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We employ an effective kinetic description, based on the Boltzmann equation in the relaxation time
approximation, to study the space-time dynamics and development of transverse flow of small and large
collision systems. By combining analytical insights in the small opacity limit with numerical simulations
at larger opacities, we are able to describe the development of transverse flow from very small to very
large opacities. Surprisingly, we find that deviations between kinetic theory and hydrodynamics persist
even in the limit of very large opacities, which can be attributed to the presence of the early

preequilibrium phase.
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I. INTRODUCTION

Over the past decades, the collective flow of soft hadrons
produced in high-energy heavy-ion collisions at the
Relativistic Heavy-lon Collider (RHIC) and the Large
Hadron Collider (LHC) has become one of the cornerstones
to establish the existence of deconfined quark gluon plasma
(QGP) and to characterize the properties of strong-inter-
action matter under extreme conditions. The space-time
dynamics of relativistic heavy-ion collisions is commonly
described in terms of relativistic viscous hydrodynamics
[1-5], which provides an accurate description of exper-
imental measurements of soft hadron production and
collective flow at RHIC and LHC.

Based on the tremendous success in quantifying proper-
ties of the QGP produced in heavy-ion collisions [6-9],
different groups have performed hydrodynamic calcula-
tions for small systems [10-24], which also provide a
reasonable description of the experimentally observed
collective flow in proton-nucleus and proton-proton colli-
sions [25-27]. However, in contrast to nucleus-nucleus
collisions, such calculations are subject to much larger
uncertainties, where, in addition to the poorly constrained
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initial state geometry [19,28,29], one may question the
theoretical justification for employing a hydrodynamic
description for a system, which features a very short
lifetime and consists of very few degrees of freedom.

Despite significant progress in understanding the onset
of hydrodynamic behavior in QCD plasmas (see, e.g.,
[30,31] for recent reviews), calculations performed in this
regard are typically subject to simplifying assumptions,
e.g., modeling the early stages of heavy-ion collisions in
terms of a transversely homogenous Bjorken flow, and are
therefore not (yet) able to capture the competing effects of
longitudinal and transverse expansion in small collision
systems.

Beyond studies based on effective macroscopic
descriptions of QCD, there have also been attempts to
explain the onset of collective behavior in small systems
by invoking a microscopic origin of the correlations.
Examples include calculations within the color glass
condensate (CGC) effective field theory of high-energy
QCD [32-42], as well as more conventional approaches
extending general purpose event generators such as
PYTHIA or HERWIG to include space-time dependent final
state interactions [43-46].

Clearly, the development of a unified description that
encompasses both paradigms in the respective limit is an
outstanding challenge [47]. Beyond microscopic calcula-
tions that are rooted in the underlying theory of QCD, it is
therefore an important achievement that—at least within
simpler microscopic descriptions—it is possible to include
a nontrivial transverse expansion [48-55], and, in some
cases, even detailed event-by-event geometries [37,56-58]
to describe the onset of collective flow. In this spirit, the
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central objective of this paper is to scrutinize the develop-
ment of transverse flow and investigate possible changes in
the space-time dynamics and flow response of small and
large systems.

We follow previous works [52,53,57] and employ a
simple kinetic description of the system described in
Sec. II, where the system size and energy dependence is
characterized by a single opacity parameter. Within this
framework, we perform (semi)analytic calculations to
leading order in opacity in Sec. III and subsequently in
Sec. IV develop two different numerical schemes that
allow us to study the evolution of the system all the
way from very low to very high opacity. Numerical
results are presented in Sec. V, where we analyze the
longitudinal cooling and flow response in kinetic theory
as a function of opacity and compare it to analogous
calculations in ideal and viscous hydrodynamics. We
conclude with Sec. VI. Several appendices contain
additional details and explicit expressions for the
(semi)analytic calculations.

II. EFFECTIVE KINETIC DESCRIPTION OF
ANISOTROPIC FLOW

A. Setup

We will describe the system via an averaged phase-space
distribution f(x, p) of (massless) quasiparticles, for which
we assume boost invariance along the longitudinal (beam)
direction. Effectively, this reduces the dimensionality of the
problem to (2+ 1)+ 3 dimensions, which can be effi-
ciently described using Milne coordinates x* = (z,X |, 7)
and p* = (p*,p., p"), where

r= /(02 - (¥ g=artanh(x/x), (1)
such that 7 is invariant, and # behaves additively under
boosts in the longitudinal direction. Defining similarly

y = artanh(p*/p’), (2)

it follows from boost invariance that the phase-space
distribution f can only depend on # and y via their
difference. We denote transverse positions in terms of
regular cartesian coordinates x; = (x', x?), such that the
metric of the coordinate system (z,x,,7) is given by
G = diag(1,-1,-1,—7%). The corresponding momenta
(p*,pL,p") are the cartesian transverse momentum p |,
and

P

p" = pycosh(y—n), pl= —smh(y n), (3)

where p, =|p.|. Based on a kinetic description
of the nonequilibrium dynamics, the evolution of the

phase-space distribution is governed by the Boltzmann
equation,

p'0,f = Clfl. (4)

For the collision kernel, we employ the relaxation time

approximation (RTA),
"
{f feq<p"”>} (5)

where we choose a temperature-dependent relaxation time,

5n/s
Gl

CRTA [f ]

(6)

to describe a conformal system with constant shear vis-
cosity to entropy density ratio #/s. Energy-momentum
conservation requires that the local equilibrium temperature
T and rest-frame velocity u* are determined via the Landau
matching condition [60—64],

u, T" = eu*, (7)

with timelike four-velocity eigenvector u,u* = +1 and
eigenvalue ¢, representing the energy in the local rest frame.
The temperature 7 can be computed from the energy
density e via the equation of state,

2

T
€= %VeffT (8)

which introduces a proportionality factor %ueff, which can
be absorbed into redefinitions of the related quantities
(cf. Sec. II B). The stress-energy tensor 7+ is obtained
from the distribution function f via

TH(x) = Verrr/—g / p” “flxp), (9

where /=g =t denotes the metric determinant, &p =
d’p,dp" is the integration measure in Milne coordinates,
and vz represents the degeneracy factor.

Since the computation of observables will involve
weighted integration of f over momentum space, we define
a shorthand notation (-) as

'We note that in Eq. (4), coordinate derivatives on the lhs are to
be evaluated at constant p* in Minkowksi space. Throughout this
manuscript, we will employ different parametrizations of the
spatial and momentum coordinates, which give rise to additional
terms on the lhs. Specifically for a boost-invariant system in
Milne coordinates, one finds [59]

pe of
T Op"

pOf +p1-Ox f— = Clf].
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(@) Veff\/_/ O(p..p")f, (10)

which allows, for example, one to write the energy-
momentum tensor as T+ = (p#p¥).

We consider initial conditions motivated by the CGC
effective field theory of high-energy QCD [65], where the
initial state very shortly after the collision (z ~ 1/Q;) can
be viewed as a highly anisotropic collection of gluons
with typical transverse momenta ~(Q, and vanishing
longitudinal momenta in the local rest frame [37.,41].
Specifically, we will consider initial conditions of the form,

(2z)*8(y—n)  dN,
Veff  ToPL deLdszdy’

(11)

f(TOvXJ_v P,y _'7) =

which has vanishing longitudinal pressure (7", = 0).
Strikingly, it can be shown (cf. Sec. I B) that—due to
the particularly simple nature of RTA—certain energy-
weighted observables do not depend on a particular form

SN,
&x, d’p  dy [52],

and we will therefore not specify it further. Instead, the
dynamics is entirely described by the initial energy density
distribution, which, for the initial conditions in Eq. (11), is
determined by2

of the (isotropic) momentum distribution

dN,

—_—. 12
dzdeszdy ( )

1
e(r9.x,) = T—O/dszPL

We take the initial energy density e(zy,X ) as a super-
position of an isotropic background &(zy,x,) depending
only on x, =|x;| and an anisotropic component
oe(tg, X ); 1.e

€(7o, X 1) = &(zg, x1 ) + Se(7o, X ). (13)
We follow previous works [51,57] and consider the back-
ground to be of a rotationally symmetric Gaussian shape,

p(-3) 09

. dEY
where R denotes the transverse system size and d; denotes

1 de(”
— X
Rty dn

é(TvaJ_) =

the initial energy per unit rapidity. Similarly, the anisotropic
perturbations are taken as’

2Strictly speaking, the integration in Eq. (12) yields a density
in d>x | dy. However, in the boost-invariant case, the phase-space
distribution f only depends on y —#, meaning that integration
over y and 7 is interchangeable, and densities w.r.t. dy and dy are
identical.

*Note that the anisotropic perturbations contain a variance
modification factor @; a similar factor in the isotropic Gaussian
could always be absorbed into the definition of R.

_ ) (xL)"
Se (7, X1 ) = (79, x1 )5, exp e N\ R
X cos(n(ﬁg?nl), (15)

such that upon integrating over the transverse coordinates
X |, the perturbations do not contribute to the total energy.

By ¢§{i)n > we denote the angle,

P, =y =W, (16)

where ¢, is the position space azimuthal angle, i.e.,
¢, = arctan(x?/x'), and W, is the symmetry plane angle
of the nth order angular harmonic mode. To compactify the
notation, in the following, we will drop the superscript (1)
and write ¢, , . We note that in accordance with Eq. (15),
we will restrict ourselves to including only one anisotropic
mode at a time, which means that we need not specify ¥,
(or rather the relative angles between different symmetry
planes). We leave the parameter « unspecified for analytical
calculations and, if not stated otherwise, employ a = 1/2
when presenting numerical results.

By varying the amplitude o, of the anistropic perturba-
tions, we can adjust the eccentricities €,, of the initial state
energy distribution. Following standard procedure [66,67],
the initial state eccentricities ¢, are determined as

Jo, Xte(xy) cos [n(g, = ¥,)]

f XJ_E'XJ_

, (17)

€, = —

which can be computed analytically for our form of the
initial condition. Defining & = 1 + a, the results are

a "l (18)

6 in the case a = 1

Values of the ratio ¢,,/6, forn =2, ..., 3
are summarized in Table I, along with the maximally
allowed values e for which a positive energy density

is retained throughout the entire transverse plane.

B. Scaling properties

Based on the above setup, the development of aniso-
tropic flow in small systems constitutes a complicated
multiscale problem, which, in general, is sensitive to the

TABLE 1. Eccentricities €,/8, and maximum allowed eccen-
tricity e;®* for which positivity of the initial energy density is
satisfied.

n 2 3 4 5 6
€,/ _ 8 _ 64 _64 _ 2048 _ 2560
ntCn 27 81z 81 7297 729

e 0.4027 0.3845 0.3649 0.3454 0.3265

014031-3



AMBRUS, SCHLICHTING, and WERTHMANN

PHYS. REV. D 105, 014031 (2022)

typical energy of quasiparticles Q,, the total energy per

unit rapidity dEio) /dn, the system size R, as well as the
dimensionless coupling strength 7/s. However, due to the
particular simplicity of the conformal RTA in Eq. (5),
the entire dependence on these quantities can be expressed
in terms of a single dimensionless opacity parameter 7 [52],
as we will now demonstrate.

The starting point is the Boltzmann equation (4), in
which we assume that the phase-space distribution f(x, p)
can be expressed as an explicit function of the curvilinear
coordinates 7 and x|, as well as of the momentum space
coordinates p®, v, and ¢,, defined via

p° 1 cos ¢
=p( _, ). pi=pr-o 7).
p" T, sing,

(19)
In this case, the Boltzmann equation (4) reduces to [52]

1= 2 2 T
SLEC PN
T h T

<aT + A VJ_ —
_ _(s Z)_IT[f]v”uH[f](f—feq[f]), (20)

where we denote v = p#/p?, while T and u* are deter-
mined from the phase-space distribution f via Landau
matching, as described in the previous section.

Now the general strategy to establish the scaling proper-
ties of the system is to first integrate out the momentum
dependence and subsequently express all quantities in
terms of dimensionless variables. Since the Landau match-
ing condition in Eq. (7) only requires the knowledge of
energy-weighted moments of the phase-space distribution,
we reformulate the problem in terms of the reduced
distribution,”

VegrTR*T dEON ™!
R

x Am dp*(p*) f(z. x5 p*, by v2),
(21)

where the constant prefactor is simply chosen to cancel

de®

explicit dependencies on vy and . in the resulting

equations. Since Eq. (21) takes into account the correct
energy (p®) weighting, the energy-momentum tensor 7
can simply be expressed in terms of the reduced distribu-
tion as

*Note that our definition for  differs from the one in Ref. [52]
by a factor of 7, which is introduced in order to absorb trivial
effects of the longitudinal expansion.

1 de”

M) = e gy

/ dQ,v" ' F(t, X 5¢,.v,), (22)
where dQ, = dv.d¢, denotes the solid angle element in
momentum space. By multiplying Eq. (20) with the

appropriate prefactors and performing the integration in
Eq. (21), we then arrive at

= = 1 —2? 402 -1
<61+5L'8EL—UZ( Uz)avz+ Uz% )]:

T

= v, [FIe A TIF)(F = Fogl F)). (23)

where all quantities denoted with a tilde ~are explicitly
dimensionless and defined as follows. Dimensionless
coordinates are expressed with respect to the system size
R as

%:T/R, )’ZJ_:XJ_/R, (24)
while the dimensionless energy density € and temperature
T of the system are defined according to

2 1/4
L P <—T”R2Weff> r (25)
dE\" /an dEY dn

Defining the stress-energy tensor with respect to the same
nondimensionalization employed for the energy density,
we have

~ nR?

= R g / 4Q, v F,  (26)
dE\ /dn '

such that the Landau matching condition in Eq. (7)

reduces to

u, T" = eu*, (27)

and the equation of state takes the particularly simple form
¢ =T" in terms of the dimensionless variables. By con-
sidering the fact that the local equilibrium distribution
is determined as feq(x, p) = feq[p"(v - u)/T], the corre-
sponding distribution F ., can be expressed as

(0)\ -1 4
VegrmR*t (dEY T /oo 3
F p— 2

e (2r)3 ( dp (u-v)* Jo daxfeqlx). (28)

where the last integral can be computed in terms of the
energy density € as [§° dxx®foq(x) = (2n)'e " such that F, e

T Aaug TV

takes the simple form,

I
Y R

F (29)
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Similarly, the initial condition for F can also be obtained
by integrating Eq. (11), where assuming an azimuthally
isotropic momentum distribution, one can express F in
terms of the initial energy density as

ez, (0)

f(%()v X, (bp’ vz) =
such that the prefactors in the definition of &(%,,X,) in
Eq. (25) cancel with the ones in Eq. (21).

