc-
esses, and they are of interest in their own right. Such
processes are not allowed at tree level in the StandardModel;
thus, contributions from physics beyond the StandardModel
may be more visible than with tree-level decays. Therefore,
FCNC transitions are an important avenue towards under-
standing the validity of the Standard Model.
The form factors calculated here are part of an ongoing

program by HPQCD to study weak decays of mesons
containing a bottom quark. Our ultimate aim is to determine
Standard Model contributions at high enough precision
such that comparison with experiment reveals or constrains
new physics scenarios. We are now in an era in which fully
relativistic lattice QCD calculations of decays of mesons
containing bottom quarks are achievable. We use the highly
improved staggered quark formalism (HISQ) [4], which is
specifically designed to have small discretization errors.
The large mass of the b quark requires very fine lattices to
control discretization effects. We simulate with bottom
quarks at their physical mass on our finest lattice and
unphysically light bottom quarks on the coarser lattices.
Together this data inform the limit of vanishing lattice
spacing and physical quark masses through HPQCD’s
“heavy-HISQ” strategy. Recent calculations that have
established the method for determining semileptonic form
factors include [3,5–9].
We also investigate strategies for improving on this first

calculation of the form factors for Bc → D and Bc → Ds.
These methods will inform the strategy for other future
calculations of heavy-to-light quark decays. Form factors
with smaller uncertainties will offer a more powerful
examination of the precision flavor physics we envisage.
To minimize cost, we try these improvements in the Bc →
Ds case only.
The sections in this paper are organized as follows:
(i) Section II gives a comprehensive description of how

the form factors across the entire physical range of
4-momentum transfer are obtained from lattice cor-
relation functions. Results from fitting the correlation
functions are attached to this paper [10]. Appendix A
discusses intermediate results from the correlation
function fitting and form factor fits.

(ii) In Sec. III, we present our form factors obtained
from taking the physical-continuum limit of the
lattice data. We plot and tabulate observables found
from combining our form factors with CKM matrix

elements and known Wilson coefficients. Details of
the form factor fits are presented in Appendix B.
Appendix C gives the means for the reader to
reconstruct our form factors.

(iii) In Sec. IV, we investigate extensions to our calcu-
lations that aim to improve the precision of our
determination of the physical-continuum form fac-
tors in a future update. These discussions will guide
other calculations of heavy-to-light decay processes
in the future.

II. CALCULATION DETAILS

A. Form factors

Our calculations use equal-mass u and d quarks. The
corresponding quark flavor is denoted as l. In this paper, we
use the shorthand Bc → Dl and Bc → Ds to label the two
different decays considered here. The subscript on the Dl
andDs mesons denotes the flavor of the daughter quark that
arises from the decay of the parent b quark.
The form factors f0 and fþ are defined through the

vector current matrix element

hDlðsÞðp2ÞjVμjBcðp1Þi

¼ flðsÞ0 ðq2Þ
�M2

Bc
−M2

DlðsÞ

q2
qμ
�

þ flðsÞþ ðq2Þ
�
pμ
2 þ pμ

1 −
M2

Bc
−M2

DlðsÞ

q2
qμ
�

ð1Þ

where q ¼ p1 − p2 is the 4-momentum transfer, and, since
we study the transitions Bc → Dl and Bc → Ds in tandem
throughout this article, we will use the notation fl0;þ and
fs0;þ;T , respectively, to differentiate between their form
factors.
The semileptonic weak decay Bþ

c → D0lþνl is facili-
tated by a b → uW− quark transition. Ignoring isospin
breaking effects and possible long-distance QED correc-
tions, the differential decay rate is related to the form
factors through

dΓ
dq2

¼ η2EWjVubj2
G2

F

24π3

�
1 −

m2
l

q2

�
2

jqj

×

��
1þ m2

l

2q2

�
jqj2flþðq2Þ2

þ 3m2
l

8q2
ðM2

Bc
−M2

DÞ2
M2

Bc

fl0ðq2Þ2
�
: ð2Þ

This is proportional to η2EWjVubj2, where the factor ηEW ¼
1.0062ð16Þ is the electroweak correction toGF [11] and we
use the same value as in [3] for Bþ

c → J=ψlþνl. The mass
of the lepton in the final state is ml. The contribution of f0
is suppressed by the lepton mass and so is only relevant for
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the decay mode Bþ
c → D0τþντ. The physical range of

momentum transfer

m2
l < q2 < ðMBc

−MDÞ2 ¼ 19.4 GeV2 ð3Þ

is large here because of the large mass of the b quark.
The short-distance physics of the FCNC transition Bc →

Ds is described by form factors f0;þ of the vector current
s̄γμb and the form factor fT of the tensor operator Tμν ¼
s̄σμνb where 2σμν ¼ ½γμ; γν�. The form factor fT is defined
through the matrix element of the tensor operator

hDsðp2ÞjTk0jBcðp1Þi ¼
2iMBc

pk
2

MBc
þMDs

fsTðmb; q2Þ: ð4Þ

The tensor form factor fsT is scheme and scale dependent.
We will quote results in the MS scheme at scale 4.8 GeV.
Within the Standard Model, the tensor form factor fT is
relevant for the rare decay Bþ

c → Dþ
s lþl− that proceeds

via b → s, but not for Bþ
c → Dþ

s νν̄ or the tree-level decay
Bþ
c → D0lþνl. The daughter quark for Bc → Ds is heavier

than in the case of Bc → D. The computational expense of
computing lattice quark propagators increases as the quark
mass decreases, so computing the form factors for Bc → Ds
amounts to a less expensive computation than for Bc → D.
Hence, we compute the tensor form factor fT only for the
process Bc → Ds. In the future, we intend to also calculate
the tensor form factor for b → d processes.
From matrix elements of the scalar density and vector

current on four different lattices with a selection of heavy
and light quark masses, we fit the corresponding form
factor data to obtain the form factors in the continuum limit
with physical quark masses. By combining existing values
of CKM matrix elements Vts and Vtb, along with values of
Wilson coefficients, we predict the decay rate for Bþ

c →
Dþ

s lþl− within the scope of Standard Model phenom-
enology. The expression for the decay rate follows similarly
to Sec. VII in [12] for B → Klþl− where we take the MS
scale to bemb for the tensor form factor. We also predict the
decay rate for Bþ

c → Dþ
s νν̄ using an expression similar to

that for B → Kνν̄ in [13,14].

B. Ensembles and parameters

We use ensembles with 2þ 1þ 1 flavors of HISQ sea
quarks generated by the MILC Collaboration [15–17].
Table I presents details of the ensembles. The Symanzik-
improved gluon action used is that from [18], where the
gluon action is improved perturbatively through Oðαsa2Þ,
including the effect of dynamical HISQ sea quarks. The
lattice spacing is identified by comparing the physical value
for the Wilson flow parameter [19] w0 ¼ 0.1715ð9Þ fm
[20] with lattice values for w0=a from [21,22]. The
following calculations feature strange quarks at their
physical mass and equal-mass up and down quarks, with
mass denoted by ml. We use lattices with ms=ml ¼ 5 in the
sea and also the physical value ms=ml ¼ 27.4 [23]. The
corresponding pion masses are tabulated in Table I [24].
Values for MπL (where L ¼ aNx) are also given in Table I
as an indicator of sensitivity to finite-volume effects. In the
more precise calculation of [12] for the form factors for
B → K, finite-volume effects were found to be small
compared to final uncertainties. Hence, we expect finite-
volume effects to be very small compared to the uncer-
tainties we achieve in this first calculation, so we ignore
them. The valence strange and charm quark masses used
here, also tabulated in Table I, were tuned in [22,25]
slightly away from the sea quark masses to yield results that
more closely correspond to physical values. Corrections
due to the tuning of valence strange quark and charm quark
masses away from the masses of the sea quarks should, at
leading order, simply amount to a correction linear in the
sea mass mistuning, which we allow for in our fit of the
form factors (described in Sec. II F). We take the mass of
valence l quarks to be equal to the mass of the sea l quarks.
We ignore isospin-breaking and QED effects in this first
calculation. The propagators were calculated using the
MILC code [26].
The numerical challenge of generating the finest lattices

that we use here means that the ensembles do not fully
explore the space of all possible topological charges. The
effects of topology freezing on meson phenomenology
calculated on these lattices were explored in [27]. It was
found that a topological adjustment of 1% is required for
the D meson decay constant on the ultrafine lattice (set 4).

TABLE I. Parameters for the MILC ensembles of gluon field configurations. The lattice spacing a is determined from the Wilson flow
parameter w0 [19]. The physical value w0 ¼ 0.1715ð9Þ fm was fixed from fπ in [20]. Sets 1 and 2 have a ≈ 0.09 fm. Set 3 has
a ≈ 0.059 fm, and set 4 has a ≈ 0.044 fm. Sets 1, 3, and 4 have unphysically massive light quarks such thatml=ms ¼ 0.2. We giveMπL
andMπ values for each lattice in the fifth and sixth columns [24]. In the seventh column, we give ncfg, the number of configurations used
for each set. We also use four different positions for the source on each configuration to increase statistics.

Set Handle w0=a N3
x × Nt MπL Mπ MeV ncfg amsea

l amsea
s amsea

c amval
l amval

s amval
c T

1 Fine 1.9006(20) 323 × 96 4.5 316 500 0.0074 0.037 0.440 0.0074 0.0376 0.450 14, 17, 20
2 Fine-physical 1.9518(17) 643 × 96 3.7 129 500 0.00120 0.0364 0.432 0.00120 0.036 0.433 14, 17, 20
3 Superfine 2.896(6) 483 × 144 4.5 329 250 0.0048 0.024 0.286 0.0048 0.0245 0.274 22, 25, 28
4 Ultrafine 3.892(12) 643 × 192 4.3 315 250 0.00316 0.0158 0.188 0.00316 0.0165 0.194 31, 36, 41
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The adjustment for Ds is negligible, and this is also
expected to be the case for the Bc meson. The sizes of
the errors achieved in our calculations here are such that
effects from topological freezing (which could be of similar
size for form factors as those seen for decay constants) are
negligible, so we ignore them. In the future, more accurate
form factor calculations may need to incorporate adjust-
ments due to nonequilibrated topological charge distribu-
tions on the ultrafine and finer lattices.
The heavy-HISQ method sees all flavors of quarks

implemented with the HISQ [4] formalism. This is a fully
relativistic approach which involves calculations for a set of
quark masses on ensembles of lattices with a range of fine
lattice spacings, enabling a fit from which the physical
result at the b quark mass in the continuum can be
determined. In our heavy-HISQ method, we utilize a
valence HISQ quark with mass mh that takes values
between mc and mb. We describe this quark as “heavy.”
In the limit of physical quark masses, the heavy quark will
coincide with the b quark. Regarding the mesons that this

quark forms with a constituent charm, strange or light
quark, we adopt nomenclature for these mesons that is
similar to mesons with a constituent bottom quark. For
example, we label the low-lying heavy-charm pseudoscalar
meson as Hc. If we were to take mh ¼ mb, then this meson
would coincide with the Bc pseudoscalar meson.
This heavy-HISQ calculation uses bare heavy quark

masses amh ¼ 0.5, 0.65, 0.8 on all four sets in Table I. The
masses of the corresponding heavy-charm pseudoscalar
mesons Hc are plotted in Fig. 1. The mass of the heaviest
heavy-charm pseudoscalar meson is only 6% lighter than
the physical Bc meson.
Momentum is inserted only into the valence light

(strange) quark of the DlðsÞ meson; thus, the initial Hc
meson is always at rest on the lattice. The momentum
insertion is implemented through partially twisted boun-
dary conditions [29,30] in the ð 1 1 1 Þ direction. The
twists used on each set are given in Table II. The twist angle
θ is related to the three-momentum transfer q ¼ p1 − p2 by

jqj ¼ πθ
ffiffiffi
3

p

aNx
: ð5Þ

For example, zero twist (θ ¼ 0) corresponds to zero recoil
where q2 takes its maximum physical value, which we
denote as q2max. In previous studies, such as Fig. 3 in [6], it
has been observed that the continuum dispersion relation is
closely followed for mesons with staggered quarks, par-
ticularly on the finer lattices. The twists we use allow a
considerable proportion of the physical q2 range to be
probed. Most of the twists in Table II originate from a
variety of past calculations in which the corresponding
propagators were saved for future use.
Figure 2 shows the q2 realized by the twists in Table II.

