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We demonstrate how S-matrix poles manifest themselves as the physical spectrum near the upper
threshold in the context of the two-channel uniformized Mittag-Leffler expansion, an expression written as
a sum of pole terms (Mittag-Leffler expansion) under an appropriate variable where the S matrix is made
single-valued (uniformization). We show that the transition of the spectrum is continuous as a S-matrix pole
moves across the boundaries of the complex energy Riemann sheets and that the physical spectrum peaks at
or near the upper threshold when the S-matrix pole is positioned sufficiently close to it on the uniformized
plane. There is no essential difference on which sheet the pole is positioned. What is important is the
existence of a pole near the upper threshold and the distance between the pole and the physical region, not
on which complex energy sheet the pole is positioned. We also point out that when the pole is close to the
upper threshold, the complex pole does not have the usual meaning of the resonance. Neither the real part
represents the peak energy, nor the imaginary part represents the half width. Subsequently, we try to
understand the current status of Zð3900Þ from the viewpoint of the uniformized Mittag-Leffler expansion
reflecting in particular, Phys. Rev. Lett. 117, 242001 (2016) in which they concluded that Zð3900Þ is not a
conventional resonance but a threshold cusp. We point out that their results turn out to indicate the existence
of S-matrix poles near the D̄D� threshold, which is most likely the origin of the peak found in their
calculation of the near-threshold spectrum. In order to support our argument, we set up a separable potential
model which shares common behavior of poles near the D̄D� threshold to the above-mentioned reference
and show in our model that the structures near the D̄D� threshold are indeed caused by these near-threshold
poles.

DOI: 10.1103/PhysRevD.105.014034

I. INTRODUCTION

In recent years, many resonancelike enhancements
which are potential candidates of exotic hadrons have been
observed in hadronic spectra near the thresholds of had-
ronic channels [1–8]. Typical examples are the XYZ
mesons, such as Xð3872Þ, Yð4260Þ, and Zð3900Þ in the

charmonium spectra [9,10]. There has been much discus-
sion regarding the origins of these threshold enhancements,
whether they are of resonant origin, such as tetra-quark,
hadron molecular, or gluonic excitation states, or of
kinematic origin, such as threshold cusps [11] or triangle
singularities [12]. Clarification of such issues could pos-
sibly shed light on the complex nature of the strong
interaction governing the dynamics of hadrons and is of
crucial importance in hadron physics.
For analyses of the hadronic spectra, model-independent

expressions such as the Breit-Wigner formula [13], Flatté
formula or equivalently the two-channel Breit-Wigner
formula [14], or coupled-channel model calculations are
most commonly used in practice. Although most of these
practices are conducted under the parametrization of energy
or channel momentum, analysis in the coupled-channel
uniformized parametrization, introduced by Ref. [15] and

*wren-phys@g.ecc.u-tokyo.ac.jp
†osamu.morimatsu@kek.jp
‡tsato@rcnp.osaka-u.ac.jp
§koichiyzk@yahoo.co.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 014034 (2022)

2470-0010=2022=105(1)=014034(11) 014034-1 Published by the American Physical Society

https://orcid.org/0000-0003-0719-8390
https://orcid.org/0000-0001-5800-538X
https://orcid.org/0000-0001-5216-5657
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.014034&domain=pdf&date_stamp=2022-01-31
https://doi.org/10.1103/PhysRevLett.117.242001
https://doi.org/10.1103/PhysRevD.105.014034
https://doi.org/10.1103/PhysRevD.105.014034
https://doi.org/10.1103/PhysRevD.105.014034
https://doi.org/10.1103/PhysRevD.105.014034
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


followed by Refs. [16,17], can be particularly useful to
clarify the interplay between the position of the pole on the
unphysical sheets of the S-matrix Riemann surface and its
contribution to physical quantities such as the cross section
or invariant-mass distribution. In terms of the uniformized
parametrization, a new method, the uniformized Mittag-
Leffler expansion, was proposed and successfully applied
to Λð1405Þ in Refs. [18,19], in which the S matrix or the
Green’s function is expressed as a simple sum of not only
bound poles but also resonant poles.
The purpose of the present paper is two fold. The first is

to show how near-threshold poles of the S matrix manifest
themselves in the near-threshold spectrum. The second is to
show that Zð3900Þ can be naturally understood as a
contribution of a set of poles near the D̄D� threshold. In
Secs. II and III, we demonstrate the general behavior of
contributions of near-threshold poles on various sheets of
the Riemann surface, including contributions commonly
regarded as “threshold cusps,” based on the formalism of
the uniformized Mittag-Leffler expansion presented in
Refs. [18,19]. Then, in the following section (Sec. IV),
we discuss under the two-channel uniformization para-
metrization, a plausible interpretation of the Zð3900Þ
enhancement, reflecting on the HAL QCD results obtained
in Refs. [20,21] combined with the pole symmetry con-
dition of the S matrix. We also set up a separable potential
model sharing common features as the HAL QCD spec-
trum, which support our interpretation.