By performing the above transformations, all depend-
©
encies on the system size R, initial energy %, and number
of degrees of freedom v have thus been subsumed into a
single dimensionless opacity parameter,

_ (0)\ 1/4
?:<5Q> 1R3/4< 1 dEL) (1)
2 ’
N ﬂ'Rz g_o”eff d”

which appears on the right-hand side of Eq. (23) and
controls the relaxation toward equilibrium. In order to get
an idea of the typical magnitude of 7, we can estimate its
value as

om0gs( /) (RN dE fdn\ P () 4
880.16) \04amm) \5Gev 20)
(32)

which indicates that in small systems realized in p + p and
p + Pb, one should typically expect  of the order unity.
Conversely, in large systems, the opacity can be signifi-
cantly larger, such that, e.g., in central Pb 4 Pb collisions
at LHC energies, one obtains

“\0.16 6 fm 4000 GeV 40 ’

(33)

Based on a combination of (semi)analytic and numerical
studies, we will therefore explore the full range of opacities
7<1,7~1and 7> 1 in order to investigate possible
changes in the reaction dynamics for small and large
systems.

C. Observables

Before we discuss the details of the solution of the
previously stated problem, it is instructive to introduce
the observables, which we will use to quantify the time
evolution of the system and the development of transverse
flow. Below, we will define all observables in terms of the
original phase space density f and additionally express
them in terms of the shorthand notation (-) that was
previously introduced in (10). Based on the above dis-
cussion, we will restrict ourselves to energy-weighted

observables, which can be formulated in terms of moments
of the reduced distribution F as

1 deV

<(p1)20(”z’¢17)> = IR2 dy

dQ,0(v,.¢,)F. (34)

One of the basic observables to look at is the transverse
energy per unit rapidity dE | /dy, computed via
1—v >

Vet T / / 3PLf /
(35)

whose decrease in time is a measure of the work performed
against the longitudinal expansion of the system. Since we
are interested in azimuthal momentum anisotropies, the
most important observables are the flow harmonics v,
given as the normalized Fourier modes of the particle
distribution in the azimuthal momentum angle [68,69]. We
note that, in accordance with the above discussion, we also
weight the v,’s with the transverse momentum p; to
acquire an energy-weighted version of these flow harmon-
ics; i.e., we will study the moments,

kS %PK’""”’f _ e (p2 V1= v2emn) (36)
[N, |

E
n

v

fo_ <(p1)2 \% 1_1}%>

Beyond the vZs, which describe azimuthal anisotropies of
the momentum distribution, another energy-weighted ellip-
tic momentum anisotropy can also be defined on the level
of T* without the need of full knowledge of f. Explicitly,
this elliptic anisotropy of the energy flow ¢, is defined
as [70-72]

B ij_ (Tll _ T22 + 2lT12>

€ e (721 = )it
P @t

Se AP =02))
(37)

and we will employ this measure in Sec. V C to compare
the kinetic evolution to relativistic viscous hydrodynamics
in order to avoid possible ambiguities of the freeze-out
prescription.

III. SOLUTION TO LINEAR ORDER IN OPACITY 7
AND ECCENTRICITY ¢,

While the Boltzmann equation (4) as an integro-
differential equation is in general too complicated to solve
analytically, important conclusions can be obtained in the
weakly interacting regime close to free streaming, which
corresponds to the limit y — 0. We are primarily interested
in the development of anisotropic flow, i.e., the final state
momentum space anisotropy quantified by the harmonic

014031-5
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coefficients v,, in response to the initial state coordinate
space eccentricity quantified by the amplitudes ¢,
(or equivalently 6,) of the harmonic perturbations intro-
duced in Eq. (15). Starting from the free-streaming regime,
where there is no production of v,, we seek to follow
previous works [48-50,53-55] in deriving analytical
expressions for v,(7), which are accurate to linear order
for small 7 and small €,.

Since in the free-streaming system, the momenta of the
particles remain unchanged, the free-streaming dynamics
is effectively 2 + 1-dimensional, and we will continue to
work in spatial Milne coordinates, where, in contrast to
other sections, we use y for longitudinal momentum para-
metrization instead of p" or v,. Another feature is that the
analytical setup will quite straightforwardly also allow
one to treat the problem more generally without restricting
it to energy-weighted degrees of freedom. However, this
requires one to specify the initial condition in (11) in more
detail—in particular, with regards to the initial momentum
distribution dN,/d>x ; d’p, dy, which will introduce addi-
tional scales that non-energy-weighted degrees of freedom
will depend on. We will assume that this distribution is
(initially) isotropic in transverse momentum and depends
only on some nonspecific but fixed function F of the ratio
of p, to the momentum scale Q (x,); i.e.,

Ny F(M) (38)

deJ_dsz_dy P1

where the characteristic energy scale Q,(x ) is related to
the local energy density e(zg, X, ) via Eq. (12).

Below, we outline the calculation of observables to
leading order in an expansion in opacity 7 and eccentricity
€, and quote the results for the flow harmonics v, and the
longitudinal cooling of dE | /dn. Details of the analytic
calculation are compiled in Appendices A—C.

A. Expansion scheme

To linearize the solution in opacity, we expand around
the free-streaming limit corresponding to zero opacity,
denoted as f(©), which satisfies

P, =o. (39)

The first order correction f(!) is obtained by computing the
effect of the first scattering of each particle, with the
scattering rates determined by the zeroth order result,

p o, f = ClfO)]. (40)

This type of expansion was conceptualized in [48,49] and
has recently also been used in other works examining
weakly interacting systems [50,53-55]. As reasoned in the
previous section, we can factor out from C[f] the opacity
parameter 7 as a proportionality constant containing all

parametric dependencies. Therefore, # can be identified as
the expansion parameter of this expansion scheme. In the
following, we will denote observables X computed in the
free-streaming limit as X(©) and their first order corrections
in opacity by X().

Similarly, for the expansion in eccentricity, we recall
from Sec. IT A that the initial energy density is of the form,

e(79,x1) = &(7g, x1) + de(7p, X1 ), (41)

with isotropic € and purely anisotropic de, which introduces
a finite eccentricity €,. Evidently, in free streaming, the
isotropic and anisotropic components of the phase-space
distribution f evolve independently of each other, and
the anisotropic perturbation can be computed exactly.
However, when computing the induced changes of the
phase-space distribution f(!), one is required to perform the
Landau matching at the level of the full energy-momentum
tensor emerging from f(¥), which introduces a nontrivial
coupling of the isotropic and anisotropic components.
Hence, for simplicity, we will solve the corresponding
eigenvalue equation only to linear order in the anisotropic
perturbations, which formally corresponds to a leading
order expansion in €,. In the following, we will denote the
linearized corrections to observables X due to the aniso-
tropic perturbation as 6X.

B. Observables

Since we want to examine momentum anisotropies, all
observables of interest will be derived from the momentum
distribution dzd o which can be obtained from the
phase space density f by integrating over coordinate space
variables. Specifically in Milne coordinates, the four-
volume transformation entails an extra functional determi-
nant for the 3D hypersurface integration at fixed proper
time 7, such that

dN _ Vetr
dp,dy p.dy (27r

/ / dyp zcosh(y —n)f. (42)

Based on the momentum dlStI‘lbuthIl we will extract

dN
d 2
the following moments’:

*Note that, in contrast to the different treatments described in
the other sections, the analytical treatment allows one to describe
more than just the energy-weighted version of the flow harmon-
ics. Nevertheless, there are two important reasons for extracting
moments of the distributions, rater than differential observables

such as % or v,(p ). The first is that the integral over p | will

be crucial in facilitating further analytical integrations later on,
but perhaps the more convincing reason is the aforementioned
simplification of the problem when restricting it to the case of
m = 1 for the energy-weighted observables.
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Vin :/ elnd)nprln
PL

which can be directly related to the observables that are of

interest to us. Specifically, one has ¢ i =V, and v£ “20

o= [ e, @
L

C. Free-streaming solution

The free-streaming solution of (39) can be computed,
e.g., via the method of characteristics to be

f(())(T’ X1,pL,y— ’1) = f(o) <TO7XJ_ - Vﬂ(ﬁ 70,y — ’1),

p ., arcsinh <£ sinh(y — 17)) > ,
T

0
(44)

where v, =p,/[p.|, and

t(z,79,y —n) = tcosh(y —n) — \/r(% + 72 sinh?(y — 7).
(45)

We note that the free-streaming result simplifies signifi-
cantly for £ (zy,x ., p..y —n) « 8(y — 1), as in this case,

5 (arcsinh <% sinh(y — n)) )

t(z,79,0) = 7 — 79 = Az. (47)

= Loy —n). (46)

and

By applying this simplification to our initial condition in
Eq. (11), we obtain
fO (t,X1, P,y —1)
_@aPsly—n) . <QS(X¢

Vet TP

- VLAT)). (48)

yZan

Evidently, the free-streaming evolution will not change the

momentum distribution dQ;N - since there are no scatterings,
1)
(0)

and therefore, also the moments V,,;, will remain constant,

(7). VW (@) =0, (49)

m,n>0

(0) _ v
Vm,n:O(T) - Vm,n:O
where the last equality follows by noting that the initial
condition is isotropic in momentum space. Subsequently,
all v%s with n # 0 vanish identically at all times z, while the
energy per unit rapidity remains constant,

£0) dE( dE

D. Landau matching

Next, the free-streaming result can be used to compute
the energy-momentum tensor of the isotropic background
T and its anisotropic perturbations 7% which will
be needed to obtain the local thermodynamic variables that
enter the collision integral C[f]. Defining

U,i = P”/Pﬂy—q:o = (LVJ_?O)’ (51)

the isotropic part 7(O% of the energy-momentum tensor is
given by
do,

0
TOmw = 2 [ —ZL ol 4 &(zg,x, —

- Atv)).  (52)

Due to isotropy, it has only four independent entries and
can be written as

T(0)e T(O)TL)}’L 0
TOw = | 70 7O L 7O %0 0 |, (53)
0 0 0

where we denote X, = x, /|x|. T(O% has eigenvectors
ut, t and s* satisfying the relations,

u, TO = ey, (54)
1, TOm = p1, (55)
sﬂT<0)’”’ = pyst. (56)

Based on its symmetries, these eigenvectors can be para-
metrized as

=r(1.%..0), (57)
= 7(ﬁ’ﬁl’0)’ (58)
st = (0, iO'zﬁJ_, 0), (59)
where
B 3T(0)T‘L’ 4 TO)LL 37(0)zz + TO)LLN 2 . 60
b= 470)7L - 470)7L - ( )
is the local rest-frame velocity, y = (1 —f?)~"/? and
. 0 1 . .
ioy = ( -1 0 ); the corresponding eigenvalues are
given by
€= T(O)TT _ﬁT(O)fl’ (61)
P, = ﬁT(O)‘[J_ _ T(O)J_J_ _ T(O)]l’ (62)
py=-TO1, (63)
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Now, similarly to the isotropic background in Eq. (52),
the anisotropic part of the energy-momentum tensor can be
computed as

dg, ,

ST O —
2

v vY Se(rg, X, — Atvy), (64)
which—due to the absence of isotropy—features six
independent entries, and its eigenvalues and eigenvectors
will be a complicated function of all of them. Obtaining
their exact result would be cumbersome and ultimately
pointless, as it would be too complex to perform further
calculations with them, so instead, we will linearize the
Landau matching condition in the perturbation, meaning
that the corrections de and du* are computed from

5MMT(0)/41/ + uﬂ5T(0)ﬂ” = deu" + edout, (65)

u,6u' = 0. (66)

The second condition ensures that the perturbation pre-
serves the correct normalization of u* to linear order. In
order to solve this system of equations, we can expand

out = du,t" 4 Su st (67)

and use the orthogonality of the eigenbasis of T(O# to
obtain via contraction with the eigenvectors from (65) the
following results:

e = u, 6T Omy,, (68)
5T(O)/“’l‘

Su, = 107 (69)
pr—€
ST O)pv

Su, = O v (70)
Ps—€

While Egs. (61)—(63) and (68)—(70) provide schematic
expressions for the ¢, d¢, u#, and Su*, the exact forms of
TOm and ST that determine these quantities consist of
lengthy expressions, which are provided in Appendix B.

E. First order corrections in y

Now that we have obtained the local energy densities and

flow velocities, computing the corrections 5f!) due to the
first scatterings according to

H Cl£©)
%8”]((1): [f ]

(71)

is comparatively straightforward after realizing that this is
just the inhomogeneous case of the PDE we already solved
for free streaming. The solution (44) allows one to read off
the Green’s function for propagation in time and compute
f via

f(l)(’f,XL,PL,y—’I)
T C (0)
= / dT/L <T,9XL -v t(z. 7,y —1n).p.L,
70

pT
. T .
arcsinh <—, sinh(y — 11)) > . (72)
T
Since we will integrate over space to compute dzg (2‘

according to (42), we can simplify this expression by
performing the following substitutions:

X\ =x —vy(e.7y—-n).

7 = y — arcsinh (1/ sinh(y — ;7)), (73)
T
such that
cosh(y — 1)
Ex =dxy, dy = ST gy (74
X | X Ui T/ cosh(y _ 11/) 1 ( )
yielding the following result for the changes in the
momentum space distribution dﬁ'gizy:

d /] Veff
dpdy (7.p1) /df//d
[f( 1@ x ) pry— ’I) (75)

where, in the following, we will drop the primes on all
integration variables except for 7/. Since, as stated in
Sec. III B, the final observables we want to compute

2
correspond to d”p, -integrated moments of d‘ one

is then left with the calculation of the followmg Six-
dimensional integral,

VE,:,Z(T):/ tkd),, m/ dT/ / 7 Veff
pPL

x ClfO)(« x ., pr.y—n). (76)

We find that four of these integrals can be carried out
analytically, while the remaining two integrals over dz’ and
dx, require numerical methods. Below, we provide a
brief outline of the four analytical integrations and explain
how different terms can be categorized. Explicit expres-
sions and further details of the analytic calculation can be
found in Appendix C.

The integration over p is performed first to obtain
moments of F and f.4, which will facilitate the other
integrations. Since the integrand depends mostly on u - v,
we substitute integration over the position space azimuthal
angle ¢, for integration over ¢y , = ¢, — ¢, The integral
over n is straightforward for the term containing a
Dirac delta, but for other terms, it is of similar complexity
to the integral over ¢, , and both are performed together.
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After these integrations, the only remaining dependence
on the azimuthal momentum angle takes the form,
e cos(ngp n,) (Pp,n, = ¢, —¥,), and the last integral
becomes a trigonometric orthogonality relation, which
signifies that eccentricities do not mix, as is to be expected
due to the linearization.

Due to the fact that we consider an isotropic background
with a purely anisotropic perturbation, the leading order
expansion of the flow harmonics is given by

Vi

B VmO Vgn())

+ nonlinear terms. (77)

Due to this symmetry, one also finds that the leading order
opacity contributions to the observables V,,, conveniently
separate into the first order isotropic corrections V,% x ¥
for n =0 on one hand and the first order anisotropic

corrections 5V£,1,)1 76, to only moments with n # 0 on the

other hand. While the former (V%) represent opacity
corrections to the evolution of the isotropic background,

the latter (5V£nl,),) describe the systems’ response to the
anisotropic energy perturbations.