The values of q2=q2max are given for each twist and heavy
quark mass for both Hc → Dl and Hc → Ds. Twists that
give negative q2 are unphysical but will nevertheless aid the
fits of the form factors across the physical range. For all of
the sets except one, all of the q2 range is covered for the
lightest heavy quark mass value amh ¼ 0.5 (recall that
Fig. 1 shows the corresponding mass of the heavy-charm
pseudoscalar mesons). For the finest lattice, set 4 in Table I,
Fig. 2 shows for the largest heavy quark mass, close to mb.

FIG. 1. The massMHc
of the heavy-charm pseudoscalar meson

is plotted against the lattice spacing squared for each of the values
amh ¼ 0.5, 0.65, 0.8 used in the heavy-HISQ calculation. Values
for MHc

are obtained from fitting the correlation functions as
described in Sec. II E. The continuum-physical point is denoted
by a cross at a ¼ 0 fm and MHc

¼ MBc
from experiment [28].

Data from sets 1–4 are denoted by the colors red, blue, green and
magenta, respectively. Data for amh ¼ 0.5, 0.65, 0.8 can be
identified by the diamond, triangle and circle markers, respec-
tively. These choices will be repeated in all subsequent plots.

TABLE II. Twists used for heavy-HISQ calculations on each of the four sets given in Table I. The twists are in the
ð 1 1 1 Þ direction and defined in Eq. (5). The corresponding values of q2 as a proportion of q2max are shown in
Fig. 2.

Set twists θ for Bc → Ds Twists θ for Bc → Dl

1 0, 0.4281, 1.282, 2.141, 2.570 0, 0.4281, 1.282, 2.141, 2.570
2 0, 0.8563, 2.998, 5.140 0, 3.000, 5.311
3 0, 1.261, 2.108, 3.624, 4.146 0, 1.261, 2.108, 2.666
4 0, 0.706, 1.529, 2.235, 4.705 0, 0.706, 1.529, 2.235, 4.705
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C. Extracting form factors from matrix elements

The conserved HISQ vector current is given explicitly in
Appendix A of [31]. It takes the form of a complicated
linear combination of multilink point-split operators. While
the conserved current has the advantage that it does not
require a multiplicative renormalization factor, its form is
unwieldy for lattice computations. Hence, we elect to use
simple local currents that are not conserved and determine
the corresponding renormalizations.
Our calculation uses HISQ quarks exclusively. In par-

ticular, since we use HISQ for both the parent heavy quark
and the daughter light or strange quark, we can use the
partially conserved vector current Ward identity to relate
matrix elements of the renormalized local vector current
ZVV

μ
local with matrix elements of the local scalar density

through

qμhDlðsÞjVμ
localjHciZV ¼ ðmh −mlðsÞÞhDlðsÞjSlocaljHci: ð6Þ

This holds since the mass and scalar density multiplicative
renormalization factors Zm and ZS satisfy ZmZS ¼ 1. Using
Eq. (6) to determine ZV is a fully nonperturbative strategy.
Up to discretization effects, the renormalization factor is
independent of q2, so it is sufficient to deduce its value at
zero recoil (q ¼ 0 and maximum q2). Using different
staggered “tastes” of mesons in Eq. (6) will contribute a

discretization error that is accounted for when fitting the
lattice form factor data. At zero recoil, Eq. (6) only features
matrix elements of the scalar density and the temporal
component of the vector current, so we do not compute
matrix elements of the spatial components of the vector
current (though they will be considered in Sec. IV B as part
of our investigation towards future improvements).
Combining Eqs. (6) and (1) yields

flðsÞ0 ðq2Þ ¼ hDlðsÞjSlocaljHci
mh −mlðsÞ

M2
Hc

−M2
DlðsÞ

: ð7Þ

We use Eq. (7) to extract f0 from the given combination of
quark masses, meson masses and the matrix element of the
scalar density.
Equation (1) for μ ¼ 0 can be trivially rearranged to

yield

flðsÞþ ðq2Þ¼
ZVhDlðsÞjV0

localjHci−q0flðsÞ0 ðq2Þ
M2

Hc
−M2

DlðsÞ
q2

p0
2þp0

1−q0
M2

Hc
−M2

DlðsÞ
q2

: ð8Þ

At zero recoil, the denominator vanishes so fþ cannot be
extracted here. In practice, using Eq. (8) near zero recoil is
problematic since both the numerator and denominator
approach 0 as q2 increases towards its maximum value at
zero recoil. This is discussed further in Appendix B. [In
Sec. IV B, we consider an alternative extraction of fþ by
using Eq. (1) with μ ≠ 0.]
Finally, the tensor form factor is obtained through

fsTðq2Þ ¼
ZThDsjT1;0

localjHciðMHc
þMDs

Þ
2iMHc

p1
2

; ð9Þ

where T1;0
local is the local tensor operator and ZT is its

multiplicative renormalization factor that takes the lattice
tensor current to the MS scheme. We use values of the
associated multiplicative renormalization factor ZT
obtained using the RI-SMOM intermediate scheme. We
give these values in Table III. Values in the RI-SMOM
scheme at scale 3 GeVare converted to scale 4.8 GeV in the

FIG. 2. The q2 values on each set as a proportion of the
maximum value q2max ¼ ðMHc

−MDlðsÞ Þ2. From top to bottom,
data from sets 1–4 are displayed (see Table I). For different amh
on a given set, the same twists were used. As described in the
caption for Fig. 1, data from sets 1–4 and heavy quark masses
amh are denoted by different colors and marker styles. Values
used here for the masses of the initial and final mesons are found
from fits of correlation functions (to be discussed in Sec. II E).

TABLE III. Values used for the multiplicative renormalization
factor ZT of the tensor operator obtained from Tables VIII and IX
in [32] at scalemb in the MS scheme. The set handles correspond
to those given in Table I. The top row gives the mean values of
ZT , and the rows beneath give the covariance matrix scaled by a
factor of 105.

Sets 1 and 2 Set 3 Set 4

0.9980 1.0298 1.0456
0.6250 0.6242 0.6059

0.6250 0.6057
0.6250
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MS scheme. Nonperturbative (condensate) artifacts in ZT
in the RI-SMOM scheme are removed using the analysis of
the J=ψ tensor decay constant [32].

D. Euclidean correlation functions on the lattice

We obtain the matrix elements discussed in Sec. II C
from correlation functions on the lattice with ensembles
and parameters specified in Sec. II B. We now describe the
construction of these correlation functions.
To ensure that nonvanishing correlation functions are

obtained when exclusively using staggered propagators in a
heavy-HISQ calculation, operators at the source, sink and
current insertion must be carefully selected so that the
overall correlator is a taste singlet. As we detail in Sec. II E,
matrix elements of the scalar density, vector current and
tensor operator are extracted from three-point correlation
functions whose constructions we now describe.
Our choice of operators used in the three-point corre-

lation functions that we compute are given in Table IV and
shown in Fig. 3. The operators are expressed in the
staggered spin-taste basis. Note that the scalar density,
temporal vector current and tensor operator all take the
form Γ ⊗ Γ for some combination of gamma matrices Γ;
thus, they are all local operators as discussed in Sec. II C.

To extract the overlaps of the Hc and DðsÞ interpolators
used in the three-point functions onto the low-lying
pseudoscalar meson states, we compute the relevant two-
point functions, namely, Hc with γ5 ⊗ γ5 and γ5γt ⊗ γ5γt
at both the source and sink, and DðsÞ with γ5 ⊗ γ5 and
γ5 ⊗ γ5γx at both the source and sink. TheDðsÞ interpolator
γ5 ⊗ γ5γx is the only nonlocal interpolator that we use.
We calculate the correlation functions needed to study

the form factors for Bc → Dl and Bc → Ds together since
the calculations share gluon field configurations and other
lattice objects. From a computational perspective, these
processes are similar since they both involve a charm quark
which spectates a bottom quark that changes flavor. Hence,
we are able to construct lattice correlation functions such
that sequential b quark propagators, i.e., the combined
bottom and charm propagator object, can be utilized in both
calculations, thus saving us a computational expense.

E. Fitting correlation functions

The correlation functions are fit to the following forms
using the corrfitterpackage [33]. The fit seeks tominimize an
augmented χ2 as described in [34–36].1 We simultaneously
fit all of the two-point and three-point correlation functions at
all twists and heavy quark masses to account for all possible
correlations between the fit parameters. We use singular
value decomposition (SVD) cuts in our fits; thus, the
χ2=d:o:f: values from our fits of correlation functions do
not have a straightforward interpretation in the sense of
frequentist statistics. More discussions and details can be
found in Appendix A 1. This includes details of our priors
and a variety of tests of the stability of our fits.
The two-point correlator data are fit to the functional

form

C2ptðtÞ ¼
XNn

i

ðan;iÞ2fðEn;i; tÞ −
XNo

i

ðao;iÞ2ð−1ÞtfðEo;i; tÞ

ð10Þ

FIG. 3. Diagrammatic representations of the three-point func-
tions we calculate on the lattice. The top two diagrams are
relevant for extracting matrix elements of the scalar density and
temporal vector current, and the bottom diagram is calculated for
the case Bc → Ds and the tensor current. Each operator insertion
is shown by a cross and is labeled by its description given in the
spin-taste basis, while the lines represent lattice quark propa-
gators. The heavy quark propagator is represented by the line,
labeled by the flavor h, between the leftmost operator and
the insertion. The daughter quark propagator is represented by
the line, labeled by the flavor lðsÞ, between the insertion and the
rightmost operator. The remaining quark propagator is the
spectator quark, labeled by the flavor c.

TABLE IV. Summary of the interpolators used in the all-HISQ
three-point correlation functions. The interpolators are given in the
spin-taste basis.Matrix elements of the scalar density, vector current
and tensor operator are extracted from the correlation functions
constructed from the first, second and third rows of interpolators,
respectively. The relevant form factor is given in the first column.
The tensor form factor is calculated for Bc → Ds only here.

