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We determine the properties of generalized parton distributions (GPDs) from a lattice QCD calculation of
the off-forward Compton amplitude (OFCA). By extending the Feynman-Hellmann relation to second-order
matrix elements at off-forward kinematics, this amplitude can be calculated from lattice propagators
computed in the presence of a background field. Using an operator product expansion, we show that the
deeply virtual part of the OFCA can be parametrized in terms of the low-order Mellin moments of the GPDs.
We apply this formalism to a numerical investigation for zero-skewness kinematics at two values of the soft
momentum transfer, = —1.1,-2.2 GeV?, and a pion mass of m, =~ 470 MeV. The form factors of the
lowest two moments of the nucleon GPDs are determined, including the first lattice QCD determination of the
n =4 moments. Hence we demonstrate the viability of this method to calculate the OFCA from first
principles, and thereby provide novel constraint on the x- and t-dependence of GPDs.
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I. INTRODUCTION

Since the 1990s, generalized parton distributions (GPDs)
have been recognized as crucial observables in understanding
hadron structure [1-3]. They encode the spatial distribution
of quarks and gluons in a fast-moving hadron [4]. Moreover,
their Mellin moments contain information about the spin and
orbital angular momentum of hadron constituents [2], which
would resolve the decades-old “proton spin puzzle” [5,6].
Finally, more recent research has explored the relationship
between GPDs and ‘“‘mechanical” properties: pressure,
energy, and force distributions within hadrons [7,8].

GPDs can be measured from off-forward Compton
scattering processes, such as deeply virtual Compton
scattering (DVCS), which have been carried out at HERA
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[9-13], COMPASS [14], JLab [15-18], and are planned
to be carried out in the future at the electron-ion collider
[19]. However, due to the high dimensionality of GPDs,
they are difficult to extract directly from experiment, and
global fits require assumptions about their functional
form [20,21]. Therefore, a stronger theoretical under-
standing of GPD behavior would allow for more precise
experimental determinations.

Historically, lattice QCD calculations have been limited to
Mellin moments of GPDs from matrix elements of leading-
twist local operators [22-33]. However, it has long been
known that matrix elements of leading-twist suffer from
power-divergent renormalization due to the broken Lorentz
symmetry on the lattice [34]. For the lowest moments, this
can be controlled [35], but it becomes more difficult for
higher moments [36]. As such, the n» = 3 moments are the
highest so far computed [27]. Determinations of higher
moments would allow for better constraint of GPDs [37,38].

More recently, there have also been major efforts to
reconstruct the full x-dependence of parton distributions in
lattice QCD, using the pseudo- [39] and quasidistribution [40]
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methods—see Refs. [41,42] for reviews. This includes
recent calculations of quasi-GPDs [43—45]. These methods
aim to extract the light-cone distributions directly, whereas
in the present work we are interested in the Compton
scattering amplitude, from which GPDs may be accessed
experimentally.

In this paper, we determine properties of GPDs from a
calculation of the off-forward Compton amplitude (OFCA)
in lattice QCD. The OFCA is defined as

™ =i / 'z O P T (2/2) ] (=2/2) )P, (1)

and describes the process of y*(¢)N(P) — y*(¢')N(P'),
with g, # 0 # q;t. Here, j# is the hadronic vector current,
and we limit ourselves to the case where the scattered
hadron is a nucleon.

Besides GPDs, this amplitude gives access to a range of
interesting physical quantities, including generalized polar-
izabilities [46—49] and the subtraction function [50,51]. In
the high energy region (|¢*| and/or |¢"*| > Agcp), it is
dominated by contributions from GPDs.

By calculating the Compton amplitude, we overcome the
issues of power-divergent renormalization that the leading-
twist matrix elements suffer from [52,53]. Moreover, with
the correction for lattice systematics, our calculation con-
tains the same higher-twist contributions as the physical
amplitude, which are of interest beyond their connection to
leading-twist GPDs [54]. Therefore, the present calculation
bears many similarities to the hadronic tensor approach,
which aims to access the forward structure functions from
the direct calculation of four-point functions [55,56].

The method presented here to calculate the OFCA is an
extension of Feynman-Hellmann methods used previously
to determine the forward Compton amplitude [57,58].
Two-point correlators calculated in the presence of a
weakly coupled background field can be expanded in
powers of the coupling, with their second-order contribu-
tion in terms of four-point functions. As such, Feynman-
Hellmann methods are a feasible alternative to the direct
calculation of four-point functions.

The numerical results presented here are the first lattice
QCD determination of the off-forward Compton amplitude.
This calculation is performed at the SU(3) flavor symmetric
point and larger-than-physical pion mass [59], for two values
of the soft momentum transfer, r = —1.1, =2.2 GeV?2, with
zero-skewness kinematics. In this preliminary work, we
assume leading-twist dominance, since our hard scale is in
the perturbative region: Q” ~ 6-7 GeV2. As such, we fit
Mellin moments of the OFCA and interpret these as the
moments of GPDs.

The structure of this paper follows: in Sec. II we review
key properties of the OFCA; in Sec. III we derive the
Feynman-Hellmann relation that allows us to determine the
OFCA; in Sec. IV we use an operator product expansion to

FIG. 1. The Feynman diagram for off-forward y*(¢)N(P) —
7" (¢')N(P') scattering.

parametrize the scalar amplitudes of the OFCA in terms of
GPD moments; in Sec. V we outline the details of our
numerical calculation; and finally in Sec. VI we present our
results.

II. BACKGROUND
We start by considering a general process of off-forward
photon-nucleon  scattering:  y*(q)N(P) — y*(¢')N(P')
(see Fig. 1).
We choose the basis of momentum vectors

_ 1 1
P=5(P+P). g=5(+q), A=P-P=q-¢.

From these, we can form at most four linearly independent
scalar variables: two scaling variables,

2P-g ,9——A'51
¢ T

and the soft and hard momentum transfers, respectively,

(;):

r= A2, 02 = -7

In terms of these scalars, the usual skewness variable [60] is
E=38/@, and hence 9 = 0, @ # 0 implies that £ = 0. In
terms of the conventional DVCS kinematics, where
g”? =0, we have that 9~ 1 and @ ~ &' for large —q°.

A. Tensor decomposition

The amplitude for this process, the OFCA, is defined in
Eq. (1). It can be decomposed into 18 linearly independent
tensor structures [46,61-64]:

18
T (@.9.1.0°) = > A@.9..0°)L".  (2)
i=1

where A; are invariant amplitudes and L” are Lorentz
tensors and Dirac bilinears.

As a consequence of the Ward identities of the OFCA,
q,T" = 0 = q,T", contributions to the Compton ampli-
tude that are proportional to g, or g, are not linearly
independent. Hence we can write the OFCA as

T = T, PP,
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where the gauge projector is

q/yqu
z 3)

q-49

P = g —

and T

1724

is the OFCA with no g, or g, terms.

. 1
Ty ==-s— .
) P-g

~.

i -~ o~ ~
+ ﬂe;wpkqﬂ(hKHl + ékgl) +

+ (Pﬂq;/ +qu;4)(h ! ZIICI +e- EIICZ) + (P/lql// -

+ h[upy]lcé + (hp%// + thy)lc7 + (hﬂq/v

where we have introduced the Dirac bilinears

P
W= L_t']/”u, P Lo Aa
sz
- AH
W = 17/}/”}/514, et = 2—12/}/51/!. (5)
my

In Eq. (4), there are nine K, five unpolarized ( and £) and
four polarized (7 and ) amplitudes, which gives 18 in
total.

The basis in Eq. (4) is chosen to match onto the high-
energy limit, which we will derive in Sec. IV. While this
does introduce kinematic singularities into our basis, these
are not relevant to the leading-twist contribution or our
numerical calculation.

The amplitudes of Eq. (4) also reduce in the forward
(t > 0) limit to the more well-known functions of the
forward Compton amplitude:

=0 t—=0
Hy— Fi, Hy +Hz — F,
~ -0 _ ~ =0 _
1—91» 22— G,

where |, are the Compton structure functions [58] and
Img, , = 2xg, ,, for g, , the spin-dependent, deep inelastic
structure functions [65]. On the other hand, the I ampli-
tudes vanish in the forward limit.

B. Dispersion relation

As in the forward case, we can use the analytic features
of the amplitudes in Eq. (4) to write out a dispersion
relation. For instance, following Refs. [47,66], H; and &,
satisfy subtracted dispersion relations:

Hi(@.9.1,0%) = 8,(9.1.0%) + H,(@,9.1.0%),
E1(@,9,1,0%) = =51(9,1,0%) + &1(@,9,1,0%),  (6)

- 74
2(P ] 6_])2 €uvpd

P,q,)(h-gKs+e-qky) + q,q,(h-g—e-g)Ks
- thu)lCS + P{ﬂﬁ(P/)in}au(P)qa’CQv (4)

We will choose a basis for the tensor decomposition of
T,w, since all other terms are entirely determined by the
Ward identities. In our chosen basis, the OFCA (before
gauge projection) is

_ _ 1 _ o E -
—(h-qHy +e-q&)gu +=5—(h-qHy + e G&)P,P, + Hihy, Py

[(P-gh* —h-qP*)Hy+ (P - ge* — &-qP¥)E,)]

[
where we have introduced

- _ 2% [1 I 0,9, t, 0%
H[(@,&,I,Qz)—i/ dxmel(g)_’27 7.Q >,
7T Jo 1 —x“®° —ie

and similarly for H; — &;.

