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We employ an effective kinetic description, based on the Boltzmann equation in the relaxation time
approximation, to study the space-time dynamics and development of transverse flow of small and large
collision systems. By combining analytical insights in the small opacity limit with numerical simulations
at larger opacities, we are able to describe the development of transverse flow from very small to very
large opacities. Surprisingly, we find that deviations between kinetic theory and hydrodynamics persist
even in the limit of very large opacities, which can be attributed to the presence of the early
preequilibrium phase.
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I. INTRODUCTION

Over the past decades, the collective flow of soft hadrons
produced in high-energy heavy-ion collisions at the
Relativistic Heavy-Ion Collider (RHIC) and the Large
Hadron Collider (LHC) has become one of the cornerstones
to establish the existence of deconfined quark gluon plasma
(QGP) and to characterize the properties of strong-inter-
action matter under extreme conditions. The space-time
dynamics of relativistic heavy-ion collisions is commonly
described in terms of relativistic viscous hydrodynamics
[1–5], which provides an accurate description of exper-
imental measurements of soft hadron production and
collective flow at RHIC and LHC.
Based on the tremendous success in quantifying proper-

ties of the QGP produced in heavy-ion collisions [6–9],
different groups have performed hydrodynamic calcula-
tions for small systems [10–24], which also provide a
reasonable description of the experimentally observed
collective flow in proton-nucleus and proton-proton colli-
sions [25–27]. However, in contrast to nucleus-nucleus
collisions, such calculations are subject to much larger
uncertainties, where, in addition to the poorly constrained

initial state geometry [19,28,29], one may question the
theoretical justification for employing a hydrodynamic
description for a system, which features a very short
lifetime and consists of very few degrees of freedom.
Despite significant progress in understanding the onset

of hydrodynamic behavior in QCD plasmas (see, e.g.,
[30,31] for recent reviews), calculations performed in this
regard are typically subject to simplifying assumptions,
e.g., modeling the early stages of heavy-ion collisions in
terms of a transversely homogenous Bjorken flow, and are
therefore not (yet) able to capture the competing effects of
longitudinal and transverse expansion in small collision
systems.
Beyond studies based on effective macroscopic

descriptions of QCD, there have also been attempts to
explain the onset of collective behavior in small systems
by invoking a microscopic origin of the correlations.
Examples include calculations within the color glass
condensate (CGC) effective field theory of high-energy
QCD [32–42], as well as more conventional approaches
extending general purpose event generators such as
PYTHIA or HERWIG to include space-time dependent final
state interactions [43–46].
Clearly, the development of a unified description that

encompasses both paradigms in the respective limit is an
outstanding challenge [47]. Beyond microscopic calcula-
tions that are rooted in the underlying theory of QCD, it is
therefore an important achievement that—at least within
simpler microscopic descriptions—it is possible to include
a nontrivial transverse expansion [48–55], and, in some
cases, even detailed event-by-event geometries [37,56–58]
to describe the onset of collective flow. In this spirit, the
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central objective of this paper is to scrutinize the develop-
ment of transverse flow and investigate possible changes in
the space-time dynamics and flow response of small and
large systems.
We follow previous works [52,53,57] and employ a

simple kinetic description of the system described in
Sec. II, where the system size and energy dependence is
characterized by a single opacity parameter. Within this
framework, we perform (semi)analytic calculations to
leading order in opacity in Sec. III and subsequently in
Sec. IV develop two different numerical schemes that
allow us to study the evolution of the system all the
way from very low to very high opacity. Numerical
results are presented in Sec. V, where we analyze the
longitudinal cooling and flow response in kinetic theory
as a function of opacity and compare it to analogous
calculations in ideal and viscous hydrodynamics. We
conclude with Sec. VI. Several appendices contain
additional details and explicit expressions for the
(semi)analytic calculations.

II. EFFECTIVE KINETIC DESCRIPTION OF
ANISOTROPIC FLOW

A. Setup

Wewill describe the system via an averaged phase-space
distribution fðx; pÞ of (massless) quasiparticles, for which
we assume boost invariance along the longitudinal (beam)
direction. Effectively, this reduces the dimensionality of the
problem to ð2þ 1Þ þ 3 dimensions, which can be effi-
ciently described using Milne coordinates xμ ¼ ðτ;x⊥; ηÞ
and pμ ¼ ðpτ;p⊥; pηÞ, where

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 − ðx3Þ2

q
; η ¼ artanhðx3=x0Þ; ð1Þ

such that τ is invariant, and η behaves additively under
boosts in the longitudinal direction. Defining similarly

y ¼ artanhðpz=ptÞ; ð2Þ

it follows from boost invariance that the phase-space
distribution f can only depend on η and y via their
difference. We denote transverse positions in terms of
regular cartesian coordinates x⊥ ¼ ðx1; x2Þ, such that the
metric of the coordinate system ðτ;x⊥; ηÞ is given by
gμν ¼ diagð1;−1;−1;−τ2Þ. The corresponding momenta
ðpτ;p⊥; pηÞ are the cartesian transverse momentum p⊥,
and

pτ ¼ p⊥ coshðy − ηÞ; pη ¼ p⊥
τ
sinhðy − ηÞ; ð3Þ

where p⊥ ¼ jp⊥j. Based on a kinetic description
of the nonequilibrium dynamics, the evolution of the

phase-space distribution is governed by the Boltzmann
equation,1

pμ∂μf ¼ C½f�: ð4Þ
For the collision kernel, we employ the relaxation time
approximation (RTA),

CRTA½f� ¼ −
pμuμ

τR

�
f − feq

�
pμuμ

T

��
; ð5Þ

where we choose a temperature-dependent relaxation time,

τR ¼ 5η=s
T

; ð6Þ

to describe a conformal system with constant shear vis-
cosity to entropy density ratio η=s. Energy-momentum
conservation requires that the local equilibrium temperature
T and rest-frame velocity uμ are determined via the Landau
matching condition [60–64],

uνTμν ¼ ϵuμ; ð7Þ

with timelike four-velocity eigenvector uμuμ ¼ þ1 and
eigenvalue ϵ, representing the energy in the local rest frame.
The temperature T can be computed from the energy
density ϵ via the equation of state,

ϵ ¼ π2

30
νeffT4; ð8Þ

which introduces a proportionality factor π2

30
νeff, which can

be absorbed into redefinitions of the related quantities
(cf. Sec. II B). The stress-energy tensor Tμν is obtained
from the distribution function f via

TμνðxÞ ¼ νeff
ffiffiffiffiffiffi
−g

p Z
d3p

ð2πÞ3pτ p
μpνfðx; pÞ; ð9Þ

where
ffiffiffiffiffiffi−gp ¼ τ denotes the metric determinant, d3p ¼

d2p⊥dpη is the integration measure in Milne coordinates,
and νeff represents the degeneracy factor.
Since the computation of observables will involve

weighted integration of f over momentum space, we define
a shorthand notation h·i as

1We note that in Eq. (4), coordinate derivatives on the lhs are to
be evaluated at constant pμ in Minkowksi space. Throughout this
manuscript, we will employ different parametrizations of the
spatial and momentum coordinates, which give rise to additional
terms on the lhs. Specifically for a boost-invariant system in
Milne coordinates, one finds [59]

pτ∂τf þ p⊥ · ∂x⊥f −
pτpη

τ

∂f
∂pη ¼ C½f�:
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hOi ¼ νeff
ffiffiffiffiffiffi
−g

p Z
d3p

ð2πÞ3pτ Oðp⊥; pηÞf; ð10Þ

which allows, for example, one to write the energy-
momentum tensor as Tμν ¼ hpμpνi.
We consider initial conditions motivated by the CGC

effective field theory of high-energy QCD [65], where the
initial state very shortly after the collision ðτ ∼ 1=QsÞ can
be viewed as a highly anisotropic collection of gluons
with typical transverse momenta ∼Qs and vanishing
longitudinal momenta in the local rest frame [37,41].
Specifically, we will consider initial conditions of the form,

fðτ0;x⊥;p⊥; y − ηÞ ¼ ð2πÞ3
νeff

δðy − ηÞ
τ0p⊥

dN0

d2x⊥d2p⊥dy
; ð11Þ

which has vanishing longitudinal pressure (Tη
η ¼ 0).

Strikingly, it can be shown (cf. Sec. II B) that—due to
the particularly simple nature of RTA—certain energy-
weighted observables do not depend on a particular form
of the (isotropic) momentum distribution dN0

d2x⊥d2p⊥dy
[52],

and we will therefore not specify it further. Instead, the
dynamics is entirely described by the initial energy density
distribution, which, for the initial conditions in Eq. (11), is
determined by2

ϵðτ0;x⊥Þ ¼
1

τ0

Z
d2p⊥p⊥

dN0

d2x⊥d2p⊥dy
: ð12Þ

We take the initial energy density ϵðτ0;x⊥Þ as a super-
position of an isotropic background ϵ̄ðτ0; x⊥Þ depending
only on x⊥ ¼ jx⊥j and an anisotropic component
δϵðτ0;x⊥Þ; i.e.,

ϵðτ0;x⊥Þ ¼ ϵ̄ðτ0; x⊥Þ þ δϵðτ0;x⊥Þ: ð13Þ

We follow previous works [51,57] and consider the back-
ground to be of a rotationally symmetric Gaussian shape,

ϵ̄ðτ0; x⊥Þ ¼
1

πR2τ0

dEð0Þ
⊥

dη
exp

�
−
x2⊥
R2

�
; ð14Þ

where R denotes the transverse system size and dEð0Þ
⊥

dη denotes
the initial energy per unit rapidity. Similarly, the anisotropic
perturbations are taken as3

δϵðτ0;x⊥Þ ¼ ϵ̄ðτ0; x⊥Þδn exp
�
−α

x2⊥
R2

��
x⊥
R

�
n

× cosðnϕðnÞ
x⊥n⊥Þ; ð15Þ

such that upon integrating over the transverse coordinates
x⊥, the perturbations do not contribute to the total energy.

By ϕðnÞ
x⊥n⊥, we denote the angle,

ϕðnÞ
x⊥n⊥ ¼ ϕx −Ψn; ð16Þ

where ϕx is the position space azimuthal angle, i.e.,
ϕx ¼ arctanðx2=x1Þ, and Ψn is the symmetry plane angle
of the nth order angular harmonic mode. To compactify the
notation, in the following, we will drop the superscript (n)
and write ϕx⊥n⊥ . We note that in accordance with Eq. (15),
we will restrict ourselves to including only one anisotropic
mode at a time, which means that we need not specify Ψn
(or rather the relative angles between different symmetry
planes). We leave the parameter α unspecified for analytical
calculations and, if not stated otherwise, employ α ¼ 1=2
when presenting numerical results.
By varying the amplitude δn of the anistropic perturba-

tions, we can adjust the eccentricities ϵn of the initial state
energy distribution. Following standard procedure [66,67],
the initial state eccentricities ϵn are determined as

ϵn ¼ −

R
x⊥ x

n⊥ϵðx⊥Þ cos ½nðϕx −ΨnÞ�R
x⊥ x

n⊥ϵðx⊥Þ
; ð17Þ

which can be computed analytically for our form of the
initial condition. Defining ᾱ ¼ 1þ α, the results are

ϵn ¼ −δn
n!

2Γðn
2
þ 1Þ ᾱ

−n−1: ð18Þ

Values of the ratio ϵn=δn for n ¼ 2;…; 6 in the case α ¼ 1
2

are summarized in Table I, along with the maximally
allowed values ϵmax

n for which a positive energy density
is retained throughout the entire transverse plane.

B. Scaling properties

Based on the above setup, the development of aniso-
tropic flow in small systems constitutes a complicated
multiscale problem, which, in general, is sensitive to the

TABLE I. Eccentricities ϵn=δn and maximum allowed eccen-
tricity ϵmax

n for which positivity of the initial energy density is
satisfied.

n 2 3 4 5 6

ϵn=δn − 8
27

− 64
81

ffiffi
π

p − 64
81

− 2048
729

ffiffi
π

p − 2560
729

ϵmax
n 0.4027 0.3845 0.3649 0.3454 0.3265

2Strictly speaking, the integration in Eq. (12) yields a density
in d2x⊥dy. However, in the boost-invariant case, the phase-space
distribution f only depends on y − η, meaning that integration
over y and η is interchangeable, and densities w.r.t. dy and dη are
identical.

3Note that the anisotropic perturbations contain a variance
modification factor α; a similar factor in the isotropic Gaussian
could always be absorbed into the definition of R.
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typical energy of quasiparticles Qs, the total energy per

unit rapidity dEð0Þ
⊥ =dη, the system size R, as well as the

dimensionless coupling strength η=s. However, due to the
particular simplicity of the conformal RTA in Eq. (5),
the entire dependence on these quantities can be expressed
in terms of a single dimensionless opacity parameter γ̂ [52],
as we will now demonstrate.
The starting point is the Boltzmann equation (4), in

which we assume that the phase-space distribution fðx; pÞ
can be expressed as an explicit function of the curvilinear
coordinates τ and x⊥, as well as of the momentum space
coordinates pτ, vz, and ϕp, defined via

�
pτ

pη

�
¼ pτ

�
1

τ−1vz

�
; p⊥ ¼ pτ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

q �
cosϕp

sinϕp

�
:

ð19Þ

In this case, the Boltzmann equation (4) reduces to [52]

�
∂τ þ v⊥ · ∇⊥ −

vzð1 − v2zÞ
τ

∂vz −
v2zpτ

τ
∂pτ

�
f

¼ −
�
5
η

s

�
−1
T½f�vμuμ½f�ðf − feq½f�Þ; ð20Þ

where we denote vμ ¼ pμ=pτ, while T and uμ are deter-
mined from the phase-space distribution f via Landau
matching, as described in the previous section.
Now the general strategy to establish the scaling proper-

ties of the system is to first integrate out the momentum
dependence and subsequently express all quantities in
terms of dimensionless variables. Since the Landau match-
ing condition in Eq. (7) only requires the knowledge of
energy-weighted moments of the phase-space distribution,
we reformulate the problem in terms of the reduced
distribution,4

F ðτ;x⊥;ϕp; vzÞ ¼
νeffπR2τ

ð2πÞ3
�
dEð0Þ

⊥
dη

�−1

×
Z

∞

0

dpτðpτÞ3fðτ;x⊥;pτ;ϕp; vzÞ;

ð21Þ

where the constant prefactor is simply chosen to cancel

explicit dependencies on νeff and dEð0Þ
⊥

dη in the resulting
equations. Since Eq. (21) takes into account the correct
energy ðpτÞ weighting, the energy-momentum tensor Tμν

can simply be expressed in terms of the reduced distribu-
tion as

Tμνðτ;x⊥Þ ¼
1

τR2

dEð0Þ
⊥

dη

Z
dΩpvμvνF ðτ;x⊥;ϕp; vzÞ; ð22Þ

where dΩp ¼ dvzdϕp denotes the solid angle element in
momentum space. By multiplying Eq. (20) with the
appropriate prefactors and performing the integration in
Eq. (21), we then arrive at

�
∂̃τ þ v⃗⊥ · ∂̃ x⃗⊥ −

vzð1 − v2zÞ
τ̃

∂vz þ
4v2z − 1

τ̃

�
F

¼ −γ̂vμuμ½F �τ̃−1=4T̃½F �ðF − F eq½F �Þ; ð23Þ

where all quantities denoted with a tilde ˜ are explicitly
dimensionless and defined as follows. Dimensionless
coordinates are expressed with respect to the system size
R as

τ̃ ¼ τ=R; x̃⊥ ¼ x⊥=R; ð24Þ

while the dimensionless energy density ϵ̃ and temperature
T̃ of the system are defined according to

ϵ̃ ¼ τπR2

dEð0Þ
⊥ =dη

ϵ; T̃ ¼
�
τπR2 π2

30
νeff

dEð0Þ
⊥ =dη

�1=4

T: ð25Þ

Defining the stress-energy tensor with respect to the same
nondimensionalization employed for the energy density,
we have

T̃μν ¼ τπR2

dEð0Þ
⊥ =dη

Tμν ¼
Z

dΩpvμvνF ; ð26Þ

such that the Landau matching condition in Eq. (7)
reduces to

uνT̃μν ¼ ϵ̃uμ; ð27Þ

and the equation of state takes the particularly simple form
ϵ̃ ¼ T̃4 in terms of the dimensionless variables. By con-
sidering the fact that the local equilibrium distribution
is determined as feqðx; pÞ ¼ feq½pτðv · uÞ=T�, the corre-
sponding distribution F eq can be expressed as

F eq ¼
νeffπR2τ

ð2πÞ3
�
dEð0Þ

⊥
dη

�−1 T4

ðu · vÞ4
Z

∞

0

dxx3feqðxÞ; ð28Þ

where the last integral can be computed in terms of the

energy density ϵ as
R
∞
0 dxx3feqðxÞ ¼ ð2πÞ3ϵ

4πνeffT4, such that F eq

takes the simple form,

F eq ¼
ϵ̃

4πðu · vÞ4 : ð29Þ
4Note that our definition for F differs from the one in Ref. [52]

by a factor of τ, which is introduced in order to absorb trivial
effects of the longitudinal expansion.
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Similarly, the initial condition for F can also be obtained
by integrating Eq. (11), where assuming an azimuthally
isotropic momentum distribution, one can express F in
terms of the initial energy density as

F ðτ̃0; x̃⊥;ϕp; vzÞ ¼
δðvzÞ
2π

ϵ̃ðτ̃0; x̃⊥Þ; ð30Þ

such that the prefactors in the definition of ϵ̃ðτ̃0; x̃⊥Þ in
Eq. (25) cancel with the ones in Eq. (21).
By performing the above transformations, all depend-

encies on the system size R, initial energy dEð0Þ
⊥

dη , and number
of degrees of freedom νeff have thus been subsumed into a
single dimensionless opacity parameter,

γ̂ ¼
�
5
η

s

�
−1
R3=4

�
1

πR2 π2

30
νeff

dEð0Þ
⊥

dη

�1=4

; ð31Þ

which appears on the right-hand side of Eq. (23) and
controls the relaxation toward equilibrium. In order to get
an idea of the typical magnitude of γ̂, we can estimate its
value as

γ̂ ≈ 0.88

�
η=s
0.16

�
−1
�

R
0.4 fm

�
1=4

�
dEð0Þ

⊥ =dη
5 GeV

�1=4�
νeff
40

�
−1=4

;

ð32Þ

which indicates that in small systems realized in pþ p and
pþ Pb, one should typically expect γ̂ of the order unity.
Conversely, in large systems, the opacity can be signifi-
cantly larger, such that, e.g., in central Pbþ Pb collisions
at LHC energies, one obtains

γ̂ ≈ 9.2

�
η=s
0.16

�
−1
�

R
6 fm

�
1=4

�
dEð0Þ

⊥ =dη
4000 GeV

�1=4�
νeff
40

�
−1=4

:

ð33Þ

Based on a combination of (semi)analytic and numerical
studies, we will therefore explore the full range of opacities
γ̂ ≪ 1, γ̂ ∼ 1 and γ̂ ≫ 1 in order to investigate possible
changes in the reaction dynamics for small and large
systems.