We also make the mathematically as well as physically

relevant distinction between terms V,(nl,’?)

decay of £© and terms Vi, *Y coming from the buildup of
feq- In our calculation, we treat these terms separately and
then sum them to find the total observable. However, it is
important to point out that in many cases, the two terms
turn out to have different parametric dependencies. By
construction of the expansion scheme, all of them are
proportional to 7. However, due to the different functional
forms of f(©) and feq» We obtain that the isotropic (n = 0)

corrections are given by

coming from the

VSOO - J/VmO7) ( ) (78)
( ) m+3

e L dE ! -
Vi = k" (v G R ) Qa0 (79

and similarly, for the anistropic corrections (n # 0),

W = —38,VOP,.(3), (80)

m+3

dE 4 .
R) Qi@ 6D

1
V( eq) +}/5 l/effR ( e“

Detailed expressions of the functions P,,(7), Q,,(7),
Pon(%), (%) are given in Egs. (C17), (C22), (C42),
and (C61). Of course, the appearance of a different para-
metric behavior is not too surprising, as f° depends on the
entire momentum distribution, whereas f., only depends
on the local energy density. Generally, to fix the relative

©
size of decay and buildup for VS,},),, we need an input for dg;

and V%, which means specifying the related moments
of the initial momentum distribution F in Eq. (38). In
general, Q,, and Q,,, depend on the details of the
equilibrium distribution f.,, which we choose for definite-
ness to be the Bose-Einstein distribution (for more
details, we refer the reader to Appendix C). Clearly, the
only exception to this rule is the case m =1 of
0

energy-weighted observables, where VE%) = %, and the
calculation of V(1}1) / V&%) does not require any further
specification of the initial momentum distribution F.

By restricting our attention to energy-weighted observ-
ables, we can then perform the residual integrals numeri-
cally to obtain the leading order changes in the initial
energy per unit rapidity,

(1 0
E E
dE) (r — oo)/(Addl ) =-0.210, (82)

dn n

and the flow response,

vE(r = 00)/(jey) = 0212 (83)
v¥(r = 00)/(7e3) = 0.0665 (84)
v§ (= 0)/(e4) = —0.00914, (85)

which we will compare to full numerical solutions of the
RTA Boltzmann equation in the following. Beyond the
results in Eqs. (82)-(85), which provide the asymptotic
(t — oo0) values of the transverse energy and flow coef-
ficients, it is clear that Eq. (76) also gives access to the time
evolution of these quantities, which we will further inves-
tigate in Sec. V.

We note that the above results are obtained for the initial
condition in Egs. (13)—(15) with @ = 1/2, which is differ-
ent than the case a = 0 considered in [53]. If we choose
a = 0 instead, we find

v5(t > 0)/(7€,) = 0.213 (86)
VE(r = )/ (je3) = 0.0621 (87)
vE(t = o0)/(fe4) = —0.00483, (88)

in agreement with [53].° By comparing the results for
different v,s in Egs. (83)—(85) and (86)—(88), one finds that
v, appears to be rather insensitive to @, whereas the higher
order v, s are more sensitive to «, as we will further discuss
in Sec. V B. Especially, v, changes by approximately a
factor of 2 between the two cases, and can even turn
out to have different signs for different values of a,
indicating a strong dependence on the initial profile in
the low opacity regime.

®Note that for comparison with [53], one also needs to account
for the factor of ¢,/5, in Eq. (18).
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IV. NUMERICAL PROCEDURE
FOR NON-LINEAR SOLUTION

We will now discuss two different schemes to obtain
numerical solutions of the RTA Boltzmann equation, which
are based on a momentum moment expansion discussed in
Sec. IVA and the relativistic Lattice Boltzmann (RLB)
method discussed in Sec. IV B.

A. Expansion in spherical harmonic moments

Within our first approach, we follow previous works [73],
where instead of describing the evolution of the phase space
density f, the numerical algorithm solves time evolution
equations only for some energy-weighted momentum
moments on a two-dimensional lattice in transverse space.
Specifically, we consider the following energy-weighted
moments C}" of the phase-space distribution:

cm o= Tz/ d3p
l (2”)3

d? d
= [8 [Lvpoyp o+ Dr 59

Y7 (0,.¢,)0"f

where Y} denote the spherical harmonics, which are given in
terms of the associated Legendre polynomials P} as

Y0, p) = yIP(cos )e™?, (90)

with normalization

m 1 m m m m m m 1 Vﬁ]
0.Cl' = - (bz,+2cz+2 + b)Cl' + b, CLy) + 5 <_

TR
}//32 m
+5 ( 62> [ul. Cit +

n Cm-H

dm Cl+l

L i t(=m)
=N T4 (Tt m)r

(O1)

and the momentum space angles in Eq. (89) are parametrized
by the polar and azimuthal angles 6, and ¢, defined as

2
p
ang), :?. (92)

cos Qp =

Since only a finite number of moments can be described
numerically, the algorithm only keeps track of the moments
with [/ < [, for an adjustable large enough value of [, to
achieve apparent convergence.

1. Initial conditions and evolution equation for moments

By taking the corresponding moments of the initial
conditions in Eq. (11), one obtains the initial conditions
for the spherical harmonic moments as

Cr' (7o) = oe(z0. X1 )y) P (0)5™. (93)

This expression contains as a factor the Legendre poly-
nomial evaluation PY(0), which vanishes for odd / and is
otherwise given by

(%
rg+1)’

Similarly, denoting the local rest-frame velocity as u* =
y(1,B1,0,,0) and taking the corresponding moments of
the Boltzmann equation (4), (5) then yields the following
equation of motion for the spherical harmonic moments:

PR0) = (~1)/a1P

(94)

_|._

— 51)[ Cm+11 + “1 Cm+1 + dm Cﬁ-ll + d;ﬂ_crln_—ll]

1
—dp | + —Ep(w. T) = = (95)
R TR

where the terms with spatial derivatives proportional to the coefficients u, d describe free streaming, while the terms
proportional to the coefficients b are related to the longitudinal expansion. The corresponding coefficients are given by [73]

J([=m—=1)

” (Il—m m
- -1

a __\/(l—l—m)(H—m—l)
b 412 -1 ’

"Note that here b}y, is smaller by % compared to [73] because the C}' are weighted with 7 instead of 7

(l+m+1)(l+m+2)
Lt _\/ all+2)+3 (96)
. (l-m+1)(l-m+2)
d1.+—\/ Hal+2)+3 (97)

4/3.
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g L+2 JU=m)(=m =)+ m)(+m=1) . _ 1=3(P = D)+ 5m
21— (21=3)(21 +1) ’ R4+ 1) =3

m =1 Jl=m+1)(l=m+2)(l+m+2)(l+m+1)

bl-+2_2z+3\/ (2045)(21+1) ' %)

Finally, all terms that are inversely proportional to the relaxation time 7 result from the collision kernel and describe the
relaxation of the system toward local equilibrium, with the equilibrium moments E’, given by

d’p, dpn
En‘l:
! /(2 ) /271

where we denote tan¢, = f3,/f, and f* = B3 + ff5 and
refer to Appendix D for further details of the calculation.
We also note for later convenience that by separately
keeping track of the free streaming longitudinal expansion
and collisional contributions in Eq. (95), we can compute
the respective contributions to the rate of change of any
observables.

Evaluation of Eq. (95) also requires an input for the local
energy density ¢ and flow velocity #*, which have to be
computed via Landau matching. In practice, we first
compute the various components of the energy-momentum
tensor from the following linear combinations of spherical
harmonic moments,

T = iRy (100)
e = e e (101)
wr e
i [ (- \/;CO) VEG+e) o
o (o L) - e oo
N e e NS

and subsequently perform a numerical diagonalization of
T}, using the EIGEN C++ library [74] to obtain the rest-frame
velocity u* and local energy density e as the timelike
eigenvector and eigenvalue.

With regards to the numerical implementation of
Eq. (95), we also note that the terms containing spatial
derivatives can be efficiently computed in Fourier space,
and we employ an O(a%) improved five-point stencil

I'(l +
PO )P uufog = 272 ey (2 m)r%’ A

l+3 [+4
)2F1<

.y Tl /32> (99)
2

derivative. Concerning the discretization of the time step,
we employ a fourth order Runge-Kutta scheme with
adaptive time step of typically §z = 0.01 min(z, R/10).

2. Observables

Since the numerical setup is restricted to energy-
weighted moments of the phase-space distribution, all
observables that can be computed are necessarily weighted
with energy as well. Evidently, to compute an observable, it
has to be expressed as a linear combination of the moments
C', meaning that it has to be expanded in spherical
harmonics. By making use of their orthogonality relation,
one can then express observables of the form,

d*py [dp
)20) = = [ =L prO(0 106
((r70) = [ 555 [ 20 0w,0,5 (106
as a linear combination of the coefficients,

(107)

= Zag,lC;",
(Lm)

where the expansion coefficients a2, are determined as

o0, = / 4Q,0(0,.4,)Y1(6,.4,).  (108)
Specifically, for calculating the observables dE | /dy and

vE that are of interest to us, we need to consider integrals of
expressions of the form,

0,(0,.,) = ™ sin(0,). (109)

Since the ¢ ,-dependence of Y} is simply given by e~ My,
it is already obvious that ai.”, vanishes for all m # n.
Additionally, for increasing /, the spherical harmonics Y}
alternate between being symmetric and antisymmetric with
respect to 6, such that aff; =0 for [ — n odd, while for
[ — n even, the coefficients can be computed as
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l-n
- I\ (2] -2k
O,, . —l..n k+n
=272 -1
e
(1-2K)1 TER)r(=2sutl)

“U=2k—n)  rEEE

(110)

In the special case n = 1, only one coefficient is non-
vanishing, but otherwise, there are infinitely many.
However, their values are decreasing with / quickly enough
so that cutting off the expansion at /,,,, yields a reasonable
approximation.

B. Relativistic lattice Boltzmann solver

Within our second approach, we employ a RLB solver
inspired by the finite difference RLB algorithm discussed
in Refs. [75-79]. The strategy for devising the numerical
method is split into three main parts, which are described
in this subsection. The structure of the kinetic equation is
presented in Sec. IVB 1 in two forms. The first form is
based on the standard Bjorken coordinates (z,x,7),
while the second relies on a set of hybrid free-streaming
coordinates, inspired by the approach in Ref. [52]. The
momentum space discretization is discussed in Sec. [V B 2.
The spatial and temporal discretization, as well as the
numerical schemes employed for the advection and time
stepping, are briefly summarized in Sec. IV B 3.

1. Boltzmann equation for the RLB approach

In the RLB method, we employ the factorization of the
momentum space with respect to the coordinates (p, v, ¢,,)
introduced in Eq. (19). Starting from Eq. (20), we apply the
LB algorithm at the level of the function Fgip = 2F,
where F is introduced in Eq. (21). Specifically,

Ve R*T del”
Feip = ff 0( 1

-1
(271)3 d—ﬂ> Adp’(p’ff. (111)

The nondimensionalization of the coordinates 7 and x| is
performed with respect to R/ 41(1)/ *1801; i.e.,

_ T R\ /4
T=—r—=—] 7%
78/4R3/4 70

R 1/4
X :1/§7L: (_> X, (112)
7, R3/4 70

while the energy density and temperature are nondimen-
sionalized with respect to constant quantities,

_ tonR%e 70 .
E=—0,, 7%
dE|"/dn T

7 (fonRz%veff> 1/4T _ <TO> 1/4T,

dEY /dn T
such that € = T*. In this section, we use an overhead bar to
denote dimensionless quantities obtained using the above
convention, in contrast to the overhead tilde ~ employed in
Sec. I (note that 7 and & are related to T and e through

constant factors). The Boltzmann equation (20) written for
Frig introduced above reads [80]

9 e 10[v,(1 —v2)F
__+VL‘V+ + 7 FRrip —— [UN( yz) RLB]
oz T T v,

= —?(U”MM)T(fRLB - ]:fquB)-

(113)

(114)

The components of the stress-energy tensor can be non-
dimensionalized in the same way as the energy density,
being related to Fgyp through

T’w = /deU”UHfRLB' (115)
The energy-weighted flow harmonics (36) can be
obtained via
fx fde\/ 1- U%ein¢”fRLB
vE =L . (116)

fofde\/ 1 _”g-FRLB

The Boltzmann equation in the form given in Eq. (114)
serves as the basis of the algorithm employed for large
values of the opacity 7. At small values of the opacity, we
find the form in Eq. (114) unsuitable and instead employ
free-streaming coordinates in momentum space. This
approach is inspired from Ref. [80] but differs from the
aforementioned approach because the spatial coordinates
are left unchanged. Defining

T — ptA fs _ &
pfs p ’ UZ TOA’
fs
T()UZ
T = ot Ap, =% 117
p PrsBfs Uy TAfS ( )
where
2
A= 1+ <12—1)v%,
70
1 72
AfS = X = \/1 — (1 —T—(2)> Uifs, (118)

the Boltzmann equation (20) becomes
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of
9 +Af§ Vi Vif=-

where v, = /1 — 02 (cosgp,.sing,), while v,u* =

u® —iv 1.4 -0;. We now introduce the function Fi,
S

defined in analogy to Eq. (111) using integration with
respect to pg:

(Uﬂu ) (f_feq)v (119)

0)\ -1
ffs _ T[UeffRZTO <dES_>

(27)3 dn) /0 dpi(pR)’f.  (120)

such that Eq. (119) becomes

oF 1
a fs'l'AthL fs * VLF&

=P u, ) T(Fe—Fg).  (121)

Due to the changes to the momentum space degrees of
freedom, the computation of the components of the stress-
energy tensor becomes more involved. Taking into
account the transformation of the measure dp®(p*)*dQ, =
(t0/7)dpf(Pf)*d, . the dimensionless components T+
can be computed as

= (1
T7% = ?0/ de;fsAfsffs,

— . TO .
i i
T = ? de;fSUJ_;fS]:fS,

i J
=i _ 70 VsVt
1] 3 >
T __/dgp;fs A ffs’
T fs
3

2
_ v
21 =7 [ a0, S0, (122)
S

where v/, ;. = v (cos,.sing,) and v = (/1 — v,
Based on the equilibrium Bose-Einstein distribution at
vanishing chemical potential,

feq = <€p,,u"/T — 1)_17 (123)
the functions Fyip and Fpl in Eq. (111), are readily
obtained as

1 €
o L —
RLB 47 (0 — v, -u))*
1 €
Fig = g (124)

