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We discuss the amplitude of the B → lþl−l0ν0 decays and the differential decay rate d2Γ=dq2dq02, q the
momentum of the lþl− pair emitted from the electromagnetic vertex and q0 the momentum of the l0ν0 pair
emitted from the weak vertex. For the relevant form factors, we construct dispersion representations in q2,
which consistently take into account the Ward identity constraints at q2 ¼ 0 and the contributions of
light vector resonances. This allows a consistent description of the form factors in the range 0 < q2 ≤
1 GeV2 that saturates around 99% of the decay rate. The differential decay rate behaves at small q2 as
dΓðB → lþl−l0ν0Þ=dq2 ∝ 1=q2 in the limit m0

l ¼ 0 but contains also more singular contribution of order
m02

l =q
4, which we take into account. For the case m0

l ≤ ml, the latter may be neglected, and one obtains a
mild logarithmic dependence of ΓðB → lþl−l0ν0Þ on ml. For the case ml ≪ m0

l, however, the m
02
l =q

4 terms
dominate the decay rate, leading to ΓðB → lþl−l0ν0Þ ∼m02

l =m
2
l . We find the following features of the four-

lepton B decays: i) The decay rates ΓðB → μþμ−ðμνμ; eνeÞÞ are fully dominated by the region of light

vector resonances q2 ≃M2
ρ;M2

ω. ii) The decay rate ΓðB → eþe−eνeÞ receives comparable contributions

from the region near q2 ∼ 4m2
e and from the resonance region. iii) One finds a strong enhancement of the

decay rate ΓðB → eþe−μνμÞ ∼m2
μ=m2

e, which is dominated by the region q2 ∼ 4m2
e due to the terms

Oðm2
μ=q4Þ in the differential distribution.

DOI: 10.1103/PhysRevD.105.014028

I. INTRODUCTION

In this paper, we revisit the amplitude B → γ�l0ν0: we
discuss constraints imposed by gauge invariance, construct
dispersion representations for the corresponding form
factors, and obtain predictions for the differential distribu-
tions in the B-meson decays into four leptons in the
final state, B → lþl−l0ν0. The latter reactions are being
studied experimentally [1–4], thus requiring a proper
theoretical understanding of the B-meson form factors in
two currents. By now, there have been a few theoretical
papers [5–8] in which B decays into two lepton pairs have
been studied.
The B → γ�l0ν0 amplitude (see Fig. 1) may be para-

metrized via Lorenz-invariant form factors as

Tανðq;q0jpÞ¼i
Z

dxeiqxh0jTfje:m:
α ðxÞ;ūð0ÞOνbð0ÞÞgjB̄uðpÞi

¼
X
i

LðiÞ
ανðq;q0ÞFiðq02;q2Þþ…;p¼qþq0;

ð1:1Þ
with q0 the momentum of the weak b → u current and q the
momentum of the electromagnetic current. In Eq. (1.1),
Oν ¼ γν; γνγ5, and je:m:

α . is the conserved electromagnetic
current

je:m:
α ð0Þ ¼ eQbb̄ð0Þγαbð0Þ þ eQuūð0Þγαuð0Þ: ð1:2Þ

The quantities LðiÞ
ανðq; q0Þ represent the transverse Lorents

structures, qαLðiÞ
ανðq; q0Þ ¼ 0, and the dots stand for the

q´B(p)
j e.m.
α

q

Oν
ub

u

q´

q B(p)

j e.m.
α

b

u

b
Oν

FIG. 1. Feynman diagrams describing the amplitude (1.1).
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longitudinal part, which is constrained by the conservation
of the electromagnetic current, ∂αje:m:

α ¼ 0, and the equal-
time commutation relations.
The form factors Fiðq02; q2Þ are complicated functions of

two variables, q02 and q2; the general properties of these
objects in QCD have been studied recently in Ref. [9]. It is
noteworthy that gauge invariance provides essential con-
straints on some of the form factors describing the transition
of the B meson into the real photon, i.e., at q2 ¼ 0 [10–13].
In the past, theoretical analyses focused on a family of

similar reactions, namely, the B → γlþl− and B → γlν
decays (see, e.g., Refs. [14–24]); these processes are
described by the same form factors as four-lepton B decays,
but evaluated at a zero value of one of the momenta
squared. The corresponding form factors depend on one
variable q02, q0 the momentum of the weak current; for
instance, for radiative leptonic decays B → γl0ν0, one needs
the form factors Fiðq02; q2 ¼ 0Þ.
The four-lepton decay of interest, B → lþl−l0ν0, requires

the form factors Fiðq02; q2Þ for 0 < q2; q02 < M2
B. The

dependence of the form factors on the variable q02 can
be predicted reasonably well: there are no hadron reso-
nances in the full decay region 0 < q02 < M2

B, and the q02
dependence of the form factors is determined to a large
extent by the influence of the beauty mesons with the
appropriate quantum numbers; all these mesons are heavier
than the B meson and therefore lie beyond the physical
decay region of the variable q02. The calculation of the q2

dependence of the form factors is a much more difficult
task; light vector mesons V ¼ ρ0;ω;… lie in the physical
decay region and should be properly taken into account. At
q2 in the region of light vector meson resonances, the form
factors cannot be obtained directly in perturbative Quantum
Chromodynamics [9]. Here, considerations based on the
explicit account of these light vector resonances—includ-
ing their finite width effects—are mandatory; the resonance
contributions of interest may be unambiguously expressed
via the weak B → V form factors. Then, at q2 ¼ 0, gauge
invariance constrains the values of the form factors. These
features allow us to calculate the form factors Fiðq02; q2Þ in
the region 0 < q2 ≤ 1–2 GeV2, which dominates the four-
meson decay rates, and to obtain consistent predictions for
the latter.
Let us now turn to the differential distributions. After

summing over the polarizations of the final leptons, the
square of the amplitude of the B → lþl−l0ν0 decay may be
written in the form

jAj2 ¼ jAj20 þ jAj2m02
l
þ…; ð1:3Þ

where jAj20 corresponds to the massless leptons,
ml ¼ m0

l ¼ 0, jAj2m02
l
is the term proportional to m02

l which

provides the most singular behavior of the amplitude, and
the dots stand for those terms which yield negligible

contributions to the differential and to the integrated decay
rate compared to jAj20 and may be safely omitted. Among
the terms given by the dots in Eq. (1.3), one finds also the
terms Oðm2