II. UNIFORMIZED MITTAG-LEFFLER
EXPANSION

Let us consider the spectrum of coupled double-channel
two-body systems with threshold energies, ε1 < ε2. The
following findings of our analysis are valid, in general, and
are independent of the details of the system.
Observables of the two-body system such as scattering

cross sections or invariant-mass distributions are given by
the scattering T matrix or the two-body Green’s function,
which we generically write as A. We assume that A has
only singularities of poles and two unitarity cuts running
from the thresholds, ε1 and ε2, when expressed as a
function of the complex center-of-mass energy,

ffiffiffi
s

p
.

Let us define a dimensionless parameter, e, by

e ¼ s − ε21
ε22 − ε21

;

where e ¼ 0 and e ¼ 1 at the lower and upper thresholds,
respectively. We call e, scaled “energy,” because e is real as
long as the center-of-mass energy,

ffiffiffi
s

p
, is real and is a

monotonically increasing function of
ffiffiffi
s

p
. Then, following

Ref. [15], we introduce a complex dimensionless variable,
z, by

z ¼ e1=2 þ ðe− 1Þ1=2 ¼

8>><
>>:

ið ffiffiffiffiffiffi
−e

p þ ffiffiffiffiffiffiffiffiffiffi
1− e

p Þ e < 0;ffiffiffi
e

p þ i
ffiffiffiffiffiffiffiffiffiffi
1− e

p
0 < e < 1;ffiffiffi

e
p þ ffiffiffiffiffiffiffiffiffiffi

e− 1
p

e > 1;

where e1=2 (ðe − 1Þ1=2) is the scaled “momentum” in
the lower (upper) channel. As a function of z, e ¼
ðzþ z−1Þ2=4, and A is single-valued. Such a procedure
where a function is made single valued by introducing an
appropriate parametrization is called uniformization [22].
In this paper, for simplicity, we mainly deal with total
scattering cross sections or missing-mass distributions,
which are given by the imaginary part of the scattering
T matrix or the two-body Green’s function, [23–25], ImA.
The structure of the uniformized complex z plane is

shown in Fig. 1, where the physical energy is given by the
red solid line. We also show the domains corresponding to
the four complex energy Riemann sheets labeled by the
convention following Ref. [26]. For each channel momen-
tum, ki, t, and b refer to the top and bottom halves of the
complex momentum plane with the argument, 0≤argki <π
and π ≤ arg ki < 2π, respectively. Then, four complex
energy Riemann sheets are specified by a set of complex
channel momenta as [tt], [tb], [bt], and [bb], where, e.g.,
means the momentum in the lower (upper) channel is t (b).

FIG. 1. The complex z plane uniformizing the two-channel
two-body S matrix. The physical energy is represented by the red
line. Below the lower threshold (labeled th1), the physical energy
is on the imaginary axis. Between the lower and upper thresholds
(labeled th2), the physical region is on the unit circle and then
above the upper threshold on the real axis. The four domains
specified by ½tt�, ½bb�, ½tb�, and ½bt� correspond to four Riemann
sheets of the complex energy, and (þ), (−) show the imaginary
part of the complex energy. For details refer to the main text.
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For later discussion, we also show the regions where the
imaginary part of the complex energy is positive and
negative by (þ) and (−), respectively.
In Refs. [18,19], it was shown that A can be expanded

as a sum of pole terms in a form similar to that of
Refs. [27–30] in the variable, z, (uniformized Mittag-
Leffler expansion) as,