4 (qufs —Vifs '”L)

where € = T*.
The system is initialized using the Romatschke-Strickland
distribution [81] for Bose-Einstein statistics [82],

fis = {exo [ [ wr o] -1} a2s)

where 7} is the unit vector along the rapidity coordinate.
Simplifying to the initial state considered in this paper,
Eq. (125) reduces to

T -1
frs = [exp (%\/1 +50v§) - 1} . (126)

The function A = A(x ) is determined from

arctan /&, 1 )‘1 197
Véo +1-|-(§0 - (127)

where T'(z(, X | ) is obtained from the initial energy density

K1) =27 )

. . 2
€(ty,x ) via the equation ¢ = aT*, where a = ”3’8“ for
Bose-Einstein statistics. The anisotropy parameter &, can be
used to set the ratio of longitudinal and transverse pressures

Pro/Pry via

arctan

2 ( +§O) \/—

1+§01+(§0_1)arcum o

NG

The case P, .o/ Pr = 0 implied by the initial conditions in
Eq. (11) can be reached only as the limit £, — oco. In this
paper, we consider finite (large) values of &, and, for
simplicity, we employ the same value of &, throughout
the whole transverse plane. Since at initial time 7 = 7, pf, =
p° and v, = v,, it can be seen that the initial conditions
FR3s and FRS are equal and given by

€/2r <arctan\/(%+ 1 )‘1
(1+&ov2)? Véo 1+&/)

-1
PL;O o

PT;O

(128)

FRS, = FRS =
(129)

2. Momentum space discretization

In this paper, we employ the discretization of the
momentum space discussed in Ref. [76]. In this scheme,
we employ O x Q. discrete values for ¢, and v, (v 4 in

the case of the free streaming variables), such that (¢, v,)
or (¢p’ zfs) are replaced by (¢pl’ z]) and (¢pz’ z])
respectively. The discrete set of distributions F7; (with

« € {RLB, fs}) are related to the original distribution
function F,, via [76]

<-7:5LB> 2z (FRLB((pp;i’”z;j)

=W ‘ . (130)
Fi 9y, Fis(hpi V5. )

The weight 27/Q, is computed in both RLB and fs
cases following the prescription of the Mysovskikh
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(trigonometric) [83] quadrature, by which the trigonometric
circle is discretized equidistantly, ¢,.; = ¢ —|— ( i— 1),

with 1 <j < Q¢p. For definiteness, we set the arbitrary
offset ¢y to 0. For the discretization of v, (RLB) and
v, (FS), we employ two different strategies as dis-
cussed below.

RLB case. In the case of large values of 7, when Eq. (114)
is considered, we employ the Gauss-Legendre quadrature,
such that w; represent the Gauss-Legendre weights and v
are the roots of the Legendre polynomial of order Q;
ie., Py (v,;) = 0. Their values up to quadrature orders
Q, = 1000 can be found in the supplementary material of
Ref. [76]. In this approach, the term (v, (1 —v2)Fr ]/,
is computed by projection onto the space of Legendre
polynomials,

8[ (I_U J:RLB RLB
[ 7. ) Zlcjij,fj,i. (131)

The matrix elements Kﬁ I2 given in Eq. (3.54) of Ref. [76],

0.-3
_— m(m+1)(m+2)
/C” =Ww; 2 2(2m T 3) m(vz;j)PerZ(UZ/)
o 1m(m—|—1)P b 2m+1)P,(v..;)
12 g Pl )[(Zm—l)(2m+3)
+ Zn:n_ 11 m—Z(UZ;j/):| : (132)

The components of the stress-energy tensor are obtained by
replacing the integration with respect to d€2,, with a double
sum over i and j:

Q(ﬁp Qz

ZZ]:RLB lll lj’

i=1 j=

wherev —1 ( ,j, U,QI) \/l_vZ/(COSqﬁpuSHl¢pl) and

v?j =1 11} . A similar prescription is employed for the
computatlon of the dQ,, integral in the energy-weighted flow
harmonics v£ (116).

FS case. For small values of 7, the free-streaming coor-
dinate v, is discretized in a logarithmic scale. Inspired from
Eq. (A61) of Ref. [52], we first perform the change of
coordinate to

(133)

1
Vs = Ztanh;(, (134)

where 0 < A < 1 and y takes values between +artanhA. In
order to increase the accuracy of the momentum space

2j—1
Xj= 0 -
4

integration, we consider the rectangle method and take the
discrete values y; at the center of the O equidistant intervals,
such that

1
1) artanhA, v —tanhy; i

5= (135)

The quadrature weights w; are then computed based on
the Jacobian due to the change of integration variable from

Uz;fs to Xs

2artanhA

= 136
Vi AQ, cosh? y; (136)

Since the discretization of v,.;; presented above is no longer
given by a Gauss quadrature prescription, we note that the FS
approach gives rise to a numerical scheme, which is more
similar to the discrete velocity method (DVM) approach
[84,85]. As before, the components of the stress-energy tensor
can be obtained by replacing the integral with respect to d€2,,
in Eq. (122) with quadrature sums:

_n 0 ZAN‘?'U7

7l .
T ) A ¢p;, s
g2 ) T 2250 p) ij
7 sin g,

T cos’h, ;

_ TO ULJ . fo
F12 = E sing, ; cos ¢, ; .7-“;,
722 )

T sin“¢,, ;

T
ZT;M ‘o E ffs
Afi 1’

(137)

AR =[1=(1=75/)(v5
1—(05))2

computation of vZ (116).

where Y2 and o =

A similar procedure is employed for the

3. Finite difference schemes

In order to obtain the numerical solution of Eqgs. (114)
and (121), we consider a discretization of the temporal
variable using an adaptive time step &z, = min(z,/10,

tr/2u’, 67), where &7 =0.005R, such that 7, =
7, + 0t,. Writing the Boltzmann equation as
o0F
— = L[F], (138)
or

where L[F] can be found from Egs. (114) or (121), we
employ the third order total variation diminishing (TVD)
Runge-Kutta method proposed in Ref. [86,87]. This algo-
rithm allows the values F, , | of the distribution functions at
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the new time step to be obtained from the old ones using
two intermediate stages.

The advection along the transverse directions is per-
formed using the flux-based upwind-biased fifth order
weighted essentially nonoscillatory (WENO-5) scheme
[63,88]. Considering that the spatial domain of extent
L, x L, is discretized using N; x N, equidistant nodes,
the coordinates of the discrete points are

L 1
X=X — | s==,
l,s 1,left Nl )

L 1
X2, = X2 pot 1T 2 (r - —>’ (139)

N,

with 1 <s < Njand 1 < r < N,. Focusing without loss of
generality on the derivative with respect to x;, the algorithm

entails

¢ (a_f> _ [Fer%,r - ﬂ:s—%.r, (140)

oxi) s, 6xy

where 6x; = L,;/N,. The velocity c¢; is given in the
case when 7 is large, when Eq. (114) is solved, by
¢ =+/1—v2cos ¢, being independent of position and
space. In the case of small values of 7, Eq. (121) shows that
the advection velocity ¢; = 1 +/1 — 9% cos ¢, depends on
the Bjorken time 7; however, it remains constant throughout
the entire transverse plane. The stencils required to com-
pute the fluxes Fy.1, are chosen in an upwind-biased

manner based on the sign of ¢;. Since the algorithm to
compute these stencils is rather lengthy, we do not repeat
it here and instead refer the interested reader to
Refs. [63,76,88,89] for details.

V. RESULTS

We will now analyze the space-time evolution of the
system and the development of transverse flow as a
function of the opacity parameter 7 [cf. Eq. (31)]. We
focus on the range of opacities 0.01 < <400 and con-
sider different initial eccentricities ¢, € {0.01,0.05,0.1,
0.2,0.32,0.36} [cf. Egs. (14), (15)].

If not stated otherwise, open symbols and dashed lines
correspond to results obtained using the expansion in spheri-
cal harmonic moments in Sec. IVA, where we typically use
[nax =32,Ng = 256, ag —=0.0625R.® Conversely, results
obtained with the RLB method are represented by solid
symbols and solid lines. The RLB simulations are divided in
two batches. The first batch includes systems with 7 > 2.
For these simulations, we used the RLB algorithm for large

*We note that results for 7 < 1 require a larger accuracy, and
we use /. = 48,Ng = 320, ag = 0.05R. Similarly, for accurate
calculations of dE | /dy, we need a larger value of /., and we
employ /.. = 96,Ng = 160, ag = 0.06R in this case.

described in Sec. IV B with Q, = 40 and Q¢p = 80, while

the number of nodes on each semiaxis is taken to be X = 100
for €, > 0.05 and X = 200 for ¢, < 0.05. The anisotropy
parameter in the initial state is set to &, = 20, corresponding
to an initial ratio P, /Py ~ 0.08. The second batch comprises
the systems with 7 < 2 for which we employ the hybrid free-
streaming algorithm described in Sec. IV B with O, = 500
and Qy, = 80. In this case, the anisotropy parameter is set to

&y = 100, corresponding to P; /Pr ~0.02, and the spatial
resolution is X = 100 nodes per semiaxis.

A. Cooling due to longitudinal expansion (dE | /dn)

Before we discuss the development of transverse flow,
we first investigate the cooling of the system due to work
performed against the longitudinal expansion, which is
quantified by the decrease of the transverse energy per
rapidity dE, /dn. We first note that for a free-streaming
system, dE | /dn is constant. Increasing the opacity will
initially only have a small effect, which can be quantified in
terms of the linear decrease in 7 calculated in Sec. IIIE.
However, for large opacities 7 > 1, the system has sufficient
time to undergo pressure isotropization at early times,
leading to an extended phase of longitudinal cooling, which
results in a significant decrease of dE | /dy. Hence, when
presenting our results for dE | /dy(r) in Fig. 1, we have
grouped them into two plots for large opacities in the upper
panel and small opacities in the lower panel. While for large
opacities, the curves are normalized by the initial value

dE(f) /dn and plotted on a doubly logarithmic scale to
visualize the power law decay of dE | /dn at intermediate
times, for small opacities, we show the difference of

dE, /dn — dE' /dn, normalized by the initial value and 7
to account for the linear behaviour in opacity. We also show a
comparison with the analytical result from Sec. Il E, which
provides a good description of the curves for § < 1.

Qualitatively, all curves exhibit a similar behavior start-
ing out from the early time fixed point of kinetic theory,
where longitudinal pressure vanishes, and energy per
rapidity stays almost constant. Subsequently, as longi-
tudinal pressure develops due to interactions, work is being
performed, which starts to happen earlier and earlier the
larger the opacity. Eventually, at late times z/R 2 1, the
transverse expansion becomes dominant, and the system
rapidly dilutes towards free streaming behaviour, resulting
in a late time plateau of the dE | /dn(z)-curves.

We find that for large opacities 2 10, the pressure
isotropization at early times and the onset of the transverse
expansion at later times are sufficiently well separated to
observe an intermediate 7'/3-scaling of dE | /dn, which—
as we will see shortly—can be related to the usual e ~ 7=4/3
decrease of the energy density in Bjorken flow. It stands
to reason that, at early times, the transverse gradients in
the system are negligible compared to the longitudinal
expansion, and the system will locally behave like a

014031-15



AMBRUS, SCHLICHTING, and WERTHMANN

PHYS. REV. D 105, 014031 (2022)

dn

©
dE(

dE|
dn

1075 10~ 10-3 10—2 1071 100
7/R
0 T T
=2
1
0.5 —a—
0.25 ——
—0.05 | 0.04 —o— |
\ 0.01 —e—
— 3 analytical
/\<?\
S
B o1l i
N—
\
Q‘ = o] ol o o inl
= k=l
< —0.15 | D _
—0.2 | v v J
(b)
0 0.5 1 1.5 2 2.5 3 3.5
7/R
FIG. 1. Evolution of dE | /dn (top) and AdE | /dn = dE | /dn —

dE(f)/ dn (bottom) normalized with respect to the initial value

dE(f) /dn for various large (top) and small opacities (bottom). In
the bottom panel, we also normalize with respect to 7. Colored
solid lines were obtained with the RLB method, while open
symbols denote results from the moment method. The solid black
line shows the first order result in opacity expansion. Dashed
black lines with black circles correspond to the Bjorken flow
prediction derived in Eq. (151), and the curves in the top panel are
presented on double logarithmic scale. All results are obtained for
initial eccentricity e, = 0.05.

one-dimensional Bjorken system. Based on the following
considerations, this behavior can be quantified further and
cast into a parameter-free prediction for the evolution of
dE | /dnin Eq. (151), which is indicated by black circles in
the upper panel of Fig. 1 and agrees remarkably well with

numerical results for the large opacities up to times
7/R <0.1.

Defining the conformal scaling variable w(z,x,) =
T(tx )t
4mn/s
curve [90] for

the Bjorken flow exhibits a universal attractor

e(2)7*3 = (dan/s)*°a" () CHuE (W),
dE|

‘[1/3
d2XJ_d7’]

= (4rn/s)°a'?(ex)y  Coof i, (W), (141)

where the asymptotic limits of £(w) are known [90] and
given by

2
Ew>1)=1- ,
(# ) 3w
EWw < 1) =Czlw?. (142)
Similarly, one finds for fg (W) that
» T
fEJ_(W > 1) = Z,
fe, (W< 1) = CJa?, (143)

where for the RTA Boltzmann equation, C, ~ 0.9 [73,90],
and the leading constant z/4 can be deduced from an
integral of the thermal equilibrium distribution. By use of
the equation of state € = aT*, Eq. (141) can be recast as a
self-consistency condition for W, which takes the form,

W(e.x,) = (4an/s)¥°a(en)” (x )

x 23[C E(W(r, x ) ))|V4, (144)

and can be used to relate the differential with respect to w

at fixed 7 to the differential with respect to the transverse
plane coordinates x| as

)

(145)

Jd(et
1 Wg/(ﬂ/) 2 (a|),?ﬁl)
w

—-— =— dx|.