C. Observables

Before we discuss the details of the solution of the
previously stated problem, it is instructive to introduce
the observables, which we will use to quantify the time
evolution of the system and the development of transverse
flow. Below, we will define all observables in terms of the
original phase space density f and additionally express
them in terms of the shorthand notation h·i that was
previously introduced in (10). Based on the above dis-
cussion, we will restrict ourselves to energy-weighted

observables, which can be formulated in terms of moments
of the reduced distribution F as

hðpτÞ2Oðvz;ϕpÞi ¼
1

πR2

dEð0Þ
⊥

dη

Z
dΩpOðvz;ϕpÞF : ð34Þ

One of the basic observables to look at is the transverse
energy per unit rapidity dE⊥=dη, computed via

dE⊥
dη

¼νeff τ
2

Z
x⊥

Z
d3p
ð2πÞ3p⊥f¼ τ

Z
x⊥

D
ðpτÞ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2z

q E
;

ð35Þ

whose decrease in time is a measure of the work performed
against the longitudinal expansion of the system. Since we
are interested in azimuthal momentum anisotropies, the
most important observables are the flow harmonics vn,
given as the normalized Fourier modes of the particle
distribution in the azimuthal momentum angle [68,69]. We
note that, in accordance with the above discussion, we also
weight the vn’s with the transverse momentum p⊥ to
acquire an energy-weighted version of these flow harmon-
ics; i.e., we will study the moments,

vEn ¼
R
x⊥
R d3p
ð2πÞ3p⊥einϕpfR

x⊥
R d3p
ð2πÞ3p⊥f

¼
R
x⊥ hðpτÞ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2z

p
einϕpiR

x⊥ hðpτÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1−v2z

p
i : ð36Þ

Beyond the vEn s, which describe azimuthal anisotropies of
the momentum distribution, another energy-weighted ellip-
tic momentum anisotropy can also be defined on the level
of Tμν without the need of full knowledge of f. Explicitly,
this elliptic anisotropy of the energy flow ϵp is defined
as [70–72]

ϵp ¼
R
x⊥ ðT11 − T22 þ 2iT12ÞR

x⊥ ðT11 þ T22Þ ¼
R
x⊥ hðpτÞ2ð1 − v2zÞe2iϕpiR

x⊥ hðpτÞ2ð1 − v2zÞi
;

ð37Þ

and we will employ this measure in Sec. V C to compare
the kinetic evolution to relativistic viscous hydrodynamics
in order to avoid possible ambiguities of the freeze-out
prescription.

III. SOLUTION TO LINEAR ORDER IN OPACITY γ̂
AND ECCENTRICITY ϵn

While the Boltzmann equation (4) as an integro-
differential equation is in general too complicated to solve
analytically, important conclusions can be obtained in the
weakly interacting regime close to free streaming, which
corresponds to the limit γ̂ → 0. We are primarily interested
in the development of anisotropic flow, i.e., the final state
momentum space anisotropy quantified by the harmonic
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coefficients vn, in response to the initial state coordinate
space eccentricity quantified by the amplitudes ϵn
(or equivalently δn) of the harmonic perturbations intro-
duced in Eq. (15). Starting from the free-streaming regime,
where there is no production of vn, we seek to follow
previous works [48–50,53–55] in deriving analytical
expressions for vnðτ̃Þ, which are accurate to linear order
for small γ̂ and small ϵn.
Since in the free-streaming system, the momenta of the

particles remain unchanged, the free-streaming dynamics
is effectively 2þ 1-dimensional, and we will continue to
work in spatial Milne coordinates, where, in contrast to
other sections, we use y for longitudinal momentum para-
metrization instead of pη or vz. Another feature is that the
analytical setup will quite straightforwardly also allow
one to treat the problem more generally without restricting
it to energy-weighted degrees of freedom. However, this
requires one to specify the initial condition in (11) in more
detail—in particular, with regards to the initial momentum
distribution dN0=d2x⊥d2p⊥dy, which will introduce addi-
tional scales that non-energy-weighted degrees of freedom
will depend on. We will assume that this distribution is
(initially) isotropic in transverse momentum and depends
only on some nonspecific but fixed function F of the ratio
of p⊥ to the momentum scale Qsðx⊥Þ; i.e.,

dN0

d2x⊥d2p⊥dy
¼ F

�
Qsðx⊥Þ
p⊥

�
; ð38Þ

where the characteristic energy scale Qsðx⊥Þ is related to
the local energy density ϵðτ0;x⊥Þ via Eq. (12).
Below, we outline the calculation of observables to

leading order in an expansion in opacity γ̂ and eccentricity
ϵn and quote the results for the flow harmonics vn and the
longitudinal cooling of dE⊥=dη. Details of the analytic
calculation are compiled in Appendices A–C.

A. Expansion scheme

To linearize the solution in opacity, we expand around
the free-streaming limit corresponding to zero opacity,
denoted as fð0Þ, which satisfies

pμ∂μfð0Þ ¼ 0: ð39Þ

The first order correction fð1Þ is obtained by computing the
effect of the first scattering of each particle, with the
scattering rates determined by the zeroth order result,

pμ∂μfð1Þ ¼ C½fð0Þ�: ð40Þ

This type of expansion was conceptualized in [48,49] and
has recently also been used in other works examining
weakly interacting systems [50,53–55]. As reasoned in the
previous section, we can factor out from C½f� the opacity
parameter γ̂ as a proportionality constant containing all

parametric dependencies. Therefore, γ̂ can be identified as
the expansion parameter of this expansion scheme. In the
following, we will denote observables X computed in the
free-streaming limit as Xð0Þ and their first order corrections
in opacity by Xð1Þ.
Similarly, for the expansion in eccentricity, we recall

from Sec. II A that the initial energy density is of the form,

ϵðτ0;x⊥Þ ¼ ϵ̄ðτ0; x⊥Þ þ δϵðτ0;x⊥Þ; ð41Þ

with isotropic ϵ̄ and purely anisotropic δϵ, which introduces
a finite eccentricity ϵn. Evidently, in free streaming, the
isotropic and anisotropic components of the phase-space
distribution f evolve independently of each other, and
the anisotropic perturbation can be computed exactly.
However, when computing the induced changes of the
phase-space distribution fð1Þ, one is required to perform the
Landau matching at the level of the full energy-momentum
tensor emerging from fð0Þ, which introduces a nontrivial
coupling of the isotropic and anisotropic components.
Hence, for simplicity, we will solve the corresponding
eigenvalue equation only to linear order in the anisotropic
perturbations, which formally corresponds to a leading
order expansion in ϵn. In the following, we will denote the
linearized corrections to observables X due to the aniso-
tropic perturbation as δX.

B. Observables

Since we want to examine momentum anisotropies, all
observables of interest will be derived from the momentum
distribution dN

d2p⊥dy
, which can be obtained from the

phase space density f by integrating over coordinate space
variables. Specifically in Milne coordinates, the four-
volume transformation entails an extra functional determi-
nant for the 3D hypersurface integration at fixed proper
time τ, such that

dN
d2p⊥dy

¼ νeff
ð2πÞ3

Z
x⊥

Z
dηp⊥τ coshðy − ηÞf: ð42Þ

Based on the momentum distribution dN
d2p⊥dy

, we will extract

the following moments5:

5Note that, in contrast to the different treatments described in
the other sections, the analytical treatment allows one to describe
more than just the energy-weighted version of the flow harmon-
ics. Nevertheless, there are two important reasons for extracting
moments of the distributions, rater than differential observables
such as dN

d2p⊥dy
or vnðp⊥Þ. The first is that the integral over p⊥ will

be crucial in facilitating further analytical integrations later on,
but perhaps the more convincing reason is the aforementioned
simplification of the problem when restricting it to the case of
m ¼ 1 for the energy-weighted observables.
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Vmn ¼
Z
p⊥

einϕp⊥pm⊥
dN

d2p⊥dy
¼

Z
x⊥

hpτpm⊥einϕpi; ð43Þ

which can be directly related to the observables that are of
interest to us. Specifically, one has dE⊥

dη ¼ V10 and vEn ¼ V1n
V10

.

C. Free-streaming solution

The free-streaming solution of (39) can be computed,
e.g., via the method of characteristics to be

fð0Þðτ;x⊥;p⊥; y − ηÞ ¼ fð0Þ
�
τ0;x⊥ − v⊥tðτ; τ0; y − ηÞ;

p⊥; arcsinh
�
τ

τ0
sinhðy − ηÞ

��
;

ð44Þ

where v⊥ ¼ p⊥=jp⊥j, and

tðτ; τ0; y − ηÞ ¼ τ coshðy − ηÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ20 þ τ2 sinh2ðy − ηÞ

q
:

ð45Þ

We note that the free-streaming result simplifies signifi-
cantly for fð0Þðτ0;x⊥;p⊥; y − ηÞ ∝ δðy − ηÞ, as in this case,

δ

�
arcsinh

�
τ

τ0
sinhðy − ηÞ

��
¼ τ0

τ
δðy − ηÞ; ð46Þ

and

tðτ; τ0; 0Þ ¼ τ − τ0 ¼ Δτ: ð47Þ

By applying this simplification to our initial condition in
Eq. (11), we obtain

fð0Þðτ;x⊥;p⊥; y − ηÞ

¼ ð2πÞ3
νeff

δðy − ηÞ
τp⊥

F

�
Qsðx⊥ − v⊥ΔτÞ

p⊥

�
: ð48Þ

Evidently, the free-streaming evolution will not change the
momentum distribution dN

d2p⊥dy
since there are no scatterings,

and therefore, also the moments Vð0Þ
mn will remain constant,

Vð0Þ
m;n¼0ðτÞ ¼ Vð0Þ

m;n¼0ðτ0Þ; Vð0Þ
m;n>0ðτÞ ¼ 0; ð49Þ

where the last equality follows by noting that the initial
condition is isotropic in momentum space. Subsequently,
all vEn s with n ≠ 0 vanish identically at all times τ, while the
energy per unit rapidity remains constant,

vE;ð0Þn ¼ 0;
dEð0Þ

⊥
dη

ðτÞ ¼ dE⊥
dη

ðτ0Þ: ð50Þ

D. Landau matching

Next, the free-streaming result can be used to compute
the energy-momentum tensor of the isotropic background
Tð0Þμν and its anisotropic perturbations δTð0Þμν, which will
be needed to obtain the local thermodynamic variables that
enter the collision integral C½f�. Defining

vμ⊥ ¼ pμ=p⊥jy−η¼0 ¼ ð1; v⊥; 0Þ; ð51Þ

the isotropic part Tð0Þμν of the energy-momentum tensor is
given by

Tð0Þμν ¼ τ0
τ

Z
dϕp

2π
vμ⊥vν⊥ϵ̄ðτ0;x⊥ − Δτv⊥Þ: ð52Þ

Due to isotropy, it has only four independent entries and
can be written as

Tð0Þμν ¼

0
B@

Tð0Þττ Tð0Þτ⊥x̂t⊥ 0

Tð0Þτ⊥x̂⊥ Tð0Þ11þ Tð0Þ⊥⊥x̂⊥x̂t⊥ 0

0 0 0

1
CA; ð53Þ

where we denote x̂⊥ ¼ x⊥=jx⊥j. Tð0Þμν has eigenvectors
uμ, tμ and sμ satisfying the relations,

uμTð0Þμν ¼ ϵuν; ð54Þ

tμTð0Þμν ¼ pttν; ð55Þ

sμTð0Þμν ¼ pssν. ð56Þ

Based on its symmetries, these eigenvectors can be para-
metrized as

uμ ¼ γð1; βx̂⊥; 0Þ; ð57Þ

tμ ¼ γðβ; x̂⊥; 0Þ; ð58Þ

sμ ¼ ð0; iσ2x̂⊥; 0Þ; ð59Þ

where

β ¼ 3Tð0Þττ þ Tð0Þ⊥⊥

4Tð0Þτ⊥ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3Tð0Þττ þ Tð0Þ⊥⊥

4Tð0Þτ⊥

�
2

− 1

s
ð60Þ

is the local rest-frame velocity, γ ¼ ð1 − β2Þ−1=2 and

iσ2 ¼ ð 0 1

−1 0
Þ; the corresponding eigenvalues are

given by

ϵ ¼ Tð0Þττ − βTð0Þτ⊥; ð61Þ

pt ¼ βTð0Þτ⊥ − Tð0Þ⊥⊥ − Tð0Þ1; ð62Þ

ps ¼ −Tð0Þ1: ð63Þ
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Now, similarly to the isotropic background in Eq. (52),
the anisotropic part of the energy-momentum tensor can be
computed as

δTð0Þμν ¼ τ0
τ

Z
dϕp

2π
vμ⊥vν⊥δϵðτ0;x⊥ − Δτv⊥Þ; ð64Þ

which—due to the absence of isotropy—features six
independent entries, and its eigenvalues and eigenvectors
will be a complicated function of all of them. Obtaining
their exact result would be cumbersome and ultimately
pointless, as it would be too complex to perform further
calculations with them, so instead, we will linearize the
Landau matching condition in the perturbation, meaning
that the corrections δϵ and δuμ are computed from

δuμTð0Þμν þ uμδTð0Þμν ¼ δϵuμ þ ϵδuμ; ð65Þ
uμδuμ ¼ 0: ð66Þ

The second condition ensures that the perturbation pre-
serves the correct normalization of uμ to linear order. In
order to solve this system of equations, we can expand

δuμ ¼ δuttμ þ δussμ ð67Þ

and use the orthogonality of the eigenbasis of Tð0Þμν to
obtain via contraction with the eigenvectors from (65) the
following results:

δϵ ¼ uμδTð0Þμνuν; ð68Þ

δut ¼
uμδTð0Þμνtν
pt − ϵ

; ð69Þ

δus ¼
uμδTð0Þμνsν
ps − ϵ

: ð70Þ

While Eqs. (61)–(63) and (68)–(70) provide schematic
expressions for the ϵ; δϵ; uμ, and δuμ, the exact forms of
Tð0Þμν and δTð0Þμν that determine these quantities consist of
lengthy expressions, which are provided in Appendix B.

E. First order corrections in γ̂

Now that we have obtained the local energy densities and
flow velocities, computing the corrections δfð1Þ due to the
first scatterings according to

pμ

pτ ∂μfð1Þ ¼
C½fð0Þ�
pτ ð71Þ

is comparatively straightforward after realizing that this is
just the inhomogeneous case of the PDE we already solved
for free streaming. The solution (44) allows one to read off
the Green’s function for propagation in time and compute
fð1Þ via

fð1Þðτ;x⊥;p⊥; y − ηÞ

¼
Z

τ

τ0

dτ0
C½fð0Þ�
pτ

�
τ0;x⊥ − v⊥tðτ; τ0; y − ηÞ;p⊥;

arcsinh

�
τ

τ0
sinhðy − ηÞ

��
: ð72Þ

Since we will integrate over space to compute dNð1Þ
d2p⊥dy

according to (42), we can simplify this expression by
performing the following substitutions:

x⊥0 ¼ x⊥ − v⊥tðτ; τ0; y − ηÞ;

η0 ¼ y − arcsinh

�
τ

τ0
sinhðy − ηÞ

�
; ð73Þ

such that

d2x⊥0 ¼ d2x⊥; dη0 ¼ τ

τ0
coshðy − ηÞ
coshðy − η0Þ dη; ð74Þ

yielding the following result for the changes in the
momentum space distribution dNð1Þ

d2p⊥dy
:

dNð1Þ

d2p⊥dy
ðτ;p⊥Þ ¼

Z
τ

τ0

dτ0
Z
x⊥ 0

Z
dη0τ0

νeff
ð2πÞ3

× C½fð0Þ�ðτ0;x⊥0;p⊥; y − η0Þ; ð75Þ
where, in the following, we will drop the primes on all
integration variables except for τ0. Since, as stated in
Sec. III B, the final observables we want to compute
correspond to d2p⊥-integrated moments of dN

d2p⊥dy
, one

is then left with the calculation of the following six-
dimensional integral,

Vð1Þ
mkðτÞ ¼

Z
p⊥

eikϕppm⊥
Z

τ

τ0

dτ0
Z
x⊥

Z
dητ0

νeff
ð2πÞ3

× C½fð0Þ�ðτ0;x⊥;p⊥; y − ηÞ: ð76Þ
We find that four of these integrals can be carried out
analytically, while the remaining two integrals over dτ0 and
dx⊥ require numerical methods. Below, we provide a
brief outline of the four analytical integrations and explain
how different terms can be categorized. Explicit expres-
sions and further details of the analytic calculation can be
found in Appendix C.
The integration over p⊥ is performed first to obtain

moments of F and feq, which will facilitate the other
integrations. Since the integrand depends mostly on u · v,
we substitute integration over the position space azimuthal
angle ϕx for integration over ϕx⊥p⊥ ¼ ϕx − ϕp. The integral
over η is straightforward for the term containing a
Dirac delta, but for other terms, it is of similar complexity
to the integral over ϕx⊥p⊥, and both are performed together.
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After these integrations, the only remaining dependence
on the azimuthal momentum angle takes the form,
eikϕp cosðnϕp⊥n⊥Þ (ϕp⊥n⊥ ¼ ϕp −Ψn), and the last integral
becomes a trigonometric orthogonality relation, which
signifies that eccentricities do not mix, as is to be expected
due to the linearization.
Due to the fact that we consider an isotropic background

with a purely anisotropic perturbation, the leading order
expansion of the flow harmonics is given by

vðmÞ
n ¼ Vmn

Vm0

¼ δVð1Þ
mn

Vð0Þ
m0

þ nonlinear terms: ð77Þ

Due to this symmetry, one also finds that the leading order
opacity contributions to the observables Vmn conveniently

separate into the first order isotropic corrections Vð1Þ
m0 ∝ γ̂

for n ¼ 0 on one hand and the first order anisotropic

corrections δVð1Þ
mn ∝ γ̂δn to only moments with n ≠ 0 on the

other hand. While the former (Vð1Þ
m0) represent opacity

corrections to the evolution of the isotropic background,

the latter (δVð1Þ
mn) describe the systems’ response to the

anisotropic energy perturbations.
We also make the mathematically as well as physically

relevant distinction between terms Vð1;0Þ
mn coming from the

decay of fð0Þ and terms Vð1; eqÞ
mn coming from the buildup of

feq. In our calculation, we treat these terms separately and
then sum them to find the total observable. However, it is
important to point out that in many cases, the two terms
turn out to have different parametric dependencies. By
construction of the expansion scheme, all of them are
proportional to γ̂. However, due to the different functional
forms of fð0Þ and feq, we obtain that the isotropic (n ¼ 0)
corrections are given by

Vð1;0Þ
m0 ¼ −γ̂Vð0Þ

m0Pmðτ̃Þ; ð78Þ

Vð1;eqÞ
m0 ¼ þγ̂νeffR−m

�
ν−1eff

dEð0Þ
⊥

dη
R

�mþ3
4

Qmðτ̃Þ; ð79Þ

and similarly, for the anistropic corrections (n ≠ 0),

Vð1;0Þ
mn ¼ −γ̂δnV

ð0Þ
m0Pmnðτ̃Þ; ð80Þ

Vð1;eqÞ
mn ¼ þγ̂δnνeffR−m

�
ν−1eff

dEð0Þ
⊥

dη
R

�mþ3
4

Qmnðτ̃Þ: ð81Þ

Detailed expressions of the functions Pmðτ̃Þ;Qmðτ̃Þ;
Pmnðτ̃Þ;Qmnðτ̃Þ are given in Eqs. (C17), (C22), (C42),
and (C61). Of course, the appearance of a different para-
metric behavior is not too surprising, as f0 depends on the
entire momentum distribution, whereas feq only depends
on the local energy density. Generally, to fix the relative

size of decay and buildup for Vð1Þ
mn, we need an input for

dEð0Þ
⊥

dη

and Vð0Þ
m0, which means specifying the related moments

of the initial momentum distribution F in Eq. (38). In
general, Qm and Qmn depend on the details of the
equilibrium distribution feq, which we choose for definite-
ness to be the Bose-Einstein distribution (for more
details, we refer the reader to Appendix C). Clearly, the
only exception to this rule is the case m ¼ 1 of

energy-weighted observables, where Vð0Þ
10 ¼ dEð0Þ

⊥
dη , and the

calculation of Vð1Þ
1n =V

ð0Þ
10 does not require any further

specification of the initial momentum distribution F.
By restricting our attention to energy-weighted observ-

ables, we can then perform the residual integrals numeri-
cally to obtain the leading order changes in the initial
energy per unit rapidity,

dEð1Þ
⊥

dη
ðτ → ∞Þ

��
γ̂
dEð0Þ

⊥
dη

�
¼ −0.210; ð82Þ

and the flow response,

vE2 ðτ → ∞Þ=ðγ̂ϵ2Þ ¼ 0.212 ð83Þ
vE3 ðτ → ∞Þ=ðγ̂ϵ3Þ ¼ 0.0665 ð84Þ

vE4 ðτ → ∞Þ=ðγ̂ϵ4Þ ¼ −0.00914; ð85Þ
which we will compare to full numerical solutions of the
RTA Boltzmann equation in the following. Beyond the
results in Eqs. (82)–(85), which provide the asymptotic
(τ → ∞) values of the transverse energy and flow coef-
ficients, it is clear that Eq. (76) also gives access to the time
evolution of these quantities, which we will further inves-
tigate in Sec. V.
We note that the above results are obtained for the initial

condition in Eqs. (13)–(15) with α ¼ 1=2, which is differ-
ent than the case α ¼ 0 considered in [53]. If we choose
α ¼ 0 instead, we find

vE2 ðτ → ∞Þ=ðγ̂ϵ2Þ ¼ 0.213 ð86Þ
vE3 ðτ → ∞Þ=ðγ̂ϵ3Þ ¼ 0.0621 ð87Þ

vE4 ðτ → ∞Þ=ðγ̂ϵ4Þ ¼ −0.00483; ð88Þ
in agreement with [53].6 By comparing the results for
different vns in Eqs. (83)–(85) and (86)–(88), one finds that
v2 appears to be rather insensitive to α, whereas the higher
order vns are more sensitive to α, as we will further discuss
in Sec. V B. Especially, v4 changes by approximately a
factor of 2 between the two cases, and can even turn
out to have different signs for different values of α,
indicating a strong dependence on the initial profile in
the low opacity regime.