AðzÞ ¼ −
1

π

X
n

�
rn

z − zn
−

r�n
zþ z�n

�
; ð1Þ

where zn and rn are, respectively, the position and residue
of a pole in the variable, z. We define a real dimensionless
function, fðz; zp;ϕpÞ, by

fðz; zp;ϕpÞ ¼ −
1

π
Im

�
expðiϕpÞ
z − zp

−
expð−iϕpÞ
zþ z�p

�
: ð2Þ

Then, ImA is given as

ImAðzÞ ¼
X
n

jrnjfðz; zn;ϕnÞ; ð3Þ

where rn ¼ jrnj expðiϕnÞ. f can be regarded as a “normal-
ized” pole contribution linearly contributing to A by a
weight of the absolute value of the residue.
For later discussion, we give here a standard expression

of the Breit-Wigner formula. If the amplitude is analytic in
the square root of the center-of-mass energy squared,

ffiffiffi
s

p
,

the normalized contribution from a pole near the physical
region to the physical amplitude is given by

fBWð
ffiffiffi
s

p Þ ¼ −
1

π
Im

expðiψpÞffiffiffi
s

p
−

ffiffiffi
s

p
p

¼ −
1

π

cosψpIm
ffiffiffi
s

p
p þ sinψpð

ffiffiffi
s

p
− Re

ffiffiffi
s

p
pÞ

ð ffiffiffi
s

p
− Re

ffiffiffi
s

p
pÞ2 þ Im

ffiffiffi
s

p
2
p

:

Under the condition ψp ¼ 0, and the definitions Re
ffiffiffi
s

p
p¼ϵ

and Im
ffiffiffi
s

p
p ¼ −Γ=2, we obtain the standard Breit-Wigner

form [13],

fBWð
ffiffiffi
s

p Þ ¼ 1

π

Γ=2
ð ffiffiffi

s
p

− ϵÞ2 þ ðΓ=2Þ2 :

III. POLE CONTRIBUTION NEAR THE
UPPER THRESHOLD

In this section, we demonstrate how the near-threshold
spectrum changes as a S-matrix pole moves from the [bt]
sheet through the [tb] sheet to the [bb] sheet near the upper
threshold. We choose six positions, A–F, of the S-matrix
pole near the upper threshold shown in Fig. 2. Their
position on the complex z plane, zp, and their scaled
energy, ep, are tabulated in Table. I. We also show e0, the

scaled energy of the physical point nearest to the pole on
the complex z plane, and γ0, the distance between the pole
and the nearest physical point, defined by

8>>><
>>>:

e0 ¼ cos2θp; γ0 ¼ 1 − rp ½bt� sheet
e0 ¼ 1; γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp − 1Þ2 þ y2p

q
½tb�sheet

e0 ¼ 1
4

�
xp þ 1

xp

�
2
; γ0 ¼ jypj ½bb�sheet

;

where rp ¼ jzpj, θp ¼ Argzp, xp ¼ Rezp, and yp ¼ Imzp.
The spectra of the contribution from poles, A–F, are

shown respectively in Fig. 3. As can be observed, when the
pole is located on the [bt] sheet, the peak shows up below
the upper threshold energy. As the pole comes close to the
[tb] sheet, the peak approaches the threshold. Then, when
the pole is on the [tb] sheet, the peak remains at the upper
threshold while changing the slopes below and above the
threshold. Once the pole reaches the [bb] sheet, the peak
position leaves the threshold and increases again. Also,
when the pole is close to the upper threshold, the complex
pole energy does not have the usual meaning of the
resonance. Neither the real part represents the peak energy,
nor the imaginary part represents the width. Near the
boundary of the [bt] and [tb] ([tb] and [bb]) sheets,
Reep is larger (smaller) than 1, and Imep is very small,
while the position of the peak is below (above) or equal to
1, and the width of the peak remains almost unchanged.
Also, on the [tb] sheet, Imep is positive. The position of the
peak is given by the energy of the physical point nearest to
the pole on the complex z plane, and the width is given by

FIG. 2. Positions of the S-matrix poles, A–F, on the complex z
plane near the upper threshold (labeled th2). The red line
represents the physical region.
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the distance between the pole and the nearest physical
point. Finally, and most importantly, the transition of the
spectrum is continuous. There is no essential difference
whether a pole is located on the [bt] sheet, [tb] sheet, or
[bb] sheet, contrary to the usual understanding that poles on
the [tb] sheet are irrelevant. Therefore, if the observed
spectrum is peaked about the upper threshold with exper-
imental uncertainties, it would be difficult, in addition,
nonessential to exactly determine which sheet the pole is
really located. What is important is the existence of a pole
near the upper threshold and how distant the pole is from
the physical energy, which should be sufficient for us to
know from experimental data.
Let us discuss the general behavior of the contribution

from a near-threshold pole in comparison to the Breit-
Wigner form. When e > 1, z is on the real axis, and we
parametrize z and zp as z ¼ x, zp ¼ xp þ iyp, where x, xp,
and yp are real. Then, a pole contribution is given by