The subtraction function in Eq. (6) is a generalization of
the forward Compton amplitude subtraction function [67]:
(8,1, 0%) =2 §,(Q?), which has been studied elsewhere
[50,51]. The amplitudes H, ; and &, require no subtraction
in their dispersion relations [47,66].

The forward limit of 7, is

_ e U xF(x. 0
Hl(@,&z,Q2)’—°>4w2/ dr 21 0)

0 1 — x*w? — i€’
where F; is the deep inelastic scattering structure function
[47]. However, unlike the forward case, there is no optical
theorem to relate ImH;, to an inclusive cross section.

Instead, these amplitudes can be measured directly by
exclusive processes such as DVCS.

C. Generalized parton distributions

At high energies (0 > Acp), the amplitudes of Eq. (4)
are dominated by convolutions of GPDs [2,68]:

0] )

A:/dXG<x’8/@’t)L+x6)—ie 1 —xa — ie|’

where G is a GPD. Or, in the Euclidean region, |@| < 1,

AzZ&)"/dxx"_lG(x,ﬁ/cb, 1).

Formally, GPDs are defined by the off-forward matrix
element of a light-cone operator. For a lightlike vector n*
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such that n- P =1 (and hence & = —n - A/2) and taking
light-cone gauge n - U = 0, we have [2,69]

[ S Pl (=in/ Do, n2) )

— H4(x, 8/, 1)i(P')y"n,u(P)

v
io"'n,A,

+ E9(x,9/@, t)a(P) u(P), (7)

2mN

where H? and EY are the unpolarized twist-two GPDs for a
quark of flavor g. It is not possible to directly calculate the
|

(PO (0)|P) = (P )y *u(P

iotx “A,
2mN

+a(P')

where the Lorentz scalars A? . and C}, are generalized

form factors (GFFs). B
By Taylor expanding Eq. (7), one can relate the GFFs
from Eq. (9) to the GPDs H and E:

n

Z( 2'9/60) n+lz(t)

i=0,2,4
+mod(n,2)(-29/@)" ' C! (1),

1
/ dxx"H4(x,9/@, 1) =
-1

n

Z ( 2'9/60) n+1t(t)

i=0,2,4
— mod(n. 2)(=28/@)"1C? | (1),
(10)

1
/ dxx"E1(x,8/d,t) =
-

recalling that £ = 9/ in the scalars defined at the start of
this section. These equations are the famous “polynomial-
ity” of GPDs [60].

A proof-of-principle determination of GPD moments is
the ultimate aim of this paper. Specifically, we will calculate
the linear combination of zero-skewness moments,

Al (1) + n=24.

t
5 Bo(0),
8my "0
Equivalent expressions for polarized GPDs, H and E, are
given in Appendix A.

III. FEYNMAN-HELLMANN RELATION

In this section, we will show how to calculate the off-
forward Compton amplitude from Feynman-Hellmann
methods in lattice QCD. Feynman-Hellmann methods
are a subset of background field methods, in which a

ZAn+1: 1AM ..

ZBH+1 ; AHI oo AHPHi L

quantity in Eq. (7) on the lattice, due to the Euclidean
signature of spacetime.

Instead, we can relate GPDs to a basis of leading-twist
local operators. These local operators are

<> <>
Ot — el iD"” - iDﬂ"}z,//q — traces,  (8)

where D = %(5 - 13) See the Appendix A for the sym-
metrization convention of the Lorentz indices.

The off-forward nucleon matrix elements of the oper-
ators in Eq. (8) are [60]

Aﬂip.“i+l .. .Pﬂn}

u(Pu(P
Pd ¢ (1) mod (n’z)MA{KAm oAb (9)
my

n+1

|
two-point function is calculated in the presence of a weakly
coupled field or current. This induces perturbations to the
two-point function, thereby giving access to observables
that may be difficult to calculate with a direct n-point
function.

For the Feynman-Hellmann derivation presented here,
we expand the perturbed propagator by means of a Dyson
expansion [70]. This is used to approximate a derivative of
the propagator, similar to Refs. [71-74], and hence extract
the OFCA for off-forward kinematics.

This differs from our previous proof of the forward
Feynman-Hellmann relation [58], where we expressed the
perturbed correlators as G,(7) ~ A e 5, and related the
derivatives of the perturbed energy, E,, to the Compton
amplitude. While it is still possible to derive a Feynman-
Hellmann relation for the OFCA in terms of derivatives of
perturbed energies [75], such a proof is made difficult by
the fact that degeneracies in the unperturbed spectrum
cause there to be two low-lying perturbed energies. Similar
considerations are needed for nucleon electromagnetic
form factors from Feynman-Hellmann [76]. By contrast,
the Dyson expansion and correlator derivative formalism
presented below circumvents this difficulty.

We introduce two spatially oscillating background fields
to the QCD Lagrangian density:

Ly (x) = Lacp (x) + 41 (€% + e7/0%) j5(x)

+ Ay (€'X 4 e7I0X) fa(x),

(11)

where j3(x) = Zyw,(x)iysw,(x) and Zy is the lattice
renormalization constant for a local vector current.
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. V}'(Tl)
C0-G—0- [~
. 0
J

- o Vi) Vi(m)
+ ZAJAkA dTl/O dTQ 4+ O(>\3>
J.k

FIG. 2. The expansion of the perturbed propagator, Eq. (15), where we have suppressed the tower of states at source and sink.

Euclidean time increases left to right.
Therefore, the perturbed Hamiltonian is
Hgy :HQCD_Z/lka(T)v (12)
k
where

Vi) = [ e 4 o))

X' 8)) (X (') e Y (p. 5))(Y (B 5) i

Simulating with the perturbed Lagrangian in Eq. (11) leads
to a modified lattice two-point propagator:

Gu(r. 1) = Ty / PBre X, QU (x, 7 (0)[ Q). (13)

where A = (44,4,), and T is the spin-parity projector.
Inserting two complete sets of states and taking
() = e7m7y(0), Eq. (13) becomes

=i [

(0)|Q),
4Ex(p')Ey(p) ' (14)

Note that states and energies without a A subscript are unperturbed.
We can expand the time evolution operator, e~//7, with a Dyson series,

e~ Hmt — p—Hqcp? |:1 + j'/ dr,V
Z 71 v

j=12

and hence Eq. (14) becomes

+ 3 4k /Tdrl [‘ drzv,(r,)vk(rz)] oW,

Jk=1.2

/ s E o O E) @) )9,

x (X(p')| ‘HQCDT[1+Z/1 / dr,V;

j=1.2

Note that we have dropped the spin structure for brevity,
but will reintroduce it in the final result.

From Eq. (15), we see that the O(4?) terms of the two-
point propagator contain four-point functions (see Fig. 2).
In particular, the A? term has both currents inserting
momentum =£q;, and hence provides access to the
forward Compton amplitude. Only the mixed, second-
order term, proportional to A;4,, will have different
incoming/outgoing momenta, and therefore off-forward
kinematics.

= X i [an [ dvivice) + o) Ivey. (5)

Jk=1.2

To isolate the mixed second-order term, we define the
combination of nucleon propagators,

_ Y00 +Y9a-n
900)

= G- = YG(=aa)

R;

(16)

Having established how to isolate the second-order, off-
forward contribution to the perturbed propagator, we are
now interested in how to ensure ground state saturation at
the source and sink.
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As detailed in Ref. [58], provided that none of the
intermediate states are lower energy than Ey, we have

D (X (@)oot E (N ()l

Using this result, Eq. (16) becomes

dp A} (p’)

[ [ /

T>>a

P)Vi(71)Va(2)Y(p))

+ [T [" dn @ IvVi@) @)
(17)
neglecting O(4*) corrections and where
siy) — LONEDI DI OR) o)

[N (Pl (0)I)?

Unlike a direct four-point function approach, ground
state saturation at the source is ensured by a judicious
choice of kinematics, not by large Euclidean time separa-
tions—see Appendix C for a full calculation. To summa-
rize, these kinematic restrictions require that the current
insertion momenta, q; and (,, and sink momentum, p’, are
chosen such that

@ |p'| £|p + nq; + mqy| for m,n € Z, which pre-

vents the intermediate states from going on-shell,

(i) and |[p’| = |p’ + q; — q»], which keeps the incoming

and outgoing states energy degenerate.

After these restrictions are imposed, Eq. (17) can be
written, up to O(4*) corrections, as

=>>a 2 2&2
Rilep) = HC 5
o sy L@’ ) TE (P, 41 o3 ', $) (. 5)]
>oste[Cu(p’, s)a(p’, )] ’
(18)

where T3 is the u = v = 3 component of the OFCA for a
single quark flavor with unit charge and p = p’ + q; — qs.
The term C is constant in both A and 7; it is made up of
contributions for which the source is not the ground state
[see Eq. (C4)].

Therefore, by fitting R,(z, p) in 7 and 4, we can isolate
the OFCA.

IV. THE OFF-FORWARD COMPTON AMPLITUDE

Given the method to calculate the OFCA presented in the
previous section, we now show how to parametrize the
invariant amplitudes of the tensor decomposition, Eq. (4),
in terms of GPDs.

The suitable tool for a perturbative expansion of the
OFCA in the Euclidean region is the operator product
expansion (OPE), which is an expansion about points in
coordinate space and momentum space (z¥ = 0 and @ = 0,
respectively) that are accessible in a spacetime with
Euclidean signature [77]. There exist in the literature
several OPEs of the OFCA [78-81]. However, as these
largely focus on the spin-zero case and/or significantly pre-
date GPDs, in this section we give our own OPE.