6Note that for comparison with [53], one also needs to account
for the factor of ϵn=δn in Eq. (18).
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IV. NUMERICAL PROCEDURE
FOR NON-LINEAR SOLUTION

We will now discuss two different schemes to obtain
numerical solutions of the RTA Boltzmann equation, which
are based on a momentum moment expansion discussed in
Sec. IVA and the relativistic Lattice Boltzmann (RLB)
method discussed in Sec. IV B.

A. Expansion in spherical harmonic moments

Within our first approach, we follow previous works [73],
where instead of describing the evolution of the phase space
density f, the numerical algorithm solves time evolution
equations only for some energy-weighted momentum
moments on a two-dimensional lattice in transverse space.
Specifically, we consider the following energy-weighted
moments Cm

l of the phase-space distribution:

Cm
l ≔ τ2

Z
d3p
ð2πÞ3 Y

m
l ðθp;ϕpÞpτf

¼
Z

d2p⊥
ð2πÞ2

Z
dpη

2π
Ym
l ðθp;ϕpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

η

τ2

s
f; ð89Þ

where Ym
l denote the spherical harmonics, which are given in

terms of the associated Legendre polynomials Pm
l as

Ym
l ðθ;ϕÞ ¼ yml P

m
l ðcos θÞeimϕ; ð90Þ

with normalization

yml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
; ð91Þ

and the momentum space angles in Eq. (89) are parametrized
by the polar and azimuthal angles θp and ϕp defined as

cos θp ¼ pη=τ

pτ ; tanϕp ¼ p2

p1
: ð92Þ

Since only a finite number of moments can be described
numerically, the algorithm only keeps track of the moments
with l < lmax for an adjustable large enough value of lmax to
achieve apparent convergence.

1. Initial conditions and evolution equation for moments

By taking the corresponding moments of the initial
conditions in Eq. (11), one obtains the initial conditions
for the spherical harmonic moments as

Cm
l ðτ0Þ ¼ τ0ϵðτ0;x⊥Þy0l P0

l ð0Þδm0: ð93Þ

This expression contains as a factor the Legendre poly-
nomial evaluation P0

l ð0Þ, which vanishes for odd l and is
otherwise given by

P0
l ð0Þ ¼ ð−1Þl=2π−1=2 Γðlþ1

2
Þ

Γðl
2
þ 1Þ : ð94Þ

Similarly, denoting the local rest-frame velocity as uμ ¼
γð1; β1; β2; 0Þ and taking the corresponding moments of
the Boltzmann equation (4), (5) then yields the following
equation of motion for the spherical harmonic moments:

∂τCm
l ¼ 1

τ
ðbml;þ2C

m
lþ2 þ bml;0C

m
l þ bml;−2C

m
l−2Þ þ

1

2

�
γβ1
τR

− ∂1

�
½uml;þCmþ1

lþ1 þ uml;−C
mþ1
l−1 þ dml;þC

m−1
lþ1 þ dml;−C

m−1
l−1 �

þ 1

2i

�
γβ2
τR

− ∂2

�
½uml;þCmþ1

lþ1 þ uml;−C
mþ1
l−1 − dml;þC

m−1
lþ1 − dml;−C

m−1
l−1 � þ 1

τR
Em
l ðuμ; TÞ −

γ

τR
Cm
l ; ð95Þ

where the terms with spatial derivatives proportional to the coefficients u, d describe free streaming, while the terms
proportional to the coefficients b are related to the longitudinal expansion. The corresponding coefficients are given by [73]7

uml;− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðl −m − 1Þ

4l2 − 1

r
; uml;þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðlþmþ 2Þ

4lðlþ 2Þ þ 3

s
; ð96Þ

dml;− ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðlþm − 1Þ

4l2 − 1

r
; dml;þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mþ 1Þðl −mþ 2Þ

4lðlþ 2Þ þ 3

s
; ð97Þ

7Note that here bml;0 is smaller by 1
3
compared to [73] because the Cm

l are weighted with τ instead of τ4=3.
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bml;−2 ¼ −
lþ 2

2l − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mÞðl −m − 1ÞðlþmÞðlþm − 1Þ

ð2l − 3Þð2lþ 1Þ

s
; bml;0 ¼

1 − 3ðl2 − lÞ þ 5m2

4lðlþ 1Þ − 3
;

bml;þ2 ¼
l − 1

2lþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mþ 1Þðl −mþ 2Þðlþmþ 2Þðlþmþ 1Þ

ð2lþ 5Þð2lþ 1Þ

s
: ð98Þ

Finally, all terms that are inversely proportional to the relaxation time τR result from the collision kernel and describe the
relaxation of the system toward local equilibrium, with the equilibrium moments El

m given by

Em
l ¼

Z
d2p⊥
ð2πÞ2

Z
dpη

2π
Ym
l ðθp;ϕpÞpμuμfeq ¼ 2−l−2π1=2τϵYm

l

�
π

2
;ϕu

�
γ−3βl

Γðlþ 3Þ
Γðlþ 3

2
Þ 2F1

�
lþ 3

2
;
lþ 4

2
; lþ 3

2
; β2

�
; ð99Þ

where we denote tanϕu ¼ β2=β1 and β2 ¼ β21 þ β22 and
refer to Appendix D for further details of the calculation.
We also note for later convenience that by separately
keeping track of the free streaming longitudinal expansion
and collisional contributions in Eq. (95), we can compute
the respective contributions to the rate of change of any
observables.
Evaluation of Eq. (95) also requires an input for the local

energy density ϵ and flow velocity uμ, which have to be
computed via Landau matching. In practice, we first
compute the various components of the energy-momentum
tensor from the following linear combinations of spherical
harmonic moments,

τTττ ¼
ffiffiffiffiffiffi
4π

p
C0
0 ð100Þ

τTτ1 ¼
ffiffiffiffiffiffi
2π

3

r
ðC−1

1 − C1
1Þ ð101Þ

τTτ2 ¼
ffiffiffiffiffiffi
2π

3

r
iðC−1

1 þ C1
1Þ ð102Þ

τT11 ¼
ffiffiffiffiffiffi
4π

9

r �
C0
0 −

ffiffiffi
1

5

r
C0
2

�
þ

ffiffiffiffiffiffi
2π

15

r
ðC2

2 þ C−2
2 Þ ð103Þ

τT22 ¼
ffiffiffiffiffiffi
4π

9

r �
C0
0 −

ffiffiffi
1

5

r
C0
2

�
−

ffiffiffiffiffiffi
2π

15

r
ðC2

2 þ C−2
2 Þ ð104Þ

τT12 ¼
ffiffiffiffiffiffi
2π

15

r
iðC−2

2 − C2
2Þ; ð105Þ

and subsequently perform a numerical diagonalization of
Tμ
ν using the EIGEN C++ library [74] to obtain the rest-frame

velocity uμ and local energy density ϵ as the timelike
eigenvector and eigenvalue.
With regards to the numerical implementation of

Eq. (95), we also note that the terms containing spatial
derivatives can be efficiently computed in Fourier space,
and we employ an Oða2SÞ improved five-point stencil

derivative. Concerning the discretization of the time step,
we employ a fourth order Runge-Kutta scheme with
adaptive time step of typically δτ ¼ 0.01 minðτ; R=10Þ.

2. Observables

Since the numerical setup is restricted to energy-
weighted moments of the phase-space distribution, all
observables that can be computed are necessarily weighted
with energy as well. Evidently, to compute an observable, it
has to be expressed as a linear combination of the moments
Cm
l , meaning that it has to be expanded in spherical

harmonics. By making use of their orthogonality relation,
one can then express observables of the form,

τhðpτÞ2Oi ¼
Z

d2p⊥
ð2πÞ2

Z
dpη

2π
pτOðθp;ϕpÞf; ð106Þ

as a linear combination of the coefficients,

τhðpτÞ2Oi ¼
X
ðl;mÞ

αOm;lC
m
l ; ð107Þ

where the expansion coefficients αOm;l are determined as

αOm;l ¼
Z

dΩpOðθp;ϕpÞYm�
l ðθp;ϕpÞ: ð108Þ

Specifically, for calculating the observables dE⊥=dy and
vEn that are of interest to us, we need to consider integrals of
expressions of the form,

Onðθp;ϕpÞ ¼ einϕp sinðθpÞ: ð109Þ

Since the ϕp-dependence of Ym�
l is simply given by e−imϕp,

it is already obvious that αOn
m;l vanishes for all m ≠ n.

Additionally, for increasing l, the spherical harmonics Yn�
l

alternate between being symmetric and antisymmetric with
respect to θp, such that αOn

n;l ¼ 0 for l − n odd, while for
l − n even, the coefficients can be computed as
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αOn
n;l ¼ 2π2−lynl

Xl−n2
k¼0

ð−1Þkþn

�
l
n

��
2l − 2k

l

�

×
ðl − 2kÞ!

ðl − 2k − nÞ!
Γðnþ3

2
ÞΓðl−2k−nþ1

2
Þ

Γðl−2kþ4
2

Þ : ð110Þ

In the special case n ¼ 1, only one coefficient is non-
vanishing, but otherwise, there are infinitely many.
However, their values are decreasing with l quickly enough
so that cutting off the expansion at lmax yields a reasonable
approximation.

B. Relativistic lattice Boltzmann solver

Within our second approach, we employ a RLB solver
inspired by the finite difference RLB algorithm discussed
in Refs. [75–79]. The strategy for devising the numerical
method is split into three main parts, which are described
in this subsection. The structure of the kinetic equation is
presented in Sec. IV B 1 in two forms. The first form is
based on the standard Bjorken coordinates ðτ;x⊥; ηÞ,
while the second relies on a set of hybrid free-streaming
coordinates, inspired by the approach in Ref. [52]. The
momentum space discretization is discussed in Sec. IV B 2.
The spatial and temporal discretization, as well as the
numerical schemes employed for the advection and time
stepping, are briefly summarized in Sec. IV B 3.

1. Boltzmann equation for the RLB approach

In the RLB method, we employ the factorization of the
momentum space with respect to the coordinates (p, vz, ϕp)
introduced in Eq. (19). Starting from Eq. (20), we apply the
LB algorithm at the level of the function FRLB ¼ τ0

τ F ,
where F is introduced in Eq. (21). Specifically,

FRLB ¼ πνeffR2τ0
ð2πÞ3

�
dEð0Þ

⊥
dη

�−1 Z ∞

0

dpτðpτÞ3f: ð111Þ

The nondimensionalization of the coordinates τ and x⊥ is
performed with respect to R3=4τ1=40 [80]; i.e.,

τ̄ ¼ τ

τ1=40 R3=4
¼

�
R
τ0

�
1=4

τ̃;

x̄⊥ ¼ x⊥
τ1=40 R3=4

¼
�
R
τ0

�
1=4

x̃⊥; ð112Þ

while the energy density and temperature are nondimen-
sionalized with respect to constant quantities,

ϵ̄ ¼ τ0πR2ϵ

dEð0Þ
⊥ =dη

¼ τ0
τ
ϵ̃;

T̄ ¼
�
τ0πR2 π2

30
νeff

dEð0Þ
⊥ =dη

�1=4

T ¼
�
τ0
τ

�
1=4

T̃; ð113Þ

such that ϵ̄ ¼ T̄4. In this section, we use an overhead bar ¯ to
denote dimensionless quantities obtained using the above
convention, in contrast to the overhead tilde ∼ employed in
Sec. II (note that T̄ and ϵ̄ are related to T and ϵ through
constant factors). The Boltzmann equation (20) written for
FRLB introduced above reads [80]

� ∂
∂τ̄ þ v⊥ · ∇̄þ 1þ v2z

τ

�
FRLB −

1

τ̄

∂½vzð1 − v2zÞFRLB�
∂vz

¼ −γ̂ðvμuμÞT̄ðFRLB − F eq
RLBÞ: ð114Þ

The components of the stress-energy tensor can be non-
dimensionalized in the same way as the energy density,
being related to FRLB through

T̄μν ¼
Z

dΩpvμvνFRLB: ð115Þ

The energy-weighted flow harmonics (36) can be
obtained via

vEn ¼
R
x⊥

R
dΩp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
einϕpFRLBR

x⊥
R
dΩp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
FRLB

: ð116Þ

The Boltzmann equation in the form given in Eq. (114)
serves as the basis of the algorithm employed for large
values of the opacity γ̂. At small values of the opacity, we
find the form in Eq. (114) unsuitable and instead employ
free-streaming coordinates in momentum space. This
approach is inspired from Ref. [80] but differs from the
aforementioned approach because the spatial coordinates
are left unchanged. Defining

pτ
fs ¼ pτΔ; vfsz ¼ τvz

τ0Δ
;

pτ ¼ pτ
fsΔfs; vz ¼

τ0vfsz
τΔfs

; ð117Þ

where

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
τ2

τ20
− 1

�
v2z

s
;

Δfs ¼
1

Δ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 −

τ20
τ2

�
v2z;fs

s
; ð118Þ

the Boltzmann equation (20) becomes
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∂f
∂ τ̄ þ

1

Δfs
v⊥;fs · ∇̄⊥f ¼ −γ̂ðvμuμÞT̄ðf − feqÞ; ð119Þ

where v⊥;fs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z;fs

q
ðcosϕp; sinϕpÞ, while vμuμ ¼

uτ − 1
Δfs

v⊥;fs · u⊥. We now introduce the function F fs,
defined in analogy to Eq. (111) using integration with
respect to pτ

fs:

F fs ¼
πνeffR2τ0
ð2πÞ3

�
dEð0Þ

⊥
dη

�−1 Z ∞

0

dpτ
fsðpτ

fsÞ3f; ð120Þ

such that Eq. (119) becomes

∂F fs

∂τ̄ þ 1

Δfs
v⊥;fs ·∇̄⊥F fs¼−γ̂ðvμuμÞT̄ðF fs−F eq

fs Þ: ð121Þ

Due to the changes to the momentum space degrees of
freedom, the computation of the components of the stress-
energy tensor becomes more involved. Taking into
account the transformation of the measure dpτðpτÞ2dΩp ¼
ðτ0=τÞdpτ

fsðpτ
fsÞ2dΩp;fs, the dimensionless components T̄μν

can be computed as

T̄ττ ¼ τ0
τ

Z
dΩp;fsΔfsF fs;

T̄τi ¼ τ0
τ

Z
dΩp;fsvi⊥;fsF fs;

T̄ij ¼ τ0
τ

Z
dΩp;fs

vi⊥;fsv
j
⊥;fs

Δfs
F fs;

τ2T̄ηη ¼ τ30
τ3

Z
dΩp;fs

v2z;fs
Δfs

F fs; ð122Þ

where vi⊥;fs ¼ v⊥;fsðcosϕp; sinϕpÞ and v⊥;fs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z;fs

q
.