l =q
4Þ [q4 ≡ ðq2Þ2], but the contribution of the

latter both to the differential and to the integrated decay
rates may be neglected.
Because of the gauge-invariance constraints on the form

factors, one finds

jAj20 ∝ 1=q2: ð1:4Þ

This property was already emphasized in Ref. [8], in which
it is pointed out that the naive behavior 1=q4, reported
earlier in Ref. [6], is unphysical. Nevertheless, we find it
useful to present here an explicit derivation of the con-
straints on the amplitude imposed by gauge invariance.
The term jAj20 yields the contribution to the integrated decay
rate ΓðB → lþl−l0ν0Þ that has a mild logarithmic depend-
ence ∝ logðm2

l Þ.
The term jAj2m02

l
, for which we derive an explicit

expression, is proportional to m02
l but has a more singular

behavior at q2 → 0 compared to jAj20:

jAj2m02
l
∝ m02

l =q
4: ð1:5Þ

The jAj2m02
l
contribution to the differential decay rate is

negligible compared to the contribution of jAj20 in the full
kinematical region of B decay and may be safely omitted
except for one case: if ml ≪ m0

l, the contribution of jAj2m02
l

dominates over jAj20 in the vicinity of the end point
q2 ¼ 4m2

l . Moreover, in this case, jAj2m02
l
gives the dominant

contribution to the decay rate ΓðB → lþl−l0ν0Þ ∝ m02
l =m

2
l .

We shall demonstrate that these essential qualitative
features of the q2 distribution at small q2 yield important
consequences for the theoretical estimates of the B →
lþl−l0ν0 branching fractions:

(i) The branching fraction BrðB → μþμ−ðμνμ; eνeÞ is
dominated by the region of q2 around the light
vector, resonances whereas the region of small q2

yields a much smaller contribution.
(ii) The branching fraction BrðB → eþe−eνÞ receives

comparable contributions from the resonance region
and the end point region near q2 ¼ 4m2

e.
(iii) The branching fraction BrðB → eþe−μνμÞ is fully

dominated by the end point region q2 ¼ 4m2
e.

It is noteworthy that in all these cases the region q2 >
1 GeV2 contributes less than 1% of the decay rate.

II. CONSTRAINTS ON THE TRANSITION
FORM FACTORS

We now discuss the requirements imposed by the
electromagnetic gauge invariance on the B → γ� transition

MIKHAIL A. IVANOV and DMITRI MELIKHOV PHYS. REV. D 105, 014028 (2022)

014028-2



amplitudes hγ�ðqÞjūfγν; γνγ5gbjB̄uðpÞi induced by the
vector and the axial-vector charged currents.1 The corre-
sponding form factors are functions of two variables, q2

and q02, where q0 is the momentum of the weak b → u
current and q is the momentum of the electromagnetic
current, and p ¼ qþ q0. Gauge invariance provides con-
straints on some of the form factors describing the
transition of Bu to the real photon, q2 ¼ 0.

A. Form factors of the vector weak current

In case of the vector charged quark current ūγνb, the
gauge-invariant amplitude contains one Lorentz structure
and one dimensionless form factor FVðq02; q2Þ:

Tα;ν ¼ i
Z

dxeiqxh0jTfje:m:
α ðxÞ; ūγνbð0ÞgjB̄uðpÞi

¼ eϵναq0q
FVðq02; q2Þ

MB
: ð2:1Þ

The amplitude is transverse, qαTα;ν ¼ 0, and contains
no contact term. It is free of the kinematical singularities,
so gauge invariance provides no constraints on
FVðq02; q2 ¼ 0Þ. The contribution of the vector charged
quark current to the amplitude of the B → γ�l0ν0 decay
reads

AvectorðB→ γ�l0ν0Þ

¼ e
GFffiffiffi
2

p Vubl̄0γνð1− γ5Þν0ε�αðqÞϵναq0q
FVðq02;q2Þ

MB
: ð2:2Þ

B. Form factors of the axial-vector weak current

For the axial-vector current, ūγνγ5b, the corresponding
amplitude is more complicated; it contains three indepen-
dent gauge-invariant structures and three form factors,
f1Aðq02; q2Þ, f2Aðq02; q2Þ, and f3Aðq02; q2Þ, and, in addition,
it has the contact term which is fully determined by the
conservation of the electromagnetic current, ∂αje:m:

α ¼ 0:

T5
α;ν ¼ i

Z
dxeiqxh0jTfje:m:

α ðxÞ; ūγνγ5bð0ÞgjB̄uðpÞi

¼ ie

�
gαν −

qαqν
q2

�
q0qf1A þ ie

�
q0α −

q0q
q2

qα

�

× fpνf2A þ qνf3Ag þ ieQBfB
qαpν

q2
: ð2:3Þ

Here,QB ≡QB̄u
¼ Qb −Qu is the electric charge of the B̄u

meson, and fB > 0 is defined according to

h0jūγνγ5bjB̄uðpÞi ¼ ifBpν: ð2:4Þ

The last term in (2.3) is just the longitudinal contact term
mentioned above. Let us briefly recall the standard way this
term is obtained (see Ref. [25] for details): we calculate
qαT5

α;ν, represent qαeiqx ¼ −i ∂
∂xα eiqx, and perform parts

integration, moving the derivative to the T product. Making
use of the conservation of the electromagnetic current
∂αje:m:

α ¼ 0, the only nonzero contribution comes from
the differentiation of the θ functions defining the T product,
leading to the equal-time commutator. In the end, we obtain
[Q̂ is the time-independent electric charge operator,
Q̂ ¼ R

d3xj0ðx0; x⃗Þ]

qαT5
α;ν ¼ −h0j½Q̂; ūγνγ5bð0Þ�jBðpÞi ¼ iQBfBpν: ð2:5Þ

This relation does not determine the longitudinal Lorentz
structure in the unique way; one can, e.g., choose this
structure in the form pαpν=pq [10,11] or in the form
qαpν=q2 [13]. However, only the latter form, which is
implemented in Eq. (2.3), corresponds to the longitudinal
part in the form of a contact term.2 Obviously, different
choices of the longitudinal part lead to redefinitions of the
form factors fiA in the transverse part of the amplitude [27].
The choice of the longitudinal structure in the form of a
contact term qαpν=q2 is suggested by the structure of the
quark electromagnetic vertex and is preferable with respect
to the analytic properties of the form factors fiA [11].
The projectors in Eq. (2.3) contain kinematical singu-

larities at q2 ¼ 0. These singularities, however, should not
be the singularities of the physical amplitude, as the
spectrum of physical states does not contain a massless
vector particle in the q2 channel; recall that the absence of
massless vector mesons is a fundamental feature of QCD.
Therefore, as the consequence of gauge invariance and the
property of the spectrum of hadrons in QCD, we obtain the
following relations between the form factors at q2 ¼ 0:

½f1Aðq02; q2Þ þ f3Aðq02; q2Þ�q2¼0 ¼ 0; ð2:6Þ

½q0qf2Aðq02; q2Þ�q2¼0 ¼ QBfB: ð2:7Þ

To implement these constraints at q2 ¼ 0, we write down
dispersion representations for the form factors f1A, f2A, and
f3A in the variable q2 with one subtraction and determine
the subtraction terms to satisfy (2.6) and (2.7). Such
representations have the following form:

1Appendix A provides the relations between the amplitudes
containing Bq and B̄q mesons.