Hc DlðsÞ Insertion

f0 γ5 ⊗ γ5 γ5 ⊗ γ5 I ⊗ I
fþ γ5γt ⊗ γ5γt γ5 ⊗ γ5 γt ⊗ γt
fT γ5γt ⊗ γ5γt γ5 ⊗ γ5γx γxγt ⊗ γxγt

1In the limit of high statistics the results from this method are
equivalent to those from Bayesian inference.
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where

fðE; tÞ ¼ e−Et þ e−EðNt−tÞ: ð11Þ

This follows from the spectral decomposition of the
Euclidean correlation functions. The sums over i enumerate
the tower of states that have nonvanishing overlap with the
interpolators such that En;i ≤ En;iþ1 and Eo;i ≤ Eo;iþ1. As is
characteristic of staggered quarks, we find contributions to
the correlation functions that switch signs between adjacent
time slices. These contributions that oscillate with time are
accounted for by the second piece in Eq. (10), where the
subscript “o” is shorthand for “oscillating.” Similarly, the
subscript “n” in the first piece in Eq. (10) is shorthand for
“nonoscillating.” The function fðE; tÞ accounts for the
periodicity of the correlator data in the temporal direction.
The amplitude an;0 is normalized such that

an;0 ¼
h0jOjPiffiffiffiffiffiffiffiffi

2EP
p ð12Þ

where O is the pseudoscalar meson interpolator, P is the
low-lying pseudoscalar state, and EP ¼ En;0 is its energy.
The three-point data are fit to the functional form

C3ptðt; TÞ ¼
XNn;Nn

i;j

an;ie−En;itVnn;ijbn;je−En;jðT−tÞ

−
XNn;No

i;j

ð−1ÞT−tan;ie−En;itVno;ijbo;je−Eo;jðT−tÞ

−
XNo;Nn

i;j

ð−1Þtao;ie−Eo;itVon;ijbn;je−En;jðT−tÞ

þ
XNo;No

i;j

ð−1ÞTao;ie−Eo;itVoo;ijbo;je−Eo;jðT−tÞ;

ð13Þ

where the amplitudes a and b are the amplitudes in Eq. (10)
corresponding to the initial and final pseudoscalar meson
states in the three-point correlator.
For an insertion of the local scalar density, both source and

sink operators are γ5 ⊗ γ5. For an insertion of the temporal
component of the local vector current, the DlðsÞ and Hc

mesons are interpolated by γ5 ⊗ γ5 and γ0γ5 ⊗ γ0γ5, respec-
tively. The matrix elements of the vector current and tensor
operators are related to the fit parameters Vnn;ij of the three-
point functions through

hDlðsÞjJjHci ¼ ZVnn;00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EDlðsÞ2EHc

q
; ð14Þ

where J is the insertion that facilitates the h → l or s flavor
transition and Z is the corresponding multiplicative renorm-
alization factor for V or T. The pseudoscalar mesons of

interest are the lowest-lying states consistent with their quark
content and the gamma matrix structure of the interpolators,
so we only require extraction of the matrix elements for
i ¼ j ¼ 0. The presence of i, j > 0 terms is necessary to give
a good fit and allows for the full systematic uncertainty from
the presence of excited states to be included in the
extracted Vnn;00.

F. Fitting the form factors

From the parameters Vnn;00 in the fit form of the three-
point correlation functions in Eq. (13), matrix elements are
found using Eq. (14). The values of the form factors are
then obtained by using Eqs. (7)–(9).
The form factor data at all momenta and heavy quark

masses on all sets in Table I are then fit simultaneously to a
functional form that allows for discretization effects,
dependence on the heavy meson mass, and any residual
mistuning of the light, strange and charm quark bare mass
parameters. The fit is carried out using the lsqfit package
[37], which implements a least-squares fitting procedure.

1. z-expansion

It is convenient, and now standard, to map the semi-
leptonic region m2

l < q2 < t− ¼ ðMHc
−MDlðsÞ Þ2 to a

region on the real axis within the unit circle through

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð15Þ

The parameter tþ is chosen to be the threshold in q2 for
meson pair production with quantum numbers of the current
[38], i.e., ðMH þMπðKÞÞ2. Any quarkmassmistunings in our
calculations are allowed by the fit function of the form factor
data. In ourBc → Dl calculation,we determine theMH value
for evaluating tþ from heavy-light two-point correlation
functions that we fit simultaneously with the correlation
functions described in Sec. II D. In ourBc → Ds calculation,
whichwe analyze separately fromBc → Dl, we estimateMH
by takingMH ¼ MHs

− ðMBs
−MBÞ. A similar approxima-

tion was taken in [3], a calculation of the form factors for
Bc → J=ψ . Also, we choose the parameter t0 to be 0 so that
the points q2 ¼ 0 and z ¼ 0 coincide. The form factors can
be approximated by a truncated power series in z. The
validity of this truncation is scrutinized in Appendix B 3.

2. Fit form

Form factor data from our heavy-HISQ calculation is
obtained, as described in Sec. II C, from matrix elements
extracted from the fits detailed in Sec. II E. Data for each of
the form factors are fit to the functional form
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Pðq2Þfðq2Þ¼L
XNn

n¼0

XNr

r¼0

XNj

j¼0

XNk

k¼0

AðnrjkÞẑðn;NnÞ
�

Λ
MHlðsÞ

�
r
ΩðnÞ

×

�
amh

π

�
2j
�
amc

π

�
2k
N ðnÞ

mis: ð16Þ

The dominant pole structure is represented by the factor
Pðq2Þ given by 1 − q2=M2

res. The values we use forM2
res are

discussed in Sec. II F 3. The combination Pðq2Þfðq2Þ is
fitted to a truncated series, or polynomial, in zðq2Þ given in
the rhs of Eq. (16). We use the Bourreley-Caprini-Lellouch
(BCL) parametrization [39], where

ẑðn;NnÞ
0 ¼ zn;

ẑðn;NnÞ
þ;T ¼ zn −

nð−1ÞNnþ1−n

Nn þ 1
zNnþ1 ð17Þ

in Eq. (16). We defined zðq2Þ in Eq. (15). The priors for
AðnrjkÞ are taken to be 0(2) except for jþ k ¼ 1 where the
prior is 0.0(3) to account for the removal of a2 errors in the
HISQ action at tree level [4]. In Appendix B 1, we show
plots of the lattice data for Pðq2Þfðq2Þ plotted against z in
Figs. 25 and 26.
The factor L contains a chiral logarithm for the case

Bc → D, and we take L ¼ 1 for the case Bc → Ds. For the
case Bc → D, then

L ¼ 1þ
�
ζð0Þ þ ζð1Þ

Λ
MHl

þ ζð2Þ
Λ2

M2
Hl

�
xπ log xπ ð18Þ

where we take Λ ¼ 500 MeV for the QCD energy scale,
xπ ¼ M2

π=Λ2
χ , and Λχ ¼ 4πfπ is the chiral scale. It is

convenient for us to write xπ in terms of quark masses.
By using M2

π ≈mlM2
ηs=ms and approximating the ratio

Mηs=4πfπ , we take xπ ¼ ml=5.63mtuned
s as in [40]. We give

the coefficients ζ, common to all form factors, priors of
0(1).
The ðΛ=MHlðsÞ Þr factors in Eq. (16) account for the

dependence of the form factors on the heavy quark mass.
This dependence is given by a HQET-inspired series in
Λ=MHlðsÞ , which we truncate.
The ΩðnÞ factors are given by

ΩðnÞ ¼ 1þ ρðnÞ log
�MHlðsÞ

MDlðsÞ

�
: ð19Þ

Here, ΩðnÞ allows for heavy quark mass dependence that
appears as a prefactor to the expansion in inverse powers of
the heavy mass given in Eq. (16). From HQET this
prefactor could include fractional powers of the heavy
quark mass and/or logarithmic terms which vary in differ-
ent regions of q2 [41]. We allow for this with a logarithmic
term with a variable coefficient that depends on the form

factor and the power of z in the z-expansion. We take priors
for the ρðnÞ of 0(1).
The kinematic constraint f0ð0Þ ¼ fþð0Þ follows since

the vector current matrix element must be finite at q2 ¼ 0.
This constraint holds in the continuum limit for all MHc

.
Recalling that we choose t0 ¼ 0, which gives zð0Þ ¼ 0,
then this constraint is imposed on the fit by insisting that

ðA0Þð0r00Þ ¼ ðAþÞð0r00Þ for all r and ρð0Þ0 ¼ ρð0Þþ .
The mistuning terms are given by

N ðnÞ
mis ¼ 1þ δmsea

c

mtuned
c

κðnÞ1 þ δmval
c

mtuned
c

κðnÞ2 þ δml

10mtuned
s

κðnÞ3

þ δmsea
s

10mtuned
s

κðnÞ4 þ δmval
s

10mtuned
s

κðnÞ5 : ð20Þ

The parameters κðnÞj allow for errors associated with
mistunings of both sea and valence quark masses. For
each of the sea and valence quark flavors, δmsea and δmval

are given by

δmsea ¼ msea −mtuned

δmval ¼ mval −mtuned; ð21Þ

giving estimates of the extent that the quark masses deviate
from the ideal choices in which physical masses of hadrons

are exactly reproduced. The δmval
s term in N ðnÞ

mis is not
included for the Bc → Dl form factors since no valence
strange quark is present in this case. For priors, we take 0(1)
for those κ associated with valence quark mass mistunings,
and 0.0(5) for sea quark mass mistunings, which are
expected to have a smaller effect.
We now explain the specific values used for mtuned for

each flavor of quark. The tuned mass mtuned
s is an estimate

of the valence strange quark mass that would reproduce the
“physical” ηs meson mass on the gauge field configurations
we use. The ηs is a fictitious ss̄ pseudoscalar meson where
the valence strange quarks are prohibited from annihilating.
It is not a particle that is realized in nature, though its mass
can be determined in lattice QCD by ignoring disconnected
diagrams. Hence, we use it as a tool to evaluate the extent to
which the strange quark mass in simulations has been
mistuned. We construct a physical value for the mass of the
ηs meson (Mphys

ηs ) based on masses of pions and kaons [20].
We find amtuned

s through

amtuned
s ¼ amval

s

�
Mphys

ηs

Mηs

�2

ð22Þ

where amval
s is the valence strange quark mass given in

Table I, aMηs is taken from Table III of [6] (which also

used our amval
s values), and finally we use Mphys

ηs ¼
688.5ð2.2Þ MeV from [20]. The value mtuned

l is fixed by
multiplying mtuned

s from Eq. (22) by the physical ratio [24]
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ml

ms
¼ 1

27.18ð10Þ : ð23Þ

We take amtuned
c to be

amtuned
c ¼ amval

c

�
Mexpt

J=ψ

MJ=ψ

�
; ð24Þ

whereMexpt
J=ψ ¼ 3.0969 GeV (ignoring the negligible uncer-

tainty) from PDG [42], and lattice values for aMJ=ψ are
obtained from Table III in [43] (which also used our amval

c
values). Thus, the tuned valence charm mass is designed to
closely reproduce the physical mass of the J=ψ meson. A
detailed discussion of tuning the valence charm quark mass
can be found in [43].

