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In Quantum Chromodynamics, the Schwinger mechanism endows the gluons with an effective mass
through the dynamical formation of massless bound-state poles that are longitudinally coupled. The presence
of these poles affects profoundly the infrared properties of the interaction vertices, inducing crucial
modifications to their fundamental Ward identities. Within this general framework, we present a detailed
derivation of the non-AbelianWard identity obeyed by the pole-free part of the three-gluon vertex in the soft-
gluon limit, and determine the smoking-gun displacement that the onset of the Schwinger mechanism
produces to the standard result. Quite importantly, the quantity that describes this distinctive feature coincides
formally with the bound-state wave function that controls the massless pole formation. Consequently, this
signal may be computed in two independent ways: by solving an approximate version of the pertinent Bethe-
Salpeter integral equation, or by appropriately combining the elements that enter in the aforementioned
Ward identity. For the implementation of both methods we employ two- and three-point correlation
functions obtained from recent lattice simulations, and a partial derivative of the ghost-gluon kernel, which is
computed from the corresponding Schwinger-Dyson equation. Our analysis reveals an excellent coincidence
between the results obtained through either method, providing a highly nontrivial self-consistency check for
the entire approach.When compared to the null hypothesis, where the Schwingermechanism is assumed to be
inactive, the statistical significance of the resulting signal is estimated to be 3 standard deviations.
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I. INTRODUCTION

The systematic study of the fundamental n-point corre-
lation (Green’s) functions, such as propagators and vertices,
forms an essential element in the ongoing quest for unrav-
eling the nonperturbative properties and underlying dynami-
cal mechanisms of Quantum Chromodynamics (QCD) [1].
In recent years, this challenging problem has been tackled by
means of approaches formulated in the continuum, such as
the Schwinger-Dyson equations (SDEs) [2–12] or the func-
tional renormalization group [13–17], in conjunction with
numerous gauge-fixed lattice simulations [18–27]. This
intense activity has delivered new insights on the nature
and phenomenology of the strong interactions and has
broadened our basic understanding of non-Abelian gauge
theories [28–48].
In this context, the characteristic feature of infrared

saturation displayed by the gluon propagator has attracted
particular attention, being often linked with the emergence

of a mass gap in the gauge sector of QCD [49–67]. This
property has been explored both in large-volume simula-
tions [18–24], and in various functional approaches
[61–73], and is rather general, manifesting itself in the
Landau gauge, away from it [74–80], and in the presence of
dynamical quarks [81–85]. In general terms, the scalar form
factor, Δðq2Þ, of the gluon propagator reaches a finite
nonvanishing value in the deep infrared, and the gluon
mass, m, is identified as Δ−1ð0Þ ¼ m2.
One of the nonperturbative mechanisms put forth in

order to explain this special behavior of the gluon propa-
gator is based on a non-Abelian extension of the well-
known Schwinger mechanism [86,87]. According to the
fundamental observation underlying this mechanism, if the
self-energy develops a pole at zero momentum transfer
(q2 ¼ 0), then the corresponding vector meson (gluon)
acquires a mass, even if the gauge symmetry forbids a mass
term at the level of the fundamental Lagrangian [86–89].
The precise implementation of this idea at the level of the

SDE describing the momentum evolution ofΔðq2Þ requires
the inclusion of longitudinally coupled massless poles at
the level of the fundamental interaction vertices of the
theory [90–94]. These poles are produced as massless
bound state excitations, whose formation is governed by a
special set of Bethe-Salpeter equations (BSEs) [90–93]. In
addition, their presence is crucial for maintaining intact the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 014030 (2022)

2470-0010=2022=105(1)=014030(26) 014030-1 Published by the American Physical Society

https://orcid.org/0000-0001-6986-5668
https://orcid.org/0000-0003-2802-5296
https://orcid.org/0000-0003-3958-8174
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.014030&domain=pdf&date_stamp=2022-01-27
https://doi.org/10.1103/PhysRevD.105.014030
https://doi.org/10.1103/PhysRevD.105.014030
https://doi.org/10.1103/PhysRevD.105.014030
https://doi.org/10.1103/PhysRevD.105.014030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


form of the Slavnov-Taylor identities (STIs) [95,96] sat-
isfied by the corresponding vertices. Since the fully dressed
vertices enter in the diagrammatic expansion of the gluon
SDE, their massless poles end up triggering the Schwinger
mechanism, enabling a completely dynamical generation of
an effective gluon mass [64,90–93].
It is clearly important to further scrutinize the dynamical

picture described above, and identify certain characteristic
properties that would corroborate its validity and discrimi-
nate it from alternative dynamical scenarios. In the present
work we explore a distinctive signal of the non-Abelian
Schwinger mechanism, which is intimately connected with
the three-gluon vertex, and has the advantage of being
reliably calculable by means of well-established inputs,
such as two- and three-point correlation functions obtained
from large-volume lattice simulations.
The pivotal ideas underlying this study may be summa-

rized as follows. The massless poles are longitudinally
coupled, and therefore drop out from “on-shell” observ-
ables [49,88,89,97,98], or from the transversely projected
vertices employed in lattice simulations [85,99–103],
where only the pole-free part of the corresponding vertex
survives. Nonetheless, the imprint of the poles is invariably
encoded into the pole-free part, as may be seen by
considering the Ward identity (WI) that this latter part
satisfies, namely the limit of the STI as the gluon
momentum in the channel of the pole is taken to zero.1

Since the poles contribute nontrivially to the STIs, the
corresponding WI involves the standard building blocks
(e.g., propagators) and a residual contribution with a
nontrivial momentum dependence, which is directly related
to the Schwinger mechanism. As a result, in that kinematic
limit, the relevant form factor of the pole-free part of the
vertex is displaced with respect to the case where the
Schwinger mechanism is absent.
The above considerations become particularly relevant in

the case of the three-gluon vertex, because the form factor of
its pole-free part has been evaluated rather accurately in
recent lattice simulations [104–106]. As a result, the dis-
placement originating from the onset of the Schwinger
mechanism, to be denoted by Cðr2Þ, may be calculated by
appropriately combining this form factor with all other
constituents that enter into the WI of the three-gluon vertex;
all of them are available from lattice simulations, with the
exception of a particular partial derivative, denoted by
Wðr2Þ, related to the ghost-gluon kernel that appears in
the STI [107,108].
The importance of the calculation put forth above

becomes particularly transparent when an additional theo-
retical ingredient is taken into account. Specifically, as will

become clear in the main body of the article, Cðr2Þ
coincides exactly with the wave function amplitude of
the massless bound state poles associated with the three-
gluon vertex [90–93]. Thus, the form of Cðr2Þ is deter-
mined from an entirely different procedure, namely as the
solution of the BSE mentioned earlier. This solution, in
turn, serves as a benchmark of our analysis, in the sense that
signals emerging from the WI treatment are expected to be
qualitatively compatible with the Cðr2Þ obtained from the
BSE [90–93].
Our numerical analysis reveals that the Cðr2Þ con-

structed by putting together all the ingredients of the WI
deviates markedly from zero, showing an impressive
resemblance to the results obtained from the corresponding
BSE. On average, the signal obtained is 3.1σ away from the
null hypothesis value, Cðr2Þ ¼ 0, which corresponds to the
absence of the Schwinger mechanism. Moreover, for
momenta r ≥ 2 GeV the deviation of the signal from
Cðr2Þ ¼ 0 exceeds the 5σ, owing to a characteristic peak
of Cðr2Þ in the vicinity of 2 GeV, and to the fact that the
error bars assigned to the lattice points get reduced as one
moves away from the deep infrared region.
Let us finally mention that the principal uncertainty

associated with the WI determination originates from the
computation of the function Wðr2Þ, which is not available
from lattice simulations, and has been approximated by a
truncated version of the SDE of the ghost-gluon kernel. As
was explained in [108], the simulation of this function on
the lattice is theoretically conceivable, but practically rather
cumbersome.
The article is organized as follows. In Sec. II we explain

in an Abelian context how the presence of longitudinally
coupled massless poles modifies the form of the WI
satisfied by the pole-free part of a vertex. In Sec. III we
derive the corresponding WI for the pole-free part of the
three-gluon vertex, introducing the displacement function
Cðr2Þ. Then, in Sec. IV we express Cðr2Þ in terms of the
three-gluon form factor, the gluon propagator and its
derivative, the ghost dressing function, and the function
Wðr2Þ. Next, in Sec. V we present the BSE determination
of Cðr2Þ. In Sec. VI we use lattice inputs for the
components of the WI in order to determine the form of
Cðr2Þ, and compare it to the corresponding result obtained
from the BSE. In Sec. VII we discuss issues related to
Cðr2Þ and its physical implications. Finally, in Sec. VIII we
present our discussion and conclusions. In addition, certain
topics have been relegated to three appendices: Appendix A
contains technical details of the BSE treatment, in
Appendix B we discuss the SDE-based determination of
Wðr2Þ, while in Appendix C we collect the fits employed in
our numerical analysis.

1The standard Takahashi identity of QED, qμΓμðq; p;
pþ qÞ ¼ S−1ðpþ qÞ − S−1ðpÞ, is an Abelian STI; the corre-
sponding WI, Γμð0; p;−pÞ ¼ ∂S−1ðpÞ=∂pμ, is obtained from it
by expanding around q ¼ 0.
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II. WARD IDENTITIES IN THE PRESENCE
OF MASSLESS POLES

In this section we focus on the modifications induced to
the form of the WIs when the vertices involved contain
longitudinally coupled massless poles, which is one of the
trademarks of the Schwinger mechanism at the level of the
vertices.
In general, the derivation of theWI from the corresponding

Takahashi identity, or, in general, from a given STI, involves
a Taylor expansion around the contracting momentum [67].
In the case of a function of a single variable, fððpþ qÞ2Þ,
such as a propagator, the Taylor expansion proceeds through
the elementary formula (q → 0)

fððpþ qÞ2Þ ¼ fðp2Þ þ qα
∂fðp2Þ
∂pα þOðq2Þ

¼ fðp2Þ þ 2ðq · pÞ ∂fðp
2Þ

∂p2
þOðq2Þ: ð2:1Þ

For a function fðq; r; pÞ, with qþ rþ p ¼ 0, such as a
three-particle vertex or kernel, the Taylor expansion around
q ¼ 0 (and p ¼ −r) gives

fðq; r; pÞ ¼ fð0; r;−rÞ þ qα
�∂fðq; r; pÞ

∂qα
�
q¼0

þOðq2Þ:

ð2:2Þ

Note that if the fðq; r; pÞ ¼ −fðq; p; rÞ, as happens in the
case of the term associated with the massless pole in the q
channel (see below), then fð0; r;−rÞ ¼ 0.
In order to fix the ideas, we employ a vertex with reduced

tensorial structure,which obeys anAbelianSTI. In particular,
we consider one of the typical vertices of the background
field method (BFM) [109–116], namely the BðqÞc̄ðrÞcðpÞ
vertex, whereB denotes the background gluon2 and c̄ (c) the
antighost (ghost) fields. Due to the residual invariance of the
action under background gauge transformations, this vertex
satisfies an Abelian STI that relates it to the inverse ghost
propagator. Specifically, suppressing the gauge coupling g
and the color factor fabc, and denoting the remainder of the
vertex by Γ̃αðq; r; pÞ, we have [6,60]

qαΓ̃αðq; r; pÞ ¼ D−1ðp2Þ −D−1ðr2Þ; ð2:3Þ

where the ghost propagator is given by Dabðq2Þ ¼
iδabDðq2Þ. Note that, at tree level, Γ̃α

0ðq; r; pÞ ¼ ðr − pÞα.
At this point we will assume that the Schwinger

mechanism is inactive, such that the form factors compris-
ing Γ̃αðq; r; pÞ do not contain poles. In that case, one may

carry out the Taylor expansion of both sides of Eq. (2.3)
according to Eqs. (2.1) and (2.2). Specifically, the left-hand
side (l.h.s) of (2.3) yields

½l:h:s� ¼ qαΓ̃αð0; r;−rÞ þOðq2Þ; ð2:4Þ

while the right-hand side (r.h.s) is simply given by

½r:h:s� ¼ qα
∂D−1ðr2Þ

∂rα þOðq2Þ: ð2:5Þ

Then, equating the coefficients of the terms linear in qα on
both sides, one obtains the simple, QED-like relation [67]

Γ̃αð0; r;−rÞ ¼
∂D−1ðr2Þ

∂rα : ð2:6Þ

Finally, at the level of the single form factor comprising
Γ̃αð0; r;−rÞ, namely

Γ̃αð0; r;−rÞ ¼ Ãðr2Þrα; ð2:7Þ

we obtain directly from Eq. (2.6) [67]

Ãðr2Þ ¼ 2
∂D−1ðr2Þ

∂r2 : ð2:8Þ

Let us now turn the Schwinger mechanism on, and
denote the resulting full vertex by eIΓαðq; r; pÞ. The vertexeIΓαðq; r; pÞ, diagrammatically represented in Fig. 1, is
comprised by two distinct pieces,

eIΓαðq; r; pÞ ¼ Γ̃αðq; r; pÞ þ Ṽαðq; r; pÞ; ð2:9Þ

where Γ̃αðq; r; pÞ contains all pole-free contributions,
while the pole term Ṽαðq; r; pÞ has the general form
[49,88,89,97,98],

Ṽαðq; r; pÞ ¼
qα
q2

C̃ðq; r; pÞ: ð2:10Þ

We emphasize that the pole-free terms Γ̃αðq; r; pÞ are
different when the Schwinger mechanism is turned on or
off. In particular, the infrared finiteness of the gluon
propagator affects the behavior of all other Green’s
functions, due to its nontrivial interconnection with them
imposed by the corresponding coupled SDEs. A typical
qualitative example of the type of modifications that the
emergence of a gluonic mass scale induces to one-loop
contributions is the conversion of “unprotected” loga-
rithms into “protected” ones, according to lnðq2=μ2Þ →
ln½ðq2 þm2Þ=μ2� [101,117].