2By definition, a contact term is a quantity represented by a δ
function and its derivatives in configuration space; therefore,
qαpν=q2 is a contact term, whereas pαpν=pq is not a contact term
according to the standard definition. For further details, we refer
to Ref. [26].
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f1Aðq02;q2Þ¼ ξðq02Þþq2
Z

ds
πsðs−q2Þρ1Aðq

02;sÞ; ð2:8Þ

f2Aðq02; q2Þ ¼
2QBfB
M2

B − q02
þ q2

Z
ds

πsðs − q2Þ ρ2Aðq
02; sÞ;

ð2:9Þ

f3Aðq02; q2Þ ¼ −ξðq02Þ þ q2
Z

ds
πsðs − q2Þ ρ3Aðq

02; sÞ:

ð2:10Þ

The form factor ξðq02Þ is related to the form factor
of the B → γl0ν0 transition, and for the spectral densities
ρAiðq02; sÞ, we will construct phenomenological

expressions based on the contributions of the light vector
resonances ρ0 and ω.
Next, we should add the bremsstrahlung contribution

(i.e., the photon emitted from the lepton l0 in the final state)
that in the limit of a massless lepton ml0 ¼ 0 reads

ABremsðB→ γ�l0ν0Þ

¼ ieQl
GFffiffiffi
2

p Vubl̄0γνð1− γ5Þν0ε�αðqÞfBð−gανÞ; Ql ¼QB:

ð2:11Þ

The axial part of weak-transition amplitude B → γ�l0ν0 then
takes the form

AaxialðB→ γ�l0ν0Þ ¼ ie
GFffiffiffi
2

p Vubl̄0γνð1− γ5Þν0ε�αðqÞ
��

gαν−
qαqν
q2

�
q0qf1Aþ

�
q0α−

q0q
q2

qα

�
½pνf2Aþqνf3A�þQBfB

qαpν

q2

�

þ ieQB
GFffiffiffi
2

p Vubl̄0γνð1− γ5Þν0ε�αðqÞfBð−gανÞ; ð2:12Þ

the last term being the bremsstrahlung contribution (2.11).
The amplitude may be simplified by taking into account that qαε�αðqÞ ¼ 0, yielding

AaxialðB → γ�l0ν0Þ ¼ ie
GFffiffiffi
2

p Vubl̄0γνð1 − γ5Þν0ε�αðqÞ

×

�
ðgανq0q − q0αqνÞ

�
f1A −

QBfB
q0q

�
þ q0αqν

�
f2A þ f3A þ f1A −

QBfB
q0q

�
þ q0αq0νf2A

�
: ð2:13Þ

Introducing dimensionless form factors F1A;2A and F0
2A,

F1Aðq02; q2Þ
MB

¼ f1Aðq02; q2Þ −
QBfB
q0q

;

F2Aðq02; q2Þ
MB

¼ f2Aðq02; q2Þ þ f3Aðq02; q2Þ þ f1Aðq02; q2Þ −
QBfB
q0q

;

F0
2Aðq02; q2Þ

MB
¼ f2Aðq02; q2Þ; ð2:14Þ

we find the final expression for the contribution of the axial-vector part of the quark current, ūγνγ5b, to the amplitude

AaxialðB → γ�l0ν0Þ ¼ ie
GFffiffiffi
2

p Vubl̄0γνð1 − γ5Þν0ε�αðqÞ
�
ðgανq0q − q0αqνÞ

F1A

MB
þ q0αqν

F2A

MB
þ q0αq0ν

F0
2A

MB

�
: ð2:15Þ

The contribution of the Lorentz structure q0αq0ν in (2.15) is
proportional to m0

l but generates the most singular,
∼m02

l =ðq2Þ2, contribution to the differential decay rate
and the enhanced, ∼m02

l =m
2
l , contribution to the integrated

decay rate; see Sec. IV. The Lorentz structure q0αq0ν can be
neglected in most of the cases, except for the caseml ≪ m0

l.

Notice that, as follows from Eqs. (2.6) and (2.7), the
form factors F2A and F0

2A for the real photon in the final
state satisfy the conditions (see also Ref. [28])

F2Aðq02; q2 ¼ 0Þ ¼ 0; ð2:16Þ
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F0
2Aðq02; q2 ¼ 0Þ ¼ 2QBfBMB

M2
B − q02

: ð2:17Þ

The conditions (2.16) are (2.17) are crucial, as they
determine the behavior of the differential distributions in
B → lllν at small q2. For our parametrization of the
amplitude in the form (2.3), the condition (2.16) comes
out as a direct consequence of Eqs. (2.6) and (2.7). Physics,
of course, does not depend on the parametrization of the
amplitude, but we find the parametrization (2.3) particu-
larly convenient for the analysis of B decays.

III. B → γl0ν0 TRANSITION

We now illustrate the way the well-known formulas for
the amplitude and the differential distribution in the
leptonic radiative B decay, B → γl0ν0, emerge.
Since, as the consequence of gauge invariance,

F2Aðq02; q2 ¼ 0Þ ¼ 0, only the form factors F1A and FV
contribute to the amplitude for the real photon and the
massless lepton in the final state, and one finds the B →
γl0ν0 amplitude,

AðB→γl0ν0Þ¼ ie
GFffiffiffi
2

p Vubl̄0γνð1−γ5Þν0ε�αðqÞ

×

�
ðgανq0q−q0αqνÞ

FAðq02Þ
MB

þiϵναq0q
FVðq02Þ
MB

�
;

ð3:1Þ

where FAðq02Þ≡F1Aðq02;q2¼0Þ and FVðq02Þ≡FVðq02;
q2¼ 0Þ.
The differential decay rate (for the massless lepton

ml0 ¼ 0) takes a simple form:

dΓðB→ γl0ν0Þ
dEγ

¼G2
FV

2
ub

48π2
M4

Bαe:m:x3γð1−xγÞðjFAj2þjFV j2Þ;

xγ ¼ 2Eγ=MB; ð3:2Þ

where MBEγ ¼ pq ¼ q0q and Eγ is the photon energy in
the B-meson rest frame.