3. Heavy quark mass dependence of Mres

For the f0 and fþ;T form factors, the relevant poles are
the masses of the scalar and vector heavy-light(strange)
mesons, respectively. Since these particles have a valence
heavy quark, their masses vary with mh. Determination of
these meson masses at comparable precision to the energies
of the pseudoscalar mesons is unnecessary. For the JP ¼ 1−

mesons, this would require the set of correlation functions
described in Sec. II E to be augmented by two-point
correlation functions with propagators from different
sources. Hence, additional propagators would need to be
calculated. Instead, we approximate these meson masses
similarly to the estimation of the JP ¼ 0þ; 1− heavy-charm
mesons in [3,6] and the estimation of the JP ¼ 0þ; 1−
heavy-strange mesons in [8].
Here, for Bc → DlðsÞ, we take the extra step in scrutiniz-

ing this method of approximating the masses of the JP ¼
0þ; 1− mesons by demonstrating that our fits of the form
factors are insensitive to shifts in these estimates. These
checks are particularly important for processes facilitated
by b → u or b → s since q2max is close toM2

res, so we expect
the z coefficients in the fit form in Eq. (16) to be more
sensitive to the position of the nearest pole. For example,
Bs → Ds has q2max=M2

B�
c
¼ 0.29 while Bc → Ds has

q2max=M2
B�
s
¼ 0.63 (with errors ignored). We show this

analysis in Appendix B, which is summarized by Fig. 29.
We now show how we approximate masses of the heavy-

light (strange) JP ¼ 1− and JP ¼ 0þ mesons. We denote
these mesons as HlðsÞð1−Þ and HlðsÞð0þÞ. Similarly, in this
section we refer to the pseudoscalar meson as HlðsÞð0−Þ.
The nearest pole for fþ is the vector heavy-light (strange)
vector meson. We use the fact that the hyperfine splittings

ΔHlðsÞð1−Þ ¼ MHlðsÞð1−Þ −MHlðsÞð0−Þ ð25Þ

are expected to vanish as Λ=mh in the limit mh → ∞ [44]
since, by HQET [45], there is a spin symmetry in this limit,

meaning that the vector and pseudoscalar mesons become
degenerate. We model the leading order dependence on mh
through

MHlðsÞð1−Þ ≈MHlðsÞð0−Þ þ
xlðsÞ

MHlðsÞð0−Þ
ð26Þ

whereMHlðsÞ are proxies for mh and the parameters xlðsÞ are
set at mh ¼ mb using values from [28]; we take

xlðsÞ ¼ ðMBlðsÞð1−Þ −MHlðsÞð0−ÞÞMBlðsÞð0−Þ ð27Þ

so that the approximation in Eq. (26) yieldsMHlðsÞð1−Þ equal
to MBlðsÞð1−Þ at mh ¼ mb.
Regarding the pole for f0, the differences between the

pseudoscalar and scalar mesons,

ΔlðsÞðmhÞ ¼ MHlðsÞð0þÞ −MHlðsÞð0−Þ; ð28Þ

are expected to be largely independent of the heavy quark
mass because the scalar meson is simply an orbital
excitation of the pseudoscalar meson. For example, note
that ΔsðmbÞ ¼ 0.344 GeV and ΔsðmcÞ ¼ 0.3490 GeV
(ignoring errors) are very similar [Bs, Ds0 and Ds masses
taken from [28] and Bs0 mass taken from [46] (predicted)],
providing qualitative support of this statement. Therefore,
we approximate MHlðsÞð0þÞ as

MHlðsÞð0þÞ ≈MHlðsÞð0−Þ þ ΔlðsÞðmbÞ: ð29Þ

The errors on ΔlðsÞðmbÞ are ignored.
In Table V, we summarize the values of the masses that

we use and subsequent values for xl and xs from Eq. (27).
By construction, all of the heavy-light (strange) meson
masses match the physical values (observed or predicted) at
the point mh ¼ mb.
In Eq. (16), the pole factor Pðq2Þ−1 multiples a poly-

nomial in z with degree Nn. For our final results, we use
Nn ¼ 3, i.e., a cubic polynomial in z. We demonstrate in
Appendix B that results with Nn ¼ 4 are in good agree-
ment, and hence the truncation of the z series is justified.

TABLE V. Masses of the lightest mesons with JP quantum
numbers (given without error) in GeV [28,46,47] used for
approximating the leading order dependence of the heavy quark
mass on the location of the vector and scalar poles (see the text in
Sec. II F 2). These values are also discussed in Appendix C. The
parameter x is defined in Eq. (27), and the parameter ΔðmbÞ is
defined in Eq. (28).

0− 0þ 1− ΔðmbÞ GeV x GeV2

Bc → Dl 5.27964 5.627 5.324 0.34736 0.9368
Bc → Ds 5.36684 5.711 5.4158 0.34416 1.0510
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III. RESULTS

A. Form factors

We use the correlation function fits on each set indicated
in Table IX of Appendix A 4. The energies and matrix
elements on each set are stored (with all correlations) in the
ancillary file corrfit_results.tar [10]. We fit the
subsequent form factor data to the form described in
Sec. II F 2. Fitting with noise added to both the data and
priors, as demonstrated in [48] to compensate for the
reduced χ2=d:o:f: from fitting with a SVD cut, we find
χ2=d:o:f: ¼ 0.65 and χ2=d:o:f: ¼ 0.43 for the cases Bc →
Dl and Bc → Ds, respectively.
We check that our priors are sensible and conservative by

performing empirical Bayes analyses [34]. We use the
lsqfit.empbayes_fit function to test the width of
the parameters in the following two sets: ρðnÞ and Aðnr00Þ,
and AðnrjkÞ for jþ k > 0. The widths of each parameter in
these sets are varied simultaneously by a common multi-
plicative factor w. The empirical Bayes analyses show that
the values for w are around 0.5, so our priors are moderately
conservative.
In Fig. 4, we present our form factors in the limit of

vanishing lattice spacing and physical quark masses across

the entire physical range of q2. Details of the fits of the
correlation functions and lattice form factors from which
Fig. 4 is derived are given in Appendixes A and B.
Appendix C provides details of our form factors in the
limit of vanishing lattice spacing and physical quark
masses.
Figure 5 shows the form factors fl;s0;þ on the same plot.

This figure shows how the form factors vary as the daughter
quark mass changes from ms to ml ¼ ms=27.4. We plot
each form factor from q2 ¼ 0 up to the zero-recoil point
where q2 ¼ ðMBc

−MDðsÞ Þ, which depends on the daughter
quark mass. The form factors for the strange daughter quark
are larger than those for the light daughter quark at all q2

values. This mirrors what is seen, for example, in the
comparison of D → π and D → K form factors [49].
For the case Bc → Ds, we show in Fig. 6 the ratio

fTðmbÞ=fþ across the entire range of q2. Large energy
effective theory (LEET) [41] expects this ratio near q2 ¼ 0

FIG. 4. Fit functions for the Bc → Dl and Bc → Ds form
factors fl0;þ and fs0;þ;T , respectively, tuned to the continuum
limit with physical quark masses. The tensor form factor is at the
scale 4.8 GeV.

FIG. 5. Fit functions for the four form factors fl;s0;þ tuned to the
continuum limit with physical quark masses.

FIG. 6. Ratio of the tensor and vector form factors of Bc → Ds

across the entire range of physical q2. The behavior is in
agreement with LEET [41], which predicts a constant ratio
ðMBc

þMDs
Þ=MBc

.
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to take the value ðMBc
þMDs

Þ=MBc
¼ 1.31 [28] in the

limit mb → ∞, ignoring renormalization corrections. This
follows from the spatial-temporal tensor and spatial vector
matrix elements coinciding in the limits mb → ∞ and
q2 → 0, and the definitions of fþ and fT in Eqs. (8)
and (9). We find that the ratio fT=fþ near q2 ¼ 0 is
consistent with LEET and that this ratio does not change
significantly as q2 is varied.
We use the gvar package [50] to propagate correlations

throughout our calculation. The package also allows us to
decompose the uncertainty on the form factors and resulting
branching fractions to create an error budget. We plot a
particular breakdown of the errors in Figs. 7 and 8 for the
form factors fl0;þ and fs0;þ, respectively. We find that
statistical errors contribute substantially to the final error.
Of a similar size are the uncertainties from the coefficients
Aðn0jkÞ in the fit form inEq. (16). The fit function inEq. (16) is
complicated since the coefficients AðnrjkÞ responsible
for the extrapolations amh → 0, amc → 0 and Λ=MHlðsÞ →
Λ=MBlðsÞ are mixed to allow for all possible effects. Terms in
the fit form with r ¼ 0 are associated with discretization
effects of the leadingorder term in theHQETexpansion. This
error could be decreased by including the exafine lattice
(a ≈ 0.03 fm) so that amh can be taken smaller to further

constrain the limitamh → 0. Also,b quarks, at their physical
mass, can be directly simulated on the exafine lattice since
amb is well below 1.We investigate the impact of adding the
exafine lattice in Sec. IVA.
Regarding the ζ and ρ parameters in Eq. (16), only ζð0Þ

and ðρl;sÞð0Þ are determined accurately by the fit. We
find ζð0Þ ¼ −0.66ð24Þ, ðρl0;þÞð0Þ ¼ −0.544ð76Þ, ðρs0;þÞð0Þ ¼
−0.579ð64Þ and ðρsTÞð0Þ ¼ −0.676ð92Þ.

B. Observables for B+
c → D0l+ νl

We plot the differential decay rate η−2EWjVubj−2dΓðBþ
c →

D0lþνlÞ=dq2 derived from our form factors as a function
of q2 in Fig. 9. The form of the decay rate is given in
Eq. (2). We integrate this function (using gvar.ode.in-
tegral in the gvar package [50]) to find η−2EWjVubj−2Γ.
This is then combined with ηEW, the CKM matrix element
Vub ¼ 3.82ð24Þ × 10−3 [51] (an average of inclusive and
exclusive determinations), and the lifetime of the Bc meson
to obtain the branching ratios in Table VI. At present, errors
from our lattice calculation dominate those associated with
the lifetime of the Bc meson and are comparable with those

FIG. 7. Errors on the form factors fl0;þ. The black curve shows
the total error, and the other lines show a particular partition of the
error. When added in quadrature, these contributions yield the
black curve. The dashed curves show uncertainties from the fit
coefficients in Eq. (16). The solid blue curve shows the statistical
errors resulting from our fits of correlation functions. The solid
red curve represents the contribution to the final error from the
determinations of the quark mass mistunings on each lattice
[see Eq. (20)].

FIG. 8. Errors on the form factors fs0;þ;T . The curves are labeled
similarly to Fig. 7.
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from the CKM element Vub. For the ratio of widths with τ
and μ in the final state, we find that

ΓðBþ
c → D0τþντÞ

ΓðBþ
c → D0μþνμÞ

¼ 0.682ð37Þ: ð30Þ

Much of the error on our form factors cancels in this ratio,
and we achieve an uncertainty of 7%.
We compare our results with those for the decay mode

Bþ
c → J=ψlþνl. We take the form factors for this decay

from HPQCD’s lattice QCD calculation in [3]. We combine
these form factors with those for Bþ

c → D0lþνl computed
in this study to find the ratios

����Vcb

Vub

����
2 ΓðBþ

c → D0μþνμÞ
ΓðBþ

c → J=ψμþνμÞ
¼ 0.257ð36Þð18Þ;

����Vcb

Vub

����
2 ΓðBþ

c → D0τþντÞ
ΓðBþ

c → J=ψτþντÞ
¼ 0.678ð69Þð45Þ: ð31Þ

The first error comes from our form factors for
Bþ
c → D0μþνμ, and the second error comes from the form

factors for Bþ
c → J=ψμþνμ in [3]. We treat the form factors

for Bþ
c → J=ψμþνμ as uncorrelated to the Bþ

c → D0lþνl
form factors (a conservative strategy). In Fig. 10, we plot
the ratio of dΓ=dq2 for the two processes for m2

l < q2 <
ðMBc

−MJ=ψÞ2 and each of the cases l ¼ μ, τ. Note that
the ratio plotted is the inverse of the one used in Eq. (31).
A possible method for determining the ratio of

jVcsj=jVubj is to determine the ratio of branching fractions
for the Bc decay to D0eþνe and Bseþνe. Using our form
factors for Bc → D and the form factors for Bc → Bs from
[7], we find

jVubj2
jVcsj2

BðBþ
c → B0

seþνeÞ
BðBþ

c → D0eþνeÞ
¼ 5.95ð84Þð19Þ × 10−3: ð32Þ

References [53,54] point out that the weak matrix
elements for Bc → D and Bc → Bs have a simple ratio
at the zero-recoil point in the limit ofmb ≫ mc ≫ ΛQCD. In
this limit, the Bc meson is a pointlike particle, and the weak
matrix elements factorize into a factor that depends on the
daughter meson decay constant and a factor that depends
on the Bc wave function, which is the same in both
processes. Thus, the ratio of weak matrix elements becomes

hDjVμjBci
hBsjVμjBci

����
zero−recoil

¼ MDfD
MBs

fBs

: ð33Þ

Using the decay constants from [24], the rhs evaluates to
0.32. We expect an uncertainty on this value of size
ΛQCD=mc (∼30%) since the HQET result relies on
mc ≫ ΛQCD. By using our form factors for Bc → D and
those for Bc → Bs from [7], we find that the lhs evaluates to
0.571(17)(8), much larger than the prediction from HQET.
We conclude that HQET is not a reliable guide here.
Calculations from three-point sum rules [54] give 0.5(2).