426 | 9o
Specifically, for the initial Gaussian profile in Eq. (14),
one finds

9R? dw
dx, | =-——]1
|XJ_| |XJ_| 4 W {

1we (W)

which can be used to calculate the resulting change of
the energy per unit rapidity as follows. Starting from the
definition in Eq. (141), one can express the energy per unit
rapidity in terms of the scaling function,

dE
o L—=13(4mn/s)*%a/°C,
n

x (27) / dIx (1%, |fe, (W(z.x1))(e0)°(x,). (147)
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Expressing the remaining factor of the energy density
(er)g/ ? in terms of the conformal scaling variable W,
according to

W4

— (4 32/9 .8/9.~8/3

(en)y/*(x1) (148)

which follows from Eq. (144), one can then express

dEJ_ 9za (R
= (5] sy

/W<r.xL—0> Ww3dw [
X — |1 -
0 E(w)

dEL/

e @],
el e, s

By considering the ratio
(4nn/s)*a IRYE A
dES JanR — w\57)
one then obtains the final result
dEl/dn_9 47\4 (R\3
dEY Jdn 2\57) \t
/W<r.xL=0> W3 dw [
X —[1—
0 EWw)

where Ww(z,x; = 0) in the center of the collision can be
expressed in terms of 7 via

(e, x, = 0) = G—;) v (%) Presm. (152)

The asymptotic behavior of Eq. (151) can be under-
stood as follows. In the limit 7(%)** <1, we have

i and identifying

(150)

W E (W)
4E(w)

}f@m (151)

W 29(%)Y* <1, and we can approximate E(W) =
fE, (W) = CIW*? to obtain

dEY /dn

(153)

as expected. Conversely, in the limit 73/4(%) > 1, we have
W (288 9C*(2)2/3 > 1, such that we can approxi-
mate £(W) ~ 1 and evaluate Eq. (151) as

dE,[dn 9 (4m\¥° (R\1/3
a5 (5) (c) =)

-1/3

(154)

which predicts that dE | /dn decreases as 7 at inter-
mediate times before the transverse expansion becomes
dominant. By comparing the results in Fig. 1, one finds that

for sufficiently large opacities, the power-law behavior in
Eq. (154) is indeed realized at intermediate times and
discontinues once 7/R ~ 1 when the transverse expansion

becomes dominant, such that the estimate (154) is no
dE | /dn
dE(l/dn

value. The details regarding the computation of the integral
in Eq. (151) are presented in Appendix E.

We note that our estimate in Eq. (154) also shows that
for sufficiently large opacities, where longitudinal cooling

occurs predominantly before the transverse expansion
dE, /dn - 5=4/9,
dES /dn

as previously argued in [52] Numerical results for the

asymptotic values of 3%%”’ extracted by performing

extrapolations of the curves of the form a + b7, where
a, b, and c are fitting parameters, are shown in Fig. 2
as a function of the opacity parameter . We find that at
low 7, the analytical result to leading order in opacity
[cf. Eq. (82)], represented with a solid black line, provide
an accurate description up to 7 < 1. Conversely, for large

opacities 7, the decrease of the energy per unit rapidity
dE, /dn dE, /dn
dEY /dy dE fdn ™

1.47=%/° for 7 > 10, as indicated by the purple line. By
comparing the numerical coefficient with Eq. (154), this
result seems to indicate that cooling stops at a time
Tgop = 0.6R, which is consistent with the trend seen for
the high 7 curves in Fig. 1(a).

longer applicable, and attains a constant asymptotic

sets in, the final value of is proportional to 7

exhibits the expected scaling behavior, with

T T
numerical - ©-
1 Scaling 4
analytical
/g 0.8 + -
E o6t g
B
qle
<
o4l i
Qs
e
0.2 4
0 L L L L L
0.01 0.1 1 10 100 1000 10000

FIG. 2. Opacity () dependence of the ratio of final to initial

(0]
(transverse) energy per-unit rapidity = dE / 5;).
with filled circles denotes results from the RLB method, while the
red dotted line with open circles was obtained in the moment
method. Numerical results are compared to analytical results
obtained in leading order opacity expansion (black solid curve),

and a power-law scaling fit < ~ 1.47=*/9 at large opacities

(purple solid line).
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FIG. 3.

T7/R

Evolution of the linear flow response v% /e, at small opacities 7 (top) and v% /e, at large opacities 7 (bottom). Different

columns correspond to elliptic flow n = 2 (left), triangular flow n = 3 (middle), and quadrangular flow n = 4 (right). Colored solid
lines were obtained in the RLB method, while open symbols denote results from the moments method. Analytical results are plotted as
solid black lines. All results were obtained for an initial eccentricity ¢, = 0.05.

B. Development and opacity dependence
of transverse flow harmonics (v,,)

Next, we will analyze the development of anisotropic
flow in terms of the time dependence of the harmonic
transverse flow coefficients vZ for different opacities. We
recall that the initial anisotropies are modeled using a single
harmonic (n) perturbation and first look at the time
dependence of vf,vE, and of for different opacities,
where in each case, the eccentricities are fixed to
€, = 0.05, which serves as a good approximation to the
small eccentricity limit. We measure the magnitude of the
linear response ratio v, /€, for each harmonic; in addition,
we also extract the nonlinear response of the fourth and
sixth order harmonics via the ratios vy/e€3, vg/€3, and
vg/€3. For notational brevity, we omit the superscript E
when referring to the energy-weighted flow harmonics,
ie. v, =vE.

Since the qualitative behaviour of v, is somewhat
different in the regimes of small and large opacities 7,
we again divide our results into two categories correspond-
ing to 7 > 2 and 7 <2, as in Fig. 1. Since the analytical
calculation in Sec. III indicates that at small 7, all response

coefficients increase linearly with 7, we will further normal-
ize our low opacity results (f <2) by division with
respect to 7.

Our results are compactly summarized in Figs. 3 and 4,
where we present numerical results for the linear
(v2/€y, v3/€3,v4/€4) and nonlinear (vy/€3, vg/€3, v6/€3)
response coefficients obtained for small (top panels) and
large (bottom panels) values of 7. We find that for small
values of 7 <0.04, the leading order linear dependence
of v,/e, on 7 computed in Eq. (83)—(85) is nicely
confirmed by the asymptotic approach of our numerical
results to the analytical results, represented by a solid
black line. Similarly, a linear dependence with respect to ¥
is also found for the nonlinear response coefficients
v4/€3, v6/ €3, ve/€3, Which, for vy/e3, is in line with the
result obtained in Ref. [53] for a slightly different initial
setup. While for 7 = 0.25, all linear flow coefficients
exhibit a positive response with respect to the initial
eccentricities, the quadrangular flow v,/¢e47 in Fig. 3 shows
a negative response for 7 < 0.25.

Based on a closer inspection, one finds that the curves
of vy/(e47) exhibit an early time increase similar to the
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0.08

0.025

FIG. 4.
(right). (Bottom line) Evolution at large opacities of v% /€3,

7/R

(Top line) Evolution at low opacities of the nonlinear flow response coefficients v% /e 77 (left), vE /€5 27 (middle), and vE /e €57
vE /€% (middle) and v /€3 (right). Colored solid lines were obtained in

the RLB method, while open symbols denote results from the moments method. All results were obtained for an initial eccentricity

€, = 0.05.

behavior seen for the other harmonic flow coefficients;
however, in contrast to v,, vs, the initial rise of v, peaks
around 7 ~ 1.5R, followed by a decrease due to negative
contributions received at large times. When increasing the
opacity, nonlinear effects cause the elliptic flow response
v,/ (€,7) to decrease, while v3/(e37), v4/(€47) as well as
the nonlinear v4/(€37) and v,/(e37) exhibit an increasing
trend; due to the rather complicated time dependence, the
behavior of vg/(€27) appears nonmonotonic. Clearly, the
largest effect is seen in the case of the wv,/e4-response,
which changes sign as the late time contributions become
less and less prominent.

When considering large opacities $ 2 2 shown in the
bottom panels of Figs. 3 and 4, the curves for linear
(v2/€2,v3/€3,v4/€4) and nonlinear (v4/€3, ve/€3, v/ €3)
response coefficients retain the same qualitative time
dependence and monotonically increase as a function of
7, seemingly approaching a finite large opacity limit, which
we will further examine in the following. Generally, we find
that the linear anisotropic flow response develops predomi-
nantly in the regime 0.5 < 7/R <2 and then stays almost
constant, with the exception of the aforementioned late
time decrease of linear v,. In the case of the nonlinear

coefficients v,/€3, vg/€3, and vg/e3, the response takes a
little longer to develop, but nevertheless, the asympto-
tic late time value is reached on similar timescales
0.5<7/R <4

Beyond the time evolution of the different flow har-
monics, additional insights into the development of aniso-
tropic flow can be gained from their production rates p(v,,),
which correspond to the local rate of change of these
quantities. Since free streaming and longitudinal expansion
do not change the (transverse) momentum distribution of
particles, the buildup of anisotropic flow is solely due to
interactions. We can thus determine the production rate

p(0) of a flow observable O = [d°x; f(d;T%(’)f as

i ¢/ 227 e

where the rate of change of the phase-space distribution f
due to collisions is given by

. (155)

coll

dedr

d vHu
a __ﬂ<feq_f)'

TR

(156)

coll
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Specifically, the observables vZ are defined according to ~ nonlinear response, normalized by the respective late time
Eq. (36) as quotients of two such terms, such that the  asymptotic values of v, for several different opacities
production rate p(O) receives two contributions coming  ranging from the analytical results for small opacities
from the numerator and denominator according to the 7 < 1 all the way to 7 = 50. Besides the production rates
quotient rule for differentiation. of different v,, the top panel of Fig. 5, also shows a heat

Figure 5 features heat maps in the x | -z-plane for p(v,),  map of the dimensionless temperature 7 and the flow
p(v3), and p(vy) as well as p(vy,) referring to the  components u” and u” to allow for a comparison with the
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FIG. 5. (Top row) Space-time profiles of the effective temperature T along with the temporal and radial components of the vector field
u¥, presented in the x, -z-plane for ¢, = 0.05. (Bottom rows) Space-time profiles of the production rates of linear v%, vf, and vf
response (second to fourth row) as well as nonlinear vf response (fifth row). Numerical results were obtained in the moment method.
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spatial distribution and expansion of the system. The latter
showcase how with increasing opacity, the system cools
more rapidly in the center, and the transverse expansion
proceeds much slower, resulting in a longer lifetime of the
central fireball. Strong correlations of the temperature
profile in 7 and x,; only develop at much later times when
compared to the free-streaming limit, which exhibits a
prominent diagonal line in the 7-heat map. Inspection of
the p(v,)-heat maps reveals that different regions in the
x, -7-plane contribute with different signs to the develop-
ment of anisotropic flow v,. By comparing the results
for v,, v3, and v4, one also observes that for larger n, the
relevant regions extend more toward larger x,, while at
the same time, more of these regions appear, causing
large cancellations between the different contributions.
Specifically for small opacities, the structure of the heat
maps of the v, production rates can be related to the weight,

x| — v, Az|" Cos(nqﬁxL—leT,nL)

— ,zno:(_l)j (’;) XL (j—j)j[cosmfﬁmﬁ cos(jbx p,)

- Sin(nqstnL) Sin(jqﬁprl)]v (157)
with which the anisotropic perturbations of the initial
phase-space distribution propagate in free streaming.
Since the evolution of the perturbation is expressed as a
sum of n + 1 terms containing different powers of Az/x
with alternating signs, it will divide the x, -z-plane into
n + 1 regions of alternating signs depending on which one
of these terms dominates. In addition, the production of the
anisotropic flow wv,s will be weighted with the local
effective temperature 7 of the system, such that for small
opacities, most of the contributions originate from the
7 ~ x| diagonal, so only Az/x | -terms that dominate close
to that region will have a significant impact on the total
v, (7). Specifically, for n = 2, there is only one dominant
term, which explains the monotonic increase of v, as a
function of time seen in Fig. 3. Conversely, for n = 3, one
positive and one negative contribution are competing, with
the positive one being slightly larger than the negative one,
which is why for small opacities, v3/e; is significantly
smaller than v,/e, and features a slight negative trend at
late times. Finally, in the case of n =4, there are three
relevant terms. At early times, the two positive contribu-
tions from the inner and outer border of the system win, and
v4 increases, but the one negative contribution surrounded
by them in the x| -z-plane is closest to the diagonal and
dominates at late times, resulting in a sign change for v,
observed for the smallest opacities in Fig. 3.

With increasing opacity, one observes a clear change
in the shapes of the regions, resulting in a shift of v,
production toward earlier 7 and smaller x, in Fig. 5.
However, more strikingly, the increase of opacity also leads
to a change of the relative weights of different regions,

developing toward a scenario with only one dominant
positive contribution for all the »,s at large opacity.

We finally note that the weighting with the effective
temperature 7' plays an important role in this mechanism,
such that a different initial condition could result in
different relative weights of the regions with different sign
of the production rates, which can have notable effects on
the buildup of the different flow harmonics. Clearly, one
should expect that the higher order flow harmonics, where
more cancellations appear, are more sensitive to changes of
the initial conditions, and indeed we find that varying the
parameter a that controls the radial profile (cf. Sec. I A)
will have a notable influence on the v5(7) and v4(7)-curves
at small opacities.

Beyond the opacity dependence, one may also examine
how the development of anisotropic flow »,(z) changes
with the amplitude €, of the respective initial eccentricity.
Figures 6 and 7 showcase how the curves of normalized
flow spread with eccentricity for two representative fixed
values of 7. Somewhat surprisingly, we find that the curves
exhibit only very small deviations from an entirely linear
(quadratic) dependence on eccentricity in the linear v,, v3,
and v, (quadratic v, and vg) flow response, even for rather
large eccentricities. The only response featuring a signifi-
cant dependence on eccentricity is the cubic vg response to
€,. While this holds true not only for the final values but
also for the entire buildup and evolution as a function of
7/R, we remark, however, that these findings are probably
specific to the particularly simple geometry considered in
our setup, and it will therefore be important to extend such
systematic studies of the opacity dependence of the flow
response toward more realistic profiles of the transverse
geometry.

Next, in order to further scrutinize the eccentricity
dependence, we extract the extrapolated final values of
v,/€,, as well as of nonlinear v,/€3, vg/€3, and vg/e€3 at
late times and plot them as a function of the square of the
relevant eccentricity for several different opacities. Our
results shown in Figs. 8 and 9 again confirm the surpris-
ingly small deviations from perfect linear (quadratic)
scaling of the flow response, with only very slight negative
(positive) trends at large opacity and eccentricity. Our
results in Fig. 8 appear to be in conflict with results
previously obtained by Kurkela et al. [57] in the same
setup. We note once again that although the absence of
significant nonlinearity in the eccentricities may seem
in conflict with conventional knowledge (see, e.g.,
[58,91,92]), we attribute this to the specific initial con-
ditions considered within our setup, and we have explicitly
checked that hydrodynamic simulations of the same initial
conditions also lead to similar results for v,/¢,. Vice versa,
the absence of nonlinearities within our setup also indicates
that the significant nonlinearity observed for more realistic
initial state models should be attributed to other features of
the initial states considered in hydrodynamic simulations of
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heavy-ion collisions, which are not solely characterized in
terms of the usual eccentricities.

Since the flow response to the initial eccentricity is
essentially linear within our setup, our findings for
the development of transverse flow can be compactly
summarized in Fig. 10, where we present results for
the 7-dependence of the response coefficients «,, =
limen_,o ’Un/€n, as well as K420 = limez_)() 114/6'%, K633 =
lim,, o v6/€3, and kg 200 = lim,,_o v6/€3 estimated from
our data at € = 0.05. Besides the numerical results, we
also indicate the linearized analytical approximation in
Egs. (83)—(85) and the numerical results of Kurkela et al.
[57]. Despite the discrepancy in the results for the eccen-
tricity dependence, we generally find good agreement with
Kurkela ef al. in the linear response at low opacities
(7 < 10), which only starts to deviate slightly at larger
opacities.