IV. B− → l + l − l0 − ν̄0 TRANSITION

The amplitude of the B → lll0ν0 transition is readily
obtained from the amplitudes of the B → γ�l0ν0 transitions
induced by the vector and the axial quark current by
performing the replacement

ε�αðqÞ → −e
l̄γαl
q2

; ð4:1Þ

so we obtain

AðB → lll0ν0Þ ¼ ie2
GFffiffiffi
2

p Vub · l̄γαl · l̄0γνð1 − γ5Þν0
1

q2

×

�
ðgανq0q − q0αqνÞ

F1A

MB
þ q0αqν

F2A

MB

þ q0αq0ν
F0
2A

MB
þ iϵναq0q

FV

MB

�
: ð4:2Þ

By summing over the lepton polarizations and integrating
over the phase space of the lþl− pair and the l0ν0 pair, one
obtains the explicit analytic expression for the double
differential distribution. Neglecting term proportional to
the lepton massesm0

l andml, one obtains (see also Ref. [8])
3

jAj20 ¼
G2

F

2
V2
ub
4

3

8

3

e4

ðq2Þ2
1

M2
B
½2FVF�

V λ̄q
2q02

þ F1AF�
1Af2ðq0qÞ2 þ q2q02gq2q02

þ ðF1AF�
2A þ F�

1AF2AÞλ̄q2q02 þ F2AF�
2Aλ̄

2�; ð4:3Þ

with λ̄≡ ðq0qÞ2 − q2q02 ¼ 1
4
λðM2

B; q
2; q02Þ, where

λða; b; cÞ ¼ ða − b − cÞ2 − 4bc

is the triangle function. The factors 4=3 and 8=3 in Eq. (4.3)
result from the summation over polarizations of massless
leptons coming from the electromagnetic vertex and from
the weak vertex, respectively. It is noteworthy that the
expression in large square brackets behaves at small q2 as
∝ q2 because of the constraint F2ðq02; q2 ¼ 0Þ ¼ 0.
More singular terms ∼1=q4 arise when one considers

the effects of nonzero lepton masses. Most of them
can be safely neglected except for the contribution propor-
tional to m02

l :

jAj2m02
l
¼ G2

F

2
V2
ub
4

3

e4

ðq2Þ2
1

M2
B
½jF0

2Aj24m02
l ðq02 − 4m02

l Þλ̄�:

ð4:4Þ

This term is negligible compared to Eq. (4.3) in the full
kinematical B-decay region except for a close vicinity of
the end point q2 ¼ 4m2

l in the caseml ≪ m0
l. The term (4.4)

leads to a singular ∼m02
l =q

4 contribution to the differential
decay rate and the ∼m02

l =m
2
l contribution to the integrated

decay rate. The latter turns out to dominate the integrated
decay rate in the case ml ≪ m0

l. It is noteworthy that the
relevant form factor at q2 ¼ 0 is fixed by the Ward identity

3Our form factors f1A;2A;3A are related to the form factors used
in Ref. [8] as f1A ¼ F1=q0q, f2A ¼ ðQBfB − q2F4Þ=q0q,
f3A ¼ ð−F1 − q2F6 þ q2F4Þ=q0q. Our form factors F1A;2A are
related to the form factors of Ref. [8] as FA⊥ ¼ q0q

pq F1A,

F̃Ak ¼ −F2A þ q2

pq F1A, and FAk ¼ −F2A − F1A
4q2q02

λ .
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and contains only well-known parameters, Eq. (2.17).
Finally, we write

jAj2 ¼ jAj20 þ jAj2m02
l
þ…; ð4:5Þ

where the dots stand for those terms proportional to the
lepton masses,ml andm0

l, which may be safely neglected in
the full kinematical region.
The double differential distribution then takes the form

(we display separately all numerical factors according to
the definition of the differential distribution):

d2ΓðB→ lll0ν0Þ
dq2dq02

¼ð2πÞ4
2MB

1

ð2πÞ12
πλ1=2ðq2;m2

l ;m
2
l Þ

2q2

×
πλ1=2ðq02;m2

l0 ;0Þ
2q02

πλ1=2ðM2
B;q

2;q02Þ
2M2

B
jAj2:

ð4:6Þ

The kinematical constrains on the variables q2 and q02 come
from the λ functions in Eq. (4.3) and read

4m2
l ≤ q2; m2

l0 ≤ q02;
ffiffiffiffiffi
q2

q
þ

ffiffiffiffiffiffi
q02

q
≤MB: ð4:7Þ

First, let us notice that, because of the gauge-invariance
constraint (2.16), one finds the behavior jAj20 ∝ 1=q2 and
not ∝ 1=ðq2Þ2, as may be naively obtained when the gauge-
invariance constraint is not taken into account. Such terms
in jAj2 lead to a mild logarithmic dependence of the
integrated decay rate on ml. Second, there are terms
∝ m02

l =ðq2Þ2 in jAj2, which emerge from jAj2m02
l
; these terms

are, however, essential only in a specific case ml ≪ m0
l.

They lead to the low-q2 enhancement of the decay rate
as m02

l =m
2
l .

We emphasize that the double differential distribution
d2ΓðB → lþl−l0ν0Þ=dq2dq02 is easily calculable due to the
fact that the leptons emitted from the electromagnetic
vertex and the lepton emitted from the weak vertex have
different flavors; no exchange diagrams emerge in this case,
and one obtains the explicit analytic expression for the
double differential distribution.

V. FORM FACTORS AND THE DIFFERENTIAL
DISTRIBUTIONS

A. Modeling the form factors

The form factors F1A;2Aðq02; q2Þ are obtained from the
form factors f1A;2A;3A, using for the latter the q2-dispersion
representation with one subtraction at q2 ¼ 0, Eqs. (2.8)–
(2.10). The subtraction procedure allows us to incorporate
the constraints imposed by gauge invariance.
Similarly, for the form factor FVðq02; q2Þ, a single-

subtracted dispersion representation in q2 is used: the form

factors FAð0; q02Þ and FVð0; q02Þ should be equal to
each other at the leading order of the double 1=Eγ

(2MBEγ ¼ M2
B − q02) and 1=MB expansions in QCD [15].