2Within the BFM, the gauge field Aa
α is decomposed as

Aa
α ¼ Ba

α þQa
α, where Ba

α is the background field and Qa
α is

the quantum (fluctuating) field.
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Evidently, combining Eqs. (2.9) and (2.10) we get

qα eIΓαðq; r; pÞ ¼ qαΓ̃αðq; r; pÞ þ C̃ðq; r; pÞ; ð2:11Þ

thus, the contraction by qα cancels the massless pole in q2.
We next assume that the Becchi-Rouet-Stora-Tyutin

(BRST) symmetry [118,119] of the theory remains intact
as the Schwinger mechanism becomes operational. In this
context, there are three important points that are worth
emphasizing. First, a sharp distinction must be drawn
between the standard BRST symmetry, understood
throughout the present work, and the modified nonpertur-
bative BRST symmetry exhibited by the refined Gribov-
Zwanziger action [68], as first demonstrated in [120].
Second, the nonperturbative quartet mechanism (see
[121] and references therein) may be intrinsically related
with the Schwinger mechanism, in the sense that it too
relies on the dynamical formation of massless bound states
(see additional comments in Sec. VIII). Third, motivated by
arguments based mostly on the Kugo-Ojima formalism
[122], a nonvanishing infrared-finite gluon propagator has
often been associated with a soft breaking of the standard
BRST symmetry (see, e.g., [3,62]); nonetheless, this
conclusion depends on the precise mechanism responsible
for this special behavior. In particular, the Schwinger
mechanism, implemented via longitudinally coupled mass-
less poles [49,50,61,64,89,90,98,123], appears to be com-
patible with an unbroken BRST symmetry [67,124], at least
at the level of the STIs satisfied by the elementary vertices.
In particular, the STIs retain their standard form, but are
now realized through the nontrivial participation of the
massless pole terms.
Accordingly, the full eIΓαðq; r; pÞ satisfies, as before,

precisely (2.3), namely

qα eIΓαðq; r; pÞ ¼ D−1ðp2Þ −D−1ðr2Þ; ð2:12Þ

where Dðq2Þ is the ghost propagator in the presence of the
Schwinger mechanism. For the same reasons described
above for the case of Γ̃αðq; r; pÞ, Dðq2Þ also differs from
the corresponding quantity when the Schwinger mecha-
nism is not operational.

Then, using Eq. (2.11), we obtain for the pole-free part

qαΓ̃αðq;r;pÞ¼ ½D−1ðp2Þ−D−1ðr2Þ�− C̃ðq;r;pÞ: ð2:13Þ

The WI obeyed by Γ̃αðq; r; pÞ may be derived again by
means of a Taylor expansion, since, after the contraction by
qα, all terms appearing in the STI of Eq. (2.13) contain no
poles, as q → 0. In particular,

qαΓ̃αð0; r;−rÞ ¼ C̃ð0; r;−rÞ

þ qα
�∂D−1ðr2Þ

∂rα −
�∂C̃ðq; r; pÞ

∂qα
�
q¼0

�

þOðq2Þ: ð2:14Þ

The comparison between Eqs. (2.14) and (2.5) reveals that
the only zeroth-order contribution, namely C̃ð0; r;−rÞ,
must vanish,

C̃ð0; r;−rÞ ¼ 0: ð2:15Þ

Note that the result of Eq. (2.15) may be independently
obtained from the property C̃ðq; r; pÞ ¼ −C̃ðq; p; rÞ,
which follows directly from the general ghost-antighost
symmetry of the BðqÞc̄ðrÞcðpÞ vertex.
Then, the matching of the terms linear in q yields the WI

Γ̃αð0; r;−rÞ ¼
∂D−1ðr2Þ

∂rα −
�∂C̃ðq; r; pÞ

∂qα
�
q¼0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

WI displacement

; ð2:16Þ

which, when compared to that of Eq. (2.6), is “displaced”
by the partial derivative of the form factor associated with
the pole term.
In order to determine the displaced analog of Eq. (2.8),

we set

�∂C̃ðq;r;pÞ
∂qα

�
q¼0

¼2rαC̃ðr2Þ; C̃ðr2Þ≔
�∂C̃ðq;r;pÞ

∂p2

�
q¼0

;

ð2:17Þ

and obtain immediately from Eqs. (2.7) and (2.16)

(a) (b) (c)

FIG. 1. (a) Compact diagrammatic representation of the vertices eIΓαðq; r; pÞ (B gluon) and IΓαðq; r; pÞ (Q gluon); (b) the pole-free
parts, Γ̃αðq; r; pÞ and Γαðq; r; pÞ; (c) the pole parts, Ṽαðq; r; pÞ and Vαðq; r; pÞ. The black circle denotes the “transition amplitude,”
describing the mixing of the gluon with a massless excitation; its detailed diagrammatic content may be found in [91].

AGUILAR, FERREIRA, and PAPAVASSILIOU PHYS. REV. D 105, 014030 (2022)

014030-4



Ãðr2Þ ¼ 2

�∂D−1ðr2Þ
∂r2 − C̃ðr2Þ

�
: ð2:18Þ

Note that the displacement of the WI exemplified above
becomes especially relevant within the framework that
combines the pinch technique (PT) [6,50,55,125] with the
BFM, known as “PT-BFM scheme” [60,126]. In particular,
the action of terms such as C̃ðr2Þ is instrumental for the
evasion of a powerful nonperturbative cancellation that
operates at the level of the gluon SDE [127], which would
otherwise enforce the result Δ−1ð0Þ ¼ 0. In fact, the
contribution of the ghost loop to the nonvanishing
Δ−1ð0Þ, to be denoted by Δ−1

gh ð0Þ, is given by [67]

Δ−1
gh ð0Þ ∼

Z
d4kk2D2ðk2ÞC̃ðk2Þ: ð2:19Þ

Let us finally point out that the displacement associated
with the conventional ghost-gluon vertex IΓαðq; r; pÞ (see
Fig. 1), to be denoted by Cðr2Þ [see Eq. (5.7)], is related to
C̃ðr2Þ by the simple relation

Cðr2Þ ¼ Fð0ÞC̃ðr2Þ; ð2:20Þ

where we have introduced the ghost dressing function,
Fðq2Þ, related to the ghost propagator by Fðq2Þ ¼
q2Dðq2Þ. The demonstration of Eq. (2.20) relies on the
“background-quantum identity” that relates ĨΓαðq; r; pÞ and
IΓαðq; r; pÞ [6,128]; details will be presented elsewhere.

III. THREE-GLUON VERTEX AND ITS WARD
IDENTITY DISPLACEMENT

In this section we consider the case of the three-gluon
vertex in the conventional Landau gauge. If this vertex
develops longitudinally coupled massless poles, its pole-
free part satisfies a displaced WI, whose derivation is the
focal point of this section.
Before commencing, we introduce the gluon propagator,

Δab
μνðqÞ ¼ −iδabΔμνðqÞ; in the Landau gauge that we

employ in this work, it is given by the completely trans-
verse form

ΔμνðqÞ ¼ Δðq2ÞPμνðqÞ; PμνðqÞ ≔ gμν − qμqν=q2:

ð3:1Þ

Furthermore, we define the two tensorial structures

Pμ
μ0 ðrÞPν

ν0 ð−rÞ≔ T μν
μ0ν0 ðrÞ; λμναðrÞ≔ 2rαPμνðrÞ; ð3:2Þ

and the tree-level three-gluon vertex, Γαμν
0 ðq; r; pÞ, as

Γαμν
0 ðq; r; pÞ ¼ ðq − rÞνgαμ þ ðr − pÞαgμν þ ðp − qÞμgνα;

ð3:3Þ

where the gauge coupling g and the color factor fabc were
suppressed.
In order for the Schwinger mechanism to be activated, the

full three-gluon vertex, to be denoted by IΓabc
αμνðq; r; pÞ ¼

gfabcIΓαμνðq; r; pÞ, is written as (see Fig. 2)

IΓαμνðq; r; pÞ ¼ Γαμνðq; r; pÞ þ Vαμνðq; r; pÞ; ð3:4Þ

where Γαμνðq; r; pÞ is the pole-free component, while
Vαμνðq; r; pÞ contains longitudinally coupled poles, i.e., it
assumes the general form

Vαμνðq; r; pÞ ¼
�
qα
q2

�
Cμνðq; r; pÞ þ

�
rμ
r2

�
Aανðq; r; pÞ

þ
�
pν

p2

�
Bαμðq; r; pÞ: ð3:5Þ

For the particular kinematic limit that we will eventually
consider in the present work (q → 0), we only require the
tensorial decomposition of the term Cμνðq; r; pÞ in
Eq. (3.5), given by

Cμνðq; r; pÞ ¼ C1gμν þ C2rμrν þ C3pμpν

þ C4rμpν þ C5pμrν; ð3:6Þ

where Ci ≔ Ciðq; r; pÞ.
Due to its special form given by Eq. (3.5), Vαμνðq; r; pÞ

satisfies the crucial condition

(a) (b) (c)

FIG. 2. (a) Compact diagrammatic representation of the vertices eIΓαμνðq; r; pÞ (B gluon) and IΓαμνðq; r; pÞ (Q gluon); (b) the pole-free
parts, Γ̃αμνðq; r; pÞ and Γαμνðq; r; pÞ; (c) the pole parts, Ṽαμνðq; r; pÞ and Vαμνðq; r; pÞ.
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Pα
α0 ðqÞPμ

μ0 ðrÞPν
ν0 ðpÞVαμνðq; r; pÞ ¼ 0; ð3:7Þ

and, consequently, it drops out from the typical lattice
observables involving the transversely projected three-
gluon vertex [see Eqs. (4.4) and (A2)].
The full vertex IΓαμνðq; r; pÞ satisfies the STI

qαIΓαμνðq; r; pÞ ¼ Fðq2Þ½Δ−1ðp2ÞPσ
νðpÞHσμðp; q; rÞ

− Δ−1ðr2ÞPσ
μðrÞHσνðr; q; pÞ�; ð3:8Þ

analogous expressions are obtained when contracting by rμ

or pν. Note that the ghost-gluon kernel, Habc
νμ ðq; p; rÞ ¼

−gfabcHνμðq; p; rÞ, defined in Fig. 12, enters in the STI
nontrivially; for the nonperturbative structure of its relevant
form factors, see [129]. In addition, we point out that the
Hσμðp; q; rÞ andHσνðr; q; pÞ also contain massless poles in
the rμ and pν channels, respectively, which are completely
eliminated by the transverse projections in Eq. (3.12).
It is clear from Eqs. (3.4) and (3.6) that

Pμ
μ0 ðrÞPν

ν0 ðpÞ½qαIΓαμνðq; r; pÞ�
¼ Pμ

μ0 ðrÞPν
ν0 ðpÞ½qαΓαμνðq; r; pÞ þ Cμνðq; r; pÞ�; ð3:9Þ

while, from the STI of Eq. (3.8)