Based on the equilibrium Bose-Einstein distribution at
vanishing chemical potential,

feq ¼ ðepμuμ=T − 1Þ−1; ð123Þ

the functions F eq
RLB and F eq

fs in Eq. (111), are readily
obtained as

F eq
RLB ¼ 1

4π

ϵ̄

ðu0 − v⊥ · u⊥Þ4
;

F eq
fs ¼ 1

4π

ϵ̄

ðu0Δfs − v⊥;fs · u⊥Þ4
; ð124Þ

where ϵ̄ ¼ T̄4.
The system is initialized using the Romatschke-Strickland

distribution [81] for Bose-Einstein statistics [82],

fRS ¼
�
exp

�
1

Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · uÞ2 þ ξ0ðp · η̂Þ2

q �
− 1

	
−1
; ð125Þ

where η̂μ is the unit vector along the rapidity coordinate.
Simplifying to the initial state considered in this paper,
Eq. (125) reduces to

fRS ¼
�
exp

�
pτ

Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0v2z

q �
− 1

�
−1
: ð126Þ

The function Λ≡ Λðx⊥Þ is determined from

Λ4ðx⊥Þ ¼ 2T4ðτ0;x⊥Þ
�
arctan

ffiffiffiffiffi
ξ0

pffiffiffiffiffi
ξ0

p þ 1

1þ ξ0

�−1
; ð127Þ

where Tðτ0;x⊥Þ is obtained from the initial energy density

ϵðτ0;x⊥Þ via the equation ϵ ¼ aT4, where a ¼ π2νeff
30

for
Bose-Einstein statistics. The anisotropy parameter ξ0 can be
used to set the ratio of longitudinal and transverse pressures
PL;0=PT;0 via

PL;0

PT;0
¼ 2

1þ ξ0

ð1þ ξ0Þ arctan
ffiffiffi
ξ0

pffiffiffi
ξ0

p − 1

1þ ðξ0 − 1Þ arctan
ffiffiffi
ξ0

pffiffiffi
ξ0

p
: ð128Þ

The case PL;0=PT;0 ¼ 0 implied by the initial conditions in
Eq. (11) can be reached only as the limit ξ0 → ∞. In this
paper, we consider finite (large) values of ξ0 and, for
simplicity, we employ the same value of ξ0 throughout
thewhole transverse plane. Since at initial time τ ¼ τ0, pτ

fs ¼
pτ and vz;fs ¼ vz, it can be seen that the initial conditions
FRS

RLB and FRS
fs are equal and given by

FRS
RLB ¼ FRS

fs ¼ ϵ̄=2π
ð1þ ξ0v2zÞ2

�
arctan

ffiffiffiffiffi
ξ0

pffiffiffiffiffi
ξ0

p þ 1

1þ ξ0

�−1
:

ð129Þ

2. Momentum space discretization

In this paper, we employ the discretization of the
momentum space discussed in Ref. [76]. In this scheme,
we employ Qϕp

×Qz discrete values for ϕp and vz (vz;fs in
the case of the free streaming variables), such that ðϕp; vzÞ
or ðϕp; vz;fsÞ are replaced by ðϕp;i; vz;jÞ and ðϕp;i; vfsz;jÞ,
respectively. The discrete set of distributions F �

ij (with
� ∈ fRLB; fsg) are related to the original distribution
function F �, via [76]

�FRLB
ij

F fs
ij

�
¼ 2π

Qϕp

wj

�FRLBðϕp;i; vz;jÞ
F fsðϕp;i; vfsz;jÞ:

�
: ð130Þ

The weight 2π=Qϕp
is computed in both RLB and fs

cases following the prescription of the Mysovskikh
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(trigonometric) [83] quadrature, by which the trigonometric
circle is discretized equidistantly, ϕp;j ¼ ϕ0 þ 2π

Qϕp
ðj − 1

2
Þ,

with 1 ≤ j ≤ Qϕp
. For definiteness, we set the arbitrary

offset ϕ0 to 0. For the discretization of vz (RLB) and
vz;fs (FS), we employ two different strategies as dis-
cussed below.
RLB case. In the case of large values of γ̂, when Eq. (114)

is considered, we employ the Gauss-Legendre quadrature,
such that wj represent the Gauss-Legendre weights and vz;j
are the roots of the Legendre polynomial of order Qz;
i.e., PQz

ðvz;jÞ ¼ 0. Their values up to quadrature orders
Qz ¼ 1000 can be found in the supplementary material of
Ref. [76]. In this approach, the term ∂½vzð1−v2zÞFRLB�=∂vz
is computed by projection onto the space of Legendre
polynomials,

�∂½vzð1 − v2zÞFRLB�
∂vz

�
ji
¼

XQz

j0¼1

KP
j;j0F

RLB
j0i : ð131Þ

The matrix elements KP
j;j0 , given in Eq. (3.54) of Ref. [76],

are

KP
j;j0 ¼ wj

XQz−3

m¼1

mðmþ 1Þðmþ 2Þ
2ð2mþ 3Þ Pmðvz;jÞPmþ2ðvz;j0 Þ

− wj

XQz−1

m¼1

mðmþ 1Þ
2

Pmðvz;jÞ
�ð2mþ 1ÞPmðvz;j0 Þ
ð2m − 1Þð2mþ 3Þ

þ m − 1

2m − 1
Pm−2ðvz;j0 Þ

�
: ð132Þ

The components of the stress-energy tensor are obtained by
replacing the integration with respect to dΩp with a double
sum over i and j:

T̄μν ¼
XQϕp

i¼1

XQz

j¼1

FRLB
ij vμijv

ν
ij; ð133Þ

where vτij¼1, ðv1ij; v2ijÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z;j

q
ðcosϕp;i; sinϕp;iÞ, and

vηij ¼ τ−1vz;j. A similar prescription is employed for the
computation of the dΩp integral in the energy-weighted flow
harmonics vEn (116).
FS case. For small values of γ̂, the free-streaming coor-

dinate vz;fs is discretized in a logarithmic scale. Inspired from
Eq. (A61) of Ref. [52], we first perform the change of
coordinate to

vz;fs ¼
1

A
tanh χ; ð134Þ

where 0 < A < 1 and χ takes values between �artanhA. In
order to increase the accuracy of the momentum space

integration, we consider the rectangle method and take the
discrete values χj at the center of theQz equidistant intervals,
such that

χj ¼
�
2j − 1

Qz
− 1

�
artanhA; vfsz;j ¼

1

A
tanh χj: ð135Þ

The quadrature weights wj are then computed based on
the Jacobian due to the change of integration variable from
vz;fs to χ,

wj ¼
2artanhA

AQz cosh2 χj
: ð136Þ

Since the discretization of vz;fs presented above is no longer
given by a Gauss quadrature prescription, we note that the FS
approach gives rise to a numerical scheme, which is more
similar to the discrete velocity method (DVM) approach
[84,85].As before, the components of the stress-energy tensor
can be obtained by replacing the integral with respect to dΩp

in Eq. (122) with quadrature sums:

T̄ττ ¼ τ0
τ

X
i;j

Δfs
j F

fs
ij;

�
T̄τ1

T̄τ2

�
¼ τ0

τ

X
i;j

vfs⊥;j

�
cosϕp;i

sinϕp;i

�
F fs

ij;

0
B@

T̄11

T̄12

T̄22

1
CA ¼ τ0

τ

X
i;j

ðvfs⊥;jÞ2
Δfs

j

0
B@

cos2ϕp;i

sinϕp;i cosϕp;i

sin2ϕp;i

1
CAF fs

ij;

τ2T̄ηη ¼ τ30
τ3
X
i;j

ðvfsz;jÞ2
Δfs

j
F fs

ij; ð137Þ

where Δfs
j ¼ ½1 − ð1 − τ20=τ

2Þðvfsz;jÞ2�1=2 and vfs⊥;j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvfsz;jÞ2

q
. A similar procedure is employed for the

computation of vEn (116).

3. Finite difference schemes

In order to obtain the numerical solution of Eqs. (114)
and (121), we consider a discretization of the temporal
variable using an adaptive time step δτn ¼ minðτn=10;
τR=2uτ; δτÞ, where δτ ¼ 0.005R, such that τnþ1 ¼
τn þ δτn. Writing the Boltzmann equation as

∂F
∂τ ¼ L½F �; ð138Þ

where L½F � can be found from Eqs. (114) or (121), we
employ the third order total variation diminishing (TVD)
Runge-Kutta method proposed in Ref. [86,87]. This algo-
rithm allows the valuesF nþ1 of the distribution functions at
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the new time step to be obtained from the old ones using
two intermediate stages.
The advection along the transverse directions is per-

formed using the flux-based upwind-biased fifth order
weighted essentially nonoscillatory (WENO-5) scheme
[63,88]. Considering that the spatial domain of extent
L1 × L2 is discretized using N1 × N2 equidistant nodes,
the coordinates of the discrete points are

x1;s ¼ x1;left þ
L1

N1

�
s −

1

2

�
;

x2;r ¼ x2;bot þ
L2

N2

�
r −

1

2

�
; ð139Þ

with 1 ≤ s ≤ N1 and 1 ≤ r ≤ N2. Focusing without loss of
generality on the derivative with respect to x1, the algorithm
entails

c1

�∂F
∂x1

�
s;r

¼
F sþ1

2
;r − F s−1

2
;r

δx1
; ð140Þ

where δx1 ¼ L1=N1. The velocity c1 is given in the
case when γ̂ is large, when Eq. (114) is solved, by
c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

p
cosϕp being independent of position and

space. In the case of small values of γ̂, Eq. (121) shows that
the advection velocity c1 ¼ 1

Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ṽ2z

p
cosϕp depends on

the Bjorken time τ; however, it remains constant throughout
the entire transverse plane. The stencils required to com-
pute the fluxes F s�1

2
;r are chosen in an upwind-biased

manner based on the sign of c1. Since the algorithm to
compute these stencils is rather lengthy, we do not repeat
it here and instead refer the interested reader to
Refs. [63,76,88,89] for details.

V. RESULTS

We will now analyze the space-time evolution of the
system and the development of transverse flow as a
function of the opacity parameter γ̂ [cf. Eq. (31)]. We
focus on the range of opacities 0.01 ≤ γ̂ ≤ 400 and con-
sider different initial eccentricities ϵn ∈ f0.01; 0.05; 0.1;
0.2; 0.32; 0.36g [cf. Eqs. (14), (15)].
If not stated otherwise, open symbols and dashed lines

correspond to results obtained using the expansion in spheri-
cal harmonic moments in Sec. IVA, where we typically use
lmax¼32,NS ¼ 256, aS¼0.0625R.8 Conversely, results
obtained with the RLB method are represented by solid
symbols and solid lines. The RLB simulations are divided in
two batches. The first batch includes systems with γ̂ ≥ 2.
For these simulations, we used the RLB algorithm for large γ̂

described in Sec. IV B with Qz ¼ 40 and Qϕp
¼ 80, while

the number of nodes on each semiaxis is taken to beX ¼ 100
for ϵn ≥ 0.05 and X ¼ 200 for ϵn < 0.05. The anisotropy
parameter in the initial state is set to ξ0 ¼ 20, corresponding
to an initial ratioPL=PT ≃ 0.08. The second batch comprises
the systems with γ̂ ≤ 2 for which we employ the hybrid free-
streaming algorithm described in Sec. IV B with Qz ¼ 500
andQϕp

¼ 80. In this case, the anisotropy parameter is set to
ξ0 ¼ 100, corresponding to PL=PT ≃ 0.02, and the spatial
resolution is X ¼ 100 nodes per semiaxis.

A. Cooling due to longitudinal expansion (dE⊥=dη)
Before we discuss the development of transverse flow,

we first investigate the cooling of the system due to work
performed against the longitudinal expansion, which is
quantified by the decrease of the transverse energy per
rapidity dE⊥=dη. We first note that for a free-streaming
system, dE⊥=dη is constant. Increasing the opacity will
initially only have a small effect, which can be quantified in
terms of the linear decrease in γ̂ calculated in Sec. III E.
However, for large opacities γ̂ ≫ 1, the system has sufficient
time to undergo pressure isotropization at early times,
leading to an extended phase of longitudinal cooling, which
results in a significant decrease of dE⊥=dη. Hence, when
presenting our results for dE⊥=dyðτÞ in Fig. 1, we have
grouped them into two plots for large opacities in the upper
panel and small opacities in the lower panel. While for large
opacities, the curves are normalized by the initial value

dEð0Þ
⊥ =dη and plotted on a doubly logarithmic scale to

visualize the power law decay of dE⊥=dη at intermediate
times, for small opacities, we show the difference of

dE⊥=dη − dEð0Þ
⊥ =dη, normalized by the initial value and γ̂

to account for the linear behaviour in opacity.We also showa
comparison with the analytical result from Sec. III E, which
provides a good description of the curves for γ̂ ≲ 1.
Qualitatively, all curves exhibit a similar behavior start-

ing out from the early time fixed point of kinetic theory,
where longitudinal pressure vanishes, and energy per
rapidity stays almost constant. Subsequently, as longi-
tudinal pressure develops due to interactions, work is being
performed, which starts to happen earlier and earlier the
larger the opacity. Eventually, at late times τ=R≳ 1, the
transverse expansion becomes dominant, and the system
rapidly dilutes towards free streaming behaviour, resulting
in a late time plateau of the dE⊥=dηðτÞ-curves.
We find that for large opacities γ̂ ≳ 10, the pressure

isotropization at early times and the onset of the transverse
expansion at later times are sufficiently well separated to
observe an intermediate τ1=3-scaling of dE⊥=dη, which—
as we will see shortly—can be related to the usual ϵ ∼ τ−4=3

decrease of the energy density in Bjorken flow. It stands
to reason that, at early times, the transverse gradients in
the system are negligible compared to the longitudinal
expansion, and the system will locally behave like a

8We note that results for γ̂ ≤ 1 require a larger accuracy, and
we use lmax ¼ 48,NS ¼ 320, aS ¼ 0.05R. Similarly, for accurate
calculations of dE⊥=dy, we need a larger value of lmax, and we
employ lmax ¼ 96,NS ¼ 160, aS ¼ 0.06R in this case.
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one-dimensional Bjorken system. Based on the following
considerations, this behavior can be quantified further and
cast into a parameter-free prediction for the evolution of
dE⊥=dη in Eq. (151), which is indicated by black circles in
the upper panel of Fig. 1 and agrees remarkably well with

numerical results for the large opacities up to times
τ=R≲ 0.1.
Defining the conformal scaling variable w̃ðτ;x⊥Þ ¼

Tðτ;x⊥Þτ
4πη=s , the Bjorken flow exhibits a universal attractor
curve [90] for

ϵðτÞτ4=3 ¼ ð4πη=sÞ4=9a1=9ðϵτÞ8=90 C∞Eðw̃Þ;

τ1=3
dE⊥

d2x⊥dη
¼ ð4πη=sÞ4=9a1=9ðϵτÞ8=90 C∞fE⊥ðw̃Þ; ð141Þ

where the asymptotic limits of Eðw̃Þ are known [90] and
given by

Eðw̃ ≫ 1Þ ¼ 1 −
2

3πw̃
;

Eðw̃ ≪ 1Þ ¼ C−1
∞ w̃4=9: ð142Þ

Similarly, one finds for fE⊥ðw̃Þ that

fE⊥ðw̃ ≫ 1Þ ¼ π

4
;

fE⊥ðw̃ ≪ 1Þ ¼ C−1
∞ w̃4=9; ð143Þ

where for the RTA Boltzmann equation, C∞ ≈ 0.9 [73,90],
and the leading constant π=4 can be deduced from an
integral of the thermal equilibrium distribution. By use of
the equation of state ϵ ¼ aT4, Eq. (141) can be recast as a
self-consistency condition for w̃, which takes the form,

w̃ðτ;x⊥Þ ¼ ð4πη=sÞ−8=9a−2=9ðϵτÞ2=90 ðx⊥Þ
× τ2=3½C∞Eðw̃ðτ;x⊥ÞÞ�1=4; ð144Þ

and can be used to relate the differential with respect to w̃
at fixed τ to the differential with respect to the transverse
plane coordinates x⊥ as

dw̃
w̃

�
1 −

1

4

w̃E0ðw̃Þ
Eðw̃Þ

�
¼ 2

9

∂ðϵτÞ0ðx⊥Þ∂jx⊥j
ðϵτÞ0ðx⊥Þ

djx⊥j: ð145Þ

Specifically, for the initial Gaussian profile in Eq. (14),
one finds

jx⊥jdjx⊥j ¼ −
9R2

4

dw̃
w̃

�
1 −

1

4

w̃E0ðw̃Þ
Eðw̃Þ

�
; ð146Þ

which can be used to calculate the resulting change of
the energy per unit rapidity as follows. Starting from the
definition in Eq. (141), one can express the energy per unit
rapidity in terms of the scaling function,

dE⊥
dη

¼τ−1=3ð4πη=sÞ4=9a1=9C∞

×ð2πÞ
Z

djx⊥jjx⊥jfE⊥ðw̃ðτ;x⊥ÞÞðϵτÞ8=90 ðx⊥Þ: ð147Þ

FIG. 1. Evolution of dE⊥=dη (top) andΔdE⊥=dη ¼ dE⊥=dη −
dEð0Þ

⊥ =dη (bottom) normalized with respect to the initial value

dEð0Þ
⊥ =dη for various large (top) and small opacities (bottom). In

the bottom panel, we also normalize with respect to γ̂. Colored
solid lines were obtained with the RLB method, while open
symbols denote results from the moment method. The solid black
line shows the first order result in opacity expansion. Dashed
black lines with black circles correspond to the Bjorken flow
prediction derived in Eq. (151), and the curves in the top panel are
presented on double logarithmic scale. All results are obtained for
initial eccentricity ϵ2 ¼ 0.05.
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Expressing the remaining factor of the energy density
ðϵτÞ8=90 in terms of the conformal scaling variable w̃,
according to

ðϵτÞ8=90 ðx⊥Þ ¼ ð4πη=sÞ32=9a8=9τ−8=3 w̃4

C∞Eðw̃Þ
; ð148Þ

which follows from Eq. (144), one can then express

dE⊥
dη

¼ 9πa
2R

�
R
τ

�
3

ð4πη=sÞ4

×
Z

w̃ðτ;x⊥¼0Þ

0

w̃3dw̃
Eðw̃Þ

�
1 −

1

4

w̃E0ðw̃Þ
Eðw̃Þ

�
fE⊥ðw̃Þ: ð149Þ

By considering the ratio dE⊥
dη = dE0⊥

dη and identifying

ð4πη=sÞ4a
dE0⊥=dηR

¼ 1

π

�
4π

5γ̂

�
4

; ð150Þ

one then obtains the final result

dE⊥=dη
dE0⊥=dη

¼9

2

�
4π

5γ̂

�
4
�
R
τ

�
3

×
Z

w̃ðτ;x⊥¼0Þ

0

w̃3dw̃
Eðw̃Þ

�
1−

w̃
4

E0ðw̃Þ
Eðw̃Þ

�
fE⊥ðw̃Þ; ð151Þ

where w̃ðτ;x⊥ ¼ 0Þ in the center of the collision can be
expressed in terms of γ̂ via

w̃ðτ;x⊥ ¼ 0Þ ¼
�
5γ̂

4π

�
8=9

�
τ

R

�
2=3

½C∞Eðw̃Þ�1=4: ð152Þ

The asymptotic behavior of Eq. (151) can be under-
stood as follows. In the limit γ̂ðτRÞ3=4 ≪ 1, we have
w̃ ≈ 5

4π γ̂ðτRÞ3=4 ≪ 1, and we can approximate Eðw̃Þ ¼
fE⊥ðw̃Þ ¼ C−1

∞ w̃4=9 to obtain

dE⊥=dη
dE0⊥=dη

¼ 1; ð153Þ

as expected. Conversely, in the limit γ̂3=4ðτRÞ ≫ 1, we have

w̃ ≈ ð 5
4πÞ8=9γ̂8=9C1=4

∞ ðτRÞ2=3 ≫ 1, such that we can approxi-
mate Eðw̃Þ ≈ 1 and evaluate Eq. (151) as

dE⊥=dη
dE0⊥=dη

¼ 9

8

�
4π

5γ̂

�
4=9

�
R
τ

�
1=3

C∞fE⊥ð∞Þ; ð154Þ

which predicts that dE⊥=dη decreases as τ−1=3 at inter-
mediate times before the transverse expansion becomes
dominant. By comparing the results in Fig. 1, one finds that

for sufficiently large opacities, the power-law behavior in
Eq. (154) is indeed realized at intermediate times and
discontinues once τ=R ≃ 1 when the transverse expansion
becomes dominant, such that the estimate (154) is no
longer applicable, and dE⊥=dη

dE0⊥=dη
attains a constant asymptotic

value. The details regarding the computation of the integral
in Eq. (151) are presented in Appendix E.
We note that our estimate in Eq. (154) also shows that

for sufficiently large opacities, where longitudinal cooling
occurs predominantly before the transverse expansion
sets in, the final value of dE⊥=dη

dE0⊥=dη
is proportional to γ̂−4=9,

as previously argued in [52]. Numerical results for the
asymptotic values of dE⊥=dη

dE0⊥=dη
, extracted by performing

extrapolations of the curves of the form aþ bτ̃−c, where
a, b, and c are fitting parameters, are shown in Fig. 2
as a function of the opacity parameter γ̂. We find that at
low γ̂, the analytical result to leading order in opacity
[cf. Eq. (82)], represented with a solid black line, provide
an accurate description up to γ̂ ≲ 1. Conversely, for large
opacities γ̂, the decrease of the energy per unit rapidity
dE⊥=dη
dE0⊥=dη

exhibits the expected scaling behavior, with dE⊥=dη
dE0⊥=dη

≈

1.4γ̂−4=9 for γ̂ ≳ 10, as indicated by the purple line. By
comparing the numerical coefficient with Eq. (154), this
result seems to indicate that cooling stops at a time
τstop ≃ 0.6R, which is consistent with the trend seen for
the high γ̂ curves in Fig. 1(a).