A. Operator product expansion

Formally, the leading-twist contribution to the coordi-
nate-space current product is given by the “handbag”
contributions [77,82]

. . i v - ( l (n+1)kp;...p
T{Jﬂ (Z/Z)JU(_Z/z)} =-2 ) ﬂpI/K Ty, - Oq v (0)
27% (72 — ie)? nzl:S o
. > (_l)n An+1)kuy .. 1,
+ i€ Z - zm...zﬂn(f)(q +1)u .. 0)]. (19)
n=0,2,4 :

where S, = 9up9uc + Gux9up — GuwYpe and the operators are defined in Egs. (8) and (A3).
To obtain the leading-twist OFCA, Eq. (1), we must take the off-forward matrix element of Eq. (19) and Fourier
transform it. Details of this calculation are presented in Appendix B.
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The final result is

T @, 9.0 = )

n=24.6 j=0.2.4 0
+ (ng)zéa)nﬁ(—w/&)) (A7 () - g+ By (t)e - g]((n — DaPkg) + (n—2)P*PY)
+ @%51',05)"—3(_219/@)”6‘3(0(1/1 -g—e- C_]) (&)P{ﬂql/} + Pﬂpy)

- G (20/@Y WL (0 3+ B (el + 0,0(-20/@V CHOh - ) |, (20)

for the symmetric in y <> v contribution to the OFCA defined in Eq. (1), while for the antisymmetric contribution,

=) n—1

= 2 . K = n— =\ 1 - = D = —
T (@, 9,1) = ?lgﬂ”/ Z @ 2(—219/0))-/{; [hKAZ’j(t) + eKBZH.j(t)}a)qp
n=13,5 j=02.4
2n—=1g _ =y ,\7 _  zg -
+@ p Peg,lA, (Dh-q+ By, (1)e-g] ¢, (21)

where we have used the bilinear definitions given in Eq. (5).
Recall that the usual skewness variable is £ = §/@ in our
chosen scalars.

One can verify, by taking the Sudakov decomposition
and DVCS kinematics @ ~ &', 9 ~ 1, that Egs. (20) and
(21) recover the standard twist-two DVCS amplitude [69].

Further, notice that Egs. (20) and (21) violate electro-
magnetic (EM) gauge invariance (their Ward identities) by
terms linear in AY, = A# + (29/@)P*. It has been found
that the necessary tensor structures to restore EM gauge
invariance appear when one considers higher-twist contri-
butions to the handbag diagrams [81,83—85]. Therefore, we
simply introduce the necessary tensor structures, A[,,Py],
etc., which restore EM gauge invariance to Egs. (20)
and (21).

We can now use the OPE results, Egs. (20) and (21), to
interpret the high energy limit of each of the scalar
amplitudes in the tensor decomposition, Eq. (4):

(1) The scalar amplitudes either vanish at leading-twist

or can be parametrized in terms of convolutions of
GPDs. For instance,

o 1
Hi(@,9,1) =2 &)”/ dxx""'H(x,8/a,1).
46 -

n=24, 1

See Eq. (B2) for a full list.
(il) We have off-forward equivalents of the Callan-Gross
relation [86]:

Hi =~ (Hy + Has),

NSARSI]

@
& ==6.
1=5%

In the forward case, Feynman-Hellmann methods
have recently been used to determine power-
suppressed Callan-Gross breaking terms [87].

(iii) The moments of polarized scalar amplitudes have
the following relation at leading-twist:

1 -
/ dxx"ImH, (1/x,8/ @, t)
0

1 [l ~
_ T / dxx"ImH,(1/x,9/ @, t),
0

n

and similarly for the replacement 7 — E. In the
forward limit, this reduces to a relation between the
spin-dependent structure functions [88].

(iv) The K scalar amplitudes vanish at leading-twist, but
do contribute at twist-three in terms of transverse
GPDs [64,89,90].

(v) The leading-twist contribution to the subtraction
function, Eq. (16), is

which has been studied in relation to the D-term
[91-94].

B. Parametrization of the lattice calculation

From the Feynman-Hellmann relation, Eq. (18), we
calculate
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Yo gtrTu(P, sTHu (P, s))

= @ 02).
Sotr[Cu(P', s)a(P', s)] =R(@.1.0%). (22)

Therefore, to get a parametrization that can be compared to
the lattice, we use the tensor decomposition of Sec. II and
the OPE with the following additional conditions:

(i) We choose the y = v = 3 component of our Comp-

ton amplitude.

(i) The Feynman-Hellmann

gt =A*=0.

(iii) We use zero-skewness (£ = 0 = 9) kinematics by

choosing q? = ¢5.

(iv) We use the spin-parity projector I' = (I + y4)/2.
The zero-skewness condition removes the tensor structures
with scalar amplitudes K34¢659 and &,. Further, by
calculating the ¢ = v =3 component and taking a spin
trace, the tensor structures associated with the polarized
amplitudes 7 and & are made irrelevant.

Finally, since we take Q% ~ 7 GeV?, we will consider the
remaining amplitudes, /C; , 5 7 to be suppressed, since they
have no leading-twist contribution.

Although a more complete study of the Q*-dependence
is essential, for this exploratory work we will neglect the Q?
suppressed K| , 5 7 amplitudes, keeping only the H, , ;3 and
&1, amplitudes.

Therefore, Eq. (22) is

relation requires

R(@.1,0%) = —

t
= m {5/,(, |:(EN + mN)'H1 +—51

4mN

P,P,
+ ]—,p. p [(EN +my)(Hz +Hs)

t
+ _82:| }P3/)P63’ (23)

4mN

with P* as defined in Eq. (3), and using Euclidean
conventions now to match the lattice.
Next, we subtract off the @ = O contribution,

R(@,t,0%) = R(@,1,0%) —R(® =0,t,0%), (24)

which is equivalent to replacing H, — H, and &, — &
in Eq. (23).

As in our previous study of the forward Compton
amplitude, we find anomalous asymptotic behavior of
the S| subtraction function. A method for controlling this
behavior has been presented in the forward case, where the
anomalous behavior of §; is found to have minimal effect
on the w-dependence [95]. An extension to the OFCA is a
goal of future work.

We then take only the leading-twist contributions to the
amplitudes, a full list of which is given in Eq. (B2).

Imposing the off-forward Callan-Gross relation reduces
the number of linearly independent amplitudes in Eq. (23)
from five to two. The final form is then

0

7_3,((;), t, Q2> - 2K33 (I)n |:AZ,O<t)

n=24,6
t

m%aﬂ,<ﬁ>

where Ey = \/m3% + p? is the sink energy and
P,g, +P,q,+ AP 0 .
LK ) +(I3~Q)ZP”PU+6W' (26)

For a first approximation of extracting the GPD moments,
we will calculate

K,, = o

7_?’<Cb’ L Qz)/K33(p3’ 513’P : ZI, QZ)

Since our lattice calculations are in frames that are
roughly near the rest frame (i.e., Ey =~ my), we can
approximately treat the combination of GFFs in Eq. (25)
as a Lorentz scalar:

MIO) = A0 + g Blal) (27)

A determination of the A and B GFFs independently, rather
than the linear combination defined in Eq. (27), is desirable.
To this end, note that we can also use the spin-parity projector,

1
I'=-O+7yg)reys. k=123,

2

which would give linearly independent combinations of the A
and B form factors compared with Eq. (25), in a manner
analogous to the separation of F| and F, electromagnetic
form factors. Hence a separation of the A and B form factors
by varying the spin-parity projector is a goal of future work.

V. SIMULATION DETAILS

For this calculation, we use the same gauge ensembles as
Ref. [58]. Note, in particular, that we are at the SU(3) flavor
symmetric point, x; = k,, with a larger-than-physical pion
mass, m, = 466(13) MeV, and a lattice spacing of
a = 0.074(2) fm. See Table I for a summary of the gauge
configurations.

A. Feynman-Hellmann implementation

The Feynman-Hellmann implementation is almost iden-
tical to our previous study of the forward Compton
amplitude [58]. In practice, the objects we calculate are
perturbed quark propagators, given by
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TABLE I. Details of the gauge ensembles used in this work.
Ny Csw K; Ky L3xT a [fm]  m, [GeV] my [GeV] m,L Zy Negg
241 265 0.1209 0.1209 323x64 0.0742) 0.467(12) 1.250(39) ~5.6 0.8611(84) 1763

Sa(Xn = X)) = [M = 2,01 = 1,0];,., (28)
where M is the usual fermion matrix.

For our case, where we choose to calculate the y = v = 3
component of the OFCA, the operators are

[Ok]}’l,ﬂ’l = 5n,m(eiqk4n + e_iqk'n)iy:;’ k = 17 2'

Then, the usual formulas for hadrons in terms of quark
propagators apply, except with one or more of these
propagators replaced with a perturbed propagator.

The Feynman-Hellmann perturbation is applied to the
connected contributions only. While it is possible to perturb
the disconnected contributions, this would be much more
computationally expensive [96,97].

The determination of the ratio in Eq. (16) requires four
separate sets of correlators at each magnitude of 4. We
calculate two magnitudes of 1 = 0.0125, 0.025, chosen
based on A-tuning tests carried out in the forward
case [58,98].

B. Kinematics

We calculate two sets of correlators on the same gauge
configurations (Table II).

To fit GPD moments, we need multiple @ values.
However, we are restricted by the conditions of the
Feynman-Hellmann relation to a frame for which our sink
momentum, p’, and our momenta from the current inser-
tions, q; and q,, must obey:

p'l=1p' +q F ql,
which limits the number of @ values that are accessible for
each q, pair.