Pμ
μ0 ðrÞPν

ν0 ðpÞ½qαIΓαμνðq; r; pÞ�
¼ Pμ

μ0 ðrÞPν
ν0 ðpÞFðq2ÞRνμðp; q; rÞ; ð3:10Þ

where

Rνμðp; q; rÞ ≔ Δ−1ðp2ÞHνμðp; q; rÞ − Δ−1ðr2ÞHμνðr; q; pÞ:
ð3:11Þ

Then, equating the right-hand sides of Eqs. (3.9) and (3.10)
we obtain

qα½Pμ
μ0 ðrÞPν

ν0 ðpÞΓαμνðq; r; pÞ�
¼ Pμ

μ0 ðrÞPν
ν0 ðpÞ½Fðq2ÞRνμðp; q; rÞ − Cμνðq; r; pÞ�:

ð3:12Þ

Due to the presence of the projectors Pμ
μ0 ðrÞPν

ν0 ðpÞ, it is
clear from Eq. (3.6) that only the terms C1gμν and C5pμrν
contribute to Cμνðq; r; pÞ. Note, however, that since
Pμ
μ0 ðrÞPν

ν0 ðpÞC5pμrν ¼ Pμ
μ0 ðrÞPν

ν0 ðpÞC5qμqν, this term is

subleading, i.e., of order Oðq2Þ, when the limit q → 0
is taken.
We next proceed with the implementation of the limit

q → 0. In particular, as was done in the previous section,
we carry out the Taylor expansion of both sides of
Eq. (3.12) around q ¼ 0, and collect terms linear in q.
The computation of the l.h.s. of Eq. (3.12) is immediate:

using Eq. (3.2), we have

½l:h:s� ¼ qαT μν
μ0ν0 ðrÞΓαμνð0; r;−rÞ þOðq2Þ: ð3:13Þ

The computation of the r.h.s. of Eq. (3.12) is consid-
erably more complicated. We start by noticing that, to
lowest order in q, only the term C1ðq; r; pÞgμν survives. In
addition, since it is clear from Eq. (3.11) that
Rνμð−r; 0; rÞ ¼ 0, the vanishing of the zeroth order con-
tribution imposes the condition

C1ð0; r;−rÞ ¼ 0; ð3:14Þ

in exact analogy to Eq. (2.15).

Thus, the r.h.s. of Eq. (3.12) becomes

½r:h:s� ¼ qαT μν
μ0ν0 ðrÞFð0Þ

�∂Rνμðp; q; rÞ
∂qα

�
q¼0

− qαPμ0ν0 ðrÞ
�∂C1ðq; r; pÞ

∂qα
�
q¼0

þOðq2Þ: ð3:15Þ

In order to compute the first partial derivative in Eq. (3.15), we exploit the fact that, in the Landau gauge, the ghost-gluon
kernel may be cast in the form [91,107]

Hνμðp; q; rÞ ¼ Z̃1gνμ þ qρKνμρðp; q; rÞ; Hμνðr; q; pÞ ¼ Z̃1gμν þ qρKμνρðr; q; pÞ; ð3:16Þ

where the kernels K do not contain poles as q → 0. Moreover, Z̃1 is the finite constant renormalizing Hνμðp; q; rÞ in the
“asymmetric” momentum subtraction (MOM) scheme, employed in the lattice simulation of [85,101]; its numerical value,
estimated in [130], is Z̃1 ≈ 0.95.
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Then, to lowest order in q,

�∂Hνμðp; q; rÞ
∂qα

�
q¼0

¼ Kνμαð−r; 0; rÞ;
�∂Hμνðr; q; pÞ

∂qα
�
q¼0

¼ Kμναðr; 0;−rÞ: ð3:17Þ

Consider next the tensor decomposition ofKμναðr; 0;−rÞ
[107],

Kμναðr; 0;−rÞ ¼ Kðr2Þgμνrα þ � � � ; ð3:18Þ

where the ellipses denote terms proportional to
gναrμ, gμαrν, and rαrμrν, which get annihilated by con-
traction with T μν

μ0ν0 ðrÞ. Clearly, T μν
μ0ν0 ðrÞKνμαð−r;0;rÞ¼

−T μν
μ0ν0 ðrÞKμναðr;0;−rÞ.

Then, it is straightforward to demonstrate that

T μν
μ0ν0 ðrÞ

�∂Rνμðp; q; rÞ
∂qα

�
q¼0

¼ λμ0ν0αðrÞfZ̃1½Δ−1ðr2Þ�0 − Kðr2ÞΔ−1ðr2Þg; ð3:19Þ

where the “prime” denotes differentiation with respect
to r2.
As for the second partial derivative in Eq. (3.15),

applying the chain rule we have

�∂C1ðq;r;pÞ
∂qα

�
q¼0

¼2rαCðr2Þ; Cðr2Þ≔
�∂C1ðq;r;pÞ

∂p2

�
q¼0

;

ð3:20Þ

such that

Pμ0ν0 ðrÞ
�∂C1ðq; r; pÞ

∂qα
�
q¼0

¼ λμ0ν0αðrÞCðr2Þ; ð3:21Þ

and, therefore, Eq. (3.15) becomes

½r:h:s� ¼ qαλμ0ν0αðrÞ½Fð0ÞfZ̃1½Δ−1ðr2Þ�0 − Kðr2ÞΔ−1ðr2Þg − Cðr2Þ� þOðq2Þ: ð3:22Þ

The final step is to equate the terms linear in q that appear in Eqs. (3.13) and (3.22), to obtain the WI

T μν
μ0ν0 ðrÞΓαμνð0; r;−rÞ ¼ λμ0ν0αðrÞ½Fð0ÞfZ̃1½Δ−1ðr2Þ�0 − Kðr2ÞΔ−1ðr2Þg − Cðr2Þ�: ð3:23Þ

Thus, the inclusion of the term Vαμνðq; r; pÞ in the vertex
of Eq. (3.4) leads ultimately to the displacement of the WI
satisfied by the pole-free part Γαμνðq; r; pÞ, by an amount
given by the special functionCðr2Þ. Evidently, ifCðr2Þ ¼ 0
one recovers the WI in the absence of the Schwinger
mechanism.
We end this section with some remarks related to the

PT-BFM scheme. Note that if the gauge field carrying the
momentum q is a background gluon instead of a quantum
one (see Fig. 2), then the corresponding three-gluon vertex,
Γ̃αμνðq; r; pÞ, satisfies a simplified version of the WI in
Eq. (3.23), where F → 1, Z̃1 → 1, and Kðr2Þ → 0, i.e.,

T μν
μ0ν0 ðrÞΓ̃αμνð0; r;−rÞ ¼ λμ0ν0αðrÞ½½Δ−1ðr2Þ�0 − C̃ðr2Þ�:

ð3:24Þ

As has been demonstrated in [67], the contribution of the
gluon loops to the nonvanishing Δ−1ð0Þ, to be denoted by
Δ−1

gl ð0Þ, is controlled by C̃ðr2Þ,

Δ−1
gl ð0Þ∼

Z
d4kk2Δ2ðk2Þ½1−6παsCAYðk2Þ�C̃ðk2Þ; ð3:25Þ

where αs ≔ g2=4π, CA is the Casimir eigenvalue of the
adjoint representation [N for SUðNÞ], and Yðk2Þ represents
a particular one-loop correction (see, e.g., Fig. 3 in [67]).
Evidently, Eq. (3.25) is the exact analog of Eq. (2.19). The
total mass, identified with Δ−1ð0Þ, is obtained by summing
up Eqs. (3.25) and (2.19).
Finally, the relation between C̃ðr2Þ and Cðr2Þ is given by

Cðr2Þ ¼ Fð0ÞC̃ðr2Þ; ð3:26Þ

in exact analogy to Eq. (2.20).

IV. DISPLACEMENT FUNCTION IN TERMS OF
LATTICE QUANTITIES

In this section we establish a crucial connection between
the l.h.s. of Eq. (3.23) and the results of recent lattice
simulations. This, in turn, will allow us to relate the
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characteristic ingredient of the Schwinger mechanism,
namely Cðr2Þ, to quantities obtained directly from lattice
QCD. The advantage of such a connection is that the lattice
is intrinsically “blind” to particular field theoretic con-
structs (such as the Schwinger mechanism), furnishing
results obtained through the model-independent functional
averaging over gauge-field configurations.
We start our analysis by considering the pole-free part

Γαμνðq; r; pÞ of the three-gluon vertex, in the kinematic
limit of interest, q → 0. Given that only a single momentum
(r) is available, the general tensorial decomposition of
Γαμνð0; r;−rÞ is given by

Γαμνð0; r;−rÞ ¼ 2A1ðr2Þrαgμν þA2ðr2Þ
× ðrμgνα þ rνgμαÞ þA3ðr2Þrαrμrν; ð4:1Þ

where the form factors Aiðr2Þ may diverge at most
logarithmically as r → 0, but do not contain stronger
singularities. At tree level, we have that

Γαμν
0 ð0; r;−rÞ ¼ 2rαgμν − ðrμgνα þ rνgμαÞ; ð4:2Þ

corresponding to Að0Þ
1 ðr2Þ ¼ 1, Að0Þ

2 ðr2Þ ¼ −1, and

Að0Þ
3 ðr2Þ ¼ 0.
It is then elementary to derive from Eq. (4.1) that

T μν
μ0ν0 ðrÞΓαμνð0; r;−rÞ ¼ A1ðr2Þλμ0ν0αðrÞ: ð4:3Þ

We next establish a connection between the form factor
A1ðr2Þ and the projection of the three-gluon vertex studied in
the lattice simulations of [85,99,100,102,103,106,131–136].
Specifically, after appropriate amputation of the external legs,
the lattice quantity Lsgðr2Þ is given by

Lsgðr2Þ ¼
Γαμν
0 ðq; r; pÞPαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞIΓα0μ0ν0 ðq; r; pÞ
Γαμν
0 ðq; r; pÞPαα0 ðqÞPμμ0 ðrÞPνν0 ðpÞΓα0μ0ν0

0 ðq; r; pÞ

				
q→0
p→−r

: ð4:4Þ

Now, by virtue of Eq. (3.7), it is clear that the term
Vα0μ0ν0 ðq; r; pÞ associated with the poles drops out from
Eq. (4.4) in its entirety, amounting effectively to the replace-
ment IΓα0μ0ν0 ðq; r; pÞ → Γα0μ0ν0 ðq; r; pÞ.
Then, the numerator, N , and denominator, D, of the

fraction on the r.h.s. of Eq. (4.4), after employing Eqs. (4.1)
and (4.2), become

N ¼ 4ðd − 1Þ½r2 − ðr · qÞ2=q2�A1ðr2Þ;
D ¼ 4ðd − 1Þ½r2 − ðr · qÞ2=q2�: ð4:5Þ

Evidently, the path-dependent contribution contained in the
square bracket drops out when forming the ratioN =D, and
Eq. (4.4) yields the important relation

Lsgðr2Þ ¼ A1ðr2Þ: ð4:6Þ

Combining Eqs. (4.3) and (4.6), we get

T μν
μ0ν0 ðrÞΓαμνð0; r;−rÞ ¼ Lsgðr2Þλμ0ν0αðrÞ: ð4:7Þ

At this point, after substitution of Eq. (4.7) into
Eq. (3.23), we arrive at

Cðr2Þ ¼ Fð0ÞfZ̃1½Δ−1ðr2Þ�0 − Kðr2ÞΔ−1ðr2Þg − Lsgðr2Þ:
ð4:8Þ

The final step consists in passing the result of Eq. (4.8)
from Minkowski to Euclidean space, following the

standard conversion rules. Specifically, we set r2 ¼ −r20E ,
with r2E > 0 the positive square of an Euclidean four-vector,
and use

ΔEðr2EÞ ¼ −Δð−r2EÞ; FEðr2EÞ ¼ Fð−r2EÞ;
LE
sgðr2EÞ ¼ Lsgð−r2EÞ; CEðr2EÞ ¼ −Cð−r2EÞ: ð4:9Þ

In what follows we suppress the indices “E” to avoid
notational clutter.
Then, Eq. (4.8) is converted to

Cðr2Þ ¼ Lsgðr2Þ þ Fð0ÞfKðr2ÞΔ−1ðr2Þ − Z̃1½Δ−1ðr2Þ�0g;
ð4:10Þ

which is one of the central results of this article.
Finally, it is convenient to introduce the dimensionless

function Wðr2Þ, defined as

Kðr2Þ ¼ −
Wðr2Þ
r2

; ð4:11Þ

thus casting Eq. (4.12) into the form

Cðr2Þ ¼ Lsgðr2Þ−Fð0Þ
�
Wðr2Þ
r2

Δ−1ðr2Þ þ Z̃1½Δ−1ðr2Þ�0
�
;

ð4:12Þ
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which will be employed in the numerical evaluation given
in Sec. VI.