FIG. 9. Differential decay rate η−2EWjVubj−2dΓðBþ
c →

D0lþνlÞ=dq2 as a function of q2 for the cases l ¼ μ in blue
and l ¼ τ in red.

TABLE VI. For Bþ
c → D0lþνl, we give values for the branch-

ing ratios (BR) for each of the cases l ¼ e, μ, τ. We take the
lifetime of the Bc meson to be 513.49(12.4) fs [52]. The errors
from the lifetime and the CKM matrix element Vub are shown
explicitly. The error from ηEW is negligible. We ignore uncer-
tainties from long-distance QED contributions since the meson
D0 in the final state is neutral.

Decay mode BR × 105

Bþ
c → D0eþνe 3.37ð48Þlatticeð8ÞτBc ð42ÞCKM

Bþ
c → D0μþνμ 3.36ð47Þlatticeð8ÞτBc ð42ÞCKM

Bþ
c → D0τþντ 2.29ð23Þlatticeð6ÞτBc ð29ÞCKM

FIG. 10. We plot the ratio of dΓ=dq2 for each of the processes
Bþ
c → J=ψlþνl and Bþ

c → D0lþνl for the q2 range of the Bþ
c →

J=ψlþνl decay. The decay width for the former process is
derived from form factors found in [3], and the decay width of the
latter process is derived from form factors determined in this
study. The case l ¼ μ is shown in blue, and the case l ¼ τ is
shown in red.
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We now give the angular dependence of the differential
decay rate. Let θ be the angle between the direction of flight
of the lepton l̄ and the D0 meson in the center-of-mass
frame of l̄ν. Then, we have

d2Γlðq2; cos θÞ
dq2d cos θ

¼ alðq2Þ þ blðq2Þ cos θ þ clðq2Þcos2θ:

ð34Þ

On performing the integration with respect to θ, the piece
linear in cos θ vanishes, though it is of interest when
studying the angular dependence of the decay width. This
forward-backward asymmetric piece, blðq2Þ, is sensitive to
the lepton mass. It is given by

blðq2Þ ¼ −
η2EWG

2
FjVubj2jqj

64π3M2
Bc

�
1 −

m2
l

q2

�
2m2

l

q2

× λðM2
Bc
;M2

D; q
2Þ1=2ðM2

Bc
−M2

DÞf0ðq2Þfþðq2Þ
ð35Þ

where λðx2;y2;z2Þ¼½x2−ðy−zÞ2�½x2−ðyþzÞ2�. In Fig. 11,
we plot blðq2Þ for the cases l ¼ μ, τ. The shape of blðq2Þ
differs between the two cases. To exhibit in more detail the
low-q2 behavior of bμðq2Þ, we separately plot the regions
q2 < 1 GeV2 and 1 GeV2 ≤ q2.

C. Observables for B+
c → D+

s l+l− and B+
c → D+

s νν̄

Like B → Klþl−, the process Bþ
c → Dþ

s lþl− is a rare
decay mediated by the loop-induced b → s transition.
Here, we follow nomenclature commonly used for B →
Klþl− as in [55] and replace the initial and final mesons in
the B → K formulas with Bc and Ds, respectively. We
calculate observables for Bþ

c → Dþ
s lþl− from our form

factors fs0;þ;T ignoring small nonfactorizable contributions
at low q2 [56,57].
We use the same value for jVtbV�

tsj ¼ 0.0405ð8Þ [58] and
the Wilson coefficients in [12]. The Wilson coefficients
used in [12] are quoted at the scale 4.8 GeV.
The determination of the branching fraction includes

effective Wilson coefficients expressed in terms of the
functions hðq2; mcÞ and hðq2; mbÞ that depend on the c and
b pole masses. We take mc and mb in the MS scheme to be
1.2757(84) GeV [59] and 4.209(21) GeV [60], respectively,
each at their own scale. Using the 3-loop expression in
Eq. (12) of [61] that relates the pole mass to the mass in the
MS scheme, we find the values 1.68 GeVand 4.87 GeV for
the pole mass of the charm and bottom quarks, respectively,
each taken with an uncertainty of 200 MeV to account for
the presence of a renormalon in the pole mass [62] suffered
by the perturbation series in the expression in [61].
In Fig. 12, we plot the differential branching fractions

for the cases l ¼ μ, τ for the physical range

4m2
l < q2 < ðMBc

−MDs
Þ2. These are constructed from

the expressions in [55] for B → K. The yellow bands span
across

ffiffiffiffiffi
q2

p
¼ 2.956–3.181 GeV and 3.586–3.766 GeV.

These regions are the same as in [63], and they represent
veto regions which largely remove contributions from
charmonium resonances via intermediate J=ψ and ψð2SÞ
states. The effects of charmonium resonances are not
included in our differential branching fractions. For dBμ=

dq2 between
ffiffiffiffiffi
q2

p
¼ 2.956 and

ffiffiffiffiffi
q2

p
¼ 3.766, we interpo-

late the function linearly as performed in [64] for theB → K
branching fraction.

FIG. 11. Plot of the blðq2Þ, as defined in Eqs. (35) and (34), for
Bþ
c → Dþ

s lþl−. The top plot shows the case l ¼ μ (blue) for the
region m2

μ < q2 < 1 GeV2. The middle plot shows the case
l ¼ μ (blue) for the region 1 GeV2 < q2 < q2max. Finally, the
lower plot shows the case l ¼ τ (red).
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On integrating with respect to q2, we report the ratio

Rl1
l2
ðq2low; q2highÞ ¼

R q2high
q2low

dq2dBl1=dq
2

R q2high
q2low

dq2dBl2=dq
2

ð36Þ

for different choices of final-state lepton l1;2 and integra-
tion limits q2low, q

2
high. We find that

Rμ
eð4m2

μ; q2maxÞ ¼ 1.00203ð47Þ; ð37Þ

Rμ
eð1 GeV2; 6 GeV2Þ ¼ 1.00157ð52Þ; ð38Þ

Rμ
eð14.18 GeV2; q2maxÞ ¼ 1.0064ð12Þ; ð39Þ

Rτ
eð14.18 GeV2; q2maxÞ ¼ 1.34ð13Þ; ð40Þ

Rτ
μð14.18 GeV2; q2maxÞ ¼ 1.33ð13Þ; ð41Þ

where q2max ¼ ðMBc
−MDs

Þ2. The latter three ratios above
involve the differential decay widths above the veto region
associated with the resonance from ψð2SÞ. The ratio in
Eq. (38) lies beneath the J=ψ veto region and above q2 ≲
1 GeV2 where effects from uū resonances could have an
impact; these are not included in our calculation. We give in
Table VII integrals of differential branching fractions for
these ranges of q2. As in the case Bþ

c → D0lþνl, the ratio
of widths with l ¼ τ and l ¼ μ in the final state,

ΓðBþ
c → Dþ

s τ
þτ−Þ

ΓðBþ
c → Dþ

s μ
þμ−Þ ¼ 0.245ð20Þ; ð42Þ

has reduced error.
In the low-q2 region 1 GeV2 to 6 GeV2, we find that the

ratio of integrated branching fractions for Bþ
c → Dþ

s μ
þμ−

and Bþ
c → J=ψμþνμ is

R
6 GeV2

1 GeV2 dq2
dBðBþ

c →Dþ
s μ

þμ−Þ
dq2R

6 GeV2

1 GeV2 dq2
dBðBþ

c →J=ψμþνμÞ
dq2

¼ 6.31ð90Þð65Þ × 10−6: ð43Þ

The first error is from the numerator, and the second error is
from the denominator, which we compute using the form
factors for Bþ

c → J=ψμþνμ from [3]. As in [3], we take
jVcbj ¼ 41.0ð1.4Þ × 10−3 [65] from an average of inclusive
and exclusive determinations, scaling the uncertainty by 2.4
to allow for their inconsistency.
Next, we show in Fig. 13 the “flat term” Fl

H, first
introduced in [66] in the context of B → K. This term
appears as a constant in the angular distribution of the
decay width. Taking the same parametrization of the decay
width as in Eq. (34), then performing the integration with
respect to q2, we have

1

Γl

dΓlðcosθÞ
dcosθ

¼ 3

4
ð1−Fl

HÞð1− cos2θÞþ1

2
Fl
HþAl

FB cosθ

ð44Þ

where

FIG. 12. Plot of the Bþ
c → Dþ

s lþl− differential branching ratio
for l ¼ μ (top) and l ¼ τ (bottom) in the final state. The yellow
bands show regions where charmonium resonances (not included
in our calculation) could have an impact. The grey band is
between the two yellow regions labeling the charmonium
resonances. Through the yellow and gray bands, we interpolate
the function dBμ=dq2 linearly when integrating to find the
branching fraction and related quantities.

TABLE VII. For Bþ
c → Dþ

s lþl−, we give values for dB=dq2 ×
107 integrated with respect to q2 over the given ranges
ðq2low; q2highÞ in GeV2 for each of the cases l ¼ e, μ, τ. We take
the lifetime of the Bc meson to be 513.49(12.4) fs [52]. Note that
these results do not include effects from charmonium or uū
resonances.

Decay mode (4m2
l, q

2
max) (1,6) (14.18, q2max)

Bþ
c → Dþ

s eþe− 1.00(11) 0.285(41) 0.146(22)
Bþ
c → Dþ

s μ
þμ− 1.00(11) 0.286(41) 0.147(22)

Bþ
c → Dþ

s τ
þτ− 0.245(18) … 0.195(14)
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Al
FB ¼ 1

Γl

Z
q2max

q2min

dq2blðq2Þ; ð45Þ

Fl
H ¼ 2

Γl

Z
q2max

q2min

dq2ðalðq2Þ þ clðq2ÞÞ; ð46Þ

and we define

Fl
Hðq2Þ ¼

2ðalðq2Þ þ clðq2ÞÞ
2alðq2Þ þ 2

3
clðq2Þ

: ð47Þ

The flat term Fl
H may be sensitive to contributions from

new physics since it is small according to the Standard
Model. This quantity is a ratio of combinations of the form
factors, and uncertainties are much less than those exhibited
by the raw form factors or branching fractions.
We determine the differential branching fraction for

Bþ
c → Dþ

s νν̄ using the expressions for the B → Kνν̄ case
in [13,14]. The differential branching fraction, summing
over the three neutrino flavors, is

dBðBþ
c → Dþ

s νν̄Þ
dq2

¼ τBc
jVtbV�

tsðdÞj2
G2

Fα
2

32π5
X2
t

sin4θW
× jqj3f2þðq2Þ ð48Þ

which we plot in Fig. 14. We take Xt ¼ 1.469ð17Þ [67] and
α−1ðMZÞ ¼ 127.952ð9Þ [65]. Integrated from q2 ¼ 0 to
q2max, we find the branching fraction

BðBþ
c → Dþ

s νν̄Þ ¼ 8.23ð85Þ × 10−7: ð49Þ

There are no issues from charmonium resonances or
nonfactorizable pieces in this case. Since mτ > MDs

, there
is also no long-distance contribution for the τ case (unlike
for B → Kντν̄τ). We find the ratio of branching fractions

BðBþ
c → Dþ

s νν̄Þ
BðBþ

c → J=ψμþνμÞ
¼ 5.49ð57Þð55Þ × 10−5: ð50Þ

The first error is from the numerator, and the second error is
from the denominator, which we compute using the form
factors for Bþ

c → J=ψμþνμ from [3].