To satisfy this requirement, we make a subtraction in
FVðq2; q02Þ at q2 ¼ 0 and add a subtraction term FVðq02Þ.
Furthermore, we assume that the spectral densities are

saturated by the light vector-meson resonances ρ0 and ω in
the q2 channel, and since these resonances emerge in the
physical region of the B-decay of interest, we take into
account the finite-width effects of these resonances. In the
end, we come to the following expressions:

F1Aðq02;q2Þ¼FAðq02Þ−
QBfBMB

q0q

−q2
X

V¼ρ0;ω

�
1

M2
V

2MBðMBþMVÞ
M2

B−M2
V −q02

×
MVfV

M2
V −q2− iΓVðq2ÞMV

AB→V
1 ðq02Þ

�
; ð5:1Þ

F2Aðq02;q2Þ¼−q2MB

X
V¼ρ0;ω

1

M2
V

2MVfV
M2

V −q2− iΓVðq2ÞMV

×

�
MBþMV

M2
B−M2

V −q02
AB→V
1 ðq02Þ− AB→V

2 ðq02Þ
ðMBþMVÞ

�

þQBfB

�
2MB

M2
B−q02

−
2MB

M2
B−q02−q2

�
; ð5:2Þ

FVðq02; q2Þ
¼ FVðq02Þ− q2MB

×
X

V¼ρ0;ω

�
1

M2
V

MVfV
M2

V − q2 − iΓVðq2ÞMV

2VB→Vðq02Þ
MB þMV

�
:

ð5:3Þ

Let us discuss the expressions above:
(i) The form factors FAðq02Þ and FVðq02Þ describe the

B → γl0ν0 transition; they emerge as subtraction
terms at q2 ¼ 0 in the q2-dispersion representations
for the form factors F1A;Vðq02; q2Þ. The form factors
FAðq02Þ and FVðq02Þ are equal to each other at the
leading order of the double 1=Eγ (2MBEγ¼M2

B−q02)
and 1=MB expansions in QCD [15] but differ in the
subleading orders [17,18,20]:

FAðq02Þ ¼ −
QufBMB

2EγλB
þQbfBMB

2Eγmb

þOðQufBMB=E2
γÞ; ð5:4Þ

FVðq02Þ ¼ −
QufBMB

2EγλB
−
QbfBMB

2Eγmb

þOðQufBMB=E2
γÞ: ð5:5Þ
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The magnitude of the form factors FAðq02Þ and
FVðq02Þ is determined to a large extent by the
parameter λB, the inverse moment of the B-meson
light-cone distribution amplitude ϕB [15]. The
value of λB presently has a large uncertainty: for
instance, Ref. [18] makes use of λBð1 GeVÞ ¼
0.35 GeV; the sum-rule estimate of Ref. [16] led
to λBð1GeVÞ¼0.57GeV; Ref. [29] obtained
λBð1 GeVÞ ¼ 0.46� 0.11 GeV; a recent next-to-
leading-order analysis of Ref. [24] reported
λBð1 GeVÞ ¼ 0.36� 0.11 GeV; the results of cal-
culating FAðq02Þ and FVðq02Þ [17] using the
dispersion approach [30] correspond to a relatively
largevalue λBð1 GeVÞ ¼ 0.657 GeV.Obviously, the
uncertainty in the parameter λB dominates the un-
certainty in the differential distributions dΓðB →
lll0ν0Þ=dq2 at small q2.
In Ref. [19], the form factors FAðq02Þ and FVðq02Þ

have been calculated in a broad range 0 < q02 <
25 GeV2 using the dispersion approach of Ref. [30].
It was found that the monopole form (5.4) and (5.5)
describes the results of our calculation for 0 < q02 <
15 GeV2 with a few percent accuracy, whereas
at q02 ∼ 25 GeV2, the monopole formula overesti-
mates the calculated form factors by ∼20%.
Nevertheless, taking into account a large uncertainty
in the present knowledge of the parameter λB, we
find it eligible to use the monopole form (5.4) and
(5.5) in the full kinematically allowed region
of q02 and consider the variation of λB in the
range λBð1 GeVÞ ¼ ð0.5� 0.15Þ GeV.

(ii) In the region 0.4 ≤ q2ðGeV2Þ ≤ 0.9, where light
vector meson resonances show up in the differential
distributions, the form factors of interest cannot be
calculated using perturbative QCD [9]. To calculate
the form factors F1A;2A;Vðq02; q2Þ in this region of q2
and for any q02 appropriate for the four-lepton decay,
we make use of the dispersion representations and
assume [6,19] that they may be saturated by the
intermediate ρ0 andω states in the q2 channel.4 Since
the light neutral vector mesons lie in the physical
decay region of q2, it is necessary to take into account
their finite q2-dependent width ΓVðq2Þ. For a rela-
tively broad ρ meson, the function ΓVðq2Þ takes into
account the effects of the 2π intermediate states; the
appropriate formulas are given in Ref. [31]. In
practical calculations, we use a simplified expression

which takes into account the correct threshold
behavior of the ρ → ππ phase space: Γρ0ðq2Þ ¼
θðq2 − 4m2

πÞð1− 4m2
π=q2Þ3=2=ð1− 4m2

π=M2
ρÞ3=2Γρ0 .

For a narrow ω meson, we take an approximation of
constant width. (This approximation is not fully
theoretically clean; the imaginary part of the propa-
gator of the vector meson should vanish below the
threshold in the corresponding decay channel. This
means that ΓVðq2Þ should vanish below the corre-
sponding light-meson threshold. But for a narrow ω
meson, the effect is tiny). Table I gives the meson
parameters entering the form factors Eqs. (5.1)–(5.3).

Notice that ΓVðq2Þ takes into account the contri-
bution of continuum of light pseudoscalar mesons; in
this way, we effectively take into account the con-
tribution of hadron continuum to the spectral den-
sities of the form factors F1A;2A;Vðq02; q2Þ [31]. In the
end, one finds that the nonresonance q2 region,
q2 ≥ 1.0 GeV2, gives a small contribution to the
decay width of theB → lll0ν0 decay. This agrees with
the expectations of the analysis of Ref. [8].