V. DYNAMICAL DETERMINATION OF THE
DISPLACEMENT FUNCTION

In this section we elaborate on the determination of
Cðr2Þ from the BSEs that describe the dynamical formation
of massless colored bound states; the analysis is based on
the derivations given in [90,93], adapted to the present
context. Note that this procedure determines also the analog
of C̃ðr2Þ, introduced in Sec. II, for the case of the conven-
tional ghost-gluon vertex, to be denoted by Cðr2Þ.
The starting point of this study is the BS version of the

SDEs that govern the momentum evolution of the three-
gluon vertex, IΓαμνðq; r; pÞ, and of the conventional ghost-
gluon vertex, IΓαðq; r; pÞ, shown in Fig. 3. In particular, we
replace (inside the loops) the tree-level vertices (with
incoming momentum q) by their fully dressed counterparts,
modifying the corresponding multiparticle kernels Kij

accordingly, to avoid overcounting (see e.g., Fig. 7 of
[90]). The main advantage of this conversion is that various

vertex renormalization constants, which otherwise would
appear explicitly multiplying the corresponding diagrams,
are naturally absorbed by the additional dressed vertices.
Note that, in order to simplify the pertinent set of SDEs, we
omit from our analysis the fully dressed four-gluon vertices
(with incoming momentum q), whose impact is expected to
be subleading [12,137].
In what follows, we will introduce a longitudinally

coupled massless pole also in the ghost-gluon vertex
IΓαðq; r; pÞ, casting it into a form analogous to Eq. (2.9),
and diagrammatically represented in Fig. 1, where the
incoming gluon is Qa

α. In particular, we set

IΓαðq; r; pÞ ¼ Γαðq; r; pÞ þ Vαðq; r; pÞ; ð5:1Þ

where Γαðr; p; qÞ denotes the pole-free component, while

Vαðq; r; pÞ ¼
qα
q2

Cðq; r; pÞ; ð5:2Þ

describes the pole multiplied by the associated form factor.

Then, the BSEs of Fig. 3 may be written schematically as

IΓαμνðq; r; pÞ ¼ Γαμν
0 ðq; r; pÞ − ig2CA

2

Z
k
IΓαβγðq; k;−sÞΔβρðkÞΔγσðsÞKμνσρ

11 ðr; p; s;−kÞ

þ ig2CA

Z
k
IΓαðq; k;−sÞDðk2ÞDðs2ÞKμν

12ðr; p; s;−kÞ;

IΓαðq; r; pÞ ¼ Γα
0ðq; r; pÞ −

ig2CA

2

Z
k
IΓαβγðq; k;−sÞΔβρðkÞΔγσðsÞKσρ

21ðr; p; s;−kÞ

−
ig2CA

2

Z
k
IΓαðq; k;−sÞDðk2ÞDðs2ÞK22ðr; p; s;−kÞ; ð5:3Þ

(a) (b)

(c) (d)

FIG. 3. The coupled system of inhomogeneous BSEs for the three-gluon and ghost-gluon vertices, IΓαμνðq; r; pÞ and IΓαðq; r; pÞ,
respectively. Circles represent full propagators or vertices, while the orange ellipses correspond to four-point scattering kernels,Kij. The
omitted diagrams contain five-point scattering kernels, associated with fully dressed four-gluon vertices with incoming momentum q,
which are neglected in our truncation scheme.
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where Γα
0ðq; r; pÞ ¼ rα is the tree-level ghost-gluon vertex,

s ≔ kþ q, and we introduce the notation

Z
k
≔

1

ð2πÞ4
Z

d4k ð5:4Þ

for the integral measure. In Eq. (5.4), the use of a
symmetry-preserving regularization scheme is implicitly
assumed.
Next, we decompose the vertices in Eq. (5.3) according

to Eqs. (3.4) and (5.1). Given that IΓαμνðq; r; pÞ contains
poles in all channels, qα, rμ, and pν, we isolate the pole in
qα by contracting the first line of Eq. (5.3) with
PμδðrÞPν

δðpÞ. Then, using Eqs. (3.5) and (3.6) we find that

PμδðrÞPν
δðpÞVαμνðq; r; pÞ

¼ qα
q2

PμδðrÞPν
δðpÞ½gμνC1ðq; r; pÞ þ qμqνC5ðq; r; pÞ�;

ð5:5Þ

so that the only pole terms on the l.h.s. of Eq. (5.3) are those
containing C1 and C5. In addition, due to the transversality
of the Landau gauge gluon propagator, Eq. (5.5) (with
q → q, r → k, and p → −s) can be used inside the integral
of diagram (a); again, only C1ðq; k;−sÞ and C5ðq; k;−sÞ
survive. Exactly the same situation is reproduced inside
diagram (c).
The following step is to multiply Eq. (5.3) by q2 and

expand around q ¼ 0. In doing so, we recall Eqs. (3.14) and
(3.20), and the analogous relations for Cðq; r; pÞ, namely3

Cð0; r;−rÞ ¼ 0; ð5:6Þ

and

�∂Cðq;r;pÞ
∂qα

�
q¼0

¼2rαCðr2Þ; Cðr2Þ≔
�∂Cðq;r;pÞ

∂p2

�
q¼0

:

ð5:7Þ

Then, as q → 0, the term proportional toC5 in Eq. (5.5) is of
higher order in q and drops out.

Consequently, we obtain a set of homogeneous equations involving only Cðr2Þ and Cðr2Þ. Specifically, we find

3ðq · rÞCðr2Þ ¼ −
ig2CA

2

Z
k
ðq · kÞCðk2ÞΔ2ðk2ÞPρσðkÞPμνðrÞKμνσρ

11 ðr;−r; k;−kÞ

þ ig2CA

Z
k
ðq · kÞCðk2ÞD2ðk2ÞPμνðrÞKμν

12ðr;−r; k;−kÞ;

ðq · rÞCðr2Þ ¼ −
ig2CA

2

Z
k
ðq · kÞCðk2ÞΔ2ðk2ÞPσρðkÞKσρ

21ðr;−r; k;−kÞ

−
ig2CA

2

Z
k
ðq · kÞCðk2ÞD2ðk2ÞK22ðr;−r; k;−kÞ; ð5:8Þ

where we have used Pμ
μðrÞ ¼ 3. Then, the remaining

common factor of q can be eliminated straightforwardly,
by making use of the basic formula

Z
k
ðq · kÞFðk; rÞ ¼ ðq · rÞ

r2

Z
k
ðr · kÞFðk; rÞ: ð5:9Þ

Finally, we approximate the four-point scattering kernels
Kij by their one-particle exchange diagrams (see e.g.,
Figs. 4 and 5 of [93]), thus reducing the BSEs governing
Cðr2Þ and Cðr2Þ to the form shown in Fig. 4; the
corresponding algebraic expressions are given in Eq. (A4).

We observe that the system of integral equations reached
in Eq. (5.8) is the (approximate) BSE that governs the
formation of massless colored bound states (q2 ¼ 0), as
announced.4 Thus, the function Cðr2Þ, connected with the
displacement of the WI in Eq. (4.12), emerges naturally as
the wave function associated with the pole formation of a
colored two-gluon bound state.
We point out that, in addition to the lattice propagators

given in Appendix C, the numerical evaluation of the BSEs
requires information on various form factors of the pole-
free vertices Γαμνðq; r; pÞ and Γαðq; r; pÞ; for details, see
Appendix A.

3Equation (5.6) can be proved from an STI for the ghost-gluon
vertex, in analogy to the proof leading to Eq. (2.15) using the
Abelian STI of Eq. (2.11). The full derivation will be given
elsewhere.

4Note that the BSE derived as q → 0 is identical to the one
obtained as q2 → 0; however, the former derivation is opera-
tionally simpler.
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We emphasize that, due to the homogeneity and linearity
of Eq. (A4), the overall scale of the solution is undeter-
mined: the multiplication of a given solution by an arbitrary
real constant yields another solution. For the purposes of
the present work, this ambiguity was resolved by matching
the BSE prediction for Cðr2Þ to the result obtained from the
WI in the next section. The solutions found for Cðr2Þ and
Cðr2Þ after the implementation of this scale-fixing pro-
cedure, denoted as C⋆ðr2Þ and C⋆ðr2Þ, respectively, are
shown in Fig. 5. Note that C⋆ðr2Þ is considerably larger in

magnitude than C⋆ðr2Þ, in agreement with the original
study presented in [93].

VI. DISPLACEMENT FUNCTION FROM THE
WARD IDENTITY

We next determine the signal for Cðr2Þ that emerges
from the corresponding WI, and discuss its statistical
significance with respect to the null hypothesis, namely
the case where Cðr2Þ would vanish identically.
To that end, we substitute on the r.h.s. of Eq. (4.12)

appropriate expressions for all quantities appearing there.
In particular, we employ physically motivated fits to lattice
results for the gluon propagator, the ghost dressing func-
tion, and Lsgðr2Þ, given in Appendix C. Instead, the
function Wðr2Þ is computed from its own SDE, as
described in Appendix B; the resulting Wðr2Þ is shown
as the blue solid line and error band in the right panel
of Fig. 13.
The outcome of this operation is clearly nonvanishing:

the resulting Cðr2Þ is shown in the left panel of Fig. 6 as the
blue continuous curve, which is distinctly separated from
the null hypothesis case, indicated by the green dotted line.
The blue band surrounding the central result indicates the
errors assigned to Cðr2Þ, through the propagation of the
corresponding errors associated with the ingredients enter-
ing on the r.h.s. of Eq. (4.12).
In the same figure we plot theC⋆ðr2Þ of Fig. 5, in order to

facilitate the direct comparison. We observe an excellent
agreement in the overall shapes of C⋆ðr2Þ and Cðr2Þ. Their
main difference is the position and depth of the minimum:
for Cðr2Þ we have rmin ¼ 1.95þ0.07

−0.10 and Cðr2minÞ ¼ −0.39�
0.08, while for C⋆ðr2Þ we find rmin ¼ 1.50þ0.12

−0.13 and
C⋆ðr2minÞ ¼ −0.42� 0.02.

FIG. 4. The coupled system of BSEs governing the evolution of Cðr2Þ and Cðr2Þ.

FIG. 5. The solutions for C⋆ðr2Þ (purple dot-dashed) and
C⋆ðr2Þ (red dashed) obtained from the coupled BSE system of
Eq. (A4). The origin of the error bands is the propagation of the
error associated with Lsgðr2Þ, used to calibrate the three-gluon
vertex inputs. The band of C⋆ðr2Þ turns out to be very thin and
barely visible.
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In order to provide an estimate of the statistical signifi-
cance of the above signal, we find it advantageous to recast
our analysis in terms of the quantity Lsgðr2Þ, thus capital-
izing on the detailed error analysis applied to the lattice data
of [106]. Specifically, from the WI of Eq. (4.12) we will
determine the form that Lsgðr2Þ would have if the null
hypothesis were true, and quantify its deviation from the
actual lattice data.
Thus, setting Cðr2Þ ¼ 0 into Eq. (4.12), we obtain the

null hypothesis prediction for Lsgðr2Þ, which we denote by
L0ðr2Þ, given by

L0ðr2Þ ¼ Fð0Þ
�
Wðr2ÞΔ−1ðr2Þ

r2
þ Z̃1½Δ−1ðr2Þ�0

�
: ð6:1Þ

Substituting on the r.h.s. of Eq. (6.1) the same ingredients
as before, we obtain the L0ðr2Þ shown as the green dotted
line on the right panel of Fig. 6. The green band enveloping
L0ðr2Þ captures the error propagated from Wðr2Þ; it is
obtained by using as inputs into Eq. (6.1) the curves
delimiting the blue band in the right panel of Fig. 13.
The results shown in Fig. 6 demonstrate that the statistical

error of the lattice cannot account for the discrepancy
between Lsgðr2Þ and L0ðr2Þ; evidently, the null hypothesis
is strongly disfavored.
In order to quantify the above statement, we adopt the

following procedure.
(i) At every data point, denoted by the index i and

located at the momentum ri, we consider the
standard error in the lattice data for Lsg, denoted

FIG. 6. Left: Cðr2Þ obtained from Eq. (4.12) (blue continuous curve) compared to the BSE prediction, C⋆ðr2Þ, based on Eq. (A4)
(purple dot-dashed). Right: lattice data of [106] for Lsgðr2Þ (points), compared to the fit of Eq. (C12) (black continuous), and the null
hypothesis prediction, L0ðr2Þ, of Eq. (6.1) (green dotted). The band around Lsgðr2Þ is delimited by the functions L�

sgðr2Þ of Eq. (C13).