−
1

π
Im

expðiϕpÞ
z − zp

¼ −
1

π

− cosϕpyp þ sinϕpðx − xpÞ
ðx − xpÞ2 þ y2p

; ð4Þ

which is a Breit-Wigner form in the variable x ¼ z (real)
with an additional phase. If we take the phase of the pole as,
ϕp ¼ 0, the contribution is given by

−
1

π
Im

expðiϕpÞ
z − zp

¼ 1

π

yp
ðx − xpÞ2 þ y2p

;

which is peaked at x ¼ xp. Now let us consider the
behavior when 0 < e < 1; i.e., z is on the unit circle.
We can parametrize z and zp as z ¼ expðiθÞ, zp ¼
rp expðiθpÞ, where θ, rp, and θp are real parameters.
Then, a pole contribution becomes

TABLE I. The pole position on the complex z plane, zp, the complex pole energy, ep, the nearest physical energy, e0, and the distance
from the physical energy, γ0, for poles A–F.

A B C D E F

zp 0.869þ 0.233i 0.895þ 0.094i 0.908 − 0.038i 0.962 − 0.092i 1.100 − 0.100i 1.300 − 0.100i
ep 0.943 − 0.053i 1.000 − 0.022i 1.007þ 0.008i 0.992þ 0.007i 1.002 − 0.018i 1.065 − 0.043i
e0 0.933 0.989 1 1 1.01 1.065
γ0 0.100 0.100 0.100 0.100 0.100 0.100
Sheet [bt] [bt] [tb] [tb] [bb] [bb]

(a) (b) (c)

(d) (e) (f)

FIG. 3. The “normalized” pole-pair contributions, fðz; zp;ϕpÞ, from poles A–F. Two cases are shown with different phases of
residues, ϕp ¼ ϕ0 and ϕ0 − π=2, where ϕ0 is, respectively, chosen as ϕ0 ¼ θp − π=2, Argðzp − 1Þ − π=2, and 0 for poles on the [bt],
[tb], and [bb] sheet, so that the contribution, fðz; zp;ϕpÞ, is maximized at physical energy e0.
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−
1

π
Im

expðiϕpÞ
z − zp

¼ −
1

π

ð−rp þ cosðθ − θpÞÞ sinðϕp − θpÞ − sinðθ − θpÞ cosðϕp − θpÞ
4rpsin2

θ−θp
2

þ ð1 − rpÞ2
; ð5Þ

similar to a Breit-Wigner form in the variable θ with a
phase. If we take ϕp ¼ θp − π=2, then,

−
1

π
Im

expðiϕpÞ
z − zp

¼ 1

π

1 − rp − 2sin2 θ−θp
2

4rpsin2
θ−θp
2

þ ð1 − rpÞ2
; ð6Þ

which is peaked at θ ¼ θp. Therefore, we can intuitively

understand the behavior of fð ffiffiffi
e

p þ ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p
; zp;ϕpÞ in the

whole energy region by combining Eq. (4) for x > 1 and
Eq. (5) for 0 < θ < π=2, as shown in Fig. 4 for typical
cases of poles on the [bt], [tb], and [bb] sheets. As a typical
pole on the [bt] ([bb]) sheet, we take A (F), while on the
[tb] sheet we take a pole between C andD. We have chosen
the phase of the residue, ϕp, such that the contribution is
maximized at the physical energy nearest to the pole.
When the pole is close to the physical region and distant

from the thresholds, in the region of (0 ≪ θp ≪ π=2) on
the [bt] sheet or (xp ≫ 1) on the [bb] sheet, the contribu-
tion is of a Breit-Wigner form. The Breit-Wigner form is
along the unit circle with a peak at θ ¼ θp on the [bt] sheet
and along the real axis with a peak at x ¼ xp on [bb] sheet.
When the pole is on the [tb] sheet and is close to the upper
threshold, two Breit-Wigner forms overlap. Then, the
contribution is given by connecting slopes of two Breit-
Wigner forms and is peaked at the upper threshold, x ¼ 1
and θ ¼ π=2.