FIG. 13. From top to bottom, we show plots of the flat terms Fl
H

for each of l ¼ e, μ, τ, respectively. We use a log scale for the
cases l ¼ e, μ. Error bands are presented, though the errors are
small due to the correlations in the construction of the flat term.

FIG. 14. Differential branching fraction for Bþ
c → Dþ

s νν̄ as a
function of q2.
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IV. FUTURE PROSPECTS: IMPROVING
ACCURACY OF THE FORM FACTORS

We consider two extensions to our current strategy to
improve uncertainties in the future: the addition of a finer
lattice and the inclusion of the spatial vector current.

A. Simulating with a physically massive
b quark on the exafine lattice

We carry out the first heavy-to-light decay analysis on
the exafine gluon field configurations, with size N3

x × Nt ¼
963 × 288 and lattice spacing a ≈ 0.033 fm. These con-
figurations are finer than all the sets used in our calculation
thus far. The lattice spacing is such that amb ≈ 0.625;
therefore, we are able to simulate with physically heavy b
quarks on this lattice with reasonably small discretization
effects associated with amh.
Computations on the exafine lattices are expensive due

to the large size, N3
x × Nt. Hence, since these investigations

are preliminary, we restrict the calculation to Bc → Ds and
compute with a small selection of parameters on 100
configurations, each with 4 different positions of a random
wall source. We take amh ¼ 0.35, 0.625 and calculate with
three different momenta (including zero recoil), plus a
further larger momentum for amh ¼ 0.625: a three-
momentum transfer of roughly 2.8 GeV.
In Fig. 15, we show form factor results on the exafine

lattice with these two masses along with our physical-
continuum curve at mh ¼ mb derived from the coarser
lattices (presented in Sec. III A). The exafine data at amh ¼
0.625 closely follow the physical-continuum curve.
Errors on the physical-continuum form factors from fits

with and without the data from the exafine lattice are shown
in Table VIII. From this table, we see that errors are reduced
by 15%–25% at zero recoil on inclusion of data on the
exafine lattice.
Given our present statistics on the exafine lattice, we are

able to cover at least half the range of q2 with reasonable
errors. Reducing the uncertainties at lower q2 values will
require higher statistics; however, data on exafine with
q2 > q2max=2 give some error reduction at q2 ¼ 0.

B. Extracting f + from matrix elements of the spatial
vector current

As can be clearly seen in Figs. 23–26 in Appendix B, the
errors on the lattice data for fþ near zero recoil (maximum
q2) are much larger than the errors seen away from zero
recoil. This is not because our extraction of the matrix
elements hDlðsÞjSlocaljHci and hDlðsÞjV0

localjHci is especially
imprecise at these momenta, but because we extract the
form factor via Eq. (8). The denominator in Eq. (8)
approaches zero as q2 approaches q2max. However, fþ is
finite and analytic at q2max, so the numerator also vanishes at
q2max. In practice, the smallness of both the numerator and
the denominator at large q2 results in a large error for the

extracted value of fþ. As a consequence, the error on the
final physical-continuum form factor fþ is large, certainly
larger than the error on f0 at zero recoil.
We now propose and investigate a method to reduce the

error on fþ near zero recoil. For these purposes, we
consider only the process Bc → Ds. As an alternative to
extracting fþ via Eq. (8), we set μ ¼ i ≠ 0 in Eq. (1) to find

fsþðq2Þ ¼
−q2ZVhDsjVijHci=qi þ fs0ðq2ÞðM2

Hc
−M2

D2
s
Þ

q2 þM2
Hc

−M2
Ds

ð51Þ

FIG. 15. We show data from the exafine lattice in blue
with squares, denoting amh ¼ 0.625, and circles, denoting
amh ¼ 0.35. Alongside the exafine data, we show the fits of
the form factors fs0 (top) and fsþ (bottom) from ultrafine sets to
coarser sets as presented in the upper plot of Fig. 4. The lattice
data at amh ¼ 0.625 (≈amb) closely follow the fit curves.

TABLE VIII. Comparison of extremal values of the form
factors in the physical-continuum limit. The second column
gives results from our fit without any data points on the exafine
lattice. The third column gives results using the same fit form but
now including results on the exafine lattice. Errors are reduced
from the second to the third column.

Without exafine With exafine

fs0;þð0Þ 0.217(18) 0.221(16)
fs0ðq2maxÞ 0.736(11) 0.7383(91)
fsþðq2maxÞ 1.45(12) 1.433(97)
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which, in addition to the matrix elements calculated in our
existing setup, involves matrix elements of a spatial
component of the vector current.
To achieve this we include the three-point function given

in Fig. 16 where the spatial vector current has spin-taste
γx ⊗ γx. This correlation function has the advantage that
the spatial vector current has the same multiplicative
renormalization as for the γt ⊗ γt insertion in the middle
diagram of Fig. 3 (up to discretization effects handled when
fitting the form factor data).
To demonstrate the effectiveness of extracting fþ via

Eq. (51) versus the extraction of fþ via Eq. (8), we apply
the method outlined above to set 1 in Table I. In Fig. 17, we
show lattice data for fþ from the different methods of
extraction.
From Fig. 17, we see that the different extractions are in

excellent agreement and that the improvement in accuracy
of the lattice data for fþ by using Eq. (51) is very large
close to zero recoil (maximum q2). By utilizing the spatial
vector current, we observe errors near zero recoil

comparable to those seen at momenta further away from
maximum q2. Hence, using this approach on all lattices, we
can expect an error on the physical-continuum fþ form
factor near zero recoil comparable to that seen for f0.
Therefore, by including matrix elements of the spatial
vector current, we expect errors on our physical-continuum
fþ form factor at zero recoil to reduce roughly by a factor
of 2.

V. CONCLUSIONS AND OUTLOOK

For the first time from lattice QCD, we obtain the scalar
and vector form factors f0;þ for Bc → Dl, and the scalar,
vector and tensor form factors f0;þ;T for Bc → Ds across
the entire physical ranges of q2 in the continuum limit with
physical quark masses. Our lattice QCD calculation uses
four different lattices with three different lattice spacings,
both unphysically and physically massive light quarks, and
a range of heavy quark masses. Together, the lattice data
inform the limit of vanishing lattice spacing, physical b
quark mass, and physical (equal-mass) up and down quark
masses. The reader should consult Appendix C for instruc-
tions on how to reconstruct our form factors.
The error on the decay widths ΓðBþ

c → D0lþνlÞ (see
Table VI) from our form factors is similar to the error on the
present determination of Vub. For the cases l ¼ e or μ, the
lattice error is 13% larger than the error from Vub, whereas,
for l ¼ τ, the lattice error is nearly 20% smaller than the
error from Vub. The error on the form factors calculated
here for Bc → Ds is smaller than that for Bc → D by up to a
factor of 2 at small recoil.
Experimental observations are expected from LHC in the

near future [68]. In Secs. III B and III C we give results for a
host of observables that can be compared to experiment. In
Sec. IV we demonstrate how the uncertainties in our
calculation can be reduced in the future to complement
experimental results as they improve.
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APPENDIX A: CORRELATOR
FITTING ANALYSIS

1. Method

As described in Sec. II E, we fit our two- and three-point
correlation functions to the fit forms given in Eqs. (10)
and (13). We minimize the usual χ2,

χ2 ¼
X
i;j

ðfðxi;pÞ − yiÞðσyÞ−2ij ðfðxj;pÞ − yjÞ ðA1Þ

with the additional piece

χ2prior ¼
X
a

�
pa − pprior

a

σa

�
2

ðA2Þ

with respect to the fit parameters p, where fðxi;pÞ is the
corresponding fit function with parameters p (functions of
the amplitudes, energies and matrix elements), y is the data,
and the (estimated) covariance matrix σy is

σyij ¼
fðxi;pÞfðxj;pÞ − fðxi;pÞ fðxj;pÞ

NsðNs − 1Þ : ðA3Þ

The prior distribution for the parameter pa in the fit
function fðxi;pÞ is the normal distribution N ðpprior

a ; σaÞ.
Therefore, the function to be minimized is χ2aug ¼ χ2 þ
χ2prior [34–36].
The covariance matrix σy of the correlation function data

is very large, so small eigenvalues of the covariance matrix
are underestimated [48,69], causing problems when carry-
ing out the inversion of σy in Eq. (A1) to find χ2. This is
overcome by using a singular-value decomposition (SVD)
cut; any eigenvalue of the covariance matrix smaller than
some proportion c of the biggest eigenvalue λmax is
replaced by cλmax. By carrying out this procedure, the
covariance matrix becomes less singular. These eigenvalue
replacements will only inflate our final errors; hence, this
strategy is conservative. The χ2=d:o:f: values are affected
by the SVD cut, demonstrated in Appendix D of [48].
Priors for ground state energies, amplitudes and matrix

elements (Vnn;00) are motivated by plateaus in plots of
effective quantities. For example, a straightforward effec-
tive energy can be constructed from a two-point correlation
function as

aEeff ¼ − log

�
C2ptðtÞ

C2ptðt − 1Þ
�

ðA4Þ

and the effective simulation amplitude

aeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðtÞeaEeffðtÞ

q
: ðA5Þ

Priors associated with the oscillating and excited states
are informed by our previous experiences. From expect-
ations of QCD, the energy splittings between excited states
are taken as aΛQCD × 2ð1Þ where ΛQCD is taken to be
500 MeV. The prior for the energy of the lowest-lying
oscillating state is given a prior twice as wide as the prior
for the energy of the nonoscillating ground state. The log of
the amplitudes for the oscillating states and the remaining
nonoscillating states are given priors of −2.3ð4.6Þ. Finally,
Vnn;ij for i:j other than i ¼ j ¼ 0 are given priors of 0(1)
for the case of insertions of the scalar density and temporal
vector current, and 0.0(5) for the tensor current insertion.
A variety of different fits are carried out with different

SVD cuts, numbers of exponentials, and trims of correlator
data at early and late times. Results from these fits are
inspected in Appendix A 4. Insensitivity to these choices is
observed, thus demonstrating stable and robust determi-
nation of the matrix elements. The SVD cuts considered for
each lattice are based around the suggested cut given by the
svd_diagnosis tool within the corrfitter package [33].