FIG. 7. Left: hδik, the average standard deviation of all point belonging to the kth bin of momentum, plotted as a function of the
momentum r. The inset describes the definition of the local individual deviations ρi and τi, which are combined in a total correlated error
σi ¼ ρi þ τi, valid for any given point, as described in the text, items (i)–(iii). Right: distribution of all available points into bins of a
given standard deviation. In both figures, the orange line represents the total average, hδi ¼ 3.1σ.
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by ρi, and the propagated error in the null hypothesis
prediction, L0ðriÞ, denoted by τi, as shown in the
inset of the left panel of Fig. 7.

(ii) These errors are found to be correlated. Specifically,
when using a higher Lsgðr2Þ as input in Eq. (6.1), we
obtain a lower L0ðr2Þ. Hence, the total error, denoted
by σi, is given by σi ≔ ρi þ τi. Note that the σi so
defined is larger than the corresponding errors
combined in quadrature, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2i þ τ2i

p
, which

would be appropriate if the ρi and τi were inde-
pendent.

(iii) Next, we measure the distance ΔLi ≔ jL0ðr2i Þ−
Lsgðr2i Þj, also shown in the inset of the left panel of
Fig. 7, and then divide it by the corresponding total
error, σi. The resulting ratio, δi ≔ ΔLi=σi, measures
the point-by-point deviation between the two curves,
computed in units of the σ (standard deviation)
assigned to every given data point.

(iv) The entire momentum range considered, [0,4.5] GeV,
is divided into nine equal bins of length 0.5 GeV;
thus, the kth bin is defined as the interval
[0.5ðk − 1Þ; 0.5k] GeV, k ¼ 1;…; 9. In addition,
we denote by Nk the total number of points in the
kth bin; we have Nk ¼ ð52; 167; 157; 69; 40; 24;
10; 7; 6Þ, accounting for a total of N ¼ 532 lattice
points.

(v) Then, we compute the average value of the ratio δi
within the kth bin, and denote the answer by hδik,
namely

hδik ¼
1

Nk

XnkþNk

i¼nkþ1

δi; with nk ¼
Xk−1
l¼1

Nl: ð6:2Þ

(vi) Finally, the total average, hδi, is defined as

hδi ¼ 1

N

XN
i¼1

δi; ð6:3Þ

and furnishes a measure of the global deviation
between the signal [Lsgðr2Þ] and the null hypothesis
[L0ðr2Þ] curves.

The outcome of this procedure is displayed in the left
panel of Fig. 7, where the quantity hδik, obtained at step (v),
is plotted for each bin. The value of hδi, computed at step
(vi), is hδi ¼ 3.1, and is marked by the orange horizon-
tal line.
As we can observe, the values of hδik for the bins with

r > 1.5 GeV are considerably higher than hδi. In fact, for
r > 2 GeV the value of the corresponding hδik exceeds 5σ;
however, the available points in this interval are relatively
few. The sizable signal found above 2 GeV may be
understood as follows. First, near 2 GeV, the lattice curve
Lsg is the farthest away from its null hypothesis counter-
part, L0, leading to large values for theΔLi [see (iii)] in that

region. Second, for r > 3 GeV, the Lsgðr2Þ and L0ðr2Þ
approach each other; nevertheless, since the lattice error
bars become very small in the UV, a rather strong signal
emerges.
We next consider the distribution of all available points

into bins of a given standard deviation, regardless of the
momentum assigned to each point. The length of each bin
is one σ, the jth bin (j ¼ 1;…10) contains all points whose
standard deviation lies in the interval ½j − 1; j�σ, and we
denote the number of these points by Ñj. The result of this
grouping is shown in the right panel of Fig. 7. We observe
that, the largest number of points (193) is contained in the
½2–3�σ bin, while 133 points, corresponding to 25% of
the total number, are at or above the 5σ significance level.
The average of 3.1σ is denoted by the orange vertical line.
Given that the truncation error in Wðr2Þ is the main

uncertainty in our analysis, we end this section by con-
sidering two interesting limiting cases associated with this
function.
First, given the clear proximity between Cðr2Þ and

C⋆ðr2Þ, shown in the left panel of Fig. 6, it is tempting
to ask whether a small modification in the shape of Wðr2Þ
could make Cðr2Þ and C⋆ðr2Þ agree perfectly.
To that end we substitute Wðr2Þ → W⋆ðr2Þ and

Cðr2Þ → C⋆ðr2Þ in Eq. (4.12) to obtain the function
W⋆ðr2Þ necessary to reproduce C⋆ðr2Þ. Specifically,

W⋆ðr2Þ ¼ r2Δðr2Þ
�
Lsgðr2Þ − C⋆ðr2Þ

Fð0Þ − Z̃1½Δ−1ðr2Þ�0
�
:

ð6:4Þ

The W⋆ðr2Þ resulting from Eq. (6.4) is shown as the
purple dot-dashed curve and the associated error band in
Fig. 8, where it is compared to the SDE result for Wðr2Þ.
Indeed, we observe that a minor adjustment in the shape
of Wðr2Þ would bring Cðr2Þ and C⋆ðr2Þ to a perfect
agreement.
Second, it is instructive to consider what would happen if

the null hypothesis were valid, and all resulting mismatches
were to be absorbed exclusively into a modification of
Wðr2Þ, to be denoted by W0ðr2Þ.
Setting Cðr2Þ ¼ 0 andWðr2Þ → W0ðr2Þ into Eq. (4.12),

we obtain

W0ðr2Þ ¼ r2Δðr2Þ
�
Lsgðr2Þ
Fð0Þ − Z̃1½Δ−1ðr2Þ�0

�
: ð6:5Þ

In Fig. 8 we showW0ðr2Þ as the green dotted curve. The
band around it represents the propagated error of the lattice
Lsgðr2Þ; it is obtained by substituting Lsgðr2Þ in Eq. (6.5)
by the L�

sgðr2Þ of Eq. (C13).
We note that the Wðr2Þ obtained from the SDE (blue

solid curve) is comfortably separated fromW0ðr2Þ. In fact,
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our attempts to obtain solutions of the SDE in the vicinity
of W0ðr2Þ have been unavailing.

VII. ADDITIONAL CONSIDERATIONS
REGARDING Cðr2Þ AND Cðr2Þ

Given the central importance of the displacement func-
tions Cðr2Þ and Cðr2Þ to our analysis, in this section we
provide some additional information about their nature and
basic properties.

(i) The numerical solution for Cðr2Þ obtained from the
BSE, and shown in Fig. 6, saturates at a nonzero
value at the origin. On the other hand, we see from

Fig. 5, as well as directly from Eq. (A4), that
Cð0Þ ¼ 0. In fact, expanding the second line of
Eq. (A4) around r ¼ 0, it is easily shown that

Cðr2Þ ∼ ar2; ð7:1Þ

for some constant a, while the term OðrÞ does not
contribute because its angular dependence vanishes
upon integration.
For asymptotically large momenta, the numerical

solutions of both Cðr2Þ and Cðr2Þ tend to zero, albeit
at different rates. Specifically, in both cases one
finds that, as r2 → ∞, the tails may be fitted by a
common functional form b=r2ð1þtÞ, but with varying
values for the parameters b and t.
A functional form, that fits very accurately (see

left panel of Fig. 9) the BSE results for both
amplitudes and the central Cðr2Þ obtained from
the Ward identity, is given by

hðr2Þ ¼ a0 þ a21r
2

1þ a22r
2 þ ða23r2Þ2þt ;

where hðr2Þ ∈ fCðr2Þ;C⋆ðr2Þ; C⋆ðr2Þg: ð7:2Þ

The parameters used for each case are given in
Table I; for C⋆ðr2Þ we impose a0 ¼ 0, such that
Eq. (7.1) is satisfied.

(ii) As has already been mentioned, the functions Cðr2Þ
and Cðr2Þ are key ingredients in the determination of
the gluon mass scale, see Eqs. (2.19) and (3.25). Due
to the considerable size difference between Cðr2Þ
and Cðr2Þ, it is clear that the main bulk of the gluon
mass scale will be obtained from Eq. (3.25), where
Cðr2Þwill enter directly after use of Eq. (3.26). Even
though a full analysis requires knowledge of the

FIG. 8. Direct comparison between the SDE result for Wðr2Þ
(blue continuous) and the W⋆ðr2Þ (purple dot-dashed) that
imposes the equality between the Cðr2Þ obtained from the WI
and the BSE. Also shown is the W0ðr2Þ that corresponds to the
null hypothesis (green dotted). The bands around each curve
correspond to the propagated errors from the lattice Lsgðr2Þ.

FIG. 9. Left: fits for the BSE amplitudes C⋆ðr2Þ (red continuous curve) and C⋆ðr2Þ (purple continuous) and for the central curve of
Cðr2Þ (blue continuous line) obtained from the WI shown in the left panel of Fig. 6. The functional form is given by Eq. (7.2). Right:
strength of the kernel Rðk2Þ of Eq. (7.3) computed using C⋆ðk2Þ, (purple line) and Cðr2Þ (blue curve) shown in the left panel.
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renormalized quantity Yðk2Þ (or an equivalent dia-
grammatic expansion, see [138]), one may get a
general idea of how the support of Cðr2Þ is distrib-
uted in Eq. (3.25) by considering the natural
combination that appears therein, namely

Rðk2Þ ≔ Z2ðk2ÞjCðk2Þj; ð7:3Þ

where Zðk2Þ ≔ k2Δðk2Þ is the dressing function of
the gluon.
For the numerical evaluation of Rðk2Þ we use the

purple and blue curves shown in the left panel of
Fig. 9. The results obtained are shown in the right
panel of Fig. 9; it is clear that in both cases the
support of Rðk2Þ peaks at around 1.2 GeV, which is
the typical scale for the onset of nonperturbative
effects.

(iii) It is clear from the left panel of Fig. 9 that, for large
momenta, Cðr2Þ approaches zero rather slowly,
maintaining a considerable size within the region
of 2–3 GeV. In general terms, this persistence of the
signal suggests that the underlying mass generating
mechanism furnishes more support in the region of
intermediate momenta rather than in the deep infra-
red, a pattern already familiar from the quark sector
of QCD [139,140]. A possible explanation for this
particular feature may be obtained within the context
of the BSE that determines Cðr2Þ [see Sec. V and
Appendix A].
Specifically, in the BSE of (A4) we turn off the

subleading term Cðr2Þ, converting the system into a
single integral equation for Cðr2Þ, whose kernel is
give by

KCðr2;k2Þ¼rk3Δ2ðk2Þ
Z

π

0

dϕs2ϕcϕΔðuÞN ðr2;k2;uÞ;

u¼ðr−kÞ2; ð7:4Þ

where the constant λ and the integration over k2 have
been omitted.
The kernel KCðr2; k2Þ is a function of two

variables, and may be represented by a 3D surface.
However, we find it more instructive to plot “slices”
of it, fixing five values of the momentum r, as can be

seen in Fig. 10. The succession of the curves
indicates that, while the corresponding peaks de-
crease as r increases, the curves become wider and
their support gets shifted towards higher momenta.
Thus, the strength of the kernel peters out rather
slowly, causing the solution for Cðr2Þ to retain a
considerable size past 2 GeV.

(iv) In the present work, all procedures furnishing Cðr2Þ
have been implemented using as inputs the so-called
“decoupling” SDE solutions, found in the lattice
simulations cited throughout the text. The resulting
Cðr2Þ shown in Fig. 6 acquires its highest (absolute)
value around 1.5–2 GeV, being considerably sup-
pressed at the origin. In fact, the results from the WI
determination (blue band in Fig. 6) are marginally
compatible with Cð0Þ ¼ 0, a behavior that is rem-
iniscent of the so-called “scaling” solutions (see,
e.g., [141]), specific to the “infrared ghost domi-
nance” scenario [142].