For each set of correlators, the @ value is determined by
the value of the sink momentum, p’:

_4p (g +q)
O =————"—"=.

(q1 + q)?
TABLE 1II. Current insertion momenta, ¢;,, and derived
kinematics for two sets of correlators.
Set 241, 12 1[GeV?] Q% [GeV?]  Nieas
No.1 (1,5, 1) (-1,5,1) -1.10 7.13 996
No.2 (4,2,2)(2,4,2) -2.20 6.03 996

The explicit values of @ for our kinematics are shown in
Table III.

Moreover, since our amplitude is invariant under the
exchanges A¥ — —A¥ @ — —@, we average over +p/,
+(p’ — q, + q,) to increase our statistics.

VI. RESULTS AND DISCUSSION

To demonstrate what can be accomplished with the
method outlined in the preceding sections, we determine
the first two even moments of the nucleon GPD.

First, we fit the combination of correlators R (z, p’) from
Eq. (16) to the function f(z) =c;7+ ¢y, where 7 is
Euclidean time. From the Feynman-Hellmann relation,
Eq. (18), the slope, ¢y, is proportional to the OFCA, while
¢, is a superfluous parameter. In fitting this linear function,
we apply a consistent fit window in Euclidean time for all
sink momenta. The y?/d.o.f. for these fits are reported in
Table IV, and it is found that xz/d.o.f. ~ 1 for all the
momenta, which demonstrates that the data are largely well
described by a linear fit. An example of the Euclidean time
fits for set No. 1 is given in Fig. 3.

After the fits in Euclidean time have been performed, we
next investigate the behavior of the ratio, R,(p’), as a
function of the Feynman-Hellmann coupling, 4. From the
Feynman-Hellmann relation, Eq. (18), the )2 contribution
to this ratio is proportional to the OFCA, and the next-to-
leading contribution is O(4*), which is suppressed for our
calculations at 1 ~ 1072,

Therefore, to test the effects of the A* contributions, we
compare the quadratic coefficient of the ratio as extracted
with a purely quadratic fit function, f(1) = b4?, to that

TABLE IIl. @& values for the two sets of correlators. Note that
|@| > 1 values are omitted.
Correlator set ZL—”p’ @
(1,0, 0) 0
(1,0, 1) 1/13
No. 1 (1, 0,2 2/13
t =—1.10 GeV? (1,1,-1) 4/13
0% =17.13 GeV? (1,1, 0) 5/13
(1,1, 1 6/13
(1, 2, 0) 10/13
(1,-1,0) 0
No. 2 (1,-1,1) 2/11
t = —2.20 GeV? (2,0,-1) 4/11
0? = 6.03 GeV? 2,0,0) 6/11
2,0, 1) 8/11
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TABLE IV. Parameters demonstrating the quality of fits in
Euclidean time and the Feynman-Hellmann parameter, A, for the
up quark results from set No. 1.

=P y%/d.o.f. (z fits) (13R;,)/(13R;)
(1, 0, 0) 0.87 1.039(4)
(1,0, 1) 1.1 1.033(5)
(1,0,2) 0.75 1.012)
(1.1,-1) 0.49 1.019(6)
(L1, 0) 1.0 1.032(4)
(1,1, 1) 0.57 1.022(6)
(1,2, 0) 1.6 0.99(3)

extracted with the function g(1) = bA? + cA*. We find that
the quartic coefficient, c, is consistent with zero, and that
the quadratic coefficients, b, calculated using the two fit
functions agree within errors.

However, since the quartic fit determines two parameters
from two A values, it is not a reliable estimate of the higher
order contaminations. Therefore, to further examine the
effect of these contaminations, we calculate the quotient
(A1R;,)/(A3R;,), which is 1 for perfectly quadratic results.
In Table 1V, we can see that, although the central value of
this quotient is close to 1 for all momenta, not all are within
errors of 1. This indicates a 2%-4% contamination from
higher order terms, which is negligible compared to our
overall errors.

Hence for this preliminary study, we find it sufficient to
use the purely quadratic fit function, (1) = bA%. In Fig. 4,
we plot the normalized ratio, R,/ 22, as a function of 4, and
compare this to the quadratic coefficient from the fit. We
observe that the data are reasonably well described by a
purely quadratic fit.

Using the Feynman-Hellmann relation, Eq. (18), we can
now interpret the quadratic coefficient as the off-forward
Compton amplitude. Then, by varying the sink momentum,
we can calculate the amplitude at multiple values of the

FIG. 3. Plot of z-dependence of R,/4?, as defined in Eq. (16).
The shaded bands are fits to the function f(z) = azr + b. The two
A magnitudes have been averaged over.

6- ¥
3 e —
5,
=

3] | | - | {

| | | 1] |

Y: 0.5 1.0 15 2.0 25

A x1072

FIG. 4. Plot of A-dependence of the combination of correlators,
R,/2?, as defined in Eq. (16), after fitting in Euclidean time. The
shaded bands are the quadratic coefficient for each momentum.
Momenta correspond to those in Fig. 3.

scaling variable, @. The results for the up quark in the
nucleon are shown in Fig. 5.

The forward ¢ = 0 curve in this plot is a fit to the Q% =
7.13 GeV? results from Ref. [58]. As that study also used
the Feynman-Hellmann method and the same gauge
configurations as the present calculation, we can compare
it to our off-forward, ¢ # 0, results to determine the
t-dependence of the OFCA.

A. Moment fitting

Using the results of our OPE in Sec. IV, we can interpret
the moments of the OFCA as GPD moments, defined in
Eq. (27). Hence, using Eq. (25), a fit in @ to the function

fr@,1,07) =2 > @"M,(1,0%)  (29)

yields the first J even GPD moments at fixed ¢ and Q?
values. At leading-twist, these moments are

084 — t=0
— t=-1.1GeV?
2 2
gl T t=-22GeV
~
&
<
< 04
|3ﬁ
3\./
&2 02
0.0 1
0.0 0.2 0.4 0.6 0.8
w (@)

FIG. 5. Plot of R, as defined in Eq. (25), divided by the
kinematic factor, K33, from Eq. (26). The red curve is a para-
metrization of results from Ref. [58]. The blue and green curves
are from the moment fits.
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t
<5 Buo1).
8m3,

Mn(t) = An,O(t) +
Unlike the forward case, there is no optical theorem
connecting the OFCA to the scattering cross section, and
therefore no requirement for the scalar amplitudes to be
positive definite. However, our moments, defined in
Eq. (27), are dominated by A, (), the moments of the
zero-skewness GPD H(x, 1), which is typically treated as
positive in model-dependent parametrizations (for instance,
Refs. [99-102]), while the E(x,t) GPD is suppressed by
t/8m% in our moments. Therefore, it is reasonable for this
proof of concept calculation to treat the underlying dis-
tribution, H(x, 1) + (1/8m%)E(x, 1), as strictly positive on
the domain x € [—1, 1], and thus its moments as mono-
tonically decreasing for fixed #:

My (1) 2 My(t) 2 -+ 2 Moy (2). (30)

Future work will aim at a more extensive treatment of the
conditions on moments, such as incorporating model-
independent positivity constraints on GPDs [103-105]
and on the Compton amplitude [106].

To fit these moments, we use a Markov chain
Monte Carlo method [107,108]. In contrast to a least
squares fit, this method allows us to efficiently sample
prior distributions that reflect physically motivated con-
straints [58].

In Fig. 6, we compare the up quark, t = —1.1 GeV?
moments fit using monotonically decreasing priors, as in
Eq. (30), to those fit with uniform positive priors,
M, (1) € [0, 100]. Since we truncate the series of moments
at a finite order, Fig. 6 also compares the values of the first
two moments fit at different orders of truncation, J, as in
Eq. (29). We observe that, for both the monotonic
moments, the value of J has little effect on the leading
moment, M,. Moreover, the values of M, as extracted with
the monotonic and uniform moments, are highly consistent.

On the other hand, the value of M, differs significantly
depending on whether uniform or monotonic priors are
used. For the uniformly sampled moments, the M, dis-
tributions are heavily skewed toward zero and do not
converge with J. By contrast, the monotonically sampled
moments, M,, do not depend greatly on the order of
truncation for J > 2, and the distributions appear only
slightly skewed toward zero. The higher moments require
larger values of @ and more precise data to constrain them.
Therefore, the inconsistencies in the M, results likely
reflect the fact that we have a limited number of larger
@ values, which have significant errors. Moreover, these
inconsistencies may reflect that the monotonicity condition
is too severe for small moments. Investigating these issues
is a goal of future studies.

J =2
E 4 44 J =3
9]
2o 9 92 - J =5
0 T T T O T T T
0.00 0.25 0.50 0.00 0.25 0.50
4
4
g
3
h=1 | 24
5 2
0 T T T T

05
0.00 025 050 000 025 0.50
My M

FIG. 6. Density distributions for the first two up quark moments
at t = —1.10 GeV?2. The upper two plots use monotonic priors
distributions, while the lower two plots use uniform positive
distributions. J is the number of moments fit in the parametriza-
tion, Eq. (29).

For this preliminary study, we choose to fit the first four
even moments, n = 2, 4, 6, 8, using monotonic conditions,
and report the first two even moments. For consistency, we
only fit the first four moments of the forward results as well.

We present results for the 7-dependence of the leading
moments in Fig. 7. The values of the n = 2 GPD moments
are statistically consistent with moments from three-point
calculations at a comparable pion mass [27]. However, the
n =4 moments have never been determined from three-
point methods, and therefore the results presented here are a
first look at the ¢ behavior of such moments.