Concerning the opacity dependence, one finds that at
low opacities up to 7 < 1, the linear response coefficients
are reasonably well described by the leading order opacity
expansion k,,, ~ 7 in Egs. (83)—(85). However, one should
note that, due to the intricate space-time structure of v,
production, the higher harmonic coefficients are increas-
ingly sensitive to changes in the underlying dynamics,
such that, e.g., k4 4, starts to deviate from the leading order
opacity expansion already at smaller values of . When
increasing the opacity further, one observes a sizeable
change in the linear and nonlinear flow response coef-
ficients for 1 <7 < 100, which is no longer captured by
the leading order opacity expansion. Eventually, for very
large opacities 7 2 100, the opacity dependence of the
linear and nonlinear response coefficients becomes

weaker and weaker, indicating a saturation toward a finite
large opacity limit. Empirically, we find that in this
regime, the opacity dependence of the response coeffi-
cients can be well approximated by a constant asymptotic
value and a power-law correction, with the asymptotic
values k(7 — oo) indicated by horizontal arrows in Fig. 10.

C. Energy flow and hydrodynamic limit

So far, we have employed an effective kinetic descrip-
tion to study longitudinal cooling and the development
of transverse flow as a function of the opacity para-
meter 7. While at small opacities < 1, the results from
numerical simulations are well described by the first
interaction correction to free streaming, one generally
expects that in the opposite limit of large opacities 7 > 1,
the effective kinetic description approaches the limit
of dissipative and eventually ideal hydrodynamics.
Hence, in order to investigate to what extent this expect-
ation holds true, we will now compare our results from
kinetic theory with numerical simulations in Miiller-
Israel-Stewart type second order relativistic viscous
hydrodynamics.

We employ the publicly available vHLLE code originally
introduced in Ref. [72] and extend the latest GitHub
branch’ to include the initial conditions considered in this
paper. Apart from the conservation equation for the stress-
energy tensor, V, 7" = 0, the code implements the Miiller-
Israel-Stewart equations for the evolution of the pressure

Commit number efa9e28d24d5115a848134852-

32fb342b38380f£0.
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deviator 7#¥, which, for the case of a conformal fluid,
reduce to [93]

210" =8 _Oet g 91 g T2

Tr Tr Tx Tn

o) —
(158)

where 6, = 2V ,u,, is the shear tensor, 6 = V, u" is the
expansion scalar, while the transport coefficients appearing
above satisfy [94]

_ 5’7 67[7[ 4 9 Trr - 10

KT N T 7

(159)

We note already at this stage that the early time behavior
in ideal and viscous hydrodynamics does not agree with
the early time free-streaming limit of kinetic theory, which,
as pointed in [57,95], leads to an unphysical behavior
of dE,/dn at early times, which makes the scaling
variable 7 ill defined in the limit 7, — 0. While in [57],
this problem was addressed by modifying the initial
conditions and matching the energy per unit rapidity at a
later time /R = 1 of the evolution, we follow the more
common procedure and choose a finite initial time 7,
where we initialize the energy density as in Egs. (14)
and (15) and set the components of the shear stress tensor,
Y, to'”

T52nM = =27 = =27 = —p, (160)
which ensures vanishing longitudinal pressure, to comply
with the initial conditions for kinetic theory in Eq. (1 .M
Similarly, we fix the value of the shear viscosity to entropy
density ratio #/s for a given value of 7 in the same way as
for RTA, via Eq. (31), evaluated at initial time 7. By
comparing kinetic theory and hydrodynamic simulations
with the same finite 7, we can then achieve a direct
comparison and, in addition, investigate the dependence on
the initialization time 7, in the two different theories.

Evaluating the energy-weighted flow harmonics v%
considered in this paper, a Cooper-Frye-like mechanism
should be considered to reconstruct the phase-space
distribution function from the hydrodynamic fields
e, u*, and 7#¥. We circumvent this ambiguity by instead
referring to the stress-energy anisotropy €,,, which, accord-
ing to Eq. (37), can be defined directly in terms of the
components of the energy-momentum tensor. Since T* is

'“We employ a conformal equation of state ¢ = 3p.

"Since at very early times, the evolution in viscous hydro-
dynamics and kinetic theory does not agree, another conceivable
option is to initialize the hydrodynamic simulation on the
hydrodynamic attractor for Bjorken flow [57,95]. We have also
performed such simulations and find no significant differences
regarding the development of transverse flow.
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FIG. 11. Opacity (7) dependence of the energy-flow response
€,/ €, for two different initialization times z,/R = 1072 (top) and
79/R = 1076 (bottom). Two results are plotted for kinetic theory:
Those from the RLB method are plotted as a green solid line with
filled circles and those from the moments method are plotted as a
green dashed line with open circles. All results are for e, = 0.05.

fundamentally accessible in both kinetic theory and hydro-
dynamics, a comparison between the two theories can be
made unambiguously at the level of €,. The quantity €,
measures the second harmonic modulation of the energy
flow and our kinetic theory simulations exhibits almost
identical behavior of ¢, and the energy-weighted harmonic
coefficient v£. Since we are not aware of generalizations of
€, higher order flow harmonics, we will therefore restrict
our attention to n = 2 perturbations, with initial eccentric-
ity ¢, = 0.05."2

Our results for the elliptic energy-flow response are
compactly summarized in Fig. 11, where we compare the
opacity dependence of ¢, /e, in kinetic theory (RTA) and
hydrodynamics (vHLLE) for two different initialization times
79/R = 1072,107% in the top and bottom panels. When

2We have checked that, similar to the kinetic theory results in
Fig. 8, nonlinear contributions ¢, ~ €3 are sufficiently small to be
neglected for the linear response analysis of €, /¢,.
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considering the larger initialization time 7,/R = 1072, one
finds that viscous hydrodynamics provides a reasonable
description of kinetic theory for 7 = 5, with both curves
smoothly approaching the ideal hydrodynamic limit for
large opacities, as indicated by the gray dashed line.
When considering a much smaller initialization time,
79/R = 107, we find small deviations between Kkinetic
theory and hydrodynamics in the same opacity range.
While these deviations might not be very sizeable, they
notably do not steadily decrease with increasing opacity, as
one would naively expect. Moreover, a perhaps more evident
observation is that neither of the two curves appears to
approach the ideal hydrodynamics result, such that even
when extrapolated to infinite opacity, the RTA value (~0.59)
slightly differs from the vHLLE value (=~0.57), and both fall
about 10% short of the ideal hydrodynamic limit (~0.64).

Even though this behavior may appear counterintuitive at
first sight, it can ultimately be traced back to the non-
commutativity of the limits 7, — 0, where the system is
subject to a rapid longitudinal expansion, and 7 — oo,
where hydrodynamics emerges from kinetic theory as the
system undergoes rapid equilibration. Starting from kinetic
theory, it is clear that for any finite opacity 7, the system is
initially far from equilibrium and behaves as approximately
free streaming, until on time scales 7. /R ~ 7%, the
system undergoes equilibration, and the subsequent evo-
lution can be approximately described by viscous or even
ideal fluid dynamics. While in the limit 7 — oo, the
equilibration time 7.q/R — 0 and fluid dynamics becomes
applicable at earlier and earlier times, the early time free
streaming and initial approach toward equilibrium is never
correctly described by fluid dynamics. The results in
Fig. 11 thus provide a clear illustration of the fact that
at very early times, the system is necessarily out of
equilibrium, and the two limits 7 — oo and 75 — O are
in general not commutative.

Even though at large opacities, the mismatch between
kinetic theory and hydrodynamics occurs only at very early
times, this affects, e.g., the longitudinal cooling and can still
have a notable effect on the development of anisotropic flow
at later times, which is seen in Fig. 11. We are thus led to
conclude that a nonequilibrium description of the early time
dynamics is inevitable to accurately describe the develop-
ment of anisotropic flow, even at relatively large opacities.

As a final remark to the comparison of opacity depend-
encies in the different descriptions, we note that for any finite
7y, kinetic theory and viscous hydrodynamics will approach
ideal hydrodynamics for sufficiently large opacities where
the equilibration time 7., becomes smaller than the initial-
ization time z,. While the results shown in Fig. 12 provide an
explicit illustration of this behavior, the convergence toward
ideal hydrodynamics at large opacities corresponds to the
incorrect order of limits, as physically, one needs to account
for the entire space-time evolution of the system; i.e., the
limit 75 — O has to be taken before y — 0.

T
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FIG. 12. Opacity (7) dependence of the response coefficient
€,/ €, in kinetic theory (RTA, obtained using the RLB method),
viscous (VHLLE), and ideal hydrodynamics for different initial-
ization times z,/R = 1072 — 107°. Convergence toward ideal
hydrodynamics is only observed when the initialization time
becomes smaller than the equilibration time of the system.

One may wonder how the increasingly short period of
nonequilibrium evolution at early times can have such a
significant impact on the transverse flow, which only
develops on much later times scales /R = 0.1. While it
is true that at very early times, the system does not develop
a significant amount of transverse expansion and can
locally be described by Bjorken flow as discussed in
Sec. VA, it is equally important to realize that the early-
time dynamics is nevertheless inhomogeneous in the trans-
verse plane. Due to the fact that the initial energy density
locally sets the scale for the Bjorken evolution, some
regions will experience a faster cooling relative to others,
thereby changing the shape of the energy density distri-
bution in transverse space. Due to this phenomenon of
inhomogenous longitudinal cooling, the geometric eccen-
tricities will be modified even before the transverse
expansion sets in. Since the anisotropic flow is built up
solely due to transverse expansion, its magnitude is
determined by the value of the eccentricity at the onset
of transverse expansion. We therefore conclude that
differences in the longitudinal cooling at early times are
ultimately responsible for the observed differences in the
transverse flow.

We illustrate this behavior in Fig. 13, where we present the
evolution of the coordinate space eccentricity ¢, as a
function of time z/R. Different colored curves in the top
panel show the evolution of ¢, in kinetic theory for different
opacities. Similarly, the bottom panel shows the correspond-
ing results obtained in viscous hydrodynamics (vHLLE). The
ideal hydrodynamics result is shown for comparison as a
solid black line in both panels. Starting around 7z ~ 0.1R, all
curves exhibit a significant drop due to the onset of trans-
verse expansion. However, in kinetic theory and viscous
hydrodynamics, the eccentricity decreases even before that
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FIG. 13. Comparison of the evolution of ¢, normalized to its
initial value €, on a logarithmic timescale for kinetic theory
obtained using the moments method (top) and viscous hydro-
dynamics (bottom). Also shown are the corresponding results in
Bjorken flow scaling approximation (dashed black lines) and
ideal hydrodynamics (solid black lines). Gray dashed lines show
the limit in Eq. (161) in the absence of transverse expansion.

due to the previously discussed phenomenon of inhomo-
geneous longitudinal cooling. Strikingly, this effect can
also be described (semi)analytically by approximating the
dynamics as a collection of local Bjorken flows in a similar
way to what was discussed in Sec. VA, which yields results
for the decrease of ¢, that we plotted as dashed black lines.
We note that the limiting behavior for this decrease can be
obtained as

€T - 3
tim 2% 8 _2;233, (161)

where ¢ is related to the behavior of the universal function
E(W) ~w? at small w, such that in kinetic theory, ¢ = 4/9
as indicated in Eq. (142), whereas for the hydrodynamic
theory in Eq. (158), one has ¢ = (/505 — 13)/18 ~ 0.526.
Evaluating Eq. (161) for the above values of ¢, one obtains a
~11.5% (RTA) and 13.7% (vHLLE) decrease of ¢, solely due
to the longitudinal expansion, as indicated by the gray
dashed lines in Fig. 13. Hence, this effect indeed takes on the
correct magnitude to be able to describe the difference of
~10% in the large opacity limits of kinetic theory and
viscous hydro compared to ideal hydrodynamics.

T €20

VI. CONCLUSIONS AND OUTLOOK

We employed the Boltzmann equation in the (conformal)
RTA as a simple model to study the space-time dynamics of
small and large systems created in high-energy hadronic
collisions. Within the simple effective kinetic description
described in Sec. II, the evolution of the system depends on
a single dimensionless opacity parameter 7 that combines
the system size and energy dependencies, and we estimate §
to range from values <1 in p + Pb collisions to ~10 in
Pb + Pb collisions at LHC energies [cf. Egs. (32) and (33)].

We performed (semi)analytic calculations at leading
order in opacity 7 (cf. Sec. III) and developed first
principles numerical simulations (cf. Sec. IV) to investigate
the longitudinal cooling of the transverse energy per unit

T dE, /dn
rapidity, o0y
1

quantified by the (energy-weighted) flow harmonics vZ for
a large range of opacities.

We find that with increasing opacities, pressure isotrop-
ization takes place at earlier and earlier times, such that for
large opacities 7 = 1, the onset of longitudinal cooling of
the system is well described by one-dimensional Bjorken
dynamics, until at later times /R = 0.1, when the effects of
the transverse expansion can no longer be ignored.

By studying the response to anisotropic perturbations of
the initial energy density, we investigated the development
of transverse flow from low to high opacities. While for
small opacities, 7 < 1, the development of transverse flow
is reasonably well described by the leading order opacity
corrections to free streaming, we find that for 1 <7 < 100,
the linear and nonlinear flow response exhibits a strong
opacity dependence and eventually saturates for large
opacities 7 2 100.

Even though one naively expects the results for large
opacities 7 > 1 to approach the hydrodynamic limit, it
turns out that subtleties of the limits y — oo and 7y — 0
provide a restriction on the accuracy of hydrodynamic
descriptions. Since the early time preequilibrium dynamics
of the system cannot be accurately described by ordinary
viscous or ideal hydrodynamics, deviations between all

, and the development of transverse flow
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approaches persist even at very large opacities. With
respect to RTA results, we found discrepancies of the
viscous and ideal hydro results of the order of ~2.5% and
~12%, respectively. However, as these discrepancies can be
mostly attributed to the phenomenon of inhomogeneous
longitudinal cooling, we believe that the inclusion of a
more appropriate preequilibrium description as in
K@MPGST [96,97] may significantly improve the agreement
between microscopic and macroscopic descriptions (see
also [80]). Similarly, it is also conceivable that resummed
hydrodynamic approaches such as anisotropic hydroynam-
ics (aHydro) [98-102] can accurately describe the inho-
mogeneous longitudinal cooling, and it will be interesting
to further investigate this in the future.