In the simplified case of a single momentum scale,
p2, this later type of solution is of the general form
(as p2 → 0)

Γn;mðp2Þ ∼ ðp2Þðn−mÞκ; ð7:5Þ

where the Γn;mðp2Þ denote all one-particle irreducible
Greens functions with n external ghost and antighost
legs, and m gluon legs. The exact value of the
parameter κ depends on the details of the SDE
truncation, but it is rather close to κ ¼ 0.6. Note that,
in the notation of the present paper, Γ0;2ðp2Þ ¼
Δ−1ðp2Þ; so, according to Eq. (7.5), the scaling gluon
propagator vanishes at the origin. Similarly, the

TABLE I. The values of the fitting parameters appearing in
Eq. (7.2), for each of the functions Cðr2Þ, C⋆ðr2Þ, and C⋆ðr2Þ.

a0 a21 [GeV−2] a22 [GeV−2] a23 [GeV−2] t

Cðr2Þ −0.100 −0.162 0.092 0.197 0.68
C⋆ðr2Þ −0.158 −0.397 0.456 0.321 0.45
C⋆ðr2Þ 0 −0.473 2.71 1.29 0.12

FIG. 10. The kernel KCðr2; k2Þ defined in Eq. (7.4) for five
values of r. The increase in the value of r produces a flattening in
the kernel.
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scaling ghost dressing function diverges at the origin,
and so do the three- and four-gluonvertex functions. It
is important to emphasize that, despite their clear
discrepancies in the deep infrared, the scaling and
decoupling solutions practically coincide for mo-
menta higher than a few hundred MeV (see, e.g.,
[143]). Let us also point out that the Schwinger
mechanism has been recently implemented in the
context of the scaling solutions [94]. In this case, the
generation of the mass scale does not affect the deep
infrared regime of the corresponding Green’s func-
tions, but accounts for their considerable support in
the intermediate range of momenta.
Finally, one may hypothesize on the properties of

Cðr2Þ if scaling solutions were used for its determi-
nation. Given the observations made above, it is
reasonable to expect that its qualitative behavior
would remain unaffected for momenta larger than a
few hundred MeV, while differences would manifest
themselves in the deep infrared. In fact, it is perfectly
plausible thatCðr2Þmight vanish at the origin, exactly
as Cðr2Þ does.

VIII. DISCUSSION AND CONCLUSIONS

In the present work we have investigated in detail a
characteristic feature that is intimately linked with the onset
of the Schwinger mechanism in QCD, and the ensuing
emergence of an effective gluon mass scale. The action of
this mechanism relies on the inclusion of massless longi-
tudinal poles in the fundamental vertices of the theory,
which participate nontrivially in the realization of the
corresponding STIs. This, in turn, causes a distinct dis-
placement to the WI satisfied by the pole-free part of the
vertices involved, quantified by the function Cðr2Þ, which
is formally identical to the bound-state wave function that
governs the dynamical formation of the massless poles. We
have computed Cðr2Þ for the case of the three-gluon vertex
in two distinct ways: by solving the corresponding BSE and
by appropriately combining the ingredients appearing in
the non-Abelian WI. In both cases we have relied pre-
dominantly on results obtained from lattice simulations,
with the exception of the special function Wðr2Þ, which
was determined from an SDE. The results found for Cðr2Þ
are clearly nonvanishing and in excellent mutual agree-
ment, providing additional support to the details of the
general dynamical picture put forth in a series of articles. In
particular, the dual role played by Cðr2Þ is especially
noteworthy, hinting towards deeper connections that have
yet to be unraveled.
It is important to stress that the computation of the null

hypothesis, presented in Sec. VI, proceeds by assuming
that all inputs of Eq. (6.1) retain their known form; in
particular, salient features, such as the saturation of the

gluon propagator and the ghost dressing function, persist
unaltered. In that sense, this specific implementation probes
the compatibility between the lattice results and the absence
of a displacement in the non-Abelian WI of the three-gluon
vertex. Seen from this point of view, one might state that
this particular possibility is excluded at the level of 3.1σ.
As mentioned in Appendix A, the value of αs that

corresponds to the eigenvalue of the system is αs ¼ 0.63,
which is considerably different from the value αs ¼ 0.27
found within the “asymmetric” MOM scheme that we
employ. The discrepancy may be interpreted as a truncation
artifact, given that the corresponding BSE kernels has been
approximated by their one-particle exchange diagrams, as
depicted in Fig. 4. In addition, the expressions employed
for the fully dressed vertices comprising these kernels
contain a certain amount of uncertainty. Quite interestingly,
a preliminary numerical exploration indicates that minor
modifications of the kernel affect the value of αs consid-
erably, without practically modifying the form of the
solution found for C⋆ðr2Þ and C⋆ðr2Þ. This observation
suggests that, while the decrease of αs towards its MOM
value may require a more refined knowledge of the
corresponding BSE kernels, the obtained solutions should
be considered as fairly reliable.
The proximity between the Wðr2Þ, computed in

Appendix B, and the W⋆ðr2Þ obtained from Eq. (6.4),
suggest that minor modifications of the inputs used for the
SDE of Eq. (B5) might lead to an even better coincidence.
In this context, it is interesting to point out that the
determination of the transverse form factors Yi [see item
(iii) in Appendix B] is subject to a considerable uncertainty,
originating from the approximations implemented to the
complicated SDE satisfied by the three-gluon vertex (Fig. 6
in [106]). Given the relevance of Wðr2Þ for the systematic
scrutiny of the Schwinger mechanism, as exposed in the
present work, it may be worthwhile revisiting this particular
computation.
As mentioned below Eq. (3.8), the Schwinger mecha-

nism induces poles also in the ghost-gluon kernel,
Hμνðr; q; pÞ. This may be understood qualitatively by
considering the diagrams (d1) and (d2) in Fig. 12: the
fully dressed ghost-gluon and three-gluon vertices (with
Lorentz index ν and incoming momentum p) contain poles,
which are transmitted to the form factors of Hμνðr; q; pÞ
associated with the tensorial structures pνpμ and pνrμ.
It would be important to compute in detail the pole
structure of Hμνðr; q; pÞ, especially in view of the STI
rμHμνðr; q; pÞ ¼ Γνðp; r; qÞ, which links nontrivially the
form factors of Hμνðp; r; qÞ and Γμðp; r; qÞ, in general, and
the corresponding pole terms, in particular. Specifically,
one may explore how accurately the appropriate combina-
tion of pole terms coming from Hμνðp; r; qÞ will reproduce
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the corresponding term contained in Γμðp; r; qÞ. We hope
to undertake such a study in the near future.
The generation of massless poles in the ghost correlation

functions and kernels, such as Γνðp; r; qÞ and Hμνðr; q; pÞ,
may herald a deeper connection with the nonperturbative
BRST quartet mechanism mentioned earlier. In particular,
the dynamical realization of the quartet mechanism put
forth in [121] relies on the formation of massless ghost-
gluon bound states, which would manifest themselves in
the ghost-gluon four-point kernel that enters in the corre-
sponding BSE (see Fig. 1 in [121]). Evidently this issue
deserves detailed scrutiny, both from the point of view of
the decoupling as well as the scaling solutions. Such a
study could be particularly revealing, establishing the
compatibility and harmonious interplay between two key
nonperturbative mechanism operating in the gauge sector
of QCD.
The scale ambiguity associated with the BSE amplitudes

Cðr2Þ and Cðr2Þ results from considering only the leading
order terms of the BSEs in an expansion around q ¼ 0,
which furnishes homogeneous linear equations. In general
kinematics, however, the presence of inhomogeneous terms
in the BSEs resolves this ambiguity. As such, the scales of
Cðr2Þ and Cðr2Þ can be fixed by taking the q ¼ 0 limit of
the solution of the corresponding inhomogeneous BSEs,
treated beyond leading order in q. In the context of
conventional bound states, this procedure is well under-
stood [144] and explicit scale-setting equations have been
derived, which are sometimes referred to as “canonical
normalization condition” [28,145]. It is our intention to
pursue this point in an upcoming study, and settle dynami-
cally the scale of the corresponding solutions.
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APPENDIX A: TECHNICAL DETAILS ON THE
BSE SYSTEM

In this appendix we present details related to the
numerical treatment of the BSE system formed by Cðr2Þ
and Cðr2Þ, shown in Fig. 4.
For the Bose symmetric three-gluon vertex appearing in

the diagrams of Fig. 4 we employ the tensor basis of Ball-
Chiu [146,147],

Γαμνðq; r; pÞ ¼
X10
i¼1

Xiðq; r; pÞlαμν
i þ

X4
i¼1

Yiðq; r; pÞtαμνi ;

ðA1Þ

where the explicit form of the basis tensors lαμν
i and tαμνi is

given in Eqs. (3.4) and (3.6) of [147]. At tree level,

Xð0Þ
1 ¼ Xð0Þ

4 ¼ Xð0Þ
7 ¼ 1, while all otherXð0Þ

i andYð0Þ
i vanish.

It is convenient to introduce the transversely projected
vertex, Γ̄αμνðq; r; pÞ, defined as

Γ̄αμνðq; r; pÞ ≔ Pα0
α ðqÞPμ0

μ ðrÞPν0
ν ðpÞΓα0μ0ν0 ðq; r; pÞ: ðA2Þ

Similarly, the tensorial decomposition of the vertex
Γμðq; r; pÞ is given by

Γμðq; r; pÞ ¼ rμB1ðr; p; qÞ þ qμB2ðr; p; qÞ; ðA3Þ

at tree level, Bð0Þ
1 ¼ 1 and Bð0Þ

2 ¼ 0. The ghost-antighost
symmetry of Γμðq; r; pÞ in the Landau gauge implies
that B1ðr; p; qÞ ¼ B1ðp; r; qÞ.
Next, we pass to Euclidean space and employ spherical

coordinates. For convenience, we define the variables
x ≔ r2, y ≔ k2, and u ≔ ðr − kÞ2 ¼ xþ y − 2

ffiffiffiffiffi
xy

p
cϕ, with

ϕ denoting the angle between the momenta k and r, while
sϕ ≔ sinϕ, cϕ ≔ cosϕ. Furthermore, we parametrize sca-
lar form factors, such as B1ðq; r; pÞ, in terms of the squares
of their first two arguments and the angle between them,
e.g., B1ð−r; k; r − kÞ → B1ðx; y; π − ϕÞ. Then, the final set
of BSEs reads

CðxÞ¼ λ

�Z
∞

0

dyy
ffiffiffiffiffi
xy

p
Δ2ðyÞCðyÞ

Z
π

0

dϕs2ϕcϕΔðuÞN ðx;y;uÞ−2
Z

∞

0

dy

ffiffiffi
y
x

r
F2ðyÞCðyÞ

Z
π

0

dϕs4ϕcϕ
FðuÞ
u

B2
1ðu;y;χÞ

�
;

CðxÞ¼3λ

�Z
∞

0

dyy
ffiffiffiffiffi
xy

p
Δ2ðyÞCðyÞ

Z
π

0

dϕs4ϕcϕ
FðuÞ
u

B2
1ðx;u;θÞþ

Z
∞

0

dy
ffiffiffiffiffi
xy

p
F2ðyÞCðyÞ

Z
π

0

dϕs4ϕcϕ
ΔðuÞ
u

B2
1ðx;y;π−ϕÞ

�
:

ðA4Þ

In the above equation,
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λ ≔
αsCA

12π2
; ðA5Þ

where αs ≔ g2=4π. The angles χ and θ are given by

χ ¼ cos−1
� ffiffiffi

x
p

cosϕ − ffiffiffi
y

pffiffiffi
u

p
�
;

θ ¼ cos−1
� ffiffiffi

y
p

cosϕ −
ffiffiffi
x

p
ffiffiffi
u

p
�
: ðA6Þ

Finally,

N ðx; y; uÞ ≔ −
1

x
½Γ̄αβγð−r; k; r − kÞΓ̄αβγð−r; k; r − kÞ�E;

ðA7Þ

where the subscript “E” indicates that Eq. (A7) is to be
converted to Euclidean coordinates.
TheN ðx; y; uÞ of Eq. (A7) can be written in terms of the

form factors Xi and Yi of Eq. (A1); note that the Xi with
i ¼ 2, 5, 8, 10 drop out, because they are annihilated by the
transverse projection in Eq. (A2).