B. Comment on systematics

As the present numerical results are exploratory, a
detailed assessment of systematic uncertainties remains
an objective of future work. A list of the most salient
systematics and proposals to control them is given below.

(1) To better isolate the leading-twist contribution, a
range of Q? values must be calculated, and the
constant, leading-twist moments fit from this, as
in Ref. [58].

(2) The two datasets (No. 1 and No. 2) have different g,
which means that the O(a) Ward identity violating
terms, induced by discretization, will differ between
the two datasets. Hence it is preferable to use the
conserved vector current, for which exact Ward
identities are known [109,110].

(3) The OPE performed in Sec. IV is a continuum
relation, and therefore a continuum extrapolation,
similar to that in Refs. [111-113], is desirable.
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FIG. 7. The t-dependence of the first two even moments,
M}(t), defined in Eq. (27), for up and down quarks. The t = 0
points are from a fit to results in Ref. [58].

(4) Finally, there are all the usual lattice systematics:
nonphysical quark masses, finite volume, and
excited state contamination, which must be ac-
counted for.

VII. SUMMARY AND CONCLUSIONS

This study has presented a novel means to determine the
off-forward Compton amplitude using lattice QCD, and
thereby calculate the properties of generalized parton
distributions. We derived a Feynman-Hellmann relation
to calculate the OFCA. In our parametrization of the
OFCA, we presented new results and collected old ones,
which lay the groundwork for comprehensive calculations
of GPDs from the OFCA. Finally, the nucleon moments
presented here are the first determination of n = 4 GPD
moments.

We are now in a position to realize the full potential of
this method. A more detailed investigation of the sys-
tematics is a priority, including calculations at different
lattice spacings and with the conserved vector current.
Currently, such tests are being conducted for the forward
Compton amplitude [95]. Similarly, future work will be
aimed at calculating a greater spread of Q? and ¢, which
will provide physical insights and allow us to more
accurately determine the leading-twist contribution.
Furthermore, we aim to separate out the H and &£ scalar
amplitudes—equivalently the A and B generalized form
factors.

Taking these steps would provide us with a wealth of
physical information. For instance, we could investigate

the nonperturbative features of the OFCA, including the
off-forward subtraction function and generalized polar-
izabilities. Moreover, we could investigate GPD proper-
ties, such as their scaling behavior, and higher-twist
contributions to the Compton amplitude. Finally, this
method allows us to constrain GPDs, by calculating their
moments, fitting models, and other methods to extract
parton distributions from the Euclidean Compton ampli-
tude directly [114].

ACKNOWLEDGMENTS

We thank Z. Kordov for useful discussion and com-
ments on this manuscript. The numerical configuration
generation (using the BQCD lattice QCD program [115])
and data analysis (using the Chroma software library
[116]) was carried out on the DiRAC Blue Gene Q and
Extreme Scaling (EPCC, Edinburgh, UK) and Data
Intensive (Cambridge, UK) services, the GCS super-
computers JUQUEEN and JUWELS (NIC, IJiilich,
Germany) and resources provided by HLRN (The
North-German Supercomputer Alliance), the NCI
National Facility in Canberra, Australia (supported
by the Australian Commonwealth Government) and the
Phoenix HPC service (University of Adelaide). A. H. G.
is supported by an Australian Government Research
Training Program (RTP) Scholarship. R. H. is supported
by STFC through Grant No. ST/P000630/1. P. E. L. R. is
supported in part by the STFC under Contract No.
ST/G00062X/1. G.S. is supported by DFG Grant
No. SCHI 179/8-1. K.U.C., R.D. Y., and J. M.Z. are
supported by the Australian Research Council Grant
No. DP190100297.

APPENDIX A: BACKGROUND

For symmetrization and antisymmetrization of a rank-2
tensor, we use the notation

T} = % [T+ 1), Tk = % [T — 7],

The general expression for a fully symmetrized rank-n
tensor used in this paper is

1
Tlw} — mz:Tvgm Vo), (A1)

' 0€S,

where S, is the group of permutations of the numbers
1,2,...,n, and o is an element of S,. Here, we denote the
ith component of some group element, ¢ € S, as o(i).
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1. Polarized GPDs

(i) Polarized light-cone matrix element:

/ ;’i NP7, (—an) 2) s, (n/2)|N(P)) = H9(x. 8/, 1)a(P')yysn,u(P)

1 E4(x, 8/, 1) ? T a(PYysu(P).

my
(i1) Local twist-two polarized operators:

Sy}

@(qﬂ)ﬂl"':"‘" (X) = y_/q(X)y{”l;/S iD”...iD w,(X) — traces.
(iii) Their matrix elements:

(N(P")[OF 5% (0)|N(P)) = ﬁ(PCS’)V{KYsu(P,S)’ Ay () A APt pi)

Afx "
(P, s )ysu(P,s)

bgz

_|_

2mN n+l J

(iv) Polynomiality:

n

/_ ja’xx”l:l‘f(x,&/&),t): (29/@)'Al, | (1) and /dxx”qu19/a)t Z(zg/w B, ().

i=0,2,4 i=0,2,4

APPENDIX B: OPERATOR PRODUCT EXPANSION

(t)Am ... AHj PHjst ... PHalt

(A3)

(A4)

(AS)

We start with the matrix element of the leading-twist contribution to the current product, Eq. (19). The symmetric under

the u <> v component is

NPT 20 (2 DINE) = 25 e > S5 oy

X (P-2)" AL (1) + By, (1)
n—j
n+1

J n—j Ak
+ +1(A )TN (P-2)"IANAL, (DR 2+ B (1)e - 7]

+ (A- 2 (P-2)" = PF[ALL (- 2+ By (e - 2]

6,085 (A - 2)'CL (1) mlN L‘t(P’)u(P)}.

The antisymmetric component is no different from the symmetric component, except with h(e) — 71( ), A ny
Bn+lj — Bn+1 7 and the C GFFs set to zero.
The general recipe for the Fourier transform of these matrix elements is as follows:
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First, introduce Fourier conjugates, Next, we use the identity

_ S drreil - __r

(P-z)" =" / dxe””"z ) @i Prie

(A-Z)" =i / ® dneind= 8 5(n). to integrate out the z-dependence. Finally, we use the
—co on" identity

© . 0
h-z=1i dy e —5(7,),
z l/_oo X1€ a7 ()

[ s ot =) = (1) 5 )

I N a ox" x=y
e-z=i / dpre2 - 5(7,).

—00 ) to evaluate the integrals over the Fourier conjugates. After
_ applying these steps, we arrive at Eqs. (20) and (21).
For the polarized component h(e) — h(e), but otherwise The leading-twist contributions to the scalar amplitudes
the process is the same. in Eq. (4) are

o0 1 .
E(@,8,1) =2 Z 6)"‘1/ dxx"E(x,9/d, 1),

n=24.6 1
- & 1 -
Hy(®,9,1) = =2 Z " 16)"_1/ dxx"2H(x,8/&,1),
nae T -1

S|

E@, 8, 1) = =2 io: " 1/_ dxx"E(x,9/@.1),
(B2)

APPENDIX C: FEYNMAN-HELLMANN
Starting with the 4,4, terms of Eq. (15), we have

/drl/ dry(N(P)|V1 (1)) Va(2)|Y (p)) + (V) < V,) = /dﬁ/ dey (N(p')| eMocom

) /d3x1(€iq"x] +e_iq"x‘)Jé(xl)emm(h_m/d3 2 ("X ¢TI i (x5 )e oo | Y (p)) + (q; <> qp).  (CI)
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(Note that we use the unperturbed time-evolution operator here, since, as in all perturbation theory, the matrix element at
each order is calculated for zero-coupling.)

Next, after inserting a complete set of states, Eq. (C1) becomes

& . .
[ iy ) ) de V@l [ s et X )

. /d3x2(eiqz'x2 + 7% (X (py )| j3(x;) e enn2 |V (p)) + (q; <> q)

_Z/d Px / dTl/ d‘L'ze (Ex(px)—En(p"))71 o= (Ex(px)—Ey(p))72
) /d3x1(eiq"x‘ + e (N (p') |73 (x1) X (Px)) /d3x2(€iq2'x2 + eT%) (X (py)|j3(x2) Y (P)) + (41 < q2). (C2)

Focusing solely on the Euclidean time dependence for a moment, we see that, if Ey(p) = Ey(p’), then

T 7y , 1 e_(EX(pX)_EN(p/))T
/ dr, / e Ex(Bx)=En(0))01 o Ex(p)-ErB)rs — : (, L : ) (C3)

0 0 Ex(px) — En(p’) Ex(px) — En(p')

And if Ey(p) ?é EN(p/),
/ dr, / dr,e” (Ex(px)=En(p"))71 o(Ex(px)—Ey(p))72
—(Ex(px)=Ex(P'))T _ | —(Ey(P)~En(P))7 _ |
- (¢ e =) (c4)
X(Px) - Ey(p) \ Ex(px)— En(p’) Ey(p) — Ex(p’)

Because of our choice of perturbing potential, the only values the source momentum can take are p = p + nq; + mq;, for
m,n € Z at order O(A""). As we stated before, we choose our kinematics so that [p| < |p + nq; + mqj,|. Therefore, for
any state in the nucleon spectrum X and any momentum q = p’ + nq; + mq,, we must have Ex(q) > Ey(p’).

This ensures two things: (1) that the exponentials in Eqs. (C3) and (C4) are decaying, and (2) that if Ey(p) = En(p’),
then Y = N, and hence we have ground state saturation of the source.