While our current study provides a detailed assessment
of the development of transverse flow from very small to
very large opacities, some of the shortcomings should be
addressed prior to inferring phenomenological conclusions
for proton-proton, proton-nucleus, and nucleus-nucleus
collisions. Evidently, it would be important to perform
event-by-event studies with a more realistic transverse
collision geometry, which is conceptually straightforward
but will require significantly larger computation time.
Beyond such straightforward extensions, it would also
be interesting to consider more realistic collision kernels
[55] and investigate the effects of a nonconformal equation
of state, which however will require additional theoretical
developments.
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APPENDIX A: FREE STREAMING THE
ANISOTROPIES

In linear order of the opacity expansion, the dynamics
of the anisotropies is naturally dominated by the free-
streaming limit, as will also be more evident from the
calculations in the following sections. It is therefore pivotal
to examine how the anisotropic factors of x'} cos(n¢y n, )
that are part of the initial condition in Egs. (14) and (15)
behave under free streaming according to the propagation

as given in Eq. (48). The notation ¢y , = ¢, — ¥, was
introduced in Eq. (16). For this purpose, it is convenient
to rewrite the cos(ng) and sin(ng) in terms of the
Chebyshev polynomials of the first and second kind
[[103], Ch. 18]:

cos(ngp) = T, (cos(#)), sin(ng) = sin($)U,_1(cos(¢))).

(A1)
The explicit form of the Chebyshev polynomials,
P =23 D e
TR LT ke Y
13 -
a2 = -0 (" ) a2 (A2)
k=0 k

can be used to express cos(n¢) and sin(n¢) in terms of
powers of cos¢. Under free streaming (44), the factor
x' cos(ngy n, ) evolves to

|XL - VLAT|H COS("d’XL—vLAr,nL)

v A7) -
Cxy — v, A, (FETVLAD BL) g
|x; — v, At

where Eq. (Al) was employed on the right-hand side.
In the above, the time lapse #(z, 7, y — ) was replaced by
At = 7 — 1) by virtue of Eq. (47).

The Chebyshev polynomials obey the identity,

o = 2], (—) L iblzU,. (m) (Ad)

2|

where a and b are real numbers, and z =a +ib is a
complex number. Denoting ¢y, n, = ¢, —¥,, we set

a—x; cos(¢XLnL) - Arcos(qﬁmnl),
b—x, sin(gbxlm) — Afsin(q’;plnL),

7= x e — Age'Poins (AS)

such that Re(z") is just the expression on the left-hand side
of Eq. (A3), and an expression with a very simple
dependence on ¢y , = ¢, — ¢, can be derived:

x| — v Az Cos(n(ﬁxL—vLAr,nL)
"\ i .
_ z( ) I~ Az)ifcos(ny,n.)
=0 \J

x cos(jibx,p,) = sin(ngy,n, ) sin(jpx p,)].  (A6)
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APPENDIX B: SOLVING INTEGRALS IN
LANDAU MATCHING

In order to be able to perform the necessary integrals of
the kernel according to Eq. (76), we will need specific
expressions for € and u*, meaning that we need to compute
the exact form of 7V and 6T(©* by solving the integrals
given in Sec. III D.

As we will discuss below, we can break the integration
down to solving integrals of an exponential of cos(¢)
multiplied with powers of trigonometric functions. These
can be expressed in terms of modified Bessel functions of
the first kind:

/dqﬁe‘”‘”("s> cos(ng) =2zl ,(a), (B1)
/dqﬁe“"s(’/') cos(ng) cos™ (¢) = 21" (a),  (B2)
/ dgpe? <) sin(n¢p) = 0, (B3)

/ dgpe<@)sin(ng)sin(¢p) =2zl (a) —2xl,.,(a), (B4)

/ depe?* @) sin(ng) cos(¢p) sin(¢p) =2z} (a) =2zl | (a).
(B5)

It is straightforward to see that 7(O is indeed of this
form as

d
TOpr — T?O Ziﬂp Ui”ié(TO’ X, — ATVJ_),

(B6)
where v/, = (1,cos¢,,sin¢,,0) has no longitudinal com-
ponent under free streaming due to the §(y — #) function in

Eq. (48). The integral with respect to p; was performed
|

0)

according to Eq. (12). At zeroth order, we took into account
only the isotropic part of the initial energy density profile €,
introduced in Eq. (14), which is evaluated at shifted
coordinates, according to

€(7o, X — Azv))

1 de” . X2 4 A2 = 2x, Azcos(¢, — b))
= — xp | — .
Rty dn P R?

(B7)

Using the integral formulae given in Eqgs. (B1)-(B5),
the components of the stress-energy tensor introduced in
Eq. (53) can be computed to be

(0) 2 2

1 1 dE x| +Ar
T<0>”:;—ﬂR2 d; ex (—7L e )10(219), (B8)

11 deV X3 + A7
T(O)Tl:;m d; ex <_LT)11<217)7 (B9)

11 de? X3+ AP
TWL:?W d; ex (-iT)Iz(zh), (B10)

11 de” X2+ A7
7O — —_— 7L -t 15(2b) — I1(2b)],
ek enp (T n(28) - 20
(B11)
where we defined b = x;ﬁ’.
The anisotropic part §T(Ow,
doy
sTOm =10 dxip, vl Y Se(rg,x, — Azvy),  (B12)

T 2w

exhibits a dependence on the angle ¢, , due to the form
(15) of the anisotropic part of the initial energy profile,
which is evaluated at shifted coordinates according to

oe(ty,X| —Arv,) =
(0 € L) ﬂ'RzTO d’7

( 2
1 dE -A -A n
L exp [—a'xi all }5,! ('Xl TVL') cos(ngy n, )-

(B13)

R? R

Solving the integrals in Eq. (B12) is a bit more difficult, requiring the computation of an angular integral of the free-
streamed anisotropies. We have already seen in Appendix A how we can rewrite them into a term with a straightforward
&« p, -dependence. An additional ¢, |, -dependence comes from the velocity vectors 2. In the computation of de, du,, and
oug, they will be contracted with the eigenvectors u#, #, and s* in the following ways:

u, V0 u, = y*[1 = 2B cos(py p, ) + 7 cos*(dx )],
M”U”’l)yl,, — 72[,6 - COS(QI)XLPL) _ﬂz COS(¢XLPL) +ﬁc052(¢prL)]s

Uy

v v¥s, = —y[sin(dy p, ) — fcos(dy,p, ) sin(gy p, )]

(B14)
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Taking into account all of the ingredients presented above, we indeed find that we can decompose all terms into integrals of
the form in Eqgs. (B1)—(B5). We can plug the results into Egs. (68)—(70) to obtain explicit expressions for the anisotropic
corrections de, éu,, and Su:

o€ =u 5T(0)"”uy

( ) x< Arz
WE] 1 depx a
=9, ; a 27:R"+2 I / 2;& . bcos(t/)npl)},z[l -28 C05(¢prL) +ﬂzcosz(¢lel)]
xz( A s, ) (B15)
1deY) 1 e 2 N _ > i
= co8(bx,n, )80~ 4 R 7 Z Az)[I;(2ab) — 2pI'(2ab) + (*I)(2ab)]  (B16)

Py [~ cos(dy,p,) (B17)

u, =

w, ST, 14?1 _dee /d(ﬁprL 2 cos(
= — e R —F= €
p—¢€ "t dy R 2n

n

_ Peos(ihp,) + feos(dhe,p, )] (1) "I (—Ac) cos(ndsn. + idb.p,)
0

J=

(0) e
1 1del) 1 i . N g
= cos(ngy n, )0n P Z( > (A [pI;(2ab) — (1 + p*)I;(2ab) + IY(2ab)]
(B18)
u, 6T Orvg
Su, = R
pPs—€
(0) *2 A2
VAEY 1 Gie? [ dgp, sapeo , ,
— T Tdn dn 7tRn+2 © /#e Cog(qsml)y[sm((ﬁxim)_ﬁcos(‘ﬁxim)smqﬁﬁm]
XZ( A s, + ) (B19)
. 1 1de? 1 _a_ "0\ . .
:—sm(n(bxﬂ,l)énp o prrr L yjzo i X (=Ar)[I5(2ab) — 1, (2ab)
— BI)(2ab) + Bl (2ab)]. (B20)

APPENDIX C: DETAILS OF LINEARIZED CALCULATION

As stated in Sec. III E, the linear order corrections to the observables V,,,, can be computed as a six-dimensional integral
of the kernel:

1 in m ’ Ve
Vﬁmi(r) —/dzple ¢an/ dr’/dle/dm’ (27;33 ClfOUZ, x 1. pL.y—1). (C1)
7o

) = =pu,(57) TG0 - 1) )

We already outlined in that section how this problem can be split into different terms. The moments V,,, depend only on the
isotropic part, while the moments V,,,, with n # 0 vanish in the isotropic case and have to be computed to linear order in the

anisotropic perturbations. Additionally, the linear order corrections to the moments split into buildup of equilibrium V(1 el
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and decay of the initial condition V,(J,’IO)
the corresponding parts of the kernel:

as computed from

Celf0] = pu, (5 g) _leeq, (C3)
Colf ) = —p'u, (5 Z) g0, (C4)

This section discusses how four of the integrals can be
computed analytically for each of these terms. Many of the
angular integrations will again take the forms of the integral
formulae given in the beginning of Appendix B. We will
start with the moments V ,; as they are independent of the
anisotropic perturbation.

Exact expressions for the local theormodynamic quan-
tities 7, u* can be computed from the components of 7+
that are discussed in Appendix B according to the formulae

derived in Section IIID. In terms of b = xjﬁf,

1/ \"EY N\ R\ 14
T=R1[=-=— L R =
(= Goe) 57%) C)

x2 72
cenp (=S50 o) - 4o (09

they read

M”ZY(I’:H&L’OL V= (1_ﬂ2)—1/2,

% 1
= 27[/d2XJ_Q§n+2(XJ_>/ dkkm+1F<z>
0

3R? oo 1
—4 2 m+-2 dkkarlF —.
d m+2 Q‘Y’O 0 <k>

We can therefore express our result for V’(;(,)o)

3R2

2

k) 1 [[Ib) 12
ﬁ_IT(b)_E_\/LT(b)_ﬁ} -1 @D

Looking at the expression for 7, it is immediately apparent
that its dimensionless constant prefactor together with
(51)~! constitutes a factor of 7 in C[f”)], as we have
predicted in Sec. II B. We can immediately also compute

p'u, = yp[cosh(y —n) — feos(gy,p, )] (C8)
Reminding also of the form of £,

(27)*8(y—n) F (Qs(xl - VLAT))
w1 PL ’

f(())(T,XL,PL,y—’?):
Vet

(C9)

where Q; is fixed by the isotropic energy density according
to (12), (14), and (38) to be of the form,

2
QS (XL) = Q.&,O exp <_ %) ’ (CIO)

(1,0) . .
we can compute V,,;~ by plugging the above expressions
into the integral formula (C1) for the part of the kernel
given in (C4). Due to the fact that in both cases we integrate
f© the integral over p | is analogous to the computation of

(Co) the zeroth-order moments V,(,%, where
|
(C11)
o0 ) -V, A
—2n [ @ [an [T apipriat- n)F(Q‘(”p—L“’)) (c12)
(C13)
(C14)
in terms of these zeroth-order moments and find
1.0 0 n —1m—|—2 T © (m+2)(A’[/2+X2)
Vo) = _y® <5 s) / de’ /0 dx x, Tyexp {— R (C15)
70
20depy p, 2(m +2)bcos(¢x p, )
(C16)

= —VIIP.(3),

() = ;L 2) / a7 /0 " dx, %, Trexp [— m+2) ;r 2

(A7? +5ci)] [10 <2m37+4b> A <2m +4b>}, (C17)

3
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where one has to keep in mind that in the integrand b, f3, y, and T are to be understood as functions of 7’ instead of 7. In the
last step, the result was rewritten into the tilded coordinates introduced in Sec. II B to make the parametric dependencies
more apparent.

For Vﬁ,i;fq) given by Eq. (C1) with the partial kernel (C3), computing the moments of f., via the p  -integration yields

-1 T (o]
Ve (@) = (s1) " 2 rin 4 3)¢(m + 3) / de / dx x, 7T (C18)
S (2”) 70 0

X Azn depx p, /d'l{}’[cosh(y —-n) = ﬁcos(qbnm)}}_m_2

’/[ -l I‘/Cff F(Lz) v / i Jrm-+4,,—m—2
- 5§ 2”1/2F(m+3) (m—|—3) e dr ; dx, x 7T" Ty (C19)
7o
m—+2 m —|— 2
2F1 ( ) 5 17ﬁ2>
2
. 1 dE( ) (m+3)/4 )
= }”/effR_m< Vett dn R> Q,,(%), (C20)
5 72\ —(m+3)/4 m+2) » .
Qm(T):(E> 2272 I'(m +3){(m +3) m”)[(,d / dx %, 7Ty
m+2 m—+2

After absorbing one of the T prefactors into 7, the parametric dependence of Vf,}éeq) is given by (C20). As the basic
structure of the integrands is the same, moments with n # 0 will have the same parametric dependencies except for the

additional anisotropy parameter &,,.

Now to compute the anisotropic corrections SVS,BL for n # 0, we first need to derive the change 6C[f (0>] in the kernel,

ClfO = -p'u, (5 Z) Ty eq =), (C22)

due to the anisotropies, so we can plug it into (C1). C[f (0)] depends on three quantities that receive anisotropic corrections:
f©, T, and u*. Linearization in the corrections will yield three different contributions. Separating the terms proportional to
£ from those proportional to feq» we can split the kernel into the following two parts:

-1
5Co[f 0] = - (5 ’7) P (TS + u'STfO + surTfO) (C23)
N

v

-1 4 v
5Cegf©)] = <52> P, [(u"éT—I—éu"T) fea (p T” > 4 (~u'sT + 5urT) 2 PT” 2 (p T” )] (C24)

We can compute the anisotropic contributions to thermodynamic quantities that show up in the kernel from the results for
o€, ou,, and du, given in Eqs. (B17)—(B19). The change in temperature 67" can be computed by linearizing the equation of

state T = (% yeff)_l/ *¢=1/4 in Se, and the contraction ou, p* can be expressed in terms of éu, and du.
1 /72 -1/4 1 /72 -1
oT = Z <% Ueff) €_3/45€ = Z (@ Veff) T_3(S€, (CZS)
p”éuy = p”(éutty + 6Mss;4) = 5MtpL7wCOSh(y - ’7) - COS(¢prL)] - 5uspi Sin(qﬁprl)' (C26)
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The only anisotropic quantity that we still need to derive is the form of the perturbation 6f(°) due to the energy density
perturbation de. Given that

7)38(y — x, — Az
SO x i, py—n = (2x) 5<szn)F<QS( Lo8 )> (C27)

Vet P

the change in f is due to the change in Q,, which is directly related to e. More specifically,

3 _ _ _
5f(1, X, PL.Y— I’[) _ (27[) 5()’ ’1) 5Q\ (XL ATVL) F <Qs (XL ATVL)) i (CZS)
Vetf  TPL P1L P
where
1 S , 1 2 n
00,(x.) =5 0,0x0) ) = 20,055, exp (-3 ) () costuty, ) (©29)

Evaluating 6Q; at x| — Azv, will thus yield as a factor the free-streamed version of x'} cos(negy n L) that was computed

in Appendix A.