Then, we obtain

N ðx; y; uÞ ¼ s2ϕ
2u2x2y

fuT1½T1ððu − x − yÞ2 þ 2xyÞ þ 4xyðT2 þ T3Þ þ 4T4ðu − x − yÞ�

þ xT2½T2ððu − xþ yÞ2 þ 2uyÞÞ þ 4uyT3 − 4T4ðu − xþ yÞ�
þyT3½T3ððuþ x − yÞ2 þ 2uxÞ − 4T4ðuþ x − yÞ� þ 4T2

4ðuþ xþ yÞg; ðA8Þ

where

T1 ¼ −uðX1 − X4 − X7 þ xyY1Þ − xðX1 − X4 þ X7 − 2yX3Þ − yðX1 þ X4 − X7Þ;
T2 ¼ uðX1 − X4 − X7 þ 2yX6 − xyY2Þ þ xðX1 − X4 þ X7Þ − yðX1 þ X4 − X7Þ;
T3 ¼ uðX1 − X4 − X7 þ 2xX9 − xyY3Þ − xðX1 − X4 þ X7Þ þ yðX1 þ X4 − X7Þ;

T4 ¼
1

2
fu2ðX1 − X4 − X7Þ − ðx − yÞ½xðX1 − X4 þ X7Þ − yðX1 þ X4 − X7Þ�þ2u½xðX7 − yY4Þ þ yX4�g; ðA9Þ

and we suppress the functional dependence Xi ≡ Xiðx; y; π − ϕÞ and Yj ≡ Yjðx; y; π − ϕÞ.

For the numerical evaluation of Eq. (A4), in addition to the
lattice propagators given inAppendixC,weneedB1, together
with all Xi and Yi that comprise N ðx; y; uÞ, in general
kinematics. These form factors are obtained as follows:

(i) For the B1 we employ recent results (see Fig. 6 of
[130]), obtained from an SDE analysis that uses as
inputs lattice data that have been cured from volume
and discretization artifacts.

(ii) The Xi are obtained from the nonperturbative
generalization of the Ball-Chiu solution; the relevant
formulas are given in Eq. (3.11) of [147], and
involve the ghost dressing function, the kinetic term
of the gluon propagator, and certain components of
the ghost-gluon kernel. Note that the inputs have
been calibrated to exactly reproduce the lattice
projection Lsgðr2Þ, through the relation

Lsgðr2Þ ¼ X1ðr2; r2; πÞ − r2X3ðr2; r2; πÞ: ðA10Þ

In this indirect way, the error bars assigned to the
lattice calculation of Lsgðr2Þ, encompassed by the
functions L�

sgðr2Þ of Eq. (C13), find their way into
our BSE determination of Cðr2Þ and Cðr2Þ, giving
rise to the errors band indicated in Fig. 6.

(iii) For the transverse components Yi, which cannot be
deduced from the fundamental STIs, we resort to a
SDE determination, along the lines of the analysis
presented in [106]; see, in particular, Fig. 6 therein.

(iv) The results for X1ðq2; r2; θÞ, qrX3ðq2; r2; θÞ,
q2r2Y1ðq2; r2; θÞ, and qrY4ðq2; r2; θÞ are shown in
Fig. 11, for the special case θ ¼ 2π=3; q and r
denote now the magnitudes of the corresponding
Euclidean momenta.

(v) By virtue of the Bose symmetry of the three-gluon
vertex, the remaining form factors of the three-gluon
vertex entering in Eq. (A7) can be obtained from
those shown in Fig. 11 by appropriate permutations
of their arguments, as explained in [147].
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Employing the ingredients described above, we solve the
coupled system of BSEs of Eq. (A4) numerically, obtaining
the Cðr2Þ and Cðr2Þ shown in Fig. 5, together with the
corresponding error estimates.
Since Eq. (A4) does not have an inhomogeneous term

and is linear in Cðr2Þ and Cðr2Þ, it corresponds to an
eigenvalue problem. The resulting eigenvalues correspond
to αs ¼ 0.63 ∓ 0.05, with signs opposite to those of the
L�
sgðr2Þ error bands, i.e., using Xi corresponding to a higher

Lsgðr2Þ leads to a smaller αs. In these results, the overall
constant was determined by matching the BSE prediction
for Cðr2Þ to the result obtained from the WI, as explained
in Sec. VI.

APPENDIX B: COMPUTATION OF Wðr2Þ
The function Wðr2Þ is a central ingredient for our

analysis, whose determination proceeds through the study
of the corresponding SDE. In this appendix we present the

technical details related to this calculation, and discuss the
validity of our approximations.

1. SDE, inputs, and solution

The starting point of our determination of Wðr2Þ is the
SDE for the ghost-gluon scattering kernel, Hμνðr; q; pÞ,
shown in Fig. 12, which is truncated at the one-loop dressed
level, retaining only diagrams (d1) and (d2). In the Landau
gauge it is immediate to factor out of these two diagrams
the ghost momentum q, in order to obtain Kμναðr; q; pÞ, in
accordance with Eq. (3.16). Finally, recalling Eq. (3.18),
Wðr2Þ is obtained by isolating the gμνrα form factor of
Kμναðr; 0;−rÞ and using Eq. (4.11).
Since a detailed derivation and renormalization of the

Wðr2Þ equation has been carried out in Sec. 6 of Ref. [108],
here we only collect the main results. Specifically, we
obtain the general expression

Wðr2Þ ¼ W1ðr2Þ þW2ðr2Þ; ðB1Þ

FIG. 11. The three-gluon vertex form factors used in the BSE system: X1ðq2; r2; 2π=3Þ (top left), qrX3ðq2; r2; 2π=3Þ (top right),
q2r2Y1ðq2; r2; 2π=3Þ (bottom left), and qrY4ðq2; r2; 2π=3Þ (bottom right).
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where W1 and W2 denote the contributions from diagrams (d1) and (d2) of Fig. 12, respectively, given by

W1ðr2Þ ¼ −
ig2CAZ̃1

6

Z
k
Δðk2ÞDðk2ÞDðt2ÞB1ðt; k;−rÞB1ðk; 0;−kÞðr · kÞfðr; kÞ;

W2ðr2Þ ¼ −
ig2CAZ̃1

6

Z
k
Δðk2ÞΔðt2ÞDðt2ÞB1ðt; 0;−tÞrαΓ̄μ

μαð−r; k; tÞ; ðB2Þ

where

fðr; kÞ ≔ 1 −
ðk · rÞ2
k2r2

; ðB3Þ

and Γ̄ is defined in Eq. (A2). Note the appearance in
Eq. (B5) of Z̃1, defined below Eq. (3.16), which imple-
ments the renormalization of the SDE in the asymmetric
MOM scheme [108].
To express Eq. (B1) in Euclidean space, we use spherical

coordinates and the kinematic variables x, y and u defined

above Eq. (A4). Then, using the Ball-Chiu tensor basis of
Eq. (A1) for the three-gluon vertex, we obtain

WðxÞ ¼ W1ðxÞ þW2ðxÞ; ðB4Þ

with

W1ðxÞ ¼ λZ̃1

Z
∞

0

dy
ffiffiffiffiffi
xy

p
ΔðyÞFðyÞB1ðy; 0; 0Þ

Z
π

0

dϕcϕs4ϕ
FðuÞ
u

B1ðu; y; χÞ;

W2ðxÞ ¼ −2λZ̃1

Z
∞

0

dy y
ffiffiffiffiffi
xy

p
ΔðyÞ

Z
π

0

dϕs4ϕΔðuÞB1ðu; 0; 0Þ
FðuÞ
u2

Kðx; y; uÞ; ðB5Þ

where λ is defined in Eq. (A5), χ in Eq. (A6), and we define the kernel Kðx; y; uÞ as

Kðx; y; uÞ ≔ ffiffiffiffiffi
xy

p ðc2ϕ þ 2ÞX1 þ ðy − cϕ
ffiffiffiffiffi
xy

p ÞcϕX4 þ ðx − cϕ
ffiffiffiffiffi
xy

p ÞcϕX7 − 3cϕxyX3

− cϕyuX6 − cϕxuX9 þ
1

2
cϕxyuð3Y1 þ Y2 þ Y3Þ − u

ffiffiffiffiffi
xy

p
Y4; ðB6Þ

where, again, Xi ≡ Xiðx; y; π − ϕÞ and Yj ≡ Yjðx; y; π − ϕÞ.

Using the Bose symmetry relations involving permuta-
tions of arguments of the Xi and Yi, given by Eqs. (3.7) to
(3.10) of [147], it is possible to show that Kðx; y; uÞ is
symmetric under the exchange of x ↔ y.
Then, for the gluon propagator Δðr2Þ and the ghost

dressing function Fðr2Þ we use the fits presented in
Appendix C, while for the vertex form factors, B1, Xi,

and Yi we use the same inputs employed for the solution
of the BSE of Eq. (A4). Note that, as mentioned in
Appendix C, all inputs are renormalized within the “asym-
metric” MOM scheme, at the renormalization point
μ ¼ 4.3 GeV, for which αs ¼ 0.27.
With these ingredients, we obtain for Wðr2Þ the blue

continuous line shown in the right panel of Fig. 13. The blue

FIG. 12. The SDE satisfied by the ghost-gluon scattering kernel, Hμνðr; q; pÞ.
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band around it corresponds to an error propagated from the
uncertainty in the latticeLsgðr2Þ, through the same procedure
explained in item (ii) of Sec. A.
Given that Wðr2Þ is one of the main ingredients in the

analysis of Eq. (4.12), it is important to consider in more
detail the uncertainty in our SDE determination of this
function. It turns out that the contribution W1ðr2Þ of
Eq. (B5) is negligible in comparison to W2ðr2Þ (see
Fig. 7 of [108]), except for r < 0.5 GeV, where W2ðr2Þ
decreases significantly. Furthermore, diagram (d3) of Fig. 12,
with the four-particle correlation function Γμσ nested in it, is
known to affect the ghost-gluon vertex only by 2% [148];
thus, its omission is expected to have an insignificant effect
on Wðr2Þ. Therefore, the main uncertainty originates from
the termW2ðr2Þ of Eq. (B5), and is related to our incomplete
knowledge of the form factors Xi and Yi for general
kinematics.
In this regard, an examination of the integrand ofW2ðr2Þ

in Eq. (B5) shows that this contribution is dominated by the
projection Lsgðr2Þ of the full three-gluon vertex that it
contains. In turn, this observation suggests that the SDE
determination of Wðr2Þ should be fairly accurate provided
that the ansatz employed for the general kinematics three-
gluon vertex reproduces in the soft-gluon limit the Lsgðr2Þ
obtained on the lattice [106].

2. A closer look at the SDE kernel

To elucidate this last point, denote by Iðx; y;ϕÞ the
integrand of W2ðxÞ in Eq. (B5), i.e.,

Iðx; y;ϕÞ ≔ s4ϕy
ffiffiffiffiffi
xy

p
ΔðyÞΔðuÞFðuÞ

u2
B1ðu; 0; 0ÞKðx; y; uÞ:

ðB7Þ

Then, since FðuÞ and, especially, ΔðuÞ are decreasing
functions of u, the term ΔðuÞFðuÞ=u2 in the second line of
Eq. (B7) causes the Iðx; y;ϕÞ to decrease rapidly at large u.
Hence, W2ðxÞ should be dominated by the small u region
of its integrand.
Next, recalling that u ¼ xþ y − 2

ffiffiffiffiffi
xy

p
cϕ, we note that

u ¼ 0 occurs when y ¼ x and ϕ ¼ 0 simultaneously. Also,
we emphasize that, in spite of the presence of the factor u2

in the denominator, Eq. (B7) is finite at u ¼ 0, due to the
vanishing of s4ϕ when ϕ ¼ 0.
In the left panel of Fig. 13 we plot Iðx; y;ϕÞ for

x ¼ 1 GeV2 and general y and ϕ, using the general
kinematics Xi and Yi of Fig. 11 in the evaluation of
Kðx; y; uÞ. There we confirm that Iðx; y;ϕÞ is largest
around y¼ x¼ 1GeV2 and ϕ ¼ 0, decaying rapidly to
zero at large u. Other values of x lead to similar surfaces,
with pronounced peaks at y ¼ x.
Due to the sharply peaked structure of Iðx; y; uÞ, one

expects that the value of the integral defining W2ðxÞ in
Eq. (B5) should depend mainly on the maximum value of
Iðx; y; uÞ. To determine the value of this maximum, we
expand Eq. (B7) around y ¼ x, and finally around ϕ ¼ 0.5

To this end, first note that

lim
ϕ→0
y→x

�
s4ϕ
u2

�
¼ 1

x2
: ðB8Þ

The limit of the other terms in Eq. (B7) as u → 0 is
straightforward, leading to

FIG. 13. Left: integrand ofW2ðxÞ, Iðx; y;ϕÞ, given by Eq. (B7), for x ¼ 1 GeV2. Note that its maximum occurs when y is first set to
y ¼ x ¼ 1 GeV and then ϕ ¼ 0, corresponding to u ¼ 0. Iðx; y;ϕÞ is intensely peaked around the maximum, dropping rapidly to zero
away from it. Right: comparison of Wðr2Þ, obtained with Eq. (B4) (blue solid line), to Wsgðr2Þ, obtained with the replacement (B12)
into Eq. (B4) (purple dot-dashed line). The bands correspond to propagated error from the lattice Lsgðr2Þ of [106].