Therefore,

/"“/ dey(N(p)|V1(21)Va(2)[Y (p)) + (Vi < V) _Tz/d Px 1

2n 32EX EX(pX) (P’)
X/d3x1(€iq"x' + e ) (N(p')]j3(x1)|X (px))
x / Py 4 9% (X (py) s (%) N (p))

+ (q; < q,) + [exponentially decaying inz] + [constant inz].
(C5)
The exponentially decaying terms will be heavily suppressed for 7 > a compared to the purely linear in 7z terms and the

constant. Therefore, we will neglect these. For the moment we neglect the term that is constant in z; however, we will
consider this in our fit to the lattice data.

From translational invariance of the current,

Ja3(x) = e Py (0)e™®x,

and hence Eq. (C5) becomes
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/ dT1/ dry(N(p)[Vi(71) V(7)Y (p)) + (Vi < V2)

dX s (0)|X (py)) (X (py) s (0)|N
ey [ _ MV OFENXIAOND) 5, (g, 0 g, )

where
Ay =23 (p —q, —px) + 63 +q; —px)][6® (P — a2 — px) + 63 (p + @ — py)]- (7)

Although we have kept all the delta functions here, in our final evaluation we will only keep those that ensure |p| = |p’|, as
this is the condition that allowed us to take Ey(p) = Ex(p’).

It is convenient to define the operator

> _ 1 730)X(p +q))(X(p +4)1j3(0)
o _EZEx(erq) Ex(p+4q) - Ey(p) '
Therefore, we evaluate
d? Px 3) (! 3
Z/ D —a; —px) +8V (P + a1 = py)][P (P’ — a2 —px) + 7 (p + q2 — px)]
oL (V)]s (0) IX(px)><X(px)|j3(0)IN(p)> -
2Ex(px) Ex(px) — Ex(p) o )
= (N@)|27)*[6¥(p - a2+ q, = p)O('. —q;) + ¥ (p — @ —q; = p)O(P'. q1)
+69(p+q,+q, —p)OP.—q;) + 5 (p +q, — q; = p)OP'. q))]|N(p)) + (a; <> qv). (C8)
Since |p’| = [p’ + q; — q»|, the only terms to survive are

p+q—q -p)O(p'.q;) and 5V (p-q,+q-p)O(p.—q).

Inserting this into Eq. (17), we have

3.5 A (n/ .
Rie) Z a2 [ S8R L V@) 267 16% 0+ 02 - a1 900 )
+39(p ~q; +a, —p)O(P. ~q)]IN(p)) +2°C + O(2*), (C9)

where C is constant in A and 7, obtained from Eq. (C4).
Noting that the OFCA for a single quark flavor and unit charge can be expressed as

T3(p'.q.q') = (N(p")|O(p'. q)IN(p)) + (N(p")|O(p". —q')IN(p)).

Eq. (C9) becomes

T3 (p'.q,.q0) + °C+ O(2%), (C10)

where we have used the fact that A% (p’) = 1 + O(4) at most, but once again odd powers of A vanish as a consequence of
our combination of propagators, Eq. (16).

014502-16



GENERALIZED PARTON DISTRIBUTIONS FROM THE OFF- ...

PHYS. REV. D 105, 014502 (2022)

[1] D. Miiller, D. Robaschik, B. Geyer, F.-M. Dittes, and J.
Horejsi, Fortschr. Phys. (Prog. Phys.) 42, 101 (1994).

[2] X. Ji, Phys. Rev. Lett. 78, 610 (1997).

[3] A.V. Radyushkin, Phys. Rev. D 56, 5524 (1997).

[4] M. Burkardt, Phys. Rev. D 62, 071503 (2000).

[5] F. Myhrer and A. W. Thomas, J. Phys. G 37, 023101
(2010).

[6] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Mallot, Rev.
Mod. Phys. 85, 655 (2013).

[7]1 M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33,
1830025 (2018).

[8] V.D. Burkert, L. Elouadrhiri, and F. X. Girod, Nature
(London) 557, 396 (2018).

[9] C. Adloff, V. Andreev, B. Andrieu, T. Anthonis, V.
Arkadov, A. Astvatsatourov, A. Babaev, J. Bahr, P.
Baranov, E. Barrelet er al., Phys. Lett. B 517, 47 (2001).

[10] S. Chekanov, M. Derrick, D. Krakauer, J. Loizides, S.
Magill, B. Musgrave, J. Repond, R. Yoshida, M. Mattingly,
P. Antonioli et al., Phys. Lett. B 573, 46 (2003).

[11] C. Adloff, V. Andreev, B. Andrieu, T. Anthonis, V.
Arkadov, A. Astvatsatourov, A. Babaev, J. Bahr, P.
Baranov, E. Barrelet et al., Phys. Lett. B 517, 47 (2001).

[12] A. Airapetian, N. Akopov, Z. Akopov, E. Aschenauer, W.
Augustyniak, R. Avakian, A. Avetissian, E. Avetisyan, S.
Belostotski, N. Bianchi ez al., Phys. Lett. B 704, 15 (2011).

[13] A. Airapetian, N. Akopov, Z. Akopov, E. C. Aschenauer,
W. Augustyniak, R. Avakian, A. Avetissian, E. Avetisyan,
H.P. Blok et al., J. High Energy Phys. 07 (2012) 032.

[14] P.J. Lin (COMPASS Collaboration), Int. J. Mod. Phys. A
586 (2020).

[15] M. Defurne, M. Amaryan, K. A. Aniol, M. Beaumel, H.
Benaoum, P. Bertin, M. Brossard, A. Camsonne, J.-P.
Chen, E. Chudakov et al., Phys. Rev. C 92, 055202 (2015).

[16] H. Jo, F. Girod, H. Avakian, V. Burkert, M. Garcon, M.
Guidal, V. Kubarovsky, S. Niccolai, P. Stoler, K. Adhikari
et al., Phys. Rev. Lett. 115, 212003 (2015).

[17] E. Seder, A. Biselli, S. Pisano, S. Niccolai, G. Smith, K.
Joo, K. Adhikari, M. Amaryan, M. Anderson, S. A. Pereira
et al., Phys. Rev. Lett. 114, 032001 (2015).

[18] J. Dudek, R. Ent, R. Essig, K. S. Kumar, C. Meyer, R. D.
McKeown, Z. E. Meziani, G. A. Miller, M. Pennington, D.
Richards et al., Eur. Phys. J. A 48, 187 (2012).

[19] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).

[20] K. Kumericki, S. Liuti, and H. Moutarde, Eur. Phys. J. A
52, 157 (2016).

[21] M. Guidal, H. Moutarde, and M. Vanderhaeghen, Rep.
Prog. Phys. 76, 066202 (2013).

[22] P. Hégler, J. W. Negele, D. B. Renner, W. Schroers, T.
Lippert, and K. Schilling, Phys. Rev. D 68, 034505 (2003).

[23] M. Gockeler, R. Horsley, D. Pleiter, P. E. L. Rakow, A.
Schifer, G. Schierholz, and W. Schroers, Phys. Rev. Lett.
92, 042002 (2004).

[24] M. Gockeler, P. Hagler, R. Horsley, D. Pleiter, P. E. L.
Rakow, A. Schafer, G. Schierholz, and J. M. Zanotti
(QCDSF and UKQCD Collaborations), Phys. Lett. B
627, 113 (2005).

[25] M. Gockeler, P. Higler, R. Horsley, Y. Nakamura,
D. Pleiter, P.E.L. Rakow, A. Schifer, G. Schierholz,

H. Stiiben, and J.M. Zanotti (QCDSF and UKQCD
Collaborations), Phys. Rev. Lett. 98, 222001 (2007).

[26] M. Ohtani, D. Brommel, M. Gockeler, P. Higler, R.
Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A.
Schifer, G. Schierholz, W. Schroers, H. Stuben, and
J. M. Zanotti, in Proceedings, 25th International Sympo-
sium on Lattice field theory (Lattice 2007): Regensburg,
Germany, 2007 (2007), Vol. LATTICE2007, p. 158
[arXiv:0710.1534].

[27] P. Higler, W. Schroers, J. Bratt, J. W. Negele, A.V.
Pochinsky, R. G. Edwards, D. G. Richards, M. Engelhardt,
G. T. Fleming, B. Musch et al., Phys. Rev. D 77, 094502
(2008).

[28] D. Brommel et al. (QCDSF and UKQCD Collaborations),
Phys. Rev. Lett. 101, 122001 (2008).

[29] J. D. Bratt, R. G. Edwards, M. Engelhardt, P. Hagler, H. W.
Lin, M. F. Lin, H. B. Meyer, B. Musch, J. W. Negele, K.
Orginos et al., Phys. Rev. D 82, 094502 (2010).

[30] C. Alexandrou, J. Carbonell, M. Constantinou, P.A.
Harraud, P. Guichon, K. Jansen, C. Kallidonis, T. Korzec,
and M. Papinutto, Phys. Rev. D 83, 114513 (2011).

[31] A. Sternbeck, M. Gockeler, Ph. Higler, R. Horsley, Y.
Nakamura, A. Nobile, D. Pleiter, P.E.L. Rakow, A.
Schifer, G. Schierholz, and J. Zanotti, Proc. Sci., LAT-
TICE2011 (2011) 177 [arXiv:1203.6579].

[32] P. Shanahan and W. Detmold, Phys. Rev. D 99, 014511
(2019).

[33] P. Shanahan and W. Detmold, Phys. Rev. Lett. 122, 072003
(2019).

[34] G. Martinelli and C. Sachrajda, Nucl. Phys. B478, 660
(1996).