2. Energies and amplitudes

As described in Appendix A 1, plots of effective energies
and amplitudes from Eqs. (A4) and (A5) are inspected to
guide the selection of suitable priors for the nonoscillating
ground states. The ground state energies from the fit are
always within their prior distribution, and the error from the
fit is always at least considerably smaller than the error on
the prior.
For the purposes of demonstration, we consider the

effective energies on set 1 (the fine lattice). Figure 18 shows
how the effective energies for the Hs pseudoscalar meson
plateau over the first 35 timeslices. The behavior is an
oscillatory decay towards a plateau whose position is read
off and used as the mean of the prior value accompanied by
a broad error that comfortably accounts for any misreading
of the plateau position. Similar behavior is observed for the
other three sets in Table I. The size of the oscillatory
behavior differs according to which two-point correlation
function is being analyzed. The effective energy for the Ds
pseudoscalar with interpolator γ5 ⊗ γ5 in Fig. 19 shows
almost no oscillatory contamination, whereas the effective
energy for the Ds meson with taste γ5γ0 ⊗ γ5γ0 in Fig. 20
fluctuates strongly between early timeslices; nevertheless, a
plateau emerges at later timeslices, which indicates a
suitable prior.

3. Vector current renormalization

For each heavy-quark mass, the renormalization factor
ZV is obtained at zero recoil using Eq. (6). Results are
plotted in Fig. 21. The smallest uncertainties are observed
on sets 1 and 2 (red and blue points), which have the best
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FIG. 18. Plots of effective energies for the pseudoscalar heavy-charm meson at each amh value for set 1. The left plot shows the
γ5γt ⊗ γ5γt meson. The right plot shows the γ5 ⊗ γ5 meson.

FIG. 19. Plots of effective energies for the Ds meson with taste γ5 ⊗ γ5 at each twist in Table II for set 1.

FIG. 20. Plots of effective energies for the Ds meson with taste γ5γ0 ⊗ γ5γ0 at each twist in Table II for set 1.
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statistics. The differences between the top (Bc → Dl) and
bottom (Bc → Ds) plots are very small. This is expected
since the ZV values in the two plots differ only by a
discretization effect associated with the mass of the two
daughter quarks, strange and light, which are both small.
The figure suggests a mild discretization effect associated
with the bare heavy quark mass amh, though the values are
comparable across the four sets. The central values for ZV
with amh ¼ 0.8 are positioned above the other two values
for amh for each set. Discretization errors associated with
amh are taken into consideration when fitting the form
factor data obtained on the lattices.

4. Stability of correlation function fits

We are required to make many choices when fitting the
correlation functions to the forms given in Eqs. (10) and
(13). However, we demonstrate in this section that the fit
results for the sought-after ground state quantities are
insensitive to the particular strategy of any given fit. In
fact, we explore many different choices to assess robust-
ness. For the purposes of demonstration, Fig. 22 shows a
selection of matrix elements plotted against I, enumerating
different fits, which we now describe. By inspecting this
plot, we can identify a region in the space of fitting
strategies where the fit results are stable and reasonable.
In Table IX, we tabulate the regimes for each set used in

our final determination of the physical-continuum form
factors. These fits are chosen from a variety of fits that, as
explained in Sec. II E, use different SVD cuts, numbers of
exponentials, and trims of the correlator data. To demon-
strate the robustness of the correlation function fits used to
extract the form factor data, we show that the fits are stable

and are selected among regions in parameter space where
the matrix elements are insensitive to these choices of
fitting regime. In Fig. 22, as an example, we display results
for the Vnn;00 parameter associated with the scalar density at
zero recoil for amh ¼ 0.65 on each of the four sets in
Table I (similar behavior is found for the other currents,
momenta and heavy quark masses). We plot Vnn;00 against
an index I, which enumerates the fit. We define I as

I ¼ ni þ 3si þ 15t3pti þ 75t2pti ðA6Þ

where ni ¼ 0, 1, 2 indexes the choice of the number of
exponentials Nn þ No ∈ f4; 5; 6g, and si ¼ 0, 1, 2, 3
indexes the choice of SVD cut in either f0.0075;
0.005; 0.0025; 0.001g for sets 1 and 2, or the set f0.01;
0.0075; 0.005; 0.0025g for sets 3 and4.These rangesofSVD
cut cover the recommendation from the svd_diagnosis
tool within the corrfitter package [33]. We investigate the
effect of trimming the correlator data: 0 ≤ t2pti , t3pti ≤ 3

indexes the choice of t2ptmin=a and t3ptmin=a in f2; 4; 6; 8g for
sets 1 and 2, in f6; 8; 10; 12g for set 3, and in f8; 10; 12; 14g
for set 4. We are guided by the expectation that we should
trim according to some fixed distance in physical units away
from the interpolator. Hence, we generally trim more data
points for finer lattices. Note that t2ptmin is the slowest running
parameter. To aid the reader’s understanding of the organi-
zation of the fits in Fig. 22, we separate fits with different
values of t2ptmin=a with black dashed vertical lines.
Considering figures such as Fig. 22 for all matrix elements

helps us to identify choices of parameters where the fit is
stable while also ensuring that we avoid unnecessarily
bloated fit models with more exponentials than required.
The fit takes longer to complete for more exponentials;
hence, a judicious selection of Nn and No allows us to
feasibly explore, in reasonable computing time, the param-
eter landscape in other directions. Nevertheless, a variety of
fits with Nn þ No ¼ 7, 8 and greater have also been carried
out to ensure that the convergence demonstrated in Fig. 22 is
maintained for more exponentials. Indeed, similar extrac-
tions of the ground state quantities are obtained by these fits.
For the purposes of fitting form factors, it suffices to use fits
withNn þ No ¼ 7 or 8 on sets 1 and 2, andNn þ No ¼ 5 or
6 on sets 3 and 4. In summary, each plot shows results from
192 different fits (0 ≤ I ≤ 191). The parameters used for our
final fits are shown by the bold entries in Table IX, and the
plots demonstrate that these choices lie within regions of
parameter space that admit stable fit results.
First, we address the dependence on the number of

exponentials. In Fig. 22, we show fits for Nn þ No ∈
f4; 5; 6g with Nn − No ¼ 0 for Nn þ No even, and Nn −
No ¼ 1 for Nn þ No odd. The fits with Nn þ No ¼ 4 show
some variation as the other parameters are varied, particu-
larly for smaller t2ptmin=a and smaller SVD cuts. In contrast,
fits with Nn þ No ¼ 5 and Nn þ No ¼ 6 are in good

FIG. 21. Results for the local vector current renormalization
factor ZV obtained from Eq. (6) by the ratio of scalar density and
temporal vector current matrix elements at zero recoil. The top
and bottom plots show the results from the calculation of Bc →
Dl and Bc → Ds. The different colors and shapes of markers
relate to sets and amh values as described in Fig. 2.
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agreement with each other for most choices of SVD cut and
larger correlator function trims, and there are clear regions
where Vnn;00 appear stable.
Addressing the different extents that correlation function

data have been trimmed, the fit results show some mild
instability for t2ptmin=a ¼ 2 where the correlation function
data to be fit contain the most excited state contamination.
This instability is expected to be better resolved by

introducing more exponentials that can absorb more con-
tributions from higher energy states and short-distance
effects. For example, fits with t2ptmin=a > 2 appear more
stable than those for t2ptmin=a ¼ 2.
Finally, we discuss the behavior of the fit results as the

SVD cut is varied, denoted by different marker styles in
Fig. 22. It is consistently apparent throughout the fits on
each set that increasing the SVD cut has the effect of

FIG. 22. Parameter Vnn;00 from Eq. (13) corresponding to the Hc → Ds three-point correlator at zero recoil with amh ¼ 0.65 plotted
against the fit index I [defined in Eq. (A6)]. From top to bottom, results on sets 1, 2, 3 and 4 (see Table I) are presented respectively. Red,
green and blue points indicate that the fit used Nn þ No ¼ 4, 5, 6 exponentials respectively (see Eqs. (10) and (13). The different marker
styles reflect the SVD cut chosen: squares, circles, triangles, right and left pointing triangles correspond to SVD cuts of
0.001,0.025,0.05,0.075 and 0.01 respectively. The scale of the y axis is shared by the four plots. We scrutinise the form factors
associated with correlator fits detailed in Table IX.
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increasing the error on the value obtained for the Vnn
parameter. The matrix elements extracted are consistent
with each other as the SVD cut is increased, so it appears
from these plots that using too large a SVD cut is too
conservative. Decreasing the SVD cut substantially below
the recommended cut taken from the svd_diagnosis
tool within the corrfitter package [33] gives unstable and
unreliable results. Hence, we do not deviate far from this
recommended cut. On the finer lattices, sets 3 and 4, fits
with a SVD cut of 0.001 are frequently in tension with the
other fits. While this may be an appropriate SVD cut for
some fits on sets 1 and 2, the same is not true on sets 3 and
4. This is unsurprising since sets 3 and 4 have poorer
statistics than sets 1 and 2. Fits on sets 3 and 4 benefit from
a larger SVD cut. Indeed, in Table IX, we show that we take
fits with SVD cuts of no smaller than 0.005 for sets 3 and 4.
SVD cuts for sets 1 and 2 are chosen among 0.0025 and
0.005. Obtaining higher statistics on sets 3 and 4 would
enable a smaller SVD cut to be taken, thus achieving a
smaller error on the extracted matrix elements.
In conclusion, based on our exploration of different fits,

it is clear that fitting with larger trims of the correlation
function data is warranted for the finer lattices, reflected by
our choice of fits in Table IX. The finer lattices also require
fewer exponentials and slightly larger SVD cuts than the
fine and fine-physical sets.

APPENDIX B: FORM FACTOR FITTING
ANALYSIS

1. Fit results

In Figs. 23 and 24, we show our form factor data
alongside the fit functions tuned to the physical-continuum
point. Note that the q2 corresponding to zero recoil,
q2max ¼ ðMHc

−MDlðsÞ Þ2, varies as a function of the heavy

quark mass. Hence, the spread over q2 of the form factor
data for larger amh is greater than for smaller amh on each
set. See Fig. 2 for the q2 we access as a proportion of q2max
on each set and heavy quark mass amh.

Errors on the data for fþ near zero recoil are large, and
we exclude points with errors in excess of 25% from the fit.
These large errors are a result of the kinematic factors
associated with determining fþ from the temporal vector
current matrix elements [see Eq. (8)]. Further discussion
can be found in Sec. II C of [7] and Sec. IV B here.
Figures 25 and 26 show the same data and fit after

multiplying by the pole factor Pðq2Þ [see Eq. (16)]. The fit
function shown in Eq. (16) is the polynomial in z that gives

TABLE IX. Input parameters (see text for definition) to the fits of correlation functions for the heavy-HISQ
calculation together with fits including variations of the SVD cut, t2ptmin=a, t

3pt
min=a and N. Bold entries indicate those

fits used to obtain the final results. Other values are used in tests of the stability of our form factor fits to be discussed
in Appendix B 3.