(iii) The contribution of the light vector mesons V ¼
ρ0;ω to the form factors F1A;2A;Vðq02; q2Þ is unam-
biguous (cf. Ref. [8]) and are expressed via the form
factors AB→V

1 ðq02Þ, AB→V
2 ðq02Þ, and VB→Vðq02Þ de-

scribing the weak decay B → V. In spite of many
efforts to calculate these form factors in a broad
kinematical decay region 0 < q02 < M2

B, our knowl-
edge of these quantities is not very accurate.
Table II presents some selected results for the
relevant form factors: although the central values
of the form factors at q02 ¼ 0 from different ap-
proaches are in reasonable agreement with each

TABLE I. Meson parameters entering the expressions for the
form factors, Eqs. (5.1)–(5.3). Data from Refs. [34,35].

fB (MeV)
ffiffiffi
2

p
f0ρ (MeV) 3

ffiffiffi
2

p
fω (MeV) Γρ0 (MeV) Γω (MeV)

190 216 190 150 8.49

TABLE II. Selected theoretical predictions for the weak form
factors describing B decays into light vector mesons. The form
factors from Refs. [32,36,37] are expected to have a 10%–15%
uncertainty. To obtain the form factors for B− → ρ0 and B− → ω
decays, the numbers given in this table should be multiplied by
the isotopic factor 1=

ffiffiffi
2

p
.

Ref. AB→ρ
1 ð0Þ AB→ω

1 ð0Þ AB→ρ
2 ð0Þ AB→ω

2 ð0Þ VB→ρð0Þ VB→ωð0Þ
[32] 0.26 � � � 0.24 � � � 0.31 � � �
[36] 0.24 0.22 0.22 0.20 0.32 0.29
[37] 0.26 � � � 0.24 � � � 0.28 � � �
[33]0.22�0.1 � � � 0.19�0.11 � � � 0.27�0.14 � � �

4We would like to note that no relative phase between the ρ0

and ω contributions to the form factors Fiðq02; q2Þ as proposed in
Ref. [6] may emerge; these form factors contain a sum over the
intermediate states jVihVj, so even if one introduces arbitrary
complex phases in the states jVi, these phases appear both in the
decay constants fV and the B → V weak form factors such that
they finally drop out from Fiðq02; q2Þ.
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other, the uncertainties vary from an “educated
guess” of 10% for Ref. [32] to almost 50% in
Ref. [33]. The uncertainties in these form factors,
along with the uncertainty in the parameter λB, is the
second main source of the uncertainty in the theo-
retical predictions for B → lþl−l0ν0 decays. Appen-
dix B summarizes the necessary parametrizations of
the form factors used in our numerical estimates.

B. Differential distributions

With the analytic expressions for the form factors,
Eqs. (5.1)–(5.3) at hand, Eqs. (4.6) give the differential
distributions in B → μþμ−eνe decays, Fig. 2. Here, we use
Vub ¼ 0.004 and τB− ¼ 1.63810−12 s. The plots show the
impact of the parameter λB on the differential distributions
dΓ=dq2 and dΓ=dq02.

Figure 3 shows the double differential distributions
calculated for λB ¼ 0.65 GeV and the form factors
from Ref. [32].

VI. CONCLUSIONS

Our results are summarized below:
(1) Gauge invariance provides essential constraints on

the amplitude of Eq. (2.3):

T5
α;ν¼ i

Z
dxeiqxh0jTfje:m:

α ðxÞ; ūγνγ5bð0ÞgjB̄uðpÞi:

ð6:1Þ

We emphasize that for a consistent analysis of the
B → lþl−l0ν0 amplitude it is necessary to start with
the amplitude (6.1) and properly parametrize this
amplitude, taking into account all constraints im-
posed by the electromagnetic gauge invariance and
analyticity. Taking into account these constraints
leads to

F2Aðq02;q2¼ 0Þ¼ 0;F0
2Aðq02;q2 ¼ 0Þ¼ 2QBfBMB

M2
B−q02

:

These relations determine the behavior of the differ-
ential decay rate d2ΓðB → lll0ν0Þ=dq2dq02 at small
q2 [see Eqs. (4.3) and (4.4)].

(2) For the form factors FV;1A;2Aðq02; q2Þ, describing the
amplitude of B → lll0ν0 decay, we obtained
dispersion representations in q2 with one subtrac-
tion. This allows us to properly take into account
both the constraints imposed by gauge invariance at
small q2 and the contributions of vector mesons (V);
the latter involve the weak form factors describing
B → V decays. Assuming that the light vector
mesons ρ0 and ω saturate the spectral densities,
we obtained analytic representations for the form
factors in a broad range of q2 and q02.

(a) (b)

FIG. 2. The differential distributions (a) dΓðB → μþμ−eνeÞ=dq2 and (b) dΓðB → μþμ−eνeÞ=dq02, for the weak transition B → V form
factors from Ref. [32]. Solid lines corresponds to λB ¼ 0.35 GeV, and dashed lines correspond to λB ¼ 0.65 GeV.

FIG. 3. The double differential distribution d2ΓðB →
μþμ−eνeÞ=dq2dq02 calculated for λB ¼ 0.65 GeV and the form
factors from Ref. [32].
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Our assumption may seem oversimplified in
comparison with a sophisticated analysis of the form
factors presented in Ref. [8]. Moreover, our spectral
representations saturated by merely light vector
mesons do not reproduce the correct q2 behavior
and overshoot the form factors at large values of q2,
where the form factors may be calculated using
operator product expansion [8,9]; this means that
our form factors do not produce realistic differential
distributions at large values of q2.
Nevertheless, our approach has a certain advantage

compared to that of Ref. [8]: making use of the once-
subtracted q2-dispersion representations allows us to
take properly into account both the gauge-invariance
constraints and the resonance contributions to the form
factors; the latter may be calculated unambiguously
and are found to be nozero (see Eq. (2.16)]. On the
other hand, in Ref. [8], the resonance contributions to
F2A are omitted in order to satisfy thegauge-invariance
constraints.
A proper description of the resonance regionofq2 is

crucial as it produces the bulk of the B → μþμ−lν
cross section and nearly a half of the B → eþe−lν
cross section (the other half comes from the region of
small q2). So, from the point of view of obtaining
numerical predictions, we find it eligible to trade the
proper description of the region of 0 < q2 < 1 GeV2

against overestimating the contribution of the regionof
large q2 which anyway, even with our overshot form
factors, contributes at less than a percent level.