[35] S. Capitani and G. Rossi, Nucl. Phys. B433, 351 (1995).

[36] G. Beccarini, M. Bianchi, S. Capitani, and G. Rossi, Nucl.
Phys. B456, 271 (1995).

[37] F. Yndurdin, Phys. Lett. 74B, 68 (1978).

[38] W. Detmold, W. Melnitchouk, and A. W. Thomas, Mod.
Phys. Lett. A 18, 2681 (2003).

[39] A. Radyushkin, Phys. Rev. D 96, 034025 (2017).

[40] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).

[41] M. Constantinou, Eur. Phys. J. A 57, 77 (2021).

[42] H.-W. Lin, E.R. Nocera, F. Olness, K. Orginos,
J. Rojo, A. Accardi, C. Alexandrou, A. Bacchetta, G.
Bozzi, J.-W. Chen et al., Prog. Part. Nucl. Phys. 100, 107
(2018).

[43] J.-W. Chen, H.-W. Lin, and J.-H. Zhang, Nucl. Phys. B952,
114940 (2020).

[44] H.-W. Lin, Phys. Rev. Lett. 127, 182001 (2021).

[45] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, A. Scapellato, and F. Steffens,
Phys. Rev. Lett. 125, 262001 (2020).

[46] D. Drechsel, G. Knochlein, A. Y. Korchin, A. Metz, and S.
Scherer, Phys. Rev. C 57, 941 (1998).

[47] B. Pasquini, M. Gorchtein, D. Drechsel, A. Metz, and M.
Vanderhaeghen, Eur. Phys. J. A 11, 185 (2001).

[48] H. Fonvieille, B. Pasquini, and N. Sparveris, Prog. Part.
Nucl. Phys. 113, 103754 (2020).

[49] V. Pauk, C. E. Carlson, and M. Vanderhaeghen, Phys. Rev.
C 102, 035201 (2020).

014502-17


https://doi.org/10.1002/prop.2190420202
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1103/PhysRevD.56.5524
https://doi.org/10.1103/PhysRevD.62.071503
https://doi.org/10.1088/0954-3899/37/2/023101
https://doi.org/10.1088/0954-3899/37/2/023101
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1142/S0217751X18300259
https://doi.org/10.1142/S0217751X18300259
https://doi.org/10.1038/s41586-018-0060-z
https://doi.org/10.1038/s41586-018-0060-z
https://doi.org/10.1016/S0370-2693(01)00939-X
https://doi.org/10.1016/j.physletb.2003.08.048
https://doi.org/10.1016/S0370-2693(01)00939-X
https://doi.org/10.1016/j.physletb.2011.08.067
https://doi.org/10.1007/JHEP07(2012)032
https://doi.org/10.1142/9789811219313_0100
https://doi.org/10.1142/9789811219313_0100
https://doi.org/10.1103/PhysRevC.92.055202
https://doi.org/10.1103/PhysRevLett.115.212003
https://doi.org/10.1103/PhysRevLett.114.032001
https://doi.org/10.1140/epja/i2012-12187-1
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16157-3
https://doi.org/10.1140/epja/i2016-16157-3
https://doi.org/10.1088/0034-4885/76/6/066202
https://doi.org/10.1088/0034-4885/76/6/066202
https://doi.org/10.1103/PhysRevD.68.034505
https://doi.org/10.1103/PhysRevLett.92.042002
https://doi.org/10.1103/PhysRevLett.92.042002
https://doi.org/10.1016/j.physletb.2005.09.002
https://doi.org/10.1016/j.physletb.2005.09.002
https://doi.org/10.1103/PhysRevLett.98.222001
https://arXiv.org/abs/0710.1534
https://doi.org/10.1103/PhysRevD.77.094502
https://doi.org/10.1103/PhysRevD.77.094502
https://doi.org/10.1103/PhysRevLett.101.122001
https://doi.org/10.1103/PhysRevD.82.094502
https://doi.org/10.1103/PhysRevD.83.114513
https://arXiv.org/abs/1203.6579
https://doi.org/10.1103/PhysRevD.99.014511
https://doi.org/10.1103/PhysRevD.99.014511
https://doi.org/10.1103/PhysRevLett.122.072003
https://doi.org/10.1103/PhysRevLett.122.072003
https://doi.org/10.1016/0550-3213(96)00415-4
https://doi.org/10.1016/0550-3213(96)00415-4
https://doi.org/10.1016/0550-3213(94)00428-H
https://doi.org/10.1016/0550-3213(95)00502-5
https://doi.org/10.1016/0550-3213(95)00502-5
https://doi.org/10.1016/0370-2693(78)90062-X
https://doi.org/10.1142/S0217732303012209
https://doi.org/10.1142/S0217732303012209
https://doi.org/10.1103/PhysRevD.96.034025
https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1140/epja/s10050-021-00353-7
https://doi.org/10.1016/j.ppnp.2018.01.007
https://doi.org/10.1016/j.ppnp.2018.01.007
https://doi.org/10.1016/j.nuclphysb.2020.114940
https://doi.org/10.1016/j.nuclphysb.2020.114940
https://doi.org/10.1103/PhysRevLett.127.182001
https://doi.org/10.1103/PhysRevLett.125.262001
https://doi.org/10.1103/PhysRevC.57.941
https://doi.org/10.1007/s100500170084
https://doi.org/10.1016/j.ppnp.2020.103754
https://doi.org/10.1016/j.ppnp.2020.103754
https://doi.org/10.1103/PhysRevC.102.035201
https://doi.org/10.1103/PhysRevC.102.035201

A. HANNAFORD-GUNN et al.

PHYS. REV. D 105, 014502 (2022)

[50] D. Mueller and K. Semenov-Tian-Shansky, Phys. Rev. D
92, 074025 (2015).

[51] S.J. Brodsky, F. J. Llanes-Estrada, and A. P. Szczepaniak,
Phys. Rev. D 79, 033012 (2009).

[52] C. Dawson, G. Martinelli, G. Rossi, C. Sachrajda, S.
Sharpe, M. Talevi, and M. Testa, Nucl. Phys. B514, 313
(1998).

[53] G. Martinelli, Nucl. Phys. B, Proc. Suppl. 73, 58 (1999).

[54] F. Aslan, M. Burkardt, C. Lorcé, A. Metz, and B. Pasquini,
Phys. Rev. D 98, 014038 (2018).

[55] K.-F. Liu and S.-J. Dong, Phys. Rev. Lett. 72, 1790 (1994).

[56] J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B. Yang
(XQCD Collaboration), Phys. Rev. D 101, 114503 (2020).

[57] A.J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. E. L.
Rakow, G. Schierholz, A. Schiller, K. Somfleth, R.D.
Young, and J. M. Zanotti, Phys. Rev. Lett. 118, 242001
(2017).

[58] K. Can, A. Hannaford-Gunn, R. Horsley, Y. Nakamura, H.
Perlt, P.E.L. Rakow, G. Schierholz, K. Somfleth, H.
Stiiben, R. Young et al., Phys. Rev. D 102, 114505 (2020).

[59] W. Bietenholz, V. Bornyakov, M. Gockeler, R. Horsley,
W. G. Lockhart, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L.
Rakow, G. Schierholz et al., Phys. Rev. D 84, 054509
(2011).

[60] X. Ji, J. Phys. G 24, 1181 (1998).

[61] M. Perrottet, Lett. Nuovo Cimento 7S2, 915 (1973).

[62] R. Tarrach, Nuovo Cimento A 28, 409 (1975).

[63] G. Eichmann and C. S. Fischer, Phys. Rev. D 87, 036006
(2013).

[64] A. V. Belitsky, D. Miiller, and Y. Ji, Nucl. Phys. B878, 214
(2014).

[65] A.V. Manohar, arXiv:hep-ph/9204208.

[66] D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys.
Rep. 378, 99 (2003).

[67] J. Gasser, H. Leutwyler, and A. Rusetsky, Eur. Phys. J. C
80, 1121 (2020).

[68] J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D
56, 2982 (1997).

[69] X. Ji, Phys. Rev. D 55, 7114 (1997).

[70] M. Batelaan, R. Horsley et al., Transition matrix elements
using the feynman-hellmann approach (to be published).

[71] W. Detmold, Phys. Rev. D 71, 054506 (2005).

[72] D. Toussaint and W. Freeman (MILC Collaboration), Phys.
Rev. Lett. 103, 122002 (2009).

[73] C. Bouchard, C.C. Chang, T. Kurth, K. Orginos, and A.
Walker-Loud, Phys. Rev. D 96, 014504 (2017).

[74] C.C. Chang et al., EP] Web Conf. 175, 01008 (2018).

[75] A.Hannaford-Gunn, Generalised parton distributions from
lattice Feynman-Hellmann techniques, Master’s thesis,
Adelaide University, 2020.

[76] A. Chambers, J. Dragos, R. Horsley, Y. Nakamura, H.
Perlt, D. Pleiter, P. E. L. Rakow, G. Schierholz, A. Schiller,
K. Somfleth et al., Phys. Rev. D 96, 114509 (2017).

[77] J. C. Collins, Renormalization, Cambridge Monographs on
Mathematical Physics Vol. 26 (Cambridge University
Press, Cambridge, England, 1986).

[78] K. Watanabe, Prog. Theor. Phys. 66, 1003 (1981).

[79] K. Watanabe, Prog. Theor. Phys. 67, 1834 (1982).

[80] Z. Chen, Nucl. Phys. B525, 369 (1998).

[81] B. E. White, J. Phys. G 28, 203 (2002).