IV. Zð3900Þ FROM THE VIEWPOINT OF
UNIFORMIZED MITTAG-LEFFLER EXPANSION

Zð3900Þ is a candidate of exotic hadrons found by
BESIII [31–34] and Belle [35], which appears as a peak in

both the πJ=ψ and D̄D� invariant mass spectra in the
reaction, eþe → ϒð4260Þ → ππJ=ψ and πD̄D�, and later
confirmed by CLEO-c [36]. Our ultimate goal is to analyze
the experimental data for Zð3900Þ by means of uniformized
Mittag-Leffler expansion and draw a model independent
conclusion on the pole structure of Zð3900Þ properties,
such as the mass and the width or on which sheet the
S-matrix pole of Zð3900Þ is located. Before carrying out
the entire program, however, in this paper, we confine our
argument to addressing the possible origin of the Zð3900Þ
enhancement from the viewpoint of the uniformized
Mittag-Leffler expansion.
A symmetry condition of S-matrix poles plays a vital

role in the following argument. Let SðfkigÞ be the multi-
channel S matrix with fkig as the set of channel momentum
in all channels. Then, due to unitarity, the S matrix has the
symmetry,

Sðf−k�i gÞ ¼ S�ðfkigÞ: ð7Þ

From this relation, one can immediately conclude that if
fkig is a pole of the Smatrix, so is f−k�i g, which is referred
to as the “conjugate pole” in the following. Then, if the
complex scaled energy e is a pole of the S matrix, so is e�
on the same Riemann sheet specified by the set of complex
channel momenta. In terms of the two-channel uniformiza-
tion variable, z, the above symmetry is expressed as

Sð−z�Þ ¼ S�ðzÞ;

and the conjugate pole of z is −z� on the same Riemann
sheet symmetric about the imaginary axis.

FIG. 4. The behavior of fðz; zp;ϕpÞ on the unit circle, z ¼ exp i π
2
ð1 − tÞ (the red solid line, 0 < t < 1, and the orange dashed line,

1 < t < 2) and on the real axis, z ¼ t (the blue dotted line, 0 < t < 1, and the red sold line, 1 < t < 2) for typical cases of poles
on the [bt], [tb], and [bb] sheets. The pole positions on the z plane are 0.869þ 0.233i ([bt] sheet), 0.929 − 0.071i ([tb] sheet), and
1.300 − 0.100i ([bb] sheet), respectively.
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In Sec. IVA, we reexamine the HAL QCD results
including the poles conjugate to those given in Ref. [20]
from the symmetry of the S matrix and calculating the pole
contributions in the framework of the two-channel unifor-
mized Mittag-Leffler expansion. There, we cannot deter-
mine the relative contributions of the poles in the spectrum
since we do not know the residues of the poles in Ref. [20].
Then, in Sec. IV B, we set up a separable potential model in
which we have a pole near the D̄D� threshold similar to
Ref. [20] and show that the contribution of such a pole
really dominates the spectrum in the vicinity of the D̄D�
threshold.

A. HAL QCD results

There have already been many theoretical studies which
try to clarify the structure of Zð3900Þ (see Refs. [1–10] and
references therein). Among them, we focus on the work by
the HAL QCD Collaboration [20,21]. They studied the
πJ=ψ − ρηc − D̄D� coupled-channel interactions using
(2þ 1)-flavor full QCD gauge configurations in order to
study the structure of Zð3900Þ. They also examined the
pole positions of the S matrix on the complex energy plane
focusing on those corresponding to usual resonances. They
found some poles located far from the physical region.
From this observation, they concluded that Zð3900Þ is not a
usual resonance but a threshold cusp.
We found it hard to understand their conclusion from the

viewpoint of uniformized Mittag-Leffler expansion, in
which the physical spectrum is given as a sum of pole
contributions in terms of the uniformization variable. In the

following we point out that their results do indicate the
existence of the S-matrix pole near the D̄D� threshold,
which is most likely the origin of the peak found in their
calculation.
In order to study the whole region of the πJ=ψ − ρηc −

D̄D� coupled channel, it would be ideal to implement
three-channel uniformization, by which the three-channel S
matrix is single valued on the whole plane of the unform-
ization variable (global uniformization). However, since the
three-channel uniformization is very much involved, in this
paper, we focus on the region near the D̄D� threshold. The
two-channel uniformization is sufficient for our purpose, by
which the three-channel S matrix can be regarded as single
valued near the D̄D� threshold (local uniformization) but
not on the whole plane of the unformization variable. In the
following, we employ the uniformization variable of
πJ=ψ − D̄D� two-channel system. Effects of the coupling
to the ρηc channel will emerge as branch cuts in the
complex z plane as shown in Fig. 5, which is neglected.
According to the pole symmetry condition, Eq. (7), there

exist conjugate poles corresponding to the poles given in
the HAL QCD results [20]. Table II shows the scaled
energy, ep, the uniformizarion variables, zp, for poles, 1–5
(Imep < 0), given in Ref. [20] and for their conjugate
poles, 1�–5� (Imep > 0), not given in Ref. [20]. Then,
Fig. 5 shows where the poles are located on the complex z
plane. If one compares the location of poles 1–5 and their
conjugate poles 1�–5�, 1� is much farther than 1 from the
physical region, but 2� and 3� are much nearer than 2 and 3
to the physical region. In fact, among all the poles, 1–5 and