Bc → Dl Bc → Ds

Set SVD t2ptmin=a t3ptmin=a N SVD t2ptmin=a t3ptmin=a N

1 0.005 4 4 8 0.005 6 4 7
0.0025 8 8 8 0.0025 6 2 7

2 0.0025 4 6 8 0.005 6 6 7
0.005 4 8 8 0.0025 8 6 8

3 0.005 8 8 6 0.005 10 10 6
0.0075 10 10 5 0.005 10 12 5

4 0.0075 10 12 6 0.0075 12 12 6
0.0075 10 10 5 0.0075 10 14 6

FIG. 23. Data and fit for the form factors fl0;þ. The scale of the
y-axis is the same as for Fig. 24. The different colours and shapes
of markers relate to sets and amh values as described in Fig. 2.
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the residual momentum dependence of the form factors not
accounted for by the pole factor Pðq2Þ−1. Note that the y
axis is smaller in Figs. 25 and 26 than for Figs. 23 and 24
since most of the q2 dependence of the form factors has
been removed on multiplying by the pole factor Pðq2Þ. The
polynomial for f0 appears linear in z-space to a good
approximation. For fþ;T, the fit curves show a small
amount of curvature. We compare fits with Nn ¼ 3 and
4 in Appendix B 3 to ensure that our truncation of the z-
expansion is appropriate.
As is standard with heavy-HISQ analyses of decays of a

valence b quark, the q2 dependence of the form factors is
inferred from data on multiple lattices, which each have a
different range of q2 since q2max varies with amh. This can
make the plots shown in Figs. 23–26 difficult to interpret

since there are several different extrapolations taking place
simultaneously to reach the fit curve in the continuum limit
with physical quark masses. Considering just the data at
zero recoil can provide a clearer understanding of how the
fit curves shown in the figures relate to the lattice data for
the form factors. Figure 27 shows, for both the cases Bc →
Dl and Bc → Ds, data for f0 at zero recoil plotted against
MHc

alongside the fit function tuned to the continuum limit
with physical light, strange and charm quark masses. This
figure shows how the dependence on the heavy quark mass
is resolved by the factors ΩðnÞðΛ=MHlðsÞ Þr in Eq. (16). For
the purposes of presenting the fit as a continuous function
of the MHc

, we approximate the heavy-light and heavy-
strange pseudoscalar mass as MHq

≈MHc
− ðMBc

−MBq
Þ

where q ¼ l or s. The lattice data follow the curve closely.
The error band is most narrow at around 4 GeV, and the
error flares slightly as MHc

approaches MBc
.

2. Imposition of the kinematic constraints

The form factors must obey f0ð0Þ ¼ fþð0Þ in the
continuum limit for all masses of the heavy-charm pseu-
doscalar meson (see Sec. II F 2). Since we take t0 ¼ 0 in
Eq. (15), z ¼ 0 at q2 ¼ 0. Hence, the kinematic constraint

FIG. 24. Data and fit for the form factors fs0;þ;T . The scale of the
y-axis is shared with Fig. 23.

FIG. 25. Data and fit for the form factors fl0;þ multiplied by the
pole factor Pðq2Þ [see Eq. (16)]. The fit band is the polynomialP

n c
ðnÞð−zÞn [coefficients cðnÞ are defined in Eq. (C2)].
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can be straightforwardly applied to our fit: we insist that

ðA0Þð0r00Þ ¼ ðAþÞð0r00Þ for all r and ρð0Þ0 ¼ ρð0Þþ [see
Eq. (16)] by setting a narrow prior on their differences.
Table X compares the errors at the q2 extremes from fitting
with and without these parameter constraints. We also
compare integrated quantities. The two fits are in good
agreement. Uncertainties are reduced very slightly when
fitting with the kinematics constraint. The form factors fl0;þ
at q2 ¼ 0 see the most benefit.

3. Fit variations

In Table IX, we describe two different fits of correlation
functions on each set and fit the form factors to each

FIG. 26. Data and fit for the form factors fs0;þ;T multiplied by
the pole factor Pðq2Þ] see Eq. (16)]. The fit band is the
polynomial

P
n c

ðnÞð−zÞn [coefficients cðnÞ are defined
in Eq. (C2)].

FIG. 27. Data and fit for the form factor f0 multiplied by the
pole factor [see Eq. (16)] plotted at zero recoil as a continuous
function ofMHc

. The vertical dotted lines show the masses of the
Hc meson for the cases in which the heavy quark coincides with
the charm and bottom quarks.

TABLE X. We compare fits with and without imposition of the
kinematic constraint (KC) f0ð0Þ ¼ fþð0Þ. Form factors are
shown at q2 ¼ 0 and maximum q2. We also present integrated
values where we find the variation between the two fits to be
especially small. The three uncertainties on the branching
fractions are from the lattice, the lifetime of the Bc meson,
and Vub, respectively.

Final Without KC

fl0ð0Þ 0.186(23) 0.191(27)
flþð0Þ … 0.158(34)
fl0ðq2maxÞ 0.668(20) 0.669(20)
flþðq2maxÞ 1.50(18) 1.48(17)
BðBþ

c → D0eþνeÞ × 105 3.37(48)(8)(42) 3.17(51)(8)(40)
BðBþ

c → D0τþντÞ × 105 2.29(23)(6)(29) 2.29(23)(6)(29)
fs0ð0Þ 0.217(18) 0.224(19)
fsþð0Þ … 0.192(23)
fs0ðq2maxÞ 0.736(11) 0.736(11)
fsþðq2maxÞ 1.45(12) 1.44(12)
BðBþ

c → Dþ
s eþe−Þ × 107 1.00(11) 0.95(11)

BðBþ
c → Dþ

s τ
þτ−Þ × 107 0.246(18) 0.246(18)
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different combination, resulting in 16 different fits of the
form factors. In Fig. 28, we show the physical-continuum
form factors evaluated at q2 ¼ 0 and q2max from each of the
fits. The fits are indexed by J where

J ¼
X4
j¼1

2j−1nj ðB1Þ

where nj ∈ f0; 1g indexes each of the two fits on set j
given in Table IX. For example, the fit labeled by J ¼ 0
uses correlation function fit results corresponding to all the
bold entries in Table IX. The figure shows that the form
factors are insensitive to the particular choice of correlator
fits. The fit J ¼ 0 yields form factors very similar to the 15
alternative fits with J > 0. All central values lie within the
1-σ error band of those parameters corresponding to the
J ¼ 0 fit from which our final results for the form factors
are derived. We conclude that the form factor fits are robust
and stable as the choices of correlation function fits are
varied.

Next, we consider other variations of form factor fits. In
Fig. 29, we show results from a variety of different fits
which we now describe. The fit variations are labeled on the
y axis. Our final fit, results from which we report in Sec. III,
is labeled “final.”
Beginning at the top of the plot for fl0;þ, we consider

removing the chiral log by setting L ¼ 1. The fit labeled
“hard pion chiral PT” uses L ¼ 1þ ζð0Þxπ log xπ instead of
the L given in Eq. (18). Similar fit results are achieved with
these fit variations indicating that, with the current status of
errors, the dependence on the light quark mass can be

absorbed into the analytic terms in theN ðnÞ
mis factor in the fit

form at Eq. (16).
Next, we consider fits varying Nn;r;j;k in the fit form at

Eq. (16). Doing so allows us to investigate the impact of
truncating our fit form. Varying Nn tests the truncation
Nn ¼ 3 of the z series for Pðq2Þfðq2Þ. Form factor values
and errors at both q2 ¼ 0 and zero recoil change very little
between fits with Nn ¼ 3, 4. We use Nn ¼ 3 in our final
results. Similarly, increasing Nr;j;k yields consistent fit
results.

FIG. 28. For each of the 16 different correlator fits indexed by J [see Eq. (B1)], we show the fitted values of the physical-continuum
form factors for Bc → Dl (top) and Bc → Ds (bottom) evaluated at maximum q2 and q2 ¼ 0. These plots show results from all possible
combinations of the correlation function fits described in Table IX and demonstrate the stability of our results under these changes. The
filled black points show the results from our final fit.
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Results from increasing prior widths of parameters
AðnrjkÞ and ρðnÞ are shown next. The fit results are in
agreement with our normal priors. Recall in Sec. III A that
we perform an empirical Bayes analysis to check that our
priors are appropriate.
Fits where the zNnþ1 terms are removed are shown. It

appears as though these terms make very little difference to
the form factors.
We then consider fitting with different subsets of the

data. First, we consider fitting without the smallest and
largest amh values on all sets. Next, we remove certain

twists on the four different sets. Fitting with these smaller
data sets gives form factors consistent with our final results.
It is often the case that fitting with these reduced data sets
gives errors larger than those observed when fitting with all
of the data.
We also check that the fits are insensitive to the value

given for Mres in Pðq2Þ by perturbing the pole mass. In
Sec. II F 3, we described how we estimate the masses of the
heavy-strange (light) vector and scalar mesons used in the
pole factor Pðq2Þ. With the pseudoscalar meson mass fixed,
the splitting between the pseudoscalar and vector mesons is

FIG. 29. For each of the different form factor fits described in Appendix B 3, we show the physical-continuum form factors for
Bc → Dl (top) and Bc → Ds (bottom) evaluated at maximum q2 and q2 ¼ 0. The filled black points show the results from our final fit.
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changed by �50%, and similarly for the splitting of the
pseudoscalar and scalar mesons. The agreement of the fits
here suggests that the approximations made in Sec. II F 3
are appropriate. Finally, we show a fit that uses correlation
functions in which the priors for Vnn;00 of each insertion are
25% wider.
Good agreement is observed between the fits shown in

Fig. 29. Hence, we conclude that our fit of the form factors
is robust.

APPENDIX C: RECONSTRUCTING
THE FORM FACTORS

We now provide instructions for reconstructing our form
factors in the continuum limit with physical quark masses.
For the convenience of the reader, we have provided the
script construct_ffs.py which constructs our form
factors [10].
The form factors in the continuum limit (a → 0) and the

limit of physical masses [δm ¼ 0 in Eq. (21)] are shown in
Fig. 4. In these limits, the fit form collapses to the physical-
continuum parametrization

fðq2Þ ¼ Pðq2Þ−1
XNn

n¼0

cðnÞẑðn;NnÞ: ðC1Þ

The values for the pole factors Pðq2Þ ¼ 1 − q2=M2
res in the

case mh < mb are discussed in Sec. II F 3. For mh ¼ mb,
we use the Mres values given in Table V. Recall that we
define ẑðn;NnÞ in Eq. (17), and we take t0 ¼ 0 in Eq. (15). In
the limit of vanishing lattice spacing and physical quark
masses, the coefficients cðnÞ of the ẑðn;NnÞ-polynomial
Pðq2Þfðq2Þ are given by

cðnÞ ¼ L
XNr

r¼0

Aðnr00ÞΩðnÞ
�

Λ
MHlðsÞ

�
r
: ðC2Þ

Here, the factor L is given in Eq. (18), and we use the
physical ratio ml=ms given in Eq. (23) to evaluate
xπ ¼ ml=5.63mtuned

s . The coefficients ζ are determined
by the fit. Also, the factors ΩðnÞ given in Eq. (19) are
evaluated for MHlðsÞ ¼ MBlðsÞ.

We now give values for the parameters needed to recon-
struct the form factors using the form in Eq. (C1). First, we
take Nn ¼ 3 and Nr ¼ 2. For Bc → Dl and Bc → Ds,
coefficients cðnÞ are given in the files cn_BcDl.py and
cn_BcDs.py [10].
Table XI gives all meson masses required to construct the

form factors. For Bc → Dl, we use t− ¼ ðMBcð0−Þ −
MDð0−ÞÞ2 and tþ ¼ ðMBð0−Þ þMπð0−ÞÞ2. For Bc → Ds, we

use t−¼ðMBcð0−Þ−MDsð0−ÞÞ2 and tþ ¼ ðMBð0−Þ þMKð0−ÞÞ2.
Recall that the pole factor is given by Pðq2Þ ¼ 1 − q2=M2

res,
where for Mres, we take the masses of the mesons Bð0þÞ,
Bð1−Þ, Bsð0þÞ and Bsð1−Þ for fl0, flþ, fs0 and fsþ;T ,
respectively. The masses of the pseudoscalar and vector
mesons are obtained from PDG [28]. Estimates for the
masses of the scalar mesons are obtained from [46,47],
though precise values are not necessary for our calculation.
We do not include an error on these values. The reader should
use these masses to exactly replicate the form factors shown
in Fig. 4.
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