5The limit of Iðx; y;ϕÞ as u → 0 is path dependent, vanishing
if ϕ ¼ 0 is set first; however, we are interested in its maximum,
which occurs when y ¼ x is set first, and ϕ ¼ 0 after, as is clear
from Fig. 13.
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lim
ϕ→0
y→x

Iðx; y; uÞ ¼ 3Δð0ÞFð0ÞB1ð0; 0; 0ÞxΔðxÞ

× ½X1ðx; x; πÞ − xX3ðx; x; πÞ�; ðB9Þ

which, after using Eq. (A10) becomes

lim
ϕ→0
y→x

Iðx;y;uÞ¼3Δð0ÞFð0ÞB1ð0;0;0ÞxΔðxÞLsgðxÞ: ðB10Þ

Given that the Xi employed reproduce LsgðxÞ when the
combination in Eq. (A10) is formed, the above consid-
erations indicate that our result for Wðr2Þ should be rather
accurate. Essentially W2ðxÞ appears dominated by the
“slice” that corresponds to Lsgðr2Þ, with little or no effect
from all other kinematic configurations.

3. A special ansatz for the three-gluon vertex

To confirm this hypothesis explicitly, we computeWðr2Þ
using a simpler ansatz for the three-gluon vertex, which
also reproduces the limit given in Eq. (B10). Specifically,
we substitute the full three-gluon vertex appearing in the
second line of Eq. (B2) by

Γ̄μ
μαð−r; k; tÞ → Γ̄0

μ
μαð−r; k; tÞL̄sgðr2; k2Þ;

L̄sgðr2; k2Þ ¼
1

2
½Lsgðr2Þ þ Lsgðk2Þ�; ðB11Þ

where Γ̄αμν
0 ðq; r; pÞ is the tree-level equivalent of the

Γ̄αμνðq; r; pÞ, defined in Eq. (3.3). This ansatz amounts
to substituting into Eq. (B6) X1 ¼ X4 ¼ X7 ¼ L̄sgðr2; k2Þ,
with all other Xi and Yi set to zero. With this approxima-
tion, W2ðxÞ is still given by Eq. (B5), but with Kðx; y; uÞ
replaced by

Kðx; y;uÞ→Ksgðx; y;uÞ ¼ ½ ffiffiffiffiffi
xy

p ðc2ϕ þ 2Þ þ ucϕ�L̄sgðx; yÞ:
ðB12Þ

Then, substituting Eq. (B12) into Eq. (B7) it is straightfor-
ward to show that the limit in Eq. (B10) is exactly
reproduced.6

TheWðr2Þ that is obtained through the use of Eq. (B12),
denoted byWsgðr2Þ, is shown as the purple dot-dashed curve
in the right panel of Fig. 13, where it is compared to the result
obtained from Eq. (B4) using the general kinematics Xi and
Yi (blue solid line). The purple band around Wsgðr2Þ
corresponds to propagated statistical errors in the Lsgðr2Þ

of [106], obtained by implementing in Eq. (B11) the
substitution Lsgðr2Þ → L�

sgðr2Þ [see Eq. (C13)].
In the right panel of Fig. 13 we see that the two

approximations for Wðr2Þ agree within the error bands,
except for a small region around 3.5 GeV. This result
indicates that the error in the latticeLsgðr2Þ ismore important
than the detailed general kinematics structure of the full
three-gluon vertex, provided the limit in Eq. (B10) is
respected.

APPENDIX C: FITS FOR LATTICE INPUTS

For the gluon and ghost propagators, as well as the three-
gluon vertex projection Lsgðr2Þ, we employ fits to lattice
data [22,103,106,130], appropriately extrapolated to the
continuum limit. The fitting functions used incorporate a
number of features expected on physical grounds, particu-
larly their asymptotic behaviors for small and large
momenta. In particular:

(i) In the UV, they reduce to the one-loop resummed
behaviors dictated by renormalization-group argu-
ments, namely

lim
r2→∞

Δ−1ðr2Þ ¼ r2Lδ
UVðr2Þ;

lim
r2→∞

F−1ðr2Þ ¼ Lγ
UVðr2Þ;

lim
r2→∞

Lsgðr2Þ ¼ Lδ−γ
UV ðr2Þ; ðC1Þ

where we have defined LUVðr2Þ ¼ ω ln ðr2=Λ2Þ,
with ω ¼ 11CAαs=ð12πÞ. The anomalous dimen-
sions are given by δ ¼ 13=22 and γ ¼ 9=44.

(ii) Lsgðr2Þ and the derivative of the gluon propagator
diverge logarithmicaly at the origin, i.e.,

lim
r2→0

Lsgðr2Þ ¼ l ln
�
r2

μ2

�
;

lim
r2→0

½Δ−1ðr2Þ�0 ¼ d ln

�
r2

μ2

�
; ðC2Þ

with l and d dimensionless constants.
(iii) The Cðr2Þ obtained from the BSE is finite at the

origin [79,90,91,93]. On the other hand, the Lsgð0Þ
and ½Δ−1ð0Þ�0 appearing in Eq. (4.12) diverge as
given by Eq. (C2). Moreover, it can be shown that
Wðr2Þ has the asymptotic behavior,

lim
r2→0

Wðr2Þ ¼ Z̃1wΔð0Þr2 ln
�
r2

μ2

�
; ðC3Þ

with w a dimensionless constant, such that the
combination Wðr2Þ=r2 in Eq. (4.12) is also loga-
rithmicaly divergent at the origin. Consequently,
consistency of Eqs. (4.12), (C2), and (C3) with

6Any combination of the form L̄sgðx; yÞ ¼ bLsgðxÞþð1 − bÞLsgðyÞ instead of Eq. (B11) preserves Eq. (B10). The
particular form used in (B11) has the advantage of preserving the
symmetry of Kðx; y; uÞ under the exchange of x ↔ y. We have
explicitly checked that the extreme cases b ¼ 0 and b ¼ 1 lead to
results that are nearly identical to those obtained with b ¼ 1

2
,

shown in Fig. 13.
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the BSE prediction for Cð0Þ requires that all these
logarithmic divergences cancel. Specifically, we
demand that

l − Fð0ÞZ̃1ðwþ dÞ ¼ 0: ðC4Þ

(iv) We adopt the asymmetric MOM renormalization
scheme [106–108,108], which imposes that

Δ−1ðμ2Þ¼ μ2; Fðμ2Þ¼ 1; Lsgðμ2Þ¼ 1; ðC5Þ

and we take the renormalization point to be
μ ¼ 4.3 GeV. The fits for the lattice ingredients
are all required to reduce exactly to the above values
at μ. In order to incorporate all the above features,
the fitting functions have rather elaborate forms.

Starting with Fðr2Þ, an accurate fit to the lattice data is
obtained with

F−1ðr2Þ ¼ Aγðr2Þ þ Rðr2Þ; ðC6Þ

where Aðr2Þ,

Aðr2Þ ≔ 1þ ω ln

�
r2 þ η2ðr2Þ
μ2 þ η2ðr2Þ

�
; ðC7Þ

with

η2ðr2Þ ¼ η21
1þ r2=η22

; ðC8Þ

while Rðr2Þ is a combination of rational functions,

Rðr2Þ ¼ b0 þ b21r
2

1þ ðr2=b22Þ þ ðr2=b23Þ2

−
b0 þ b21μ

2

1þ ðμ2=b22Þ þ ðr2=b23Þ2
: ðC9Þ

Note that Rðr2Þ vanishes quickly at infinity, and that
Rðμ2Þ ¼ 0 and Aðμ2Þ ¼ 1, enforcing the renormalization

condition in Eq. (C5). Moreover, while Aðr2Þ saturates to a
constant at the origin, in the UV it recovers the perturbative
logarithm, since η2ðr2Þ → 0 at large r2, such that

lim
r2→∞

Aðr2Þ ¼ LUVðr2Þ; ðC10Þ

where the function LUVðr2Þ was defined in Eq. (C1)
with Λ2 ¼ μ2e−1=ω.
Turning to Δðr2Þ, a form that satisfies all the required

conditions is

Δ−1ðr2Þ ¼ r2
�

d
1þ ðr2=κ2Þ ln

�
r2

μ2

�
þ Aδðr2Þ

�
þ ν2Rðr2Þ;

ðC11Þ

where the unprotected logarithm in the first term in brackets
describes the IR divergence of ½Δ−1ð0Þ�0 and drops out in the
UV, while Aðr2Þ and Rðr2Þ are given by Eqs. (C7) and (C9).
The parameter ν ¼ 1 GeV serves only to make the dimen-
sionality of R consistent with that of Δ−1ðr2Þ, without
changing the dimensions of the σi parameters in Eq. (C9).
As for Lsgðr2Þ we use the fitting form

Lsgðr2Þ¼
l

1þðr2=κ2Þ ln
�
r2

μ2

�
þAδ−γðr2ÞþRðr2Þ; ðC12Þ

with Aðr2Þ and Rðr2Þ given by Eqs. (C7) and (C9),
respectively.
Note that although in Eqs. (C6), (C11), and (C12) we use

the same names for the parameters κ2, η2i , b0, and b2i , for
economy, they are allowed to assume different values for
each of the functions Fðr2Þ, Δðr2Þ, and Lsgðr2Þ.
Next, the coefficient l in Eq. (C2), characterizing the rate

of divergence of Lsgð0Þ, has been determined from lattice
results to be l ¼ 0.11 [106], and is held fixed during the
fitting procedure. In contrast, the rate of divergence d of
½Δ−1ðr2Þ�0 is not accurately determined from the lattice,
since the derivative is sensitive to the larger lattice noise in
Δðr2Þ in the deep IR. Moreover, the coefficient w in

FIG. 14. Left: lattice data of [22,130] (points), and the fit of Eq. (C11) (blue solid line), for the gluon propagator, Δðr2Þ. Center:
derivative ½Δ−1ðr2Þ�0, obtained through differentiation of Eq. (C11). Right: lattice data (points) of [103], and the fit of Eq. (C6) (blue
solid), for the ghost dressing function, Fðr2Þ.
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Eq. (C3) depends on the ingredients, including Δðr2Þ, used
in the SDE evaluation of Wðr2Þ through Eqs. (B4)
and (B5). As such, in order to enforce Eq. (C4), w and
d have to be varied simultaneously, until the cancellation of
the divergences has been reached to acceptable precision.
The fitting parameters resulting for Δðr2Þ, Fðr2Þ, and

Lsgðr2Þ are given in Table II and its caption. The resulting
curves for Δðr2Þ and Fðr2Þ are compared to the lattice data
of [22,130] in Fig. 14, where we also show ½Δ−1ðr2Þ�0. The
lattice data of [106] and corresponding fit for Lsgðr2Þ are
shown as the points and black continuous curve, respec-
tively, in the right panel of Fig. 6.
Comparing the curve of Lsgðr2Þ in Fig. 6 to that of

½Δ−1ðr2Þ�0 in Fig. 14, we see that ½Δ−1ðr2Þ�0 is responsible
for reproducing the overall shape of Lsgðr2Þ in the WI of
Eq. (4.12), with the other ingredients providing minor
quantitative modulations.

Now, it is clear from Figs. 6 and 14 that the lattice
quantity with the largest error in the present analysis is
Lsgðr2Þ. In order to propagate the error of Lsgðr2Þ to other
quantities that depend on it, we make a band around
Lsgðr2Þ, delimited by

L�
sgðr2Þ ¼ Lsgðr2Þ �

δ1
1þ ðr2=δ22Þ2

; ðC13Þ

with parameters δ1 ¼ 0.08 and δ22 ¼ 5 GeV2.
Lastly, for the value of αs in the asymmetric MOM

scheme, which appears in the SDE for Wðr2Þ given by
Eq. (B4), we use the value αs ¼ 0.27 determined by lattice
simulations [101,149]. For the Fð0Þ appearing in Eq. (4.12)
we obtain from Eq. (C6) and Table II the valueFð0Þ ¼ 2.88.
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