[82] T. Muta, Foundations of Quantum Chromodynamics: An
Introduction to Perturbative Methods in Gauge Theories,
(3rd ed.), World scientific Lecture Notes in Physics Vol. 78
(World Scientific, Hackensack, N.J., 2010).

[83] A. Belitsky and D. Miiller, Nucl. Phys. B589, 611
(2000).

[84] A. Radyushkin and C. Weiss, Phys. Lett. B 493, 332
(2000).

[85] A. V. Radyushkin and C. Weiss, Phys. Rev. D 63, 114012
(2001).

[86] C.G. Callan, Jr. and D.J. Gross, Phys. Rev. Lett. 22, 156
(1969).

[87] K. U. Can, A. Hannaford-Gunn, E. Sankey, R. Horsley, Y.
Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, H.
Stuben, R. D. Young, and J. M. Zanotti, arXiv:2110.01310.

[88] J. Blumlein and N. Kochelev, Nucl. Phys. B498, 285
(1997).

[89] M. Diehl, Eur. Phys. J. C 19, 485 (2001).

[90] A. Belitsky, D. Miiller, and A. Kirchner, Nucl. Phys. B629,
323 (2002).

[91] O. V. Teryaev, arXiv:hep-ph/0510031.

[92] 1. V. Anikin and O. V. Teryaev, Phys. Rev. D 76, 056007
(2007).

[93] M. Diehl and D. Ivanov, Eur. Phys. J. C 52, 919 (2007).

[94] B. Pasquini, M. Polyakov, and M. Vanderhaeghen, Phys.
Lett. B 739, 133 (2014).

[95] A. Hannaford-Gunn, E. Sankey er al, A lattice QCD
calculation of the compton amplitude subtraction function
(to be published).

[96] A. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. E. L.
Rakow, G. Schierholz, A. Schiller, and J. Zanotti, Phys.
Lett. B 740, 30 (2015).

[97] A. Chambers, R. Horsley, Y. Nakamura, H. Perlt, D.
Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, H.
Stiiben, R. Young et al, Phys. Rev. D 92, 114517
(2015).

[98] K. Somfleth, Hadron structure using Feynman-Hellmann
theorem, Ph.D. thesis, The University of Adelaide, 2020.

[99] L. Schoeffel, Phys. Lett. B 658, 33 (2007).

[100] M. Diehl and W. Kugler, Phys. Lett. B 660, 202 (2008).

[101] K. Kumericki and D. Miiller, Nucl. Phys. B841, 1
(2010).

[102] P. Kroll, EPJ Web Conf. 85, 01005 (2015).

[103] P. V. Pobylitsa, Phys. Rev. D 65, 114015 (2002).

[104] P. V. Pobylitsa, Phys. Rev. D 66, 094002 (2002).

[105] P. V. Pobylitsa, Phys. Rev. D 70, 034004 (2004).

[106] A. De Rdjula, in Proceedings of the 7th Rencontres de
Moriond: Multiparticle Phenomena and Inclusive Reac-
tions (1972), p. 405, https://inspirehep.net/conferences/
1396385.

[107] J. Salvatier, T.V. Wiecki, and C. Fonnesbeck, Peer]
Comput. Sci. 2, e55 (2016).

[108] M. D. Hoffman and A. Gelman, J. Mach. Learn. Res. 15,
1593 (2014).

[109] L. H. Karsten and J. Smith, Nucl. Phys. B183, 103 (1981).

[110] F. Guerin, Nucl. Phys. B282, 495 (1987).

[111] W. Detmold and C.J.D. Lin, Phys. Rev. D 73, 014501
(2006).

[112] W. Detmold, A.V. Grebe, I. Kanamori, C.J.D. Lin, S.
Mondal, R.J. Perry, and Y. Zhao, arXiv:2009.09473.

014502-18


https://doi.org/10.1103/PhysRevD.92.074025
https://doi.org/10.1103/PhysRevD.92.074025
https://doi.org/10.1103/PhysRevD.79.033012
https://doi.org/10.1016/S0550-3213(97)00756-6
https://doi.org/10.1016/S0550-3213(97)00756-6
https://doi.org/10.1016/S0920-5632(99)85007-5
https://doi.org/10.1103/PhysRevD.98.014038
https://doi.org/10.1103/PhysRevLett.72.1790
https://doi.org/10.1103/PhysRevD.101.114503
https://doi.org/10.1103/PhysRevLett.118.242001
https://doi.org/10.1103/PhysRevLett.118.242001
https://doi.org/10.1103/PhysRevD.102.114505
https://doi.org/10.1103/PhysRevD.84.054509
https://doi.org/10.1103/PhysRevD.84.054509
https://doi.org/10.1088/0954-3899/24/7/002
https://doi.org/10.1007/BF02727518
https://doi.org/10.1007/BF02894857
https://doi.org/10.1103/PhysRevD.87.036006
https://doi.org/10.1103/PhysRevD.87.036006
https://doi.org/10.1016/j.nuclphysb.2013.11.014
https://doi.org/10.1016/j.nuclphysb.2013.11.014
https://arXiv.org/abs/hep-ph/9204208
https://doi.org/10.1016/S0370-1573(02)00636-1
https://doi.org/10.1016/S0370-1573(02)00636-1
https://doi.org/10.1140/epjc/s10052-020-08615-2
https://doi.org/10.1140/epjc/s10052-020-08615-2
https://doi.org/10.1103/PhysRevD.56.2982
https://doi.org/10.1103/PhysRevD.56.2982
https://doi.org/10.1103/PhysRevD.55.7114
https://doi.org/10.1103/PhysRevD.71.054506
https://doi.org/10.1103/PhysRevLett.103.122002
https://doi.org/10.1103/PhysRevLett.103.122002
https://doi.org/10.1103/PhysRevD.96.014504
https://doi.org/10.1051/epjconf/201817501008
https://doi.org/10.1103/PhysRevD.96.114509
https://doi.org/10.1143/PTP.66.1003
https://doi.org/10.1143/PTP.67.1834
https://doi.org/10.1016/S0550-3213(98)00226-0
https://doi.org/10.1088/0954-3899/28/2/302
https://doi.org/10.1016/S0550-3213(00)00542-3
https://doi.org/10.1016/S0550-3213(00)00542-3
https://doi.org/10.1016/S0370-2693(00)01155-2
https://doi.org/10.1016/S0370-2693(00)01155-2
https://doi.org/10.1103/PhysRevD.63.114012
https://doi.org/10.1103/PhysRevD.63.114012
https://doi.org/10.1103/PhysRevLett.22.156
https://doi.org/10.1103/PhysRevLett.22.156
https://arXiv.org/abs/2110.01310
https://doi.org/10.1016/S0550-3213(97)00234-4
https://doi.org/10.1016/S0550-3213(97)00234-4
https://doi.org/10.1007/s100520100635
https://doi.org/10.1016/S0550-3213(02)00144-X
https://doi.org/10.1016/S0550-3213(02)00144-X
https://arXiv.org/abs/hep-ph/0510031
https://doi.org/10.1103/PhysRevD.76.056007
https://doi.org/10.1103/PhysRevD.76.056007
https://doi.org/10.1140/epjc/s10052-007-0401-9
https://doi.org/10.1016/j.physletb.2014.10.047
https://doi.org/10.1016/j.physletb.2014.10.047
https://doi.org/10.1016/j.physletb.2014.11.033
https://doi.org/10.1016/j.physletb.2014.11.033
https://doi.org/10.1103/PhysRevD.92.114517
https://doi.org/10.1103/PhysRevD.92.114517
https://doi.org/10.1016/j.physletb.2007.10.036
https://doi.org/10.1016/j.physletb.2007.12.047
https://doi.org/10.1016/j.nuclphysb.2010.07.015
https://doi.org/10.1016/j.nuclphysb.2010.07.015
https://doi.org/10.1051/epjconf/20158501005
https://doi.org/10.1103/PhysRevD.65.114015
https://doi.org/10.1103/PhysRevD.66.094002
https://doi.org/10.1103/PhysRevD.70.034004
https://inspirehep.net/conferences/1396385
https://inspirehep.net/conferences/1396385
https://inspirehep.net/conferences/1396385
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1016/0550-3213(81)90549-6
https://doi.org/10.1016/0550-3213(87)90694-8
https://doi.org/10.1103/PhysRevD.73.014501
https://doi.org/10.1103/PhysRevD.73.014501
https://arXiv.org/abs/2009.09473

GENERALIZED PARTON DISTRIBUTIONS FROM THE OFF- ... PHYS. REV. D 105, 014502 (2022)

[113] W. Detmold, A. Grebe, 1. Kanamori, C.J.D. Lin, S.
Mondal, R. Perry, and Y. Zhao, arXiv:2109.15241.

[114] R. Horsley, Y. Nakamura, H. Perlt, P. E.L. Rakow, G.
Schierholz, K. Somfleth, R. D. Young, and J. M. Zanotti
(QCDSF-UKQCD-CSSM Collaboration), Proc. Sci., LAT-
TICE2019 (2020) 137 [arXiv:2001.05366].

[115] T.R. Haar, Y. Nakamura, and H. Stuben, EPJ] Web Conf.
175, 14011 (2018).

[116] R. G. Edwards and B. Joo (SciDAC Collaboration, LHPC
Collaboration, UKQCD Collaborations), Nucl. Phys. B,
Proc. Suppl. 140, 832 (2005).

014502-19


https://arXiv.org/abs/2109.15241
https://arXiv.org/abs/2001.05366
https://doi.org/10.1051/epjconf/201817514011
https://doi.org/10.1051/epjconf/201817514011
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254