FIG. 2. Opacity (γ̂) dependence of the ratio of final to initial

(transverse) energy per-unit rapidity dE⊥
dη = dEð0Þ

⊥
dη . The red solid line

with filled circles denotes results from the RLB method, while the
red dotted line with open circles was obtained in the moment
method. Numerical results are compared to analytical results
obtained in leading order opacity expansion (black solid curve),

and a power-law scaling fit dE⊥
dη =

dEð0Þ
⊥

dη ≈ 1.4γ̂−4=9 at large opacities
(purple solid line).

DEVELOPMENT OF TRANSVERSE FLOW AT SMALL AND LARGE … PHYS. REV. D 105, 014031 (2022)

014031-17



B. Development and opacity dependence
of transverse flow harmonics ðvnÞ

Next, we will analyze the development of anisotropic
flow in terms of the time dependence of the harmonic
transverse flow coefficients vEn for different opacities. We
recall that the initial anisotropies are modeled using a single
harmonic (n) perturbation and first look at the time
dependence of vE2 ; v

E
3 , and vE4 for different opacities,

where in each case, the eccentricities are fixed to
ϵn ¼ 0.05, which serves as a good approximation to the
small eccentricity limit. We measure the magnitude of the
linear response ratio vn=ϵn for each harmonic; in addition,
we also extract the nonlinear response of the fourth and
sixth order harmonics via the ratios v4=ϵ22, v6=ϵ23, and
v6=ϵ32. For notational brevity, we omit the superscript E
when referring to the energy-weighted flow harmonics,
i.e. vn ≡ vEn .
Since the qualitative behaviour of vn is somewhat

different in the regimes of small and large opacities γ̂,
we again divide our results into two categories correspond-
ing to γ̂ ≥ 2 and γ̂ ≤ 2, as in Fig. 1. Since the analytical
calculation in Sec. III indicates that at small γ̂, all response

coefficients increase linearly with γ̂, we will further normal-
ize our low opacity results ðγ̂ ≤ 2Þ by division with
respect to γ̂.
Our results are compactly summarized in Figs. 3 and 4,

where we present numerical results for the linear
(v2=ϵ2; v3=ϵ3; v4=ϵ4) and nonlinear (v4=ϵ22; v6=ϵ

2
3; v6=ϵ

3
2)

response coefficients obtained for small (top panels) and
large (bottom panels) values of γ̂. We find that for small
values of γ̂ ≲ 0.04, the leading order linear dependence
of vn=ϵn on γ̂ computed in Eq. (83)–(85) is nicely
confirmed by the asymptotic approach of our numerical
results to the analytical results, represented by a solid
black line. Similarly, a linear dependence with respect to γ̂
is also found for the nonlinear response coefficients
v4=ϵ22; v6=ϵ

2
3; v6=ϵ

3
2, which, for v4=ϵ

2
2, is in line with the

result obtained in Ref. [53] for a slightly different initial
setup. While for γ̂ ≳ 0.25, all linear flow coefficients
exhibit a positive response with respect to the initial
eccentricities, the quadrangular flow v4=ϵ4γ̂ in Fig. 3 shows
a negative response for γ̂ ≲ 0.25.
Based on a closer inspection, one finds that the curves

of v4=ðϵ4γ̂Þ exhibit an early time increase similar to the

FIG. 3. Evolution of the linear flow response vEn=ϵnγ̂ at small opacities γ̂ (top) and vEn=ϵn at large opacities γ̂ (bottom). Different
columns correspond to elliptic flow n ¼ 2 (left), triangular flow n ¼ 3 (middle), and quadrangular flow n ¼ 4 (right). Colored solid
lines were obtained in the RLB method, while open symbols denote results from the moments method. Analytical results are plotted as
solid black lines. All results were obtained for an initial eccentricity ϵn ¼ 0.05.
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behavior seen for the other harmonic flow coefficients;
however, in contrast to v2, v3, the initial rise of v4 peaks
around τ ≃ 1.5R, followed by a decrease due to negative
contributions received at large times. When increasing the
opacity, nonlinear effects cause the elliptic flow response
v2=ðϵ2γ̂Þ to decrease, while v3=ðϵ3γ̂Þ, v4=ðϵ4γ̂Þ as well as
the nonlinear v4=ðϵ22γ̂Þ and v2=ðϵ32γ̂Þ exhibit an increasing
trend; due to the rather complicated time dependence, the
behavior of v6=ðϵ23γ̂Þ appears nonmonotonic. Clearly, the
largest effect is seen in the case of the v4=ϵ4-response,
which changes sign as the late time contributions become
less and less prominent.
When considering large opacities γ̂ ≳ 2 shown in the

bottom panels of Figs. 3 and 4, the curves for linear
(v2=ϵ2; v3=ϵ3; v4=ϵ4) and nonlinear (v4=ϵ22; v6=ϵ

2
3; v6=ϵ

3
2)

response coefficients retain the same qualitative time
dependence and monotonically increase as a function of
γ̂, seemingly approaching a finite large opacity limit, which
wewill further examine in the following. Generally, we find
that the linear anisotropic flow response develops predomi-
nantly in the regime 0.5≲ τ=R≲ 2 and then stays almost
constant, with the exception of the aforementioned late
time decrease of linear v4. In the case of the nonlinear

coefficients v4=ϵ22; v6=ϵ
2
3, and v6=ϵ32, the response takes a

little longer to develop, but nevertheless, the asympto-
tic late time value is reached on similar timescales
0.5≲ τ=R≲ 4.
Beyond the time evolution of the different flow har-

monics, additional insights into the development of aniso-
tropic flow can be gained from their production rates pðvnÞ,
which correspond to the local rate of change of these
quantities. Since free streaming and longitudinal expansion
do not change the (transverse) momentum distribution of
particles, the buildup of anisotropic flow is solely due to
interactions. We can thus determine the production rate

pðOÞ of a flow observable O ¼ R
d2x⊥

R d3p
ð2πÞ3 Of as

pðOÞ¼ dO
dx⊥dτ






coll

¼
Z

dϕx⊥x⊥
Z

d3p
ð2πÞ3O

d
dτ

f






coll

; ð155Þ

where the rate of change of the phase-space distribution f
due to collisions is given by

d
dτ

f






coll

¼ vμuμ
τR

ðfeq − fÞ: ð156Þ

FIG. 4. (Top line) Evolution at low opacities of the nonlinear flow response coefficients vE4 =ϵ
2
2γ̂ (left), v

E
6 =ϵ

2
3γ̂ (middle), and vE6 =ϵ

3
2γ̂

(right). (Bottom line) Evolution at large opacities of vE4 =ϵ
2
2, v

E
6 =ϵ

2
3 (middle) and vE6 =ϵ

3
2 (right). Colored solid lines were obtained in

the RLB method, while open symbols denote results from the moments method. All results were obtained for an initial eccentricity
ϵn ¼ 0.05.
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Specifically, the observables vEn are defined according to
Eq. (36) as quotients of two such terms, such that the
production rate pðOÞ receives two contributions coming
from the numerator and denominator according to the
quotient rule for differentiation.
Figure 5 features heat maps in the x⊥-τ-plane for pðv2Þ,

pðv3Þ, and pðv4Þ as well as pðv4;nÞ referring to the

nonlinear response, normalized by the respective late time
asymptotic values of vn for several different opacities
ranging from the analytical results for small opacities
γ̂ ≪ 1 all the way to γ̂ ¼ 50. Besides the production rates
of different vn, the top panel of Fig. 5, also shows a heat
map of the dimensionless temperature T̃ and the flow
components uτ and ur to allow for a comparison with the

FIG. 5. (Top row) Space-time profiles of the effective temperature T̃ along with the temporal and radial components of the vector field
uμ, presented in the x⊥-τ-plane for ϵn ¼ 0.05. (Bottom rows) Space-time profiles of the production rates of linear vE2 ; v

E
3 , and vE4

response (second to fourth row) as well as nonlinear vE4 response (fifth row). Numerical results were obtained in the moment method.
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spatial distribution and expansion of the system. The latter
showcase how with increasing opacity, the system cools
more rapidly in the center, and the transverse expansion
proceeds much slower, resulting in a longer lifetime of the
central fireball. Strong correlations of the temperature
profile in τ and x⊥ only develop at much later times when
compared to the free-streaming limit, which exhibits a
prominent diagonal line in the T̃-heat map. Inspection of
the pðvnÞ-heat maps reveals that different regions in the
x⊥-τ-plane contribute with different signs to the develop-
ment of anisotropic flow vn. By comparing the results
for v2, v3, and v4, one also observes that for larger n, the
relevant regions extend more toward larger x⊥, while at
the same time, more of these regions appear, causing
large cancellations between the different contributions.
Specifically for small opacities, the structure of the heat
maps of the vn production rates can be related to the weight,

jx⊥ − v⊥Δτjn cosðnϕx⊥−v⊥Δτ;n⊥Þ

¼
Xn
j¼0

ð−1Þj
�
n
j

�
xn⊥

�
Δτ
xT

�
j
½cosðnϕx⊥n⊥Þ cosðjϕx⊥p⊥Þ

− sinðnϕx⊥n⊥Þ sinðjϕx⊥p⊥Þ�; ð157Þ

with which the anisotropic perturbations of the initial
phase-space distribution propagate in free streaming.
Since the evolution of the perturbation is expressed as a
sum of nþ 1 terms containing different powers of Δτ=x⊥
with alternating signs, it will divide the x⊥-τ-plane into
nþ 1 regions of alternating signs depending on which one
of these terms dominates. In addition, the production of the
anisotropic flow vns will be weighted with the local
effective temperature T̃ of the system, such that for small
opacities, most of the contributions originate from the
τ ∼ x⊥ diagonal, so only Δτ=x⊥-terms that dominate close
to that region will have a significant impact on the total
vnðτÞ. Specifically, for n ¼ 2, there is only one dominant
term, which explains the monotonic increase of v2 as a
function of time seen in Fig. 3. Conversely, for n ¼ 3, one
positive and one negative contribution are competing, with
the positive one being slightly larger than the negative one,
which is why for small opacities, v3=e3 is significantly
smaller than v2=e2 and features a slight negative trend at
late times. Finally, in the case of n ¼ 4, there are three
relevant terms. At early times, the two positive contribu-
tions from the inner and outer border of the system win, and
v4 increases, but the one negative contribution surrounded
by them in the x⊥-τ-plane is closest to the diagonal and
dominates at late times, resulting in a sign change for v4
observed for the smallest opacities in Fig. 3.
With increasing opacity, one observes a clear change

in the shapes of the regions, resulting in a shift of vn
production toward earlier τ and smaller x⊥ in Fig. 5.
However, more strikingly, the increase of opacity also leads
to a change of the relative weights of different regions,

developing toward a scenario with only one dominant
positive contribution for all the vns at large opacity.
We finally note that the weighting with the effective

temperature T̃ plays an important role in this mechanism,
such that a different initial condition could result in
different relative weights of the regions with different sign
of the production rates, which can have notable effects on
the buildup of the different flow harmonics. Clearly, one
should expect that the higher order flow harmonics, where
more cancellations appear, are more sensitive to changes of
the initial conditions, and indeed we find that varying the
parameter α that controls the radial profile (cf. Sec. II A)
will have a notable influence on the v3ðτÞ and v4ðτÞ-curves
at small opacities.
Beyond the opacity dependence, one may also examine

how the development of anisotropic flow vnðτÞ changes
with the amplitude ϵn of the respective initial eccentricity.
Figures 6 and 7 showcase how the curves of normalized
flow spread with eccentricity for two representative fixed
values of γ̂. Somewhat surprisingly, we find that the curves
exhibit only very small deviations from an entirely linear
(quadratic) dependence on eccentricity in the linear v2, v3,
and v4 (quadratic v4 and v6) flow response, even for rather
large eccentricities. The only response featuring a signifi-
cant dependence on eccentricity is the cubic v6 response to
ϵ2. While this holds true not only for the final values but
also for the entire buildup and evolution as a function of
τ=R, we remark, however, that these findings are probably
specific to the particularly simple geometry considered in
our setup, and it will therefore be important to extend such
systematic studies of the opacity dependence of the flow
response toward more realistic profiles of the transverse
geometry.
Next, in order to further scrutinize the eccentricity

dependence, we extract the extrapolated final values of
vn=ϵn, as well as of nonlinear v4=ϵ22, v6=ϵ

2
3, and v6=ϵ32 at

late times and plot them as a function of the square of the
relevant eccentricity for several different opacities. Our
results shown in Figs. 8 and 9 again confirm the surpris-
ingly small deviations from perfect linear (quadratic)
scaling of the flow response, with only very slight negative
(positive) trends at large opacity and eccentricity. Our
results in Fig. 8 appear to be in conflict with results
previously obtained by Kurkela et al. [57] in the same
setup. We note once again that although the absence of
significant nonlinearity in the eccentricities may seem
in conflict with conventional knowledge (see, e.g.,
[58,91,92]), we attribute this to the specific initial con-
ditions considered within our setup, and we have explicitly
checked that hydrodynamic simulations of the same initial
conditions also lead to similar results for v2=ϵ2. Vice versa,
the absence of nonlinearities within our setup also indicates
that the significant nonlinearity observed for more realistic
initial state models should be attributed to other features of
the initial states considered in hydrodynamic simulations of

DEVELOPMENT OF TRANSVERSE FLOW AT SMALL AND LARGE … PHYS. REV. D 105, 014031 (2022)

014031-21



FIG. 7. Nonlinear response coefficients vE4 =ϵ
2
2 (top), vE6 =ϵ

2
3

(middle), and vE6 =ϵ
3
2 (bottom) as a function of τ=R for different

opacities γ̂ ¼ 8 and γ̂ ¼ 50 and various different eccentricities ϵn.
Lines denote results from the RLB method, and symbols show
results from the moment method.

FIG. 6. Linear response coefficients vEn=ϵn as a function of τ=R
for different opacities γ̂ ¼ 8 and γ̂ ¼ 50 and various different
eccentricities ϵn. Lines denote results from the RLB method, and
symbols show results from the moment method.
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FIG. 9. Squared eccentricity (ϵ2n) dependence of the nonlinear
response coefficients κ4;22 ¼ vE4 ðτ → ∞Þ=ϵ22 (top), κ6;33 ¼
vE6 ðτ → ∞Þ=ϵ23 (middle), and κ6;222 ¼ vE6 ðτ → ∞Þ=ϵ32 (bottom).
Solid lines with filled circles denote results from the RLB
method, while dotted lines with open circles were obtained in
the moment method.

FIG. 8. Squared eccentricity (ϵ2n) dependence of the linear
response coefficients κn;n ¼ vEn ðτ → ∞Þ=ϵn for elliptic flow n ¼
2 (top), triangular flow n ¼ 3 (middle), and quadrangular flow
n ¼ 4 (bottom). Solid lines with filled circles denote results from
the RLB method, while dotted lines with open circles were
obtained in the moment method.
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heavy-ion collisions, which are not solely characterized in
terms of the usual eccentricities.
Since the flow response to the initial eccentricity is

essentially linear within our setup, our findings for
the development of transverse flow can be compactly
summarized in Fig. 10, where we present results for
the γ̂-dependence of the response coefficients κn;n¼
limϵn→0vn=ϵn, as well as κ4;22 ¼ limϵ2→0 v4=ϵ22, κ6;33 ¼
limϵ3→0 v6=ϵ23, and κ6;222 ¼ limϵ2→0 v6=ϵ32 estimated from
our data at ϵ ¼ 0.05. Besides the numerical results, we
also indicate the linearized analytical approximation in
Eqs. (83)–(85) and the numerical results of Kurkela et al.
[57]. Despite the discrepancy in the results for the eccen-
tricity dependence, we generally find good agreement with
Kurkela et al. in the linear response at low opacities
(γ̂ ≲ 10), which only starts to deviate slightly at larger
opacities.
Concerning the opacity dependence, one finds that at

low opacities up to γ̂ ≲ 1, the linear response coefficients
are reasonably well described by the leading order opacity
expansion κn;n ∼ γ̂ in Eqs. (83)–(85). However, one should
note that, due to the intricate space-time structure of vn
production, the higher harmonic coefficients are increas-
ingly sensitive to changes in the underlying dynamics,
such that, e.g., κ4;4, starts to deviate from the leading order
opacity expansion already at smaller values of γ̂. When
increasing the opacity further, one observes a sizeable
change in the linear and nonlinear flow response coef-
ficients for 1≲ γ̂ ≲ 100, which is no longer captured by
the leading order opacity expansion. Eventually, for very
large opacities γ̂ ≳ 100, the opacity dependence of the
linear and nonlinear response coefficients becomes

weaker and weaker, indicating a saturation toward a finite
large opacity limit. Empirically, we find that in this
regime, the opacity dependence of the response coeffi-
cients can be well approximated by a constant asymptotic
value and a power-law correction, with the asymptotic
values κðγ̂ → ∞Þ indicated by horizontal arrows in Fig. 10.

C. Energy flow and hydrodynamic limit

So far, we have employed an effective kinetic descrip-
tion to study longitudinal cooling and the development
of transverse flow as a function of the opacity para-
meter γ̂. While at small opacities γ̂ ≪ 1, the results from
numerical simulations are well described by the first
interaction correction to free streaming, one generally
expects that in the opposite limit of large opacities γ̂ ≫ 1,
the effective kinetic description approaches the limit
of dissipative and eventually ideal hydrodynamics.
Hence, in order to investigate to what extent this expect-
ation holds true, we will now compare our results from
kinetic theory with numerical simulations in Müller-
Israel-Stewart type second order relativistic viscous
hydrodynamics.
We employ the publicly available vHLLE code originally

introduced in Ref. [72] and extend the latest GitHub
branch9 to include the initial conditions considered in this
paper. Apart from the conservation equation for the stress-
energy tensor,∇νTμν ¼ 0, the code implements the Müller-
Israel-Stewart equations for the evolution of the pressure

FIG. 10. Opacity (γ̂) dependence of (left) the linear κn;n¼ limϵn→0vEn ðτ→∞Þ=ϵn and (right) the nonlinear κn;mm¼ limϵm→0vEn ðτ→∞Þ=
ϵ2m, κn;mmm ¼ limϵm→0 vEn ðτ → ∞Þ=ϵ3m response coefficients. Colored solid lines with filled circles denote results from the RLB method,
while colored dotted lines with open circles were obtained in the moment method. The black solid lines show the results obtained to
leading order in opacity expansion for the linear coefficients (left). Gray lines represent the results of Kurkela et al. in [57] [no such
results are available for κ6;33 in panel (b)]. Horizontal arrows indicate asymptotic values extracted from a fit to the numerical data at large
opacities (see text).

