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We discuss the hard dense loop resummation at finite quark mass and evaluate the equation of state (EoS)
of cold and dense QCD matter in β equilibrium. The resummation in the quark sector has an effect of
lowering the baryon number density and the EoS turns out to have much smaller uncertainty than the
perturbative QCD estimate. Our numerical results favor smooth matching between the EoS from the
resummed QCD calculation at high density and the extrapolated EoS from the nuclear matter density
region. We also point out that the speed of sound in our EoS slightly exceeds the conformal limit.
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I. INTRODUCTION

A reliable estimate of the equation of state (EoS) of cold
matter at high baryon density is a vital challenge in
theoretical nuclear physics. In various circumstances such
as the neutron star cores, the neutron star mergers emitting
gravitational waves, the supernova explosion, and heavy-
ion collisions to scan over the phase diagram of matter
made out of quarks and gluons (see Ref. [1] for a review on
the present status and the future direction of the heavy-ion
collision), the EoS is an indispensable input for theoretical
studies. Conversely, experimental data available from these
extreme environments provide us with useful constraints on
possible EoSs, so that some theoretical scenarios can be
excluded/accepted. The most well-known and successful
example along these lines is the establishment of two-solar-
mass neutron stars [2], which disfavors scenarios leading
to soft EoS; namely, it is unlikely for dense matter to
accommodate a strong first-order phase transition [3] nor
condensations of exotic degrees of freedom.
The most advanced first-principles approach from the

fundamental theory of the strong interaction, i.e., quantum
chromodynamics (QCD) is the lattice Monte-Carlo simu-
lation, but the notorious sign problem ruins the importance
sampling algorithm for matter at finite baryon density. Still,
in parameter space where the lattice-QCD simulation is at
work, the validity of alternative theoretical approaches has
been tested. In particular, the hard thermal loop perturba-
tion theory (HTLpt) is the most promising resummation
scheme [4–8] that confronts the lattice-QCD results at high

temperature T. The purpose of this work is to quantify the
resummation effects on the EoS of cold and dense quark
matter at high baryon density nB or the energy density ε.
To sharpen novelties in our work, let us briefly sum-

marize what has been understood so far. Since the seminal
works of Refs. [9,10], we had to wait for about three
decades until the perturbative QCD (pQCD) EoS was
augmented with the strange quark massMs ≠ 0 and applied
to the neutron star phenomenology [11,12], where they
found that the strange mass effect is crucial. The obstacle in
utilizing the pQCD EoS in neutron star physics was found
to be too large scale variation uncertainty in the inter-
mediate density region (i.e., denser than the nuclear terrain
but not dense enough to justify pQCD) and the theoretical
efforts are progressing toward further higher-order calcu-
lations [13,14] with hope for better convergence (see also
for Refs. [15,16] for an alternative approach based on the
renormalization group optimization method).
From the success of HTLpt at high T, it is a natural

anticipation that the same machinery of resummation
would cure the convergence problem at high baryon density
or large quark chemical potential μ as well, which may
reduce the scale variation uncertainty. Indeed, the parallel-
ism between the high T and high μ cases has been
established based on the transport equation approach in
Ref. [17]; the high-density counterparts of HTLs are called
hard dense loops (HDLs). As long as a resummation
prescription in the quark sector is concerned, more simply,
we can just take the T → 0 limit of HTLpt to introduce
“HDLpt” as considered in Ref. [18] (see also Ref. [5], and
we note that the term “HDLpt” was first introduced in
Ref. [19]). The HTL approximation usually neglects the
bare quark mass and only the screening masses of quarks
enter expressions used in Refs. [5,18]. Later on, extensive
discussions about the EoS and the quark star properties
have been addressed in Ref. [19]. As seen in Fig. 2 of
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Ref. [19], however, the HDLpt hardly remedies the
convergence problem associated with uncertainty of the
scale Λ̄ ¼ μ − 4μ in the running coupling constant αsðΛ̄Þ.
In the present work, as in Ref. [12], we will employ the
two-loop formula; αsðΛ̄Þ¼ ½1−2ðβ1=β20Þln2ðΛ̄2=Λ2

MS
Þ=

lnðΛ̄2=Λ2

MS
Þ�4π=½β0 lnðΛ̄2=Λ2

MS
Þ�, where β0 ≡ ð11Nc−

2NfÞ=3, β1≡ð17=3ÞN2
c−NfðN2

c−1Þ=ð2NcÞ−ð5=3ÞNfNc,
and we will take ΛMS ¼ 378 MeV throughout, following
Ref. [12]. Previously, the absence of the bare quark mass
significantly simplified technicalities as well as the realiza-
tion ofβ equilibrium.With equal amount ofu,d, and s quarks
(that is automatically the case if their masses are all
neglected), the electric charge neutrality follows as it is.
For quantitative descriptions of the neutron star phenom-
enology, however, we need to take account of the strange
quark mass and solve the β equilibrium condition.
There seems to be a long way left, but the phenomeno-