(3) We derived an explicit analytic expression for the
differential distributions dΓ=dq2dq02 in B → lll0ν0

decays including the Oðm02
l =q

4Þ terms which pro-
vide the most singular behavior of the differential
distribution at small q2. We then obtained numerical
predictions for the differential and the integrated
branching ratios of the B → lþl−l0ν0 decays.
To illustrate the lepton-mass effects, Table III

presents the numerical results for various decay
modes. For the modes with identical particles in
the final state, instead of the full decay rate that
includes the exchange diagrams, Table III shows the
quantity ΓðB → lll0ν0Þjml0¼ml

. The full results for the
identical leptons in the final state are discussed in
the next item.

(4) We now present the numerical results including the
estimated uncertainties. The uncertainties in our
predictions come from the two main sources:
(i) First is the uncertainty in the parameter λB,

which governs the behavior of the q2-differ-
ential distributions at small q2 ≤ 0.4 GeV2 but
has an impact on the q02 distributions in the
broad range of q02. We allow the parameter λB
to vary in the range λB ¼ 0.35–0.65 GeV (the
lower values of this range has been advocated in
several analyses [15,18,24], whereas the upper
values of λB are obtained in explicit model
calculations [16,17]).

(ii) Second is the uncertainties in the B → ω; ρ
weak form factors V; A1; A2, which mainly
govern the differential distributions in the
region of q2 ¼ ð0.4 − 0.9Þ GeV2. To obtain
the numerical estimates, we use as the basic
scenario the form factors calculated in Ref. [32]
and, in order to estimate the uncertainties, allow
a 15% uncertainty on these form factors. We
take into account a 10% suppression of the B →
ω form factors compared to the corresponding
B → ρ form factors according to Ref. [36].

Taking into account these uncertainties, we obtain the
following estimates:

BrðB→ μþμ−eνeÞ¼ ð3.01þ0.53
−0.19 jλb �0.82jweak ffsÞ10−8;

ð6:2Þ

BrðB → eþe−μνμÞ ¼ ð6.38þ0.31
−0.12 jλb � 0.08jweak ffsÞ10−7:

ð6:3Þ

We emphasize that the full integrated rate BrðB →
eþe−μνμÞ is an order of magnitude larger than
BrðB → μþμ−eνeÞ. The former is fully dominated by the
region 4m2

e < q2 < 4m2
μ, where the distribution contains an

enhancement factor ðfB=MBÞ2ðmμ=meÞ2 due to the Oðm2
μÞ

terms in the amplitude (1.5).
For the decay B → lþl−lþνl (l ¼ μ, e) with identical

positive-charged leptons in the final state, the amplitude is
given by the sum of direct and exchange diagrams,
A ¼ Adir þ Aexchange, and the phase space includes a factor

TABLE III. The branching ratios of the B → lþl−lν integrated over the specific q2 ranges for the form factors from Ref. [32] and
λB ¼ 0.5 GeV. For B → eþe−eνe and B → μþμ−μνμ, the results for ΓðB → lll0ν0Þjml0 ¼ml

are given.

Mode q2 ¼ ½4m2
e; 4m2

μ� q2 ¼ ½4m2
μ; 0.4 GeV2� q2 ¼ ½0.4 GeV2; 1 GeV2� q2 ¼ ½1 GeV2; q2max� Total

eþe−μνμ 6.05 × 10−7 6.72 × 10−9 2.51 × 10−8 4.14 × 10−10 6.38 × 10−7

μþμ−eνe � � � 5.42 × 10−9 2.42 × 10−8 4.10 × 10−10 3.01 × 10−8

μþμ−μνμ � � � 5.41 × 10−9 2.41 × 10−8 4.07 × 10−10 3.00 × 10−8

eþe−eνe 1.96 × 10−8 6.81 × 10−9 2.52 × 10−8 4.17 × 10−10 5.21 × 10−8
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1=2 because of the presence of the identical particles in the
final state. The phase-space integration of both jAdirj2 and
jAexchangej2 leads to the same result, ΓðB → lll0ν0Þjml0¼ml

,
and one can write (see, e.g., Ref. [8]),

ΓðB→ lllνÞ¼ΓðB→ lll0ν0Þjml0¼ml
þΓinterferenceðB→ lllνÞ;

ð6:4Þ

where ΓinterferenceðB → lllνÞ is the phase-space integral of
ðAdirA�

exchange þ A�
dirAexchangeÞ. The interference term should

be calculated numerically as the integral over the phase
space. A simple analytic result similar to Eqs. (4.3) and
(4.6) cannot be obtained. We have performed a numerical
calculation of the branching fraction (6.4) and found that
the interference branching fraction leads to a very mild
increase of the integrated branching fraction BrðB → lll0ν0Þ
at the level of less than 1% (our detailed results for the
differential distributions for this case will be presented in
Ref. [38]). We report

BrðBþ → μþμ−μþν̄μÞ ¼ ð3.02þ0.45
−0.25 jλb � 0.62jweak ffsÞ10−8:

ð6:5Þ

This estimate agrees with the result of Ref. [8] and is
only marginally compatible with the upper limits obtained
by the LHCb Collaboration [4] BrðBþ → μþμ−μþν̄μÞ ≤
1.6 × 10−8. Recall, however, that the experimental upper
bound applies certain kinematical cuts, whereas our result
corresponds to the branching fraction integrated over the
full allowed region of the lepton momenta.
For electrons in the final state, we find

BrðBþ → eþe−eþν̄eÞ ¼ ð5.26þ2.60
−1.05 jλb � 0.70jweak ffsÞ10−8:

ð6:6Þ
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APPENDIX A: RELATIONS BETWEEN THE Bq

AND B̄q AMPLITUDES

Here, we derive the relations between the amplitudes of
Bq and B̄q mesons. Such relations are obtained by applying
charge conjugation.
The fermion field transforms under charge conjugation Ĉ

(Ĉ2 ¼ 1, Ĉ−1 ¼ Ĉ) as [39]

ĈψĈ ¼ ηcCψ̄T; ðA1Þ

Ĉ ψ̄ Ĉ ¼ η�cψTðCTÞ−1; ðA2Þ

jηcj ¼ 1, where the charge-conjugation matrix C is defined
by the relation

CγTμC−1 ¼ −γμ ðA3Þ

and has the following properties: CT ¼ −C, C−1 ¼ −C,
C2 ¼ −1. In the Dirac representation of the γ matrices,
one can choose C ¼ iγ0γ2, leading to

CγT5C ¼ −γ5; ðA4Þ

Cðγμγ5ÞTC ¼ −γμγ5; ðA5Þ

CðσμνÞTC ¼ σμν; ðA6Þ

Cðσμνγ5ÞTC ¼ σμνγ5: ðA7Þ

Making use of these relations, one obtains the expression
for charge conjugation of bilinear currents (of anticommut-
ing) fermion operators,