FIG. 5. The (locally) uniformized complex z plane for the πJ=ψ − ρηc − D̄D� coupled-channel S matrix. πJ=ψ , ρηc, and D̄D� denote
the corresponding thresholds on the physical energy, respectively. The z plane is a two-sheeted Riemann surface connected by the two
branch cuts running along the unit circle. Both the S-matrix poles given in Ref. [20], 1–5, and their conjugate poles 1�–5�, (not given in
Ref. [20]) are shown by filled and unfilled circles.
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1�–5�, 3� is the nearest to the physical region, the D̄D�
threshold, and the next is 2�. Poles 4 and 5 together with
their conjugate poles 4� and 5� are located on the
“unphysical” sheet of z and are far from the physical
region and therefore are not be discussed any more.
Figure 6 shows the normalized spectrum f for pole pairs,
2–2� and 3–3�. As expected, contributions from 2� and 3�

are peaked at the D̄D� threshold, and their contributions are
much larger than those of 2 and 3.
The above argument shows that the HAL QCD results

indeed imply the existence of S-matrix poles near the D̄D�
threshold. The contribution from the near-threshold poles
shows narrow structures at the D̄D� threshold and is most
likely the source of the observed Zð3900Þ enhancement.

B. Separable potential model

In this section, we analyze the scattering amplitude of a
simple nonrelativistic two-channel scattering. We show an

explicit case that a pole located on the [tb] sheet plays an
essential role for the enhancement of the scattering ampli-
tude at the upper threshold. The scattering energy, E, is
expressed in terms of on-shell momentum pi (i ¼ 1, 2) as

E ¼ p2
i

2μi
þ Δi; ð8Þ

where μi and Δi are the reduced mass and sum of the
masses of two particles, respectively. We take Δ2 > Δ1.
The interaction, Vij, is given by a separable form,

Vijðp0; pÞ ¼ gðp0ÞvijgðpÞ; ð9Þ

with a monopole form factor, gðpÞ ¼ β2=ðβ2 þ p2Þ.
We keep only the off-diagonal potential, i.e., v11 ¼

v22 ¼ 0 and v12 ¼ v, which is motivated from the effective
potential for the πJ=ψ − ρηc −DD̄� system given by the

FIG. 6. “Normalized” pole-pair contributions, fðz; zp;ϕpÞ, from poles 2, 2� and 3, 3� for the cases where the phase of the residue is
ϕp ¼ 0 (above left, above right) and ϕp ¼ −π=2 (below left, below right).

TABLE II. The uniformization variables, zp, and the scaled energy, ep, for S-matrix poles, 1–5 (Imep < 0), given in Ref. [20], and for
their conjugate poles, 1�–5� (Imep > 0), not given in Ref. [20]. Also shown is the sheet on which each pole is positioned.

1; 1� 2; 2� 3; 3� 4; 4� 5; 5�

zp �1.11 − 0.95i ∓0.74 − 0.53i ∓0.86 − 0.45i ∓0.65 − 0.54i �0.79 − 1.34i
ep 0.60 ∓ 0.41i 0.66 ∓ 0.09i 0.79 ∓ 0.02i 0.60 ∓ 0.17i 0.16 ∓ 0.44i
Sheet [bbb] [ttb] [ttb] [tbb] [btb]
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HAL-QCD results [20]. The elastic scattering amplitude of
the lower channel F 11, which is related to the S matrix as
F 11 ¼ ðS11 − 1Þ=ð2iÞ, is given as

F 11 ¼ −πp1μ1gðp1Þ2
v2I2

1 − v2I1I2
; ð10Þ

with

Ii ¼
πμiβ

3

2ðpi þ iβÞ2 : ð11Þ

To investigate the pole structure of the amplitude, we
rewrite Eq. (10) using the uniformization variable, z,

z ¼
p1 þ p2

ffiffiffiffi
μ1
μ2

q
Δ

ð12Þ

or

1

z
¼

p1 − p2

ffiffiffiffi
μ1
μ2

q
Δ

; ð13Þ

with Δ2 ¼ 2μ1ðΔ2 − Δ1Þ. The scattering amplitude is
expressed in terms of two parameters γ and α as