logical analyses are in need of the QCD-based EoS usable
for the neutron star observables. In fact, on top of
extrapolated EoSs from the nuclear side, the Bayesian
analysis has been recognized as a powerful instrument for
the inference analysis to identify the most likely EoS based
on the observational data [20–22] (see Ref. [23] for a
review). Recently, the machine learning technique has been
also advocated as a complementary method to infer the EoS
[24–26]. It would be of utmost importance to make a direct
comparison of the inferred EoS candidates and the QCD-
based estimates. To this end, we are urged to reduce
uncertainty and widen the validity region of the pQCD
or HDLpt calculations.
In this work we will report the first successful attempt to

construct an EoS with smaller uncertainty from the HDLpt
framework incorporating the strange quark mass effect.
From the technical point of view, we adopt the resumma-
tion schemes in the gluon sector as prescribed in Ref. [4]
and in the quark sector as in Ref. [18] with our own
extension to cope with the strange quark mass. Our
expressions are given in the form of exact integrations
without any expansion in terms of the screening mass as in
Ref. [7]. This paper is organized as follows: In Sec. II, we
present our central results, namely the reduction of the scale
dependent uncertainty in the perturbative calculation with
resummation. Sec. III and Sec. IV show the calculation of
the EoS within the HDLpt. In Sec. V, we show the
numerical results on the speed of sound, and we take into
account the order αs correction. Finally, Sec. VI summa-
rizes this paper.

II. CENTRAL RESULTS

Since technical details are cumbersome, we shall first
present our central results in Fig. 1 and then proceed to
technical details later. Not to make the comparison in the
figure too busy, we chose only a few representative EoSs
from the nuclear side; namely, the EoS extrapolated from

the chiral effective field theory (χEFT) calculation [27] by
the green band, the neural network output in the machine
learning analysis [25] by the red band, and the Akmal-
Pandharipande-Ravenhall (APR) EoS [28] shown by the
dashed line.
The orange band in the region, ε > 103 MeV=fm3,

represents the results from pQCD [12] for which we utilize
the concise formula as given in Ref. [29]. Higher-order
corrections could be added, but the uncertainty band is not
much changed from Ref. [12]. The uncertainty band width
abruptly diverges, from which it has been said that pQCD is
reliable only at extreme high densities far from reality. At a
glance, indeed, we should understand how difficult it is to
make a robust interpolation between the nuclear and the
pQCD EoSs. Now, a surprise comes from a blue narrow
band that represents results from our HDLpt calculations.
The uncertainty band is drastically reduced and the HDLpt
EoS appears to be merged into the nuclear EoSs smoothly
in the intermediate density region. It should be noted that
the APR EoS overshoots ours, but this is due to a well-
known flaw in the APR EoS, i.e., superluminal speed of
sound which violates causality.
One may wonder what causes such a drastic difference

on Fig. 1. We can qualitatively understand this from Fig. 2
(left) in which the baryon number density nB as a function
of the quark chemical potential μ is plotted. Because the
HDLpt sums the quark loops up, nB is the most sensitive
quantity affected by the resummation in the quark sector.
It is an interesting and reasonable observation that nB is
suppressed at fixed μ after the resummation: thermody-
namic quantities are dominated by quark quasi-particles,
and in HDLpt, quark excitations are more screened by
self-energy insertions, as compared to pQCD treatments.

FIG. 1. Comparison of the EoS in this work (HDLpt) and other
EoSs. The blue and the orange bands represent our results and
the preceding results from Refs. [12,29], respectively, with
Λ̄ ¼ μ − 4μ. The green band is from the χEFT [27]. The red
band shows the EoS inferred from the neural networks in the
machine learning analysis of the neutron star observation [25].
The dashed black line is the APR EoS extrapolated from the
nuclear side [28].
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Therefore, in Fig. 1, the corresponding μ for a given ε
becomes larger, and the corresponding running coupling
αsðΛ̄ ¼ ξμÞ, where ξ ¼ 1, 2, 4, is smaller. This qualitative
argument partially accounts for the reduction of the
uncertainty band, but not fully yet. As shown in Fig. 2,
if we plot the pressure P, the baryon number density nB
(and the energy density ε) as functions of μ, respectively,
the uncertainty bands are wider than Fig. 1. In Fig. 2 (left),
we overlay a horizontal line at nB ¼ 10n0 to find the values
of corresponding μ for different Λ̄. The values of P at these
μ’s are shown in Fig. 2 (right) with the same markers.
Importantly, the marker for PðΛ̄ ¼ μÞ is out of the plot
range. Owing to the suppression in nB leads to the situation
that PðεÞ with Λ̄ ¼ μ and that with Λ̄ ¼ 4μ happen to stay
close, which narrows the uncertainty band on Fig. 1. There
might be a deep reason (e.g., scaling properties) for this
behavior, and further investigations are in progress.
For the astrophysical application, we need PðεÞ or PðnBÞ

rather than PðμÞ. The condition that Pðε; Λ̄Þ is insensitive
to the scale Λ̄ is dPðε; Λ̄Þ=dΛ̄ ¼ 0, i.e.,