9Commit number efa9e28d24d5115a8d8134852-
32fb342b38380f0.
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deviator πμν, which, for the case of a conformal fluid,
reduce to [93]

_πhμνi ¼ 2ησμν − πμν

τπ
−
δππ
τπ

πμνθ þ ϕ7

τπ
πhμα πνiα −

τππ
τπ

πhμα σνiα;

ð158Þ

where σμν ¼ 2∇hμuνi is the shear tensor, θ ¼ ∇μuμ is the
expansion scalar, while the transport coefficients appearing
above satisfy [94]

τπ¼
5η

sT
;

δππ
τπ

¼4

3
; ϕ7¼

9

70p
;

τππ
τπ

¼10

7
: ð159Þ

We note already at this stage that the early time behavior
in ideal and viscous hydrodynamics does not agree with
the early time free-streaming limit of kinetic theory, which,
as pointed in [57,95], leads to an unphysical behavior
of dE⊥=dη at early times, which makes the scaling
variable γ̂ ill defined in the limit τ0 → 0. While in [57],
this problem was addressed by modifying the initial
conditions and matching the energy per unit rapidity at a
later time τ=R ¼ 1 of the evolution, we follow the more
common procedure and choose a finite initial time τ0,
where we initialize the energy density as in Eqs. (14)
and (15) and set the components of the shear stress tensor,
πμν, to10

τ−20 πηη ¼ −2πxx ¼ −2πyy ¼ −p; ð160Þ

which ensures vanishing longitudinal pressure, to comply
with the initial conditions for kinetic theory in Eq. (11).11

Similarly, we fix the value of the shear viscosity to entropy
density ratio η=s for a given value of γ̂ in the same way as
for RTA, via Eq. (31), evaluated at initial time τ0. By
comparing kinetic theory and hydrodynamic simulations
with the same finite τ0, we can then achieve a direct
comparison and, in addition, investigate the dependence on
the initialization time τ0 in the two different theories.
Evaluating the energy-weighted flow harmonics vEn

considered in this paper, a Cooper-Frye-like mechanism
should be considered to reconstruct the phase-space
distribution function from the hydrodynamic fields
e, uμ, and πμν. We circumvent this ambiguity by instead
referring to the stress-energy anisotropy ϵp, which, accord-
ing to Eq. (37), can be defined directly in terms of the
components of the energy-momentum tensor. Since Tμν is

fundamentally accessible in both kinetic theory and hydro-
dynamics, a comparison between the two theories can be
made unambiguously at the level of ϵp. The quantity ϵp
measures the second harmonic modulation of the energy
flow and our kinetic theory simulations exhibits almost
identical behavior of ϵp and the energy-weighted harmonic
coefficient vE2 . Since we are not aware of generalizations of
ϵp higher order flow harmonics, we will therefore restrict
our attention to n ¼ 2 perturbations, with initial eccentric-
ity ϵ2 ¼ 0.05.12

Our results for the elliptic energy-flow response are
compactly summarized in Fig. 11, where we compare the
opacity dependence of ϵp=ϵ2 in kinetic theory (RTA) and
hydrodynamics (vHLLE) for two different initialization times
τ0=R ¼ 10−2; 10−6 in the top and bottom panels. When

FIG. 11. Opacity (γ̂) dependence of the energy-flow response
ϵp=ϵ2 for two different initialization times τ0=R ¼ 10−2 (top) and
τ0=R ¼ 10−6 (bottom). Two results are plotted for kinetic theory:
Those from the RLB method are plotted as a green solid line with
filled circles and those from the moments method are plotted as a
green dashed line with open circles. All results are for ϵ2 ¼ 0.05.

10We employ a conformal equation of state e ¼ 3p.
11Since at very early times, the evolution in viscous hydro-

dynamics and kinetic theory does not agree, another conceivable
option is to initialize the hydrodynamic simulation on the
hydrodynamic attractor for Bjorken flow [57,95]. We have also
performed such simulations and find no significant differences
regarding the development of transverse flow.

12We have checked that, similar to the kinetic theory results in
Fig. 8, nonlinear contributions ϵp ∼ ϵ32 are sufficiently small to be
neglected for the linear response analysis of ϵp=ϵ2.
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considering the larger initialization time τ0=R¼10−2, one
finds that viscous hydrodynamics provides a reasonable
description of kinetic theory for γ̂ ≳ 5, with both curves
smoothly approaching the ideal hydrodynamic limit for
large opacities, as indicated by the gray dashed line.
When considering a much smaller initialization time,
τ0=R ¼ 10−6, we find small deviations between kinetic
theory and hydrodynamics in the same opacity range.
While these deviations might not be very sizeable, they
notably do not steadily decrease with increasing opacity, as
onewould naively expect. Moreover, a perhaps more evident
observation is that neither of the two curves appears to
approach the ideal hydrodynamics result, such that even
when extrapolated to infinite opacity, the RTAvalue (≃0.59)
slightly differs from the vHLLE value (≃0.57), and both fall
about 10% short of the ideal hydrodynamic limit (≃0.64).
Even though this behavior may appear counterintuitive at

first sight, it can ultimately be traced back to the non-
commutativity of the limits τ0 → 0, where the system is
subject to a rapid longitudinal expansion, and γ̂ → ∞,
where hydrodynamics emerges from kinetic theory as the
system undergoes rapid equilibration. Starting from kinetic
theory, it is clear that for any finite opacity γ̂, the system is
initially far from equilibrium and behaves as approximately
free streaming, until on time scales τeq=R ∼ γ̂−4=3, the
system undergoes equilibration, and the subsequent evo-
lution can be approximately described by viscous or even
ideal fluid dynamics. While in the limit γ̂ → ∞, the
equilibration time τeq=R → 0 and fluid dynamics becomes
applicable at earlier and earlier times, the early time free
streaming and initial approach toward equilibrium is never
correctly described by fluid dynamics. The results in
Fig. 11 thus provide a clear illustration of the fact that
at very early times, the system is necessarily out of
equilibrium, and the two limits γ̂ → ∞ and τ0 → 0 are
in general not commutative.
Even though at large opacities, the mismatch between

kinetic theory and hydrodynamics occurs only at very early
times, this affects, e.g., the longitudinal cooling and can still
have a notable effect on the development of anisotropic flow
at later times, which is seen in Fig. 11. We are thus led to
conclude that a nonequilibrium description of the early time
dynamics is inevitable to accurately describe the develop-
ment of anisotropic flow, even at relatively large opacities.
As a final remark to the comparison of opacity depend-

encies in the different descriptions, we note that for any finite
τ0, kinetic theory and viscous hydrodynamics will approach
ideal hydrodynamics for sufficiently large opacities where
the equilibration time τeq becomes smaller than the initial-
ization time τ0. While the results shown in Fig. 12 provide an
explicit illustration of this behavior, the convergence toward
ideal hydrodynamics at large opacities corresponds to the
incorrect order of limits, as physically, one needs to account
for the entire space-time evolution of the system; i.e., the
limit τ0 → 0 has to be taken before γ̂ → ∞.

One may wonder how the increasingly short period of
nonequilibrium evolution at early times can have such a
significant impact on the transverse flow, which only
develops on much later times scales τ=R≳ 0.1. While it
is true that at very early times, the system does not develop
a significant amount of transverse expansion and can
locally be described by Bjorken flow as discussed in
Sec. VA, it is equally important to realize that the early-
time dynamics is nevertheless inhomogeneous in the trans-
verse plane. Due to the fact that the initial energy density
locally sets the scale for the Bjorken evolution, some
regions will experience a faster cooling relative to others,
thereby changing the shape of the energy density distri-
bution in transverse space. Due to this phenomenon of
inhomogenous longitudinal cooling, the geometric eccen-
tricities will be modified even before the transverse
expansion sets in. Since the anisotropic flow is built up
solely due to transverse expansion, its magnitude is
determined by the value of the eccentricity at the onset
of transverse expansion. We therefore conclude that
differences in the longitudinal cooling at early times are
ultimately responsible for the observed differences in the
transverse flow.
We illustrate this behavior in Fig. 13, wherewe present the

evolution of the coordinate space eccentricity ϵ2 as a
function of time τ=R. Different colored curves in the top
panel show the evolution of ϵ2 in kinetic theory for different
opacities. Similarly, the bottom panel shows the correspond-
ing results obtained in viscous hydrodynamics (vHLLE). The
ideal hydrodynamics result is shown for comparison as a
solid black line in both panels. Starting around τ ∼ 0.1R, all
curves exhibit a significant drop due to the onset of trans-
verse expansion. However, in kinetic theory and viscous
hydrodynamics, the eccentricity decreases even before that

FIG. 12. Opacity (γ̂) dependence of the response coefficient
ϵp=ϵ2 in kinetic theory (RTA, obtained using the RLB method),
viscous (vHLLE), and ideal hydrodynamics for different initial-
ization times τ0=R ¼ 10−2 − 10−6. Convergence toward ideal
hydrodynamics is only observed when the initialization time
becomes smaller than the equilibration time of the system.
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due to the previously discussed phenomenon of inhomo-
geneous longitudinal cooling. Strikingly, this effect can
also be described (semi)analytically by approximating the
dynamics as a collection of local Bjorken flows in a similar
way to what was discussed in Sec. VA, which yields results
for the decrease of ϵ2 that we plotted as dashed black lines.
We note that the limiting behavior for this decrease can be
obtained as

lim
τ→∞

ϵ2ðτÞ
ϵ2;0

¼ ð1 − q=4Þ3
ð1 − q=6Þ3 ; ð161Þ

where q is related to the behavior of the universal function
Eðw̃Þ ∼ w̃q at small w̃, such that in kinetic theory, q ¼ 4=9
as indicated in Eq. (142), whereas for the hydrodynamic
theory in Eq. (158), one has q ¼ ð ffiffiffiffiffiffiffiffi

505
p

− 13Þ=18 ≃ 0.526.
Evaluating Eq. (161) for the above values of q, one obtains a
∼11.5% (RTA) and 13.7% (vHLLE) decrease of ϵ2 solely due
to the longitudinal expansion, as indicated by the gray
dashed lines in Fig. 13. Hence, this effect indeed takes on the
correct magnitude to be able to describe the difference of
∼10% in the large opacity limits of kinetic theory and
viscous hydro compared to ideal hydrodynamics.

VI. CONCLUSIONS AND OUTLOOK

We employed the Boltzmann equation in the (conformal)
RTA as a simple model to study the space-time dynamics of
small and large systems created in high-energy hadronic
collisions. Within the simple effective kinetic description
described in Sec. II, the evolution of the system depends on
a single dimensionless opacity parameter γ̂ that combines
the system size and energy dependencies, and we estimate γ̂
to range from values ≲1 in pþ Pb collisions to ≈10 in
Pbþ Pb collisions at LHC energies [cf. Eqs. (32) and (33)].
We performed (semi)analytic calculations at leading

order in opacity γ̂ (cf. Sec. III) and developed first
principles numerical simulations (cf. Sec. IV) to investigate
the longitudinal cooling of the transverse energy per unit
rapidity, dE⊥=dη

dEð0Þ
⊥ =dη

, and the development of transverse flow

quantified by the (energy-weighted) flow harmonics vEn for
a large range of opacities.
We find that with increasing opacities, pressure isotrop-

ization takes place at earlier and earlier times, such that for
large opacities γ̂ ≳ 1, the onset of longitudinal cooling of
the system is well described by one-dimensional Bjorken
dynamics, until at later times τ=R≳ 0.1, when the effects of
the transverse expansion can no longer be ignored.
By studying the response to anisotropic perturbations of

the initial energy density, we investigated the development
of transverse flow from low to high opacities. While for
small opacities, γ̂ ≲ 1, the development of transverse flow
is reasonably well described by the leading order opacity
corrections to free streaming, we find that for 1≲ γ̂ ≲ 100,
the linear and nonlinear flow response exhibits a strong
opacity dependence and eventually saturates for large
opacities γ̂ ≳ 100.
Even though one naively expects the results for large

opacities γ̂ ≫ 1 to approach the hydrodynamic limit, it
turns out that subtleties of the limits γ̂ → ∞ and τ0 → 0
provide a restriction on the accuracy of hydrodynamic
descriptions. Since the early time preequilibrium dynamics
of the system cannot be accurately described by ordinary
viscous or ideal hydrodynamics, deviations between all

FIG. 13. Comparison of the evolution of ϵ2 normalized to its
initial value ϵ2;0 on a logarithmic timescale for kinetic theory
obtained using the moments method (top) and viscous hydro-
dynamics (bottom). Also shown are the corresponding results in
Bjorken flow scaling approximation (dashed black lines) and
ideal hydrodynamics (solid black lines). Gray dashed lines show
the limit in Eq. (161) in the absence of transverse expansion.
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approaches persist even at very large opacities. With
respect to RTA results, we found discrepancies of the
viscous and ideal hydro results of the order of ∼2.5% and
∼12%, respectively. However, as these discrepancies can be
mostly attributed to the phenomenon of inhomogeneous
longitudinal cooling, we believe that the inclusion of a
more appropriate preequilibrium description as in
KØMPØST [96,97] may significantly improve the agreement
between microscopic and macroscopic descriptions (see
also [80]). Similarly, it is also conceivable that resummed
hydrodynamic approaches such as anisotropic hydroynam-
ics (aHydro) [98–102] can accurately describe the inho-
mogeneous longitudinal cooling, and it will be interesting
to further investigate this in the future.
While our current study provides a detailed assessment

of the development of transverse flow from very small to
very large opacities, some of the shortcomings should be
addressed prior to inferring phenomenological conclusions
for proton-proton, proton-nucleus, and nucleus-nucleus
collisions. Evidently, it would be important to perform
event-by-event studies with a more realistic transverse
collision geometry, which is conceptually straightforward
but will require significantly larger computation time.
Beyond such straightforward extensions, it would also
be interesting to consider more realistic collision kernels
[55] and investigate the effects of a nonconformal equation
of state, which however will require additional theoretical
developments.
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APPENDIX A: FREE STREAMING THE
ANISOTROPIES

In linear order of the opacity expansion, the dynamics
of the anisotropies is naturally dominated by the free-
streaming limit, as will also be more evident from the
calculations in the following sections. It is therefore pivotal
to examine how the anisotropic factors of xn⊥ cosðnϕx⊥n⊥Þ
that are part of the initial condition in Eqs. (14) and (15)
behave under free streaming according to the propagation

as given in Eq. (48). The notation ϕx⊥n⊥ ¼ ϕx − Ψn was
introduced in Eq. (16). For this purpose, it is convenient
to rewrite the cosðnϕÞ and sinðnϕÞ in terms of the
Chebyshev polynomials of the first and second kind
[[103], Ch. 18]:

cosðnϕÞ ¼ TnðcosðϕÞÞ; sinðnϕÞ ¼ sinðϕÞUn−1ðcosðϕÞÞ:
ðA1Þ

The explicit form of the Chebyshev polynomials,

TnðzÞ ¼
n
2

Xbn2c
k¼0

ð−1Þk ðn − k − 1Þ!
ðn − 2kÞ!k! ð2zÞ

n−2k;

UnðzÞ ¼
Xbn2c
k¼0

ð−1Þk
�
n − k
k

�
ð2zÞn−2k; ðA2Þ

can be used to express cosðnϕÞ and sinðnϕÞ in terms of
powers of cosϕ. Under free streaming (44), the factor
xn⊥ cosðnϕx⊥n⊥Þ evolves to

jx⊥ − v⊥Δτjn cosðnϕx⊥−v⊥Δτ;n⊥Þ

¼ jx⊥ − v⊥ΔτjnTn

�ðx⊥ − v⊥ΔτÞ · n⊥
jx⊥ − v⊥Δτj

�
; ðA3Þ

where Eq. (A1) was employed on the right-hand side.
In the above, the time lapse tðτ; τ0; y − ηÞ was replaced by
Δτ ¼ τ − τ0 by virtue of Eq. (47).
The Chebyshev polynomials obey the identity,

zn ¼ jzjnTn

�
a
jzj
�
þ ibjzjn−1Un−1

�
a
jzj
�
; ðA4Þ

where a and b are real numbers, and z ¼ aþ ib is a
complex number. Denoting ϕp⊥n⊥ ¼ ϕp − Ψn, we set

a → x⊥ cosðϕx⊥n⊥Þ − Δτ cosðϕp⊥n⊥Þ;
b → x⊥ sinðϕx⊥n⊥Þ − Δτ sinðϕp⊥n⊥Þ;
z → x⊥eiϕx⊥n⊥ − Δτeiϕp⊥n⊥ ; ðA5Þ

such that ReðznÞ is just the expression on the left-hand side
of Eq. (A3), and an expression with a very simple
dependence on ϕx⊥p⊥ ¼ ϕx − ϕp can be derived:

jx⊥ − v⊥Δτjn cosðnϕx⊥−v⊥Δτ;n⊥Þ

¼
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj½cosðnϕx⊥n⊥Þ

× cosðjϕx⊥p⊥Þ − sinðnϕx⊥n⊥Þ sinðjϕx⊥p⊥Þ�: ðA6Þ
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APPENDIX B: SOLVING INTEGRALS IN
LANDAU MATCHING

In order to be able to perform the necessary integrals of
the kernel according to Eq. (76), we will need specific
expressions for ϵ and uμ, meaning that we need to compute
the exact form of Tð0Þμν and δTð0Þμν by solving the integrals
given in Sec. III D.
As we will discuss below, we can break the integration

down to solving integrals of an exponential of cosðϕÞ
multiplied with powers of trigonometric functions. These
can be expressed in terms of modified Bessel functions of
the first kind:Z

dϕea cosðϕÞ cosðnϕÞ ¼ 2πInðaÞ; ðB1Þ
Z

dϕea cosðϕÞ cosðnϕÞ cosmðϕÞ ¼ 2πIðmÞ
n ðaÞ; ðB2Þ

Z
dϕea cosðϕÞ sinðnϕÞ ¼ 0; ðB3Þ

Z
dϕeacosðϕÞ sinðnϕÞsinðϕÞ¼2πI0nðaÞ−2πInþ1ðaÞ; ðB4Þ

Z
dϕeacosðϕÞ sinðnϕÞcosðϕÞsinðϕÞ¼2πI00nðaÞ−2πI0nþ1ðaÞ:

ðB5Þ

It is straightforward to see that Tð0Þμν is indeed of this
form as

Tð0Þμν ¼ τ0
τ

Z
dϕp

2π
vμ⊥vν⊥ϵ̄ðτ0;x⊥ − Δτv⊥Þ; ðB6Þ

where vμ⊥ ¼ ð1; cosϕp; sinϕp; 0Þ has no longitudinal com-
ponent under free streaming due to the δðy − ηÞ function in
Eq. (48). The integral with respect to p⊥ was performed

according to Eq. (12). At zeroth order, we took into account
only the isotropic part of the initial energy density profile ϵ̄,
introduced in Eq. (14), which is evaluated at shifted
coordinates, according to

ϵ̄ðτ0;x⊥ − Δτv⊥Þ

¼ 1

πR2τ0

dEð0Þ
⊥

dη
exp

�
−
x2⊥ þ Δτ2 − 2x⊥Δτ cosðϕx − ϕpÞ

R2

�
:

ðB7Þ

Using the integral formulae given in Eqs. (B1)–(B5),
the components of the stress-energy tensor introduced in
Eq. (53) can be computed to be

Tð0Þττ ¼ 1

τ

1

πR2

dEð0Þ
⊥

dη
exp

�
−
x2⊥ þ Δτ2

R2

�
I0ð2bÞ; ðB8Þ

Tð0Þτ⊥ ¼ 1

τ

1

πR2

dEð0Þ
⊥

dη
exp

�
−
x2⊥ þ Δτ2

R2

�
I1ð2bÞ; ðB9Þ

Tð0Þ⊥⊥ ¼ 1

τ

1

πR2

dEð0Þ
⊥

dη
exp

�
−
x2⊥ þ Δτ2

R2

�
I2ð2bÞ; ðB10Þ

Tð0Þ1 ¼ 1

τ

1

πR2

dEð0Þ
⊥

dη
exp

�
−
x2⊥ þ Δτ2

R2

�
½I0ð2bÞ − I000ð2bÞ�;

ðB11Þ

where we defined b ¼ x⊥Δτ
R2 .