F 11ðzÞ ¼ −αγ
z3ðz2 þ 1Þ

ðz2 − iγzþ 1Þ2
�

1

ðz2 þ iγzþ 1Þðz2 þ iγ0z − 1Þ − αz2
−

1

ðz2 þ iγzþ 1Þðz2 þ iγ0z − 1Þ þ αz2

�
; ð14Þ

where γ ¼ 2β
Δ , γ

0 ¼ γ
ffiffiffiffi
μ1
μ2

q
, and α ¼ πβ3v

Δ2−Δ1
. The poles of the

amplitude are found by the following condition:

z4−1þð−γγ0∓αÞz2þ i½ðγþγ0Þz3þð−γþγ0Þz�¼0: ð15Þ

The coefficients of the even-power terms of z are real, and
the odd-power terms are pure imaginary. The constant term
is −1. Therefore, the eight solutions of Eq. (15) are given
as zp ¼ ðz1;−z�1; z2;−z�2; ia1; ia2; ia3; ia4Þ, two complex
poles z1, z2 together with their conjugate ones and four pure
imaginary poles. In addition, the amplitude has two poles of
rank 2 on the imaginary z axis, due to the form factor
squared, gðpÞ2. Then, the scattering amplitude of Eq. (14)
can be rewritten in the form,

F 11ðzÞ ¼
X
j¼1;2

�
rj

z − zj
þ r�j
zþ z�j

�
þ

X
j¼1;4

r0j
z − iaj

þ
X
j¼1;2

�
rβj

z − iaβj
þ ir0βj
ðz − iaβjÞ2

�
; ð16Þ

where aj, r0j, rβj, aβj, and r0βj are real constants. The first
term includes complex poles and their conjugate ones.
Poles on the imaginary axis of z appear in the second term.
The third term is due to the monopole form factor of the
separable potential. Equation (16) explicitly shows that the
amplitude is expressed by the uniformized Mittag-Leffler
expansion as Eq. (1). It is the nature of the separable
interaction that the amplitude consists of a relatively small
number of dynamical poles generated by repetition of the
interaction and also of some poles due to interaction form
factors. In general, depending on the nature of the inter-
action or the model, the amplitude may contain singular-
ities, such as poles, cuts, or essential singularities, in

addition to the dynamically generated poles. Also,
Eq. (16) explicitly shows that the amplitude satisfies the
symmetry relation

F 11ð−z�Þ ¼ −F �
11ðzÞ: ð17Þ

Similarly, we show in the Appendix that the Flatté formula
can be written in the form of the uniformized Mittag-Leffler
expansion with four poles.
In the following numerical example, we take

ffiffiffiffiffiffiffiffiffiffiffiffi
μ1=μ2

p ¼
0.606, where μ1 and μ2 are the reduced mass of πJ=ψ and
D̄D�, respectively. By setting two parameters γ ¼ α ¼ 1.7,
poles emerge at z ¼ �0.754 − 0.229i on the [tb] sheet and
z ¼ �1.198 − 1.076i on the [bb] sheet. Table III shows the
uniformization variable, the residue, and the scaled energy
for the poles. It should be noted that pole 1� is located
almost at the D̄D� threshold energy with a small width. We
examine jF 11j2 and ImF 11, which correspond to the elastic
cross section and the total cross section, respectively. In
Fig. 7, black solid curves include contribution of all poles
in Eq. (16), while red (blue) solid and dashed curves show
the contribution of pole 1 (2) and its conjugate pole 1� (2�).
The results clearly indicate that pole 1� on the ½tb� sheet is
responsible for a significant fraction of the enhancement at
the D̄D� threshold.

TABLE III. Pole positions, zp, and residues, rp, of F11 when
α ¼ γ ¼ 1.7.

1; 1� 2; 2�

zp ∓0.754 − 0.229i �1.198 − 1.076i
rp 0.118 ∓ 0.042i −0.147 ∓ 0.254i
ep 0.964 ∓ 0.138i 0.580 ∓ 0.549i
Sheet [tb] [bb]
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The results from the separable potential model support
our argument that the Zð3900Þ enhancement can naturally
be explained by the existence of poles near the D̄D�
threshold on the complex energy sheet which are usually
considered to be physically irrelevant.