We now want to compute the moments V,(,l;lo) for n # 0 by computing the integrals in Eq. (C1) for the part of the kernel

perturbation given in Eq. (C23). As in the isotropic case, we can simplify the integral expression by identifying Vf,%. This
holds true also for the term containing §f(*) instead of £, since

/ dplpTQxxL—uAr)F(W) = (m+2) [ an, ,,F<¥> (C30)

The angular integrals are of the same type as the ones in Appendix B; however, each of the three perturbations has a
slightly different angular dependence, so we will discuss them one by one. The Jf-term is proportional to

n

in 124 0)b cos n n—j i .
[, [ g e 25 %n)(l—ﬁcos(«ﬁxip))Z(j)ﬂ’(—Ar)fcos(nqsmi+J¢prL> (c31)

J=0

P / Ay . e™eiv cos(nhy n ) Z <]> (=Az)] [ ((mT” n a> b) — I, < (mTH n a> b)] (C32)
=272 ; (’;) X7 (~A) [1 ; ( <mT+2 + a) b) I ( <mT+2 + a) b)] . (C33)

The 6T -perturbation contains via e a factor of cos(ngy », ) = cos(ngy n, ) cos(ngy p ) —sin(ngy , )sin(ngy , ). The
term that is odd in ¢y , will vanish, while the other integrates to

[, [ g P = poos(y )] cosindin,) (C34)

=2 / Ay, n, €0 cos(nghy n) [1 <mT+2 b) — pI, (m ki zbﬂ (C35)

— 22 [I,, (’" ;r 2 ) _ I, (m 2 b)} (C36)

Lastly, the oéu/-perturbation is of the form &u,y[f —cos(¢x p )] —Ou,sin(¢y , ). The term containing du,
cos(negy », ) behaves exactly like before:
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/ Ay, e / Aby p, 00 [ cos(hy . )] COS(1ihy n,) (C37)
2 2
P {ﬂ]n (% b) - (% b)] , (C38)

while the other term contains a factor of —sin(¢y , )du,, which has the total angular dependence

—sin(¢py p, ) sin(ngy o, ) = —sin(¢y p, )[cos(ngy n )sin(ngy , )+ sin(ng, , )cos(ngy , )], so in angular integra-
tion, the ¢, , -even part becomes

/ dpp n, € o in / depy p, €
2 2
R [ﬂlg <% b> —1I,. <% b)] (C40)

Putting all of this together, we can find the 2D integral expression for 5Vf,},’,0)'

22p cos(dhy , p, ) (—sin(ey,p,)) sin(ngy n, ) (C39)

Vi = —Ve6.9Pon(7), (C41)

3 (7 [ ~ 2
Po(E) =202 / a7 /) %, %, yTexp [— (% + a) (@ + A%’Z)}
7o

6 (252 ()

n . ) 2
()]
=0\

gt {1,, (’"T“ b) I, (mT” b)] [1;(2ab) — 2p1'(2ab) + f1!(2ab)

#4226+ 55 ) 120 = 21020) | g1, 2a0) = 1+ 12 + )
2b J J J

x [ﬂln (’"TH b) _1, (mT” b)] - Kﬂ - %) 1,(2b) - 10(219)} B
x [I}(2ab) - I;,,(2ab) - I!(2ab) + BT, , (2ab)| {ﬂlg (mTH b) I <mT+2 b)} }} (C42)

Next, we will compute 5V,(nl,’fq) by plugging (C24) into (C1). Again, the most straightforward integration is the one
over p |, which equates to taking moments of f.,. Terms containing fgq can be cast into the same form as the others by

partial integration, which yields

m p uﬂ pvuy m pl’uy
/dPLPLH ”T féq <T) :_<m+3)/dplpJ_+2feq< T ) (C43)

To compute the angular integrals, as in the computation of 5V,(,1,’,0), we can rewrite the ¢y , -dependence of de, su,, and
ou, into a dependence on ¢, , and ¢ ,, , which makes the ¢, , -integration trivial. However, the next step will be the
trickiest one of this entire section, as the integrals over ¢, , and 7 are highly nontrivial. The integrals that need to be
computed for the different anisotropic correction terms include:

M\ —m—2
/ dn / sy, (p;z ) se. (C44)

M\ —m—3
[an [ ane, (”;j ) [ cosh(y — n) — cos(dh.p, ) (C45)
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/ dn / sy, <p;iﬂ> _m_35us sin(ghy,p, ). (C46)

Getting rid of all prefactors that do not depend on the integration variables, this amounts to computing the following
integrals:

Goln.m.f) = / dn / dbx. . [cosh(y — ) — B cos(y,p )| cos(ndh_p.)- (C47)
Gy (n.m. ) = / an / Ay, . [cosh(y — 1) — Beos(dh, )| [Bcosh(y — ) — cos(dhy,p, )] cos(ndby p, ). (C48)

Gy (n.m. ) = / an / dbs. . [cosh(y — 1) — Beos(dyp, )3 sin(ds.p, ) sin(nebs . ). (C49)

We have defined these integrals as the functions Gy (n, m, ) to abbreviate the notation of our results. To compute them, we
rewrite again sin(n¢y , ) and cos(ngy p ) into Chebyshev polynomials as we did in Appendix A. The polynomial
expression for sin(n¢y , ) contains another factor of sin(¢y ,, ), which combines with the sine already present in (C49) to
give 1 — cos?(¢py ). Thus, only different powers of cos(¢y,,, ) Without any sines occur in the integrand, which can be
integrated analytically as follows:

[ an [ dop leoshiy =) = peos(yp ) o8 () (C50)
m—2yl
4 / dx / cs1
\/1 +x \/1 - (©51)
SOCLIUE) Fy(mg2 2 b1 12,62 ] even
) TeERre) 22 (C52)
) dapreRri2 mi3 m ’
r/<(+>r)<’+(’§)3F2(T+3vT”vu'— 5547 lodd
[ [ b fcoshls =) = peos(ih )1 <oy, ) coshly =) (cs3)
x ﬂy —m— 3ylx
_4/ dx/ (C54
\/1 +x2/1 - )
2T () mi2 mid ﬂ 1 ﬁ 2
| e 3o (152, 15 ;%) ,leven (35
=9 . o .
SR Py, 43 1253 L 2) 1 odd
To simplify these expressions, we can make use of the following property of the I'-function:
C(n+3 (2n)!
. C56
In+1 (n!)? v (C56)

Then one finds for the integrals (C47)—(C49):
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,_
[STE)
ki

(n—k—1)!

2 k:O(_ )" (n — 2k) k!

2n—2kcosn—2k (4))

Geln.m.p) = / an / dfcosh(y — ) — feos(g)] "2

n+2 n—k—1 m m . .
) LZJ (_1>k En zk,)z£,3F2(L2 m+2 n=2k+1.1 2k+2 )

(m23) ,n even
— 32, +

/}11:2 133; 1E7J0( 1)k (Snz_klf]';z)k'3F2<m_+3 mid elt2 3,0 2k+3 ﬂz) ,nodd

. (C57)

G, (n,m,p) = /dn/dq') [cosh(y — 1) — Bcos(¢)] ™ 32( 1) ( 1)2”‘2"‘1[cos"‘”“l(gzﬁ) — cos" 2k ()]

k—1
m+4 Zk ()( ) nnzkilgz)k,bFz(mT'H’mT‘H,nTZk’%,n —2k+1. ﬂz)

n m+3 m+3 n—2k+2.1 n-— 2k+3 2
+5 2k+13F2< IS ISR I )] ,n odd

=277 A o , (C58)
ﬁr(ﬁ) P (_l)k(@)gb [(F, (et mid n=2hil 3 e 2k+2 )

2 2 2 02
n—=2k+1 m+4 m+4 n-2k+3.3 n-— 2k+4 2
= 2k+23F2( 2 P )]

,n even

Gy, (n,m, p)

5]

= [0 [ dateosnis =) —peost) 5> G2 K okt (g)coshly ) —eost 1 (g)

5 n—k—1): I m m n— n—
ZLzJ (=1)k k=1 [ﬂ ("5 )3F2( 2 md ndrl 1 n=dle2 g2y

k=0 (n—ZJ!)zk! F(mTH) 2 0 2 2 52
() 2kt mid m+4 n—2k+3.3 n— 2k+4 2
—2fF %) sl R 5 1 even
T . (C59)

ZBJ (=1)k (n—k=1)! 2FT <m+3 m+S n=2k+2.3 n— 2k+3 )

k=0 (= 2k. i) 2 2 2 2

r(es) 3 m43 n—2ki2.1 n—2ki3.
_ﬁzr(&pFZ(L; ’m; = 2+ S T £ 6%) ,n odd

2

The final step to computing the total expression for sVt isa bookkeeping task of combining all the above integration

steps, at the end of which, one acquires

. 1 dE( (m+3)/4
5V£,}n 9 = POuletR™" <ﬂ Vett dy R) an(%% (C60)

a2\ —(m+3)/4 1 7 Iy B
Qun(7) = <%> Wg(m +3) / d? / dx, %,y " 2T exp [-a (3 + AF?))
% 0

X Z( >~"—J )J{% [C(m + 3) + T(m + 4))y*[1;(2ab) — 2p1;(2ab) + f*1)(2ab)]G,(n, m. p)

+ [[(m+3)—T(m+ 4)]%’?4{y2 [(w + ﬁ) 1,(2b) — 210(219)} B
x [pl;(2ab) — (1 + p*)I;(2ab) + I} (2ab))G,, (n. m. )

( _$>11(2b) _zo(zb)]_l[z;(zab) —1,,1(2ab) — pI}(2ab) + pI,,(2ab)|G, (n.m, ﬂ)}}. (C61)
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APPENDIX D: EQUILIBRIUM MOMENTS OF THE NUMERICAL SETUP

In this appendix, the equilibrium moments E}' emerging in the time evolution equations for the moments C}* as derived in

Sec. IVA are computed. Since taking the integral [ dp*( p°)? of the equilibrium distribution will yield the energy density,
the expression simplifies in spherical coordinates:

d? d
E;n :Ueff/@%;/gy;n(ewq&p)pﬂuﬂfeq (Dl)
%) 27!(1 d 9 1 H
_VeffA dPT(PT)3/ ¢p/ o me(epvgbp) hd uufeq(p—;tﬂ> (D2)
:Te/z”d""’/dcosep Y0, 4,) (09 1,) 2. (D3)

In this calculation, we have defined v* = p#/p*. To compute the angular integral, we write

vMu, =y(1=p-0) =y(1 = pcosb,). (D4)
and express the spherical harmonics in a rotated coordinate system, thus writing
1
Y;n(ep7 ¢p) = Z (Dinm) Y?n (eup9 ¢up)v (DS)

m'=—1

where the Wigner D-matrix depends on the angles involved in the rotation from (6, ¢,) to (6,,, ¢,,). In these coordinates,
the ¢,,-integral becomes trivial; thus, only an integral of the Legendre polynomials remains to be computed:

rdpy, [dcosd,
/2 ¢P/ SO Y (G hup) 7> (1 = B e0s B) 3 = 5700 /dxﬁ%. (D6)

For the case m’ = 0, the Wigner D matrix simplifies to

. | 4m
(Dfno) - 2[—|—1 l(erot’ ¢r0t) (D7)

Since i lies in the transverse plane, where its orientation is given by ¢,, we can identify the rotation angles to be 6,,, = 5 and
¢r0t = ¢u, which y1€1dS

m ! Py(x)
E'" =zeY'| =, ¢, dx—————. D8
I Ter, (2 ¢ > /_1 x27/3(1 —ﬂx)3 ( )
Finally, the remaining integral can be solved analytically:
1 P(x) 'l +3) [+4 l+3
d 7:2—1—2 122\ V=), -3pl F - }2 D9
/_1 x2y3(l—ﬁx)3 z F(Z—F%)y /7)2 1 B 2 / ( )

APPENDIX E: EARLY AND INTERMEDIATE TIME COOLING
BASED ON 0 +1-D BJORKEN ATTRACTOR

Below we describe the procedure employed to perform the integration in Eq. (151), which provides the Bjorken scaling
curve in Fig. 1(a). The main ingredients that we require are the universal functions £(W) and f (W). These are determined
by performing a 0 4 1-dimensional simulation (i.e., for a system that is homogeneous with respect to the transverse plane)
using the RLB method described in Sec. IV B. The initial time and temperature were set to 7, = 107* fm and
T, = 0.315 GeV, while 4z5/s = 1, giving Wy ~ 1.6 x 10~*. The initial distribution was taken to be of Romatschke-
Strickland form (126) with anisotropy parameter &, = 1000, corresponding to an initial pressure ratio P; /Pr ~ 0.002. The
simulation was ran until 7/7y = 10' or W~ 1892. During the simulation, the energy density and dE,/d’x dn are
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computed, and the universal functions £ and fy are
obtained using

() = %) (l> g,

70

_ 70 dE T\Y3 4
C =— — , El
e =2 (D) @

and the results are presented in Fig. 14. For completeness,
we provide a comparison with the results for £(w)
reported as “Boltzmann RTA” in Fig. 1 of Ref. [90],
which are shown using the red dashed line. The C3lWw*/°
limit valid at small values of W is shown as the black
dotted line.

Next, in order to perform the integrals in Eq. (151), the
top end of the integration w(z,x; = 0) must be found by
numerically inverting Eq. (152). Considering the range
107 <7/R <1 and 2 < 7 < 400, the minimum and maxi-
mum values of #W(z,x, = 0) encountered are 1.4 x 10~
and 88, corresponding to (z/R,7) = (107>,2) and (1,400),
respectively. In order to avoid “boundary effects” due to our
choice of initial conditions, we considered the numerical
data only for Ww > 3.4 x 107*, while for smaller values of W,
we employed the analytical limits in Egs. (142) and (143),
namely &, fz =~ Cw*”.

1
o8t Lo m/4
0.6 + |
04 - |
0.2 E(w) 1
fEL (w)
C;olw4/9 - =
Giacalone et al. = =
0 Co il Co il | | | Lo
1073 1072 107t 109 10! 102 103

w

FIG. 14. Universal functions £(W) and f (W) obtained using
the RLB method, represented with respect to the conformal
parameter w = 77/ (4zn/s) for the 0 4+ 1-D Bjorken flow. The
red dashed curve shows the results for the RTA attractor reported
in Fig. 1 of Ref. [90].
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