The anisotropic part δTð0Þμν,

δTð0Þμν ¼ τ0
τ

Z
dϕx⊥p⊥
2π

vμ⊥vν⊥δϵðτ0;x⊥ − Δτv⊥Þ; ðB12Þ

exhibits a dependence on the angle ϕx⊥n⊥ due to the form
(15) of the anisotropic part of the initial energy profile,
which is evaluated at shifted coordinates according to

δϵðτ0;x⊥ − Δτv⊥Þ ¼
1

πR2τ0

dEð0Þ
⊥

dη
exp

�
−ᾱ

jx⊥ − Δτv⊥j2
R2

�
δn

�jx⊥ − Δτv⊥j
R

�
n
cosðnϕx⊥n⊥Þ: ðB13Þ

Solving the integrals in Eq. (B12) is a bit more difficult, requiring the computation of an angular integral of the free-
streamed anisotropies. We have already seen in Appendix A how we can rewrite them into a term with a straightforward
ϕx⊥p⊥-dependence. An additional ϕx⊥p⊥-dependence comes from the velocity vectors vμ. In the computation of δϵ, δut, and
δus, they will be contracted with the eigenvectors uμ, tμ, and sμ in the following ways:

uμvμvνuν ¼ γ2½1 − 2β cosðϕx⊥p⊥Þ þ β2 cos2ðϕx⊥p⊥Þ�;
uμvμvνtν ¼ γ2½β − cosðϕx⊥p⊥Þ − β2 cosðϕx⊥p⊥Þ þ β cos2ðϕx⊥p⊥Þ�;
uμvμvνsν ¼ −γ½sinðϕx⊥p⊥Þ − β cosðϕx⊥p⊥Þ sinðϕx⊥p⊥Þ�: ðB14Þ
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Taking into account all of the ingredients presented above, we indeed find that we can decompose all terms into integrals of
the form in Eqs. (B1)–(B5). We can plug the results into Eqs. (68)–(70) to obtain explicit expressions for the anisotropic
corrections δϵ, δut, and δus:

δϵ ¼ uμδTð0Þμνuν

¼ δn
1

τ

dEð0Þ
⊥

dη
1

2πRnþ2
e−ᾱ

x2⊥þΔτ2

R2

Z
dϕx⊥p⊥
2π

e2ᾱb cosðϕx⊥p⊥ Þγ2½1 − 2β cosðϕx⊥p⊥Þ þ β2cos2ðϕx⊥p⊥Þ�

×
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj cosðnϕx⊥n⊥ þ jϕx⊥p⊥Þ ðB15Þ

¼ cosðnϕx⊥n⊥Þδn
1

τ

dEð0Þ
⊥

dη
1

πRnþ2
e−ᾱ

x2⊥þΔτ2

R2 γ2
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj½Ijð2ᾱbÞ − 2βI0jð2ᾱbÞ þ β2I00j ð2ᾱbÞ� ðB16Þ

δut ¼
uμδTð0Þμνtν
pt − ϵ

¼ δn
1

τ

dEð0Þ
⊥

dη
1

πRnþ2
e−ᾱ

x2⊥þΔτ2

R2

Z
dϕx⊥p⊥
2π

e2ᾱb cosðϕx⊥p⊥ Þγ2½β − cosðϕx⊥p⊥Þ ðB17Þ

− β2 cosðϕx⊥p⊥Þ þ βcos2ðϕx⊥p⊥Þ�
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj cosðnϕx⊥n⊥ þ jϕx⊥p⊥Þ

¼ cosðnϕx⊥n⊥Þδn
1

pt − ϵ

1

τ

dEð0Þ
⊥

dη
1

πRnþ2
e−ᾱ

x2⊥þΔτ2

R2 γ2
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj½βIjð2ᾱbÞ − ð1þ β2ÞI0jð2ᾱbÞ þ βI00j ð2ᾱbÞ�

ðB18Þ

δus ¼
uμδTð0Þμνsν
ps − ϵ

¼ δn
1

τ

dEð0Þ
⊥

dη
1

πRnþ2
e−ᾱ

x2⊥þΔτ2

R2

Z
dϕx⊥p⊥
2π

e2ᾱb cosðϕx⊥p⊥ Þγ½sinðϕx⊥p⊥Þ − β cosðϕx⊥p⊥Þ sinϕx⊥p⊥ �

×
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj cosðnϕx⊥n⊥ þ jϕx⊥p⊥Þ ðB19Þ

¼ − sinðnϕx⊥n⊥Þδn
1

ps − ϵ

1

τ

dEð0Þ
⊥

dη
1

πRnþ2
e−ᾱ

x2⊥þΔτ2

R2 γ
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj½I0jð2ᾱbÞ − Ijþ1ð2ᾱbÞ

− βI00j ð2ᾱbÞ þ βI0jþ1ð2ᾱbÞ�: ðB20Þ

APPENDIX C: DETAILS OF LINEARIZED CALCULATION

As stated in Sec. III E, the linear order corrections to the observables Vmn can be computed as a six-dimensional integral
of the kernel:

Vð1Þ
mnðτÞ ¼

Z
d2p⊥einϕppm⊥

Z
τ

τ0

dτ0
Z

d2x⊥
Z

dητ0
νeff
ð2πÞ3 C½f

ð0Þ�ðτ0;x⊥;p⊥; y − ηÞ; ðC1Þ

C½fð0Þ� ¼ −pμuμ

�
5
η

s

�
−1
Tðfð0Þ − feqÞ: ðC2Þ

We already outlined in that section how this problem can be split into different terms. The moments Vm0 depend only on the
isotropic part, while the moments Vmn with n ≠ 0 vanish in the isotropic case and have to be computed to linear order in the

anisotropic perturbations. Additionally, the linear order corrections to the moments split into buildup of equilibrium Vð1;eqÞ
mn
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and decay of the initial condition Vð1;0Þ
mn as computed from

the corresponding parts of the kernel:

Ceq½fð0Þ� ¼ pμuμ

�
5
η

s

�
−1
Tfeq; ðC3Þ

C0½fð0Þ� ¼ −pμuμ

�
5
η

s

�
−1
Tfð0Þ: ðC4Þ

This section discusses how four of the integrals can be
computed analytically for each of these terms. Many of the
angular integrations will again take the forms of the integral
formulae given in the beginning of Appendix B. We will
start with the moments Vm0 as they are independent of the
anisotropic perturbation.
Exact expressions for the local theormodynamic quan-

tities T, uμ can be computed from the components of Tμν

that are discussed in Appendix B according to the formulae
derived in Section III D. In terms of b ¼ x⊥Δτ

R2 , they read

T ¼ R−1
�
1

π

�
π2

30
νeff

�−1 dEð0Þ
⊥

dη
R

�1=4�R
τ

�
1=4

× exp

�
−
x2⊥ þ Δτ2

4R2

�
½I0ðbÞ − βI00ðbÞ�1=4; ðC5Þ

uμ ¼ γð1; βx̂⊥; 0Þ; γ ¼ ð1 − β2Þ−1=2; ðC6Þ

β ¼ I0ðbÞ
I1ðbÞ

−
1

2b
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
I0ðbÞ
I1ðbÞ

−
1

2b

�
2

− 1

s
: ðC7Þ

Looking at the expression for T, it is immediately apparent
that its dimensionless constant prefactor together with
ð5 η

sÞ−1 constitutes a factor of γ̂ in C½fð0Þ�, as we have
predicted in Sec. II B. We can immediately also compute

pμuμ ¼ γp⊥½coshðy − ηÞ − β cosðϕx⊥p⊥Þ�: ðC8Þ

Reminding also of the form of fð0Þ,

fð0Þðτ;x⊥;p⊥;y−ηÞ¼ð2πÞ3
νeff

δðy−ηÞ
τp⊥

F

�
Qsðx⊥−v⊥ΔτÞ

p⊥

�
;

ðC9Þ
whereQs is fixed by the isotropic energy density according
to (12), (14), and (38) to be of the form,

Qsðx⊥Þ ¼ Qs;0 exp

�
−

x2⊥
3R2

�
; ðC10Þ

we can compute Vð1;0Þ
mn by plugging the above expressions

into the integral formula (C1) for the part of the kernel
given in (C4). Due to the fact that in both cases we integrate
fð0Þ, the integral over p⊥ is analogous to the computation of

the zeroth-order moments Vð0Þ
m0, where

Vð0Þ
m0 ¼

Z
d2p⊥pm⊥

dNð0Þ

d2p⊥dy
ðC11Þ

¼ 2π

Z
d2x⊥

Z
dη

Z
∞

0

dp⊥pmþ1⊥ δðy − ηÞF
�
Qsðx⊥ − v⊥ΔτÞ

p⊥

�
ðC12Þ

¼ 2π

Z
d2x⊥Qmþ2

s ðx⊥Þ
Z

∞

0

dkkmþ1F
�
1

k

�
ðC13Þ

¼ 4π2
3R2

mþ 2
Qmþ2

s;0

Z
∞

0

dkkmþ1F

�
1

k

�
: ðC14Þ

We can therefore express our result for Vð1;0Þ
m0 in terms of these zeroth-order moments and find

Vð1;0Þ
m0 ðτÞ ¼ −Vð0Þ

m0

�
5
η

s

�
−1mþ 2

3R2

Z
τ

τ0

dτ0
Z

∞

0

dx⊥x⊥Tγ exp
�
−
ðmþ 2ÞðΔτ02 þ x2⊥Þ

3R2

�
ðC15Þ

×
Z

2π

0

dϕx⊥p⊥
2π

½1 − β cosðϕx⊥p⊥Þ� exp
�
2ðmþ 2Þb cosðϕx⊥p⊥Þ

3

�

¼ −Vð0Þ
m0γ̂Pmðτ̃Þ; ðC16Þ

Pmðτ̃Þ ¼
ðmþ 2Þ

3

Z
τ̃

τ̃0

dτ̃0
Z

∞

0

dx̃⊥x̃⊥T̃γ exp
�
−
ðmþ 2Þ

3
ðΔτ̃02 þ x̃2⊥Þ

��
I0

�
2mþ 4

3
b

�
− βI00

�
2mþ 4

3
b

��
; ðC17Þ
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where one has to keep in mind that in the integrand b, β, γ, and T are to be understood as functions of τ0 instead of τ. In the
last step, the result was rewritten into the tilded coordinates introduced in Sec. II B to make the parametric dependencies
more apparent.

For Vð1;eqÞ
mn given by Eq. (C1) with the partial kernel (C3), computing the moments of feq via the p⊥-integration yields

Vð1;eqÞ
m0 ðτÞ ¼

�
5
η

s

�
−1 νeff

ð2πÞ2 Γðmþ 3Þζðmþ 3Þ
Z

τ

τ0

dτ0
Z

∞

0

dx⊥x⊥τ0Tmþ4 ðC18Þ

×
Z

2π

0

dϕx⊥p⊥

Z
dηfγ½coshðy − ηÞ − β cosðϕx⊥p⊥Þ�g−m−2

¼
�
5
η

s

�
−1 νeff

2π1=2
Γðmþ 3Þζðmþ 3ÞΓð

mþ2
2
Þ

Γðmþ3
2
Þ
Z

τ

τ0

dτ0
Z

∞

0

dx⊥x⊥τ0Tmþ4γ−m−2 ðC19Þ

× 2F1

�
mþ 2

2
;
mþ 2

2
; 1; β2

�

¼ γ̂νeffR−m
�
1

π
ν−1eff

dEð0Þ
⊥

dη
R

�ðmþ3Þ=4
Qmðτ̃Þ; ðC20Þ

Qmðτ̃Þ ¼
�
π2

30

�−ðmþ3Þ=4 1

2π1=2
Γðmþ 3Þζðmþ 3ÞΓð

mþ2
2
Þ

Γðmþ3
2
Þ
Z

τ̃

τ̃0

dτ̃0
Z

∞

0

dx̃⊥x̃⊥τ̃0T̃mþ4γ−m−2

× 2F1

�
mþ 2

2
;
mþ 2

2
; 1; β2

�
: ðC21Þ

After absorbing one of the T prefactors into γ̂, the parametric dependence of Vð1;eqÞ
m0 is given by (C20). As the basic

structure of the integrands is the same, moments with n ≠ 0 will have the same parametric dependencies except for the
additional anisotropy parameter δn.

Now to compute the anisotropic corrections δVð1Þ
mn for n ≠ 0, we first need to derive the change δC½fð0Þ� in the kernel,

C½fð0Þ� ¼ −pμuμ

�
5
η

s

�
−1
Tðfeq − fð0ÞÞ; ðC22Þ

due to the anisotropies, so we can plug it into (C1). C½fð0Þ� depends on three quantities that receive anisotropic corrections:
fð0Þ, T, and uμ. Linearization in the corrections will yield three different contributions. Separating the terms proportional to
fð0Þ from those proportional to feq, we can split the kernel into the following two parts:

δC0½fð0Þ� ¼ −
�
5
η

s

�
−1
pμðuμTδfð0Þ þ uμδTfð0Þ þ δuμTfð0ÞÞ ðC23Þ

δCeq½fð0Þ� ¼
�
5
η

s

�
−1
pμ

�
ðuμδT þ δuμTÞfeq

�
pνuν

T

�
þ ð−uμδT þ δuμTÞpρuρ

T
f0eq

�
pνuν

T

��
: ðC24Þ

We can compute the anisotropic contributions to thermodynamic quantities that show up in the kernel from the results for
δϵ, δut, and δus given in Eqs. (B17)–(B19). The change in temperature δT can be computed by linearizing the equation of
state T ¼ ðπ2

30
νeffÞ−1=4ϵ−1=4 in δϵ, and the contraction δuμpμ can be expressed in terms of δut and δus.

δT ¼ 1

4

�
π2

30
νeff

�−1=4
ϵ−3=4δϵ ¼ 1

4

�
π2

30
νeff

�−1
T−3δϵ; ðC25Þ

pμδuμ ¼ pμðδuttμ þ δussμÞ ¼ δutp⊥γ½β coshðy − ηÞ − cosðϕx⊥p⊥Þ� − δusp⊥ sinðϕx⊥p⊥Þ: ðC26Þ
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The only anisotropic quantity that we still need to derive is the form of the perturbation δfð0Þ due to the energy density
perturbation δϵ. Given that

fð0Þðτ;x⊥;p⊥; y − ηÞ ¼ ð2πÞ3
νeff

δðy − ηÞ
τp⊥

F

�
Qsðx⊥ − ΔτÞ

p⊥

�
; ðC27Þ

the change in f is due to the change in Qs, which is directly related to ϵ. More specifically,

δfðτ;x⊥;p⊥; y − ηÞ ¼ ð2πÞ3
νeff

δðy − ηÞ
τp⊥

δQsðx⊥ − Δτv⊥Þ
p⊥

F0
�
Qsðx⊥ − Δτv⊥Þ

p⊥

�
; ðC28Þ

where

δQsðx⊥Þ ¼
1

3
Qsðx⊥Þ

δϵðτ0;x⊥Þ
ϵðτ0; x⊥Þ

¼ 1

3
Qsðx⊥Þδn exp

�
−α

x2⊥
R2

��
x⊥
R

�
n
cosðnϕx⊥n⊥Þ: ðC29Þ

Evaluating δQs at x⊥ − Δτv⊥ will thus yield as a factor the free-streamed version of xn⊥ cosðnϕx⊥n⊥Þ that was computed
in Appendix A.

We now want to compute the moments Vð1;0Þ
mn for n ≠ 0 by computing the integrals in Eq. (C1) for the part of the kernel

perturbation given in Eq. (C23). As in the isotropic case, we can simplify the integral expression by identifying Vð0Þ
m0. This

holds true also for the term containing δfð0Þ instead of fð0Þ, since

Z
dp⊥pm⊥Qsðx⊥ − v⊥ΔτÞF0

�
Qsðx⊥ − v⊥ΔτÞ

p⊥

�
¼ ðmþ 2Þ

Z
dp⊥pmþ1⊥ F

�
Qsðx⊥ − v⊥ΔτÞ

p⊥

�
: ðC30Þ

The angular integrals are of the same type as the ones in Appendix B; however, each of the three perturbations has a
slightly different angular dependence, so we will discuss them one by one. The δf-term is proportional to

Z
dϕp⊥n⊥

Z
dϕx⊥p⊥e

inϕp⊥n⊥e2ð
mþ2
3
þαÞb cosðϕx⊥p⊥ Þð1 − β cosðϕx⊥p⊥ÞÞ

Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj cosðnϕx⊥n⊥ þ jϕx⊥p⊥Þ ðC31Þ

¼ 2π

Z
dϕp⊥n⊥e

inϕx⊥p⊥ cosðnϕp⊥n⊥Þ
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj

�
Ij

��
mþ 2

3
þ α

�
b

�
− βI0j

��
mþ 2

3
þ α

�
b

��
ðC32Þ

¼ 2π2
Xn
j¼0

�
n
j

�
xn−j⊥ ð−ΔτÞj

�
Ij

��
mþ 2

3
þ α

�
b

�
− βI0j

��
mþ 2

3
þ α

�
b

��
: ðC33Þ

The δT-perturbation contains via δϵ a factor of cosðnϕx⊥n⊥Þ ¼ cosðnϕp⊥n⊥Þ cosðnϕx⊥p⊥Þ − sinðnϕp⊥n⊥Þ sinðnϕx⊥p⊥Þ. The
term that is odd in ϕx⊥p⊥ will vanish, while the other integrates to

Z
dϕp⊥n⊥

Z
dϕx⊥p⊥e

inϕp⊥n⊥e2
mþ2
3
b cosðϕx⊥p⊥ Þ½1 − β cosðϕx⊥p⊥Þ� cosðnϕx⊥n⊥Þ ðC34Þ

¼ 2π

Z
dϕp⊥n⊥e

inϕx⊥p⊥ cosðnϕp⊥n⊥Þ
�
In

�
mþ 2

3
b

�
− βI0n

�
mþ 2

3
b

��
ðC35Þ

¼ 2π2
�
In

�
mþ 2

3
b

�
− βI0n

�
mþ 2

3
b

��
: ðC36Þ

Lastly, the δuμ-perturbation is of the form δutγ½β − cosðϕx⊥p⊥Þ� − δus sinðϕx⊥p⊥Þ. The term containing δut ∝
cosðnϕx⊥n⊥Þ behaves exactly like before:
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Z
dϕp⊥n⊥e

inϕp⊥n⊥

Z
dϕx⊥p⊥e

2mþ2
3
b cosðϕx⊥p⊥ Þ½β − cosðϕx⊥p⊥Þ� cosðnϕx⊥n⊥Þ ðC37Þ

¼ 2π2
�
βIn

�
mþ 2

3
b

�
− I0n

�
mþ 2

3
b

��
; ðC38Þ

while the other term contains a factor of − sinðϕx⊥p⊥Þδus, which has the total angular dependence
− sinðϕx⊥p⊥Þ sinðnϕx⊥n⊥Þ ¼ − sinðϕx⊥p⊥Þ½cosðnϕp⊥n⊥Þ sinðnϕx⊥p⊥Þ þ sinðnϕp⊥n⊥Þ cosðnϕx⊥p⊥Þ�, so in angular integra-
tion, the ϕx⊥p⊥-even part becomes