Ĉðψ̄1Oψ2ÞĈ ¼ −ψ̄2ðCOTCÞψ1; ðA8Þ

leading to

Ĉðψ̄1ψ2ÞĈ ¼ ψ̄2ψ1; ðA9Þ

Ĉðψ̄1γ5ψ2ÞĈ ¼ −ψ̄2γ5ψ1; ðA10Þ

Ĉðψ̄1γμψ2ÞĈ ¼ −ψ̄2γμψ1; ðA11Þ

Ĉðψ̄1γμγ5ψ2ÞĈ ¼ ψ̄2γμγ5ψ1; ðA12Þ

Ĉðψ̄1σμνψ2ÞĈ ¼ −ψ̄2σμνψ1; ðA13Þ

Ĉðψ̄1σμνγ5ψ2ÞĈ ¼ −ψ̄2σμνγ5ψ1: ðA14Þ

The C-conjugate states are related to each other as follows
(no arbitrary phase is implied):

ĈjBqðpÞi ¼ jB̄qðpÞi: ðA15Þ

The QCD vacuum state is C invariant, Ĉj0i ¼ j0i. So, if we
are going to consider QCD effects in the amplitudes, we can
apply C conjugation and relate to each other the amplitudes

h0jq̄γμγ5bjB̄qðpÞi ¼ if̄Bpμ; ðA16Þ

h0jb̄γμγ5qjBqðpÞi ¼ ifBpμ ðA17Þ

and obtain the relation fB ¼ f̄B. Similar relations may be
obtained for more complicated amplitudes such as
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T̄O
α ðp; qÞ≡ i

Z
dxeiqxh0jTfje:m:

α ðxÞ; q̄ð0ÞObð0ÞgjB̄qðpÞi;

ðA18Þ

TO
α ðp; qÞ≡ i

Z
dxeiqxh0jTfje:m:

α ðxÞ; b̄ð0ÞOqð0ÞgjBqðpÞi:

ðA19Þ

The parametrizations of these amplitudes are given via the
same form factors but with appropriate sign adjustments
between (A18) and (A19). For instance, for the relation
between the amplitudes (we use in this Appendix the
notation T̄ for the amplitudes containing B̄q meson in the
initial state)

T̄αμ ¼ i
Z

dxeiqxh0jTfje:m:
α ðxÞ; q̄ð0Þγμbð0ÞgjB̄qðpÞi;

ðA20Þ

T̄5
αμ ¼ i

Z
dxeiqxh0jTfje:m:

α ðxÞ; q̄ð0Þγμγ5bð0ÞgjB̄qðpÞi;

ðA21Þ

T̄α;μν ¼ i
Z

dxeiqxh0jTfje:m:
α ðxÞ; q̄ð0Þσμνbð0ÞgjB̄qðpÞi;

ðA22Þ

T̄5
α;μν ¼ i

Z
dxeiqxh0jTfje:m:

α ðxÞ; q̄ð0Þσμνγ5bð0ÞgjB̄qðpÞi

ðA23Þ

and the corresponding amplitudes Tαμ, T5
αμ, Tα;μν, and T5

α;μν

as defined according to Eqs. (A18) and (A19), we obtain

T̄αμðp; qÞ ¼ Tαμðp; qÞ; ðA24Þ

T̄5
αμðp; qÞ ¼ −Tαμðp; qÞ; ðA25Þ

T̄αμνðp; qÞ ¼ Tαμνðp; qÞ; ðA26Þ

T̄5
αμνðp; qÞ ¼ T5

αμνðp; qÞ: ðA27Þ

In conclusion, the amplitudes (A18) and (A19) are related to
each other by charge conjugation.

APPENDIX B: PARAMETRIZATIONS OF THE
FORM FACTORS

1. FV;Aðq02Þ
In our numerical estimates, we use the following para-

metrizations for the form factors (Qu ¼ 2=3, Qb ¼ −1=3):

FVðq02Þ ¼ −Qu
M2

B

M2
B − q02

fB
λB

−Qb
M2

B

M2
B − q02

fB
mb

; ðB1Þ

FAðq02Þ ¼ −Qu
M2

B

M2
B − q02

fB
λB

þQb
M2

B

M2
B − q02

fB
mb

; ðB2Þ

with fB ¼ 190 MeV and mb ¼ 5 GeV. The parameter λB
varies in the range λB ¼ 0.35–0.65 GeV.

2. Vðq02Þ;A1ðq02Þ;A2ðq02Þ
All the form factors are parametrized as follows:

Fiðq02Þ¼
Fið0Þ

ð1−σðiÞ0 rÞð1−σðiÞ1 rþσðiÞ2 r2Þ
; r≡q02=M2

R: ðB3Þ

For the basic scenario of Melikhov and Stech [32], the
parameters are given below, and MR ¼ MB� ¼ 5.32 GeV.
Note that all tables giveFið0Þ for the B → ρþ transition (for
B → ρ0 transition, Fið0Þ should be multiplied by isotopic
factor 1=

ffiffiffi
2

p
):

(i) For B → ω transition, a reduction of the form factors
at zero by 10% compared to B → ρ0 was applied
following the estimates of Ref. [36]. The q02
dependence is taken the same as for B → ρ.

(ii) To estimate the uncertainty in the predictions for the
rates, the range of the form factors from Ref. [33]
was used (see Table II).

VB→ρþð0Þ AB→ρþ
1 ð0Þ AB→ρþ

2 ð0Þ
Fð0Þ 0.31 0.26 0.24
σ0 1 0 0
σ1 0.59 0.73 1.4
σ2 0 0.10 0.50

3. Resonance q2-dependent width

fB (MeV)
ffiffiffi
2

p
f0ρ (MeV) 3

ffiffiffi
2

p
fω (MeV) Γρ0 (MeV) Γω (MeV)

190 216 190 150 8.49

For a relatively broad ρ0 meson, the function ΓVðq2Þ
takes into account the effects of the 2π intermediate states;
the appropriate formulas are given in Ref. [31]. In practical
calculations, we use a simplified expression, which takes
into account the correct threshold behavior of the ρ → ππ
phase space:

Γρ0ðq2Þ¼θðq2−4m2
πÞð1−4m2

π=q2Þ3=2=ð1−4m2
π=M2

ρÞ3=2Γρ0 :

ðB4Þ

For a narrow ω meson, we take an approximation of
constant width.
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