V. SUMMARY AND CONCLUSIONS

In this paper, we exhibited how S-matrix poles manifest
themselves as the physical spectrum near the upper thresh-
old, from the viewpoint of the uniformized Mittag-Leffler
expansion, and argued that the enhancement of Zð3900Þ
very close to the D̄D� threshold most likely originates from
a pole (a couple of poles) near the D̄D� threshold.
After introducing the two-channel uniformized plane and

the uniformized Mittag-Leffler expansion, we numerically
demonstrated how the spectrum changes as a S-matrix pole
moves near the upper threshold across the borders of
complex-energy Riemann sheets. As a pole moves from
the [bt] sheet through the [tb] sheet to the [bb] sheet, the
contribution from the individual pole continuously transi-
tioned, peaking at the energy of the physical point closest
on the uniformized plane, with the width given by the
corresponding distance. The continuous behavior of the
transition implies that the identity on which sheet a pole is
located is not essentially important. The fundamental
identities which characterize the contribution of a pole is
given by the residue of the pole and the distance of the pole
to the physical region on the uniformized plane. We also
observed that the complex pole energy does not have the
usual meaning of the resonance when the pole is close to
the upper threshold. Neither the real part represents the
peak energy, nor the imaginary part represents the half
width. For example, the complex energy of a pole on the
[tb] sheet in the near-threshold region of the upper thresh-
old has a positive imaginary part.

Subsequently, we argued that Zð3900Þ can be naturally
understood as a contribution of a set of poles in the domain
near the D̄D� threshold. We showed that the HAL QCD
results [20,21] combined with the symmetry argument of
the S matrix indicate the existence of the S-matrix poles
near the D̄D� threshold, whose normalized contributions
have narrow structures at the threshold. We further dem-
onstrated such poles indeed exhibit a dominant enhance-
ment in the spectrum by means of a separable two-channel
nonrelativistic potential model with a monopolar form
factor.
To further solidify our claim, it would be very mean-

ingful to develop a parametrization which enables us to
globally (entirely) unformize the three-channel S matrix.
Also, we would like to fully exploit our uniformized
Mittag-Leffler method to actual experimental observations
of Zð3900Þ, such as the invariant-mass distributions of
Y → ππJ=ψ measured by Belle and BESIII Collaborations
[31–35]. Last but not least, we have not fully understood
the nature of such a pole which is possibly responsible for
the Zð3900Þ enhancement and is located near the D̄D�
threshold on the complex energy sheet usually considered
to be physically irrelevant. It is not clear how we should
interpret such a pole because it would have a complex
energy with a positive imaginary part and increases in time,
while a resonance pole has a complex energy with a
negative imaginary part and decreases in time. It would
be our future challenge to clarify the nature of such a pole,
which would extend our understanding of the resonant
phenomena, in general.
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p ¼ 0.606. e is a dimensionless parameter given by
e ¼ ðE − Δ1Þ=ðΔ2 − Δ1Þ. Individual contributions of poles zi and their conjugate pairs are shown by solid and dashed curves
(red/blue), respectively.
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APPENDIX: FLATTÉ FORM IN THE
UNIFORMIZED PARAMETRIZATION

The Flatté’s formula [14] is widely used to analyze the
threshold enhancement and a possible role of the reso-
nance. The formula is essentially equivalent to the two-
channel Breit-Wigner (BW) formula [16,17,37]. We rewrite
the two-channel BW formula in terms of the uniformized
Mitterg-Leffler expansion. The elastic scattering amplitude
of channel 1 is given as

F 11 ¼
−γ1p1

E −M þ iγ1p1 þ iγ2p2

: ðA1Þ

Here M, γ1, γ2 are parameters of real numbers, and p1, p2

are the momenta in the lower and upper channels defined in

Sec. IV B. By using uniformization variable z, the ampli-
tude is written as

F 11 ¼ −γ
z3 þ z

z4 þ 1þ αz2 þ i½ðγ þ γ0Þz3 þ ðγ − γ0Þz� ; ðA2Þ

where γ ¼ 4γ1μ1
Δ , γ0 ¼ 4γ2

ffiffiffiffiffiffiffi
μ1μ2

p
Δ , and α ¼ 4μ1

Δ2 ½Δ1 þ Δ2 − 2M�.
The denominator of the amplitude gives a condition for the
pole, which is very similar to Eq. (15). The two-channel
BW amplitude has two pairs of poles ðz1;−z�1Þ, ðz2;−z�2Þ
with jz1z2j ¼ 1. The Flatté formula always contains two
pairs of poles, and one is in the [tb] or [bt] sheet, and the
other is in the [bb] sheet. We can further rewrite the
amplitude exactly as the form of Mittag-Leffler expansion,

F 11 ¼
X
j¼1;2

�
rj

z − zj
þ r�j
zþ z�j

�
: ðA3Þ

The residue is constrained from unitarity. The S-matrix
element is written as

S11 ¼
Y
i¼1;2

ðzþ 1
zi
Þðz − 1

z�i
Þ

ðz − ziÞðzþ z�i Þ
: ðA4Þ
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