Z
dϕp⊥n⊥e

inϕp⊥n⊥

Z
dϕx⊥p⊥e

2mþ2
3
b cosðϕx⊥p⊥ Þð− sinðϕx⊥p⊥ÞÞ sinðnϕx⊥n⊥Þ ðC39Þ

¼ −2π2
�
βI0n

�
mþ 2

3
b

�
− Inþ1

�
mþ 2

3
b

��
: ðC40Þ

Putting all of this together, we can find the 2D integral expression for δVð1;0Þ
mn :

δVð1;0Þ
mn ¼ −Vð0Þ

m0δnγ̂Pmnðτ̃Þ; ðC41Þ

Pmnðτ̃Þ ¼
mþ 3

6

Z
τ̃

τ̃0

dτ̃0
Z

∞

0

dx̃⊥x̃⊥γT̃ exp

�
−
�
mþ 2

3
þ α

�
ðx̃2⊥ þ Δτ̃02Þ

�

×
Xn
j¼0

�
n
j

�
x̃n−j⊥ ð−Δτ̃0Þj

�
mþ 2

3

�
Ij

��
mþ 2

3
þ α

�
b

�
− βI0j

��
mþ 2

3
þ α

�
b

��

þ 1

4

1

τ̃0
γ2T̃−4

�
In

�
mþ 2

3
b

�
− βI0n

�
mþ 2

3
b

��
½Ijð2ᾱbÞ − 2βI0jð2ᾱbÞ þ β2I00j ð2ᾱbÞ�

þ
�
γ2
��

2β þ 1

2b

�
I1ð2bÞ − 2I0ð2bÞ

�
−1
½βIjð2ᾱbÞ − ð1þ β2ÞI0jð2ᾱbÞ þ βI00j ð2ᾱbÞ�

×

�
βIn

�
mþ 2

3
b

�
− I0n

�
mþ 2

3
b

��
−
��

β −
1

2b

�
I1ð2bÞ − I0ð2bÞ

�
−1

× ½I0jð2ᾱbÞ − Ijþ1ð2ᾱbÞ − βI00j ð2ᾱbÞ þ βI0jþ1ð2ᾱbÞ�
�
βI0n

�
mþ 2

3
b

�
− Inþ1

�
mþ 2

3
b

��		
: ðC42Þ

Next, we will compute δVð1;eqÞ
mn by plugging (C24) into (C1). Again, the most straightforward integration is the one

over p⊥, which equates to taking moments of feq. Terms containing f0eq can be cast into the same form as the others by
partial integration, which yields

Z
dp⊥pmþ2⊥

pμuμ

T
f0eq

�
pνuν

T

�
¼ −ðmþ 3Þ

Z
dp⊥pmþ2⊥ feq

�
pνuν

T

�
: ðC43Þ

To compute the angular integrals, as in the computation of δVð1;0Þ
mn , we can rewrite the ϕx⊥n⊥-dependence of δϵ, δut, and

δus into a dependence on ϕp⊥n⊥ and ϕx⊥p⊥ , which makes the ϕp⊥n⊥-integration trivial. However, the next step will be the
trickiest one of this entire section, as the integrals over ϕx⊥p⊥ and η are highly nontrivial. The integrals that need to be
computed for the different anisotropic correction terms include:

Z
dη

Z
dϕx⊥p⊥

�
pμuμ

p⊥

�
−m−2

δϵ; ðC44Þ

Z
dη

Z
dϕx⊥p⊥

�
pμuμ

p⊥

�
−m−3

δut½β coshðy − ηÞ − cosðϕx⊥p⊥Þ�; ðC45Þ
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Z
dη

Z
dϕx⊥p⊥

�
pμuμ

p⊥

�
−m−3

δus sinðϕx⊥p⊥Þ: ðC46Þ

Getting rid of all prefactors that do not depend on the integration variables, this amounts to computing the following
integrals:

Gϵðn;m; βÞ ¼
Z

dη
Z

dϕx⊥p⊥ ½coshðy − ηÞ − β cosðϕx⊥p⊥Þ�−m−2 cosðnϕx⊥p⊥Þ; ðC47Þ

Gutðn;m; βÞ ¼
Z

dη
Z

dϕx⊥p⊥ ½coshðy − ηÞ − β cosðϕx⊥p⊥Þ�−m−3½β coshðy − ηÞ − cosðϕx⊥p⊥Þ� cosðnϕx⊥p⊥Þ; ðC48Þ

Gusðn;m; βÞ ¼
Z

dη
Z

dϕx⊥p⊥ ; ½coshðy − ηÞ − β cosðϕx⊥p⊥Þ�−m−3 sinðϕx⊥p⊥Þ sinðnϕx⊥p⊥Þ: ðC49Þ

We have defined these integrals as the functions GXðn;m; βÞ to abbreviate the notation of our results. To compute them, we
rewrite again sinðnϕx⊥p⊥Þ and cosðnϕx⊥p⊥Þ into Chebyshev polynomials as we did in Appendix A. The polynomial
expression for sinðnϕx⊥p⊥Þ contains another factor of sinðϕx⊥p⊥Þ, which combines with the sine already present in (C49) to
give 1 − cos2ðϕx⊥p⊥Þ. Thus, only different powers of cosðϕx⊥p⊥Þ without any sines occur in the integrand, which can be
integrated analytically as follows:

Z
dη

Z
dϕx⊥p⊥ ½coshðy − ηÞ − β cosðϕx⊥p⊥Þ�−m−2 coslðϕx⊥p⊥Þ ðC50Þ

¼ 4

Z
∞

1

dx
Z

1

−1
dy

½x − βyÞ�−m−2ylffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p ðC51Þ

¼

8>><
>>:

2πΓðmþ2
2
ÞΓðlþ1

2
Þ

Γðmþ3
2
ÞΓðlþ2

2
Þ 3F2ðmþ2

2
; mþ2

2
; lþ1

2
; 1
2
; lþ2

2
; β2Þ ; l even

4πβΓðmþ3
2
ÞΓðlþ2

2
Þ

Γðmþ2
2
ÞΓðlþ3

2
Þ 3F2ðmþ3

2
; mþ3

2
; lþ2

2
; 3
2
; lþ3

2
; β2Þ ; l odd

; ðC52Þ

Z
dη

Z
dϕx⊥p⊥ ½coshðy − ηÞ − β cosðϕx⊥p⊥Þ�−m−3 coslðϕx⊥p⊥Þ coshðy − ηÞ ðC53Þ

¼ 4

Z
∞

1

dx
Z

1

−1
dy

½x − βyÞ�−m−3ylxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p ðC54Þ

¼

8>><
>>:

2πΓðmþ2
2
ÞΓðlþ1

2
Þ

Γðmþ3
2
ÞΓðlþ2

2
Þ 3F2ðmþ2

2
; mþ4

2
; lþ1

2
; 1
2
; lþ2

2
; β2Þ ; l even

4πβΓðmþ5
2
ÞΓðlþ2

2
Þ

Γðmþ4
2
ÞΓðlþ3

2
Þ 3F2ðmþ3

2
; mþ5

2
; lþ2

2
; 3
2
; lþ3

2
; β2Þ ; 1 odd

: ðC55Þ

To simplify these expressions, we can make use of the following property of the Γ-function:

Γðnþ 1
2
Þ

Γðnþ 1Þ ¼
ð2nÞ!
4nðn!Þ2

ffiffiffi
π

p
: ðC56Þ

Then one finds for the integrals (C47)–(C49):

DEVELOPMENT OF TRANSVERSE FLOW AT SMALL AND LARGE … PHYS. REV. D 105, 014031 (2022)

014031-35



Gϵðn;m; βÞ ¼
Z

dη
Z

dϕ½coshðy − ηÞ − β cosðϕÞ�−m−2 n
2

Xbn2c
k¼0

ð−1Þk ðn − k − 1Þ!
ðn − 2kÞ!k! 2

n−2kcosn−2kðϕÞ

¼ π3=2n

8>><
>>:

Γðmþ2
2
Þ

Γðmþ3
2
Þ
Pbn

2
c

k¼0ð−1Þk ðn−k−1Þ!
ðn−2k

2
!Þ2k! 3F2ðmþ2

2
; mþ2

2
; n−2kþ1

2
; 1
2
; n−2kþ2

2
; β2Þ ; n even

β
Γðmþ2

2
Þ

Γðmþ3
2
Þ
Pbn

2
c

k¼0ð−1Þk ðn−k−1Þ!
ðn−2k−1

2
!Þ2k! 3F2ðmþ3

2
; mþ3

2
; n−2kþ2

2
; 3
2
; n−2kþ3

2
; β2Þ ; n odd

; ðC57Þ

Gutðn;m; βÞ ¼
Z

dη
Z

dϕ½coshðy − ηÞ − β cosðϕÞ�−m−3
Xbn−12 c

k¼0

ð−1Þk
�
n − k − 1

k

�
2n−2k−1½cosn−2k−1ðϕÞ − cosn−2kþ1ðϕÞ�

¼ 2π3=2

8>>>>>>>><
>>>>>>>>:

Γðmþ3
2
Þ

Γðmþ4
2
Þ
Pbn−1

2
c

k¼0 ð−1Þk ðn−k−1Þ!
ðn−2k−1

2
!Þ2k! ½3F2ðmþ3

2
; mþ3

2
; n−2k

2
; 1
2
; n−2kþ1

2
; β2Þ

þ n−2k
n−2kþ1 3

F2ðmþ3
2

; mþ3
2

; n−2kþ2
2

; 1
2
; n−2kþ3

2
; β2Þ� ; n odd

β
Γðmþ4

2
Þ

Γðmþ3
2
Þ
Pbn−1

2
c

k¼0 ð−1Þk ðn−k−1Þ!
ðn−2k−2

2
!Þ2k! ½3F2ðmþ4

2
; mþ4

2
; n−2kþ1

2
; 3
2
; n−2kþ2

2
; β2Þ

þ n−2kþ1
n−2kþ2 3

F2ðmþ4
2

; mþ4
2

; n−2kþ3
2

; 3
2
; n−2kþ4

2
; β2Þ� ; n even

; ðC58Þ

Gusðn;m; βÞ

¼
Z

dη
Z

dϕ½coshðy − ηÞ − β cosðϕÞ�−m−3 n
2

Xbn2c
k¼0

ð−1Þk ðn − k − 1Þ!
ðn − 2kÞ!k! 2

n−2k½βcosn−2kðϕÞ coshðy − ηÞ − cosn−2kþ1ðϕÞ�

¼ π3=2n

8>>>>>>>><
>>>>>>>>:

Pbn
2
c

k¼0ð−1Þk ðn−k−1Þ!
ðn−2k

2
!Þ2k!

h
β
Γðmþ2

2
Þ

Γðmþ3
2
Þ 3F2ðmþ2

2
; mþ4

2
; n−2kþ1

2
; 1
2
; n−2kþ2

2
; β2Þ

−2β Γðmþ4
2
Þ

Γðmþ3
2
Þ
n−2kþ1
n−2kþ2 3

F2ðmþ4
2

; mþ4
2

; n−2kþ3
2

; 3
2
; n−2kþ4

2
; β2Þ

i
; n even

Pbn
2
c

k¼0ð−1Þk ðn−k−1Þ!
ðn−2k

2
!Þ2k!

h
β2

Γðmþ5
2
Þ

Γðmþ4
2
Þ 3F2ðmþ3

2
; mþ5

2
; n−2kþ2

2
; 3
2
; n−2kþ3

2
; β2Þ

−β Γðmþ3
2
Þ

2Γðmþ4
2
Þ 3F2ðmþ3

2
; mþ3

2
; n−2kþ2

2
; 1
2
; n−2kþ3

2
; β2Þ

i
; n odd

: ðC59Þ

The final step to computing the total expression for δVð1;eqÞ
mn is a bookkeeping task of combining all the above integration

steps, at the end of which, one acquires

δVð1;eqÞ
mn ¼ γ̂δnνeffR−m

�
1

π
ν−1eff

dEð0Þ
⊥

dη
R

�ðmþ3Þ=4
Qmnðτ̃Þ; ðC60Þ

Qmnðτ̃Þ ¼
�
π2

30

�−ðmþ3Þ=4 1

8π2
ζðmþ 3Þ

Z
τ̃

τ̃0

dτ̃0
Z

∞

0

dx̃⊥x̃⊥γ−m−2T̃m exp ½−ᾱðx̃2⊥ þ Δτ̃02Þ�

×
Xn
j¼0

�
n
j

�
x̃n−j⊥ ð−Δτ̃0Þj

�
1

4
½Γðmþ 3Þ þ Γðmþ 4Þ�γ2½Ijð2ᾱbÞ − 2βI0jð2ᾱbÞ þ β2I00j ð2ᾱbÞ�Gϵðn;m; βÞ

þ ½Γðmþ 3Þ − Γðmþ 4Þ�τ̃0T̃4

�
γ2
��

2β þ 1

2b

�
I1ð2bÞ − 2I0ð2bÞ

�
−1

× ½βIjð2ᾱbÞ − ð1þ β2ÞI0jð2ᾱbÞ þ βI00j ð2ᾱbÞ�Gutðn;m; βÞ

−
��

β −
1

2b

�
I1ð2bÞ − I0ð2bÞ

�
−1
½I0jð2ᾱbÞ − Ijþ1ð2ᾱbÞ − βI00j ð2ᾱbÞ þ βI0jþ1ð2ᾱbÞ�Gusðn;m; βÞg

	
: ðC61Þ
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APPENDIX D: EQUILIBRIUM MOMENTS OF THE NUMERICAL SETUP

In this appendix, the equilibriummomentsEm
l emerging in the time evolution equations for the momentsCm

l as derived in
Sec. IVA are computed. Since taking the integral

R
dpτðpτÞ3 of the equilibrium distribution will yield the energy density,

the expression simplifies in spherical coordinates:

Em
l ¼ νeff

Z
d2p⊥
ð2πÞ2

Z
dpη

2π
Ym
l ðθp;ϕpÞpμuμfeq ðD1Þ

¼ νeff

Z
∞

0

dpτðpτÞ3
Z

2π

0

dϕp

2π

Z
d cos θp

2
Ym
l ðθp;ϕpÞ

1

2π2
vμuμfeq

�
pμuμ
T

�
ðD2Þ

¼ τϵ

Z
2π

0

dϕp

2π

Z
d cos θp

2
Ym
l ðθp;ϕpÞðvμuμÞ−3: ðD3Þ

In this calculation, we have defined vμ ¼ pμ=pτ. To compute the angular integral, we write

vμuμ ¼ γð1 − β⃗ · v⃗Þ ¼ γð1 − β cos θupÞ; ðD4Þ
and express the spherical harmonics in a rotated coordinate system, thus writing

Ym
l ðθp;ϕpÞ ¼

Xl

m0¼−l

ðDl
mm0 Þ�Ym0

l ðθup;ϕupÞ; ðD5Þ

where the Wigner D-matrix depends on the angles involved in the rotation from ðθup;ϕupÞ to ðθp;ϕpÞ. In these coordinates,
the ϕup-integral becomes trivial; thus, only an integral of the Legendre polynomials remains to be computed:Z

2π

0

dϕup

2π

Z
d cos θup

2
Ym0
l ðθup;ϕupÞγ−3ð1 − β cos θupÞ−3 ¼ δm

00y0l

Z
dx

PlðxÞ
2γ3ð1 − βxÞ3 : ðD6Þ

For the case m0 ¼ 0, the Wigner D matrix simplifies to

ðDl
m0Þ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ym
l ðθrot;ϕrotÞ: ðD7Þ

Since u⃗ lies in the transverse plane, where its orientation is given by ϕu, we can identify the rotation angles to be θrot ¼ π
2
and

ϕrot ¼ ϕu, which yields

Em
l ¼ τϵYm

l

�
π

2
;ϕu

�Z
1

−1
dx

PlðxÞ
2γ3ð1 − βxÞ3 : ðD8Þ

Finally, the remaining integral can be solved analytically:

Z
1

−1
dx

PlðxÞ
2γ3ð1 − βxÞ3 ¼ 2−l−2π1=2

Γðlþ 3Þ
Γðlþ 3

2
Þ γ

−3βl2F1

�
lþ 4

2
;
lþ 3

2
; lþ 3

2
; β2

�
: ðD9Þ

APPENDIX E: EARLY AND INTERMEDIATE TIME COOLING
BASED ON 0+ 1-D BJORKEN ATTRACTOR

Below we describe the procedure employed to perform the integration in Eq. (151), which provides the Bjorken scaling
curve in Fig. 1(a). The main ingredients that we require are the universal functions Eðw̃Þ and fE⊥ðw̃Þ. These are determined
by performing a 0þ 1-dimensional simulation (i.e., for a system that is homogeneous with respect to the transverse plane)
using the RLB method described in Sec. IV B. The initial time and temperature were set to τ0 ¼ 10−4 fm and
T0 ¼ 0.315 GeV, while 4πη=s ¼ 1, giving w̃0 ≃ 1.6 × 10−4. The initial distribution was taken to be of Romatschke-
Strickland form (126) with anisotropy parameter ξ0 ¼ 1000, corresponding to an initial pressure ratio PL=PT ≃ 0.002. The
simulation was ran until τ=τ0 ¼ 1010 or w̃ ≃ 1892. During the simulation, the energy density and dE⊥=d2x⊥dη are
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computed, and the universal functions E and fE⊥ are
obtained using

C∞Eðw̃Þ ¼
ϵðw̃Þ
ϵ0

�
τ

τ0

�
4=3

w̃4=9
0 ;

C∞fE⊥ðw̃Þ ¼
τ0
τϵ0

dE
d2x⊥dη

�
τ

τ0

�
4=3

w̃4=9
0 ; ðE1Þ

and the results are presented in Fig. 14. For completeness,
we provide a comparison with the results for Eðw̃Þ
reported as “Boltzmann RTA” in Fig. 1 of Ref. [90],
which are shown using the red dashed line. The C−1

∞ w̃4=9

limit valid at small values of w̃ is shown as the black
dotted line.
Next, in order to perform the integrals in Eq. (151), the

top end of the integration w̃ðτ;x⊥ ¼ 0Þ must be found by
numerically inverting Eq. (152). Considering the range
10−5 ≤ τ=R ≤ 1 and 2 ≤ γ̂ ≤ 400, the minimum and maxi-
mum values of w̃ðτ;x⊥ ¼ 0Þ encountered are 1.4 × 10−4

and 88, corresponding to ðτ=R; γ̂Þ ¼ ð10−5; 2Þ and (1,400),
respectively. In order to avoid “boundary effects” due to our
choice of initial conditions, we considered the numerical
data only for w̃≳ 3.4 × 10−4, while for smaller values of w̃,
we employed the analytical limits in Eqs. (142) and (143),
namely E; fE⊥ ≃ C−1

∞ w̃4=9.
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