∂PðμB; Λ̄Þ
∂Λ̄ − c2s

∂εðμB; Λ̄Þ
∂Λ̄ ¼ 0; ð1Þ

where μB ¼ 3μ is the baryochemical potential. Substituting
the thermodynamic relation ε ¼ −Pþ μBnB this relation
reduces to

ð1þ c2sÞ
∂PðμB; Λ̄Þ

∂Λ̄ − c2sμB
∂nBðμB; Λ̄Þ

∂Λ̄ ¼ 0: ð2Þ

In the conventional argument, the reduction of the first
terms in Eqs. (1) and (2) has been the central issue, but we
point out that ∂P=∂Λ̄ ¼ 0 is only a sufficient condition for
Eqs. (1) and (2). Albeit ∂P=∂Λ̄ ≠ 0, the inclusion of the
latter term can cancel the scale-dependence; Fig. 2 is the
concrete realization of such cancellation.

III. FORMULATION

Let us explain the formulas and procedures to obtain our
results in Fig. 1. Dense matter in the neutron star reaches
the β equilibrium; d ⇆ uþ e− þ ν̄e and s ⇆ uþ e− þ ν̄e
indicating the relations between quark chemical potentials
as μu ¼ μþ 2

3
μQ and μd ¼ μs ¼ μ − 1

3
μQ where μQ is the

electric chemical potential. Since electrons are negatively
charged, μe ¼ −μQ, and we can fix μQ from the charge
neutrality, i.e., nQ − ne ¼ 0 with nQ ¼ ∂P=∂μQ and ne ¼
μ3e=ð3π2Þ neglecting the electron mass.
Since the most crucial extension in this work is the

inclusion of the bare quark mass, we will write down the
explicit expressions in the quark sector. In our notation for
flavor-f quarks the bare mass isMf and the screening mass
is mqf. The bare mass should be scale dependent as

MfðΛ̄Þ ¼ Mfð2 GeVÞ
�

αsðΛ̄Þ
αsð2 GeVÞ

�
γ0=β0 1þAðΛ̄Þ

1þAð2 GeVÞ :

ð3Þ

Here, β0 was already introduced when αsðΛ̄Þ appeared
before, and γ0 ≡ 3ðN2

c − 1Þ=ð2NcÞ. The two-loop correc-

tions appear in AðΛ̄Þ≡ A1ðαsðΛ̄Þ=πÞ þ A2
1
þA2

2
ðαsðΛ̄Þ=πÞ2

with A1 ≡ −β1γ0=ð2β2Þ þ γ1=ð4β0Þ and A2 ≡ γ0=ð4β20Þ×
ðβ21=β0 − β2Þ − β1γ1=ð8β20Þ þ γ2=ð16β0Þ. For β2, γ1, and γ2,
the general expressions are complicated, and we refer to
numerical values, β2 ¼ 3863=24, γ1 ¼ 182=3, and γ2 ¼
8885=9 − 160ζð3Þ ≈ 794.9 for Nc ¼ Nf ¼ 3. Readers can
consult Eq. (8) of Ref. [12] for the complete expressions.
In the T → 0 limit the HDLpt pressure, PHDLpt, is given

by the gluon loop and the quark loop with the self-energy
insertions; namely,

PHDLpt ¼ ðN2
c − 1ÞPg þ Nc

X
f¼u;d;s

Pq;f þ ΔPg;q; ð4Þ

FIG. 2. Baryon number density (left) and pressure (right) as functions of the quark chemical potential. In the figure pQCD refers to the
results from Refs. [12,29] and HDLpt to our results.
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where ΔPg and ΔPq subtract the ultraviolet divergences.
The gluon part with an appropriate subtraction by ΔPg ∝
1=ϵ (where the spatial dimensions are d ¼ 3 − 2ϵ in the
dimensional regularization) is

Pg ¼
m4

D

64π2

�
ln

Λ̄
mD

þ Cg

�
: ð5Þ

A constant, Cg, is an integral over a function involving
the gluon self-energy and numerically estimated as Cg ≈
1.17201 in the dimensional regularization. Here, mD is the
gluon screening mass induced by μ, i.e., m2

D ≡ ð2αs=πÞ×P
f μ

2
f. We note that the bare quark masses in the hard

loops are neglected commonly in the HTL approximation
(see Ref. [30] for a standard textbook). The gluon sector is
intact, so we just refer to Refs. [4,6,7] for further details.
The quark part appears from the flavor-f quark loop, i.e.,

Pq;f ¼ tr lnG−1
f where G−1

f ¼ =k −Mf − Σðk0; kÞ and k0 ¼
iω̃n þ μf for flavor-f quarks with ω̃n being the fermionic
Matsubara frequency. For the self-energy expression, Σ,
we need to introduce the following notations according
to Refs. [7,18], i.e., A0ðk0; kÞ≡ k0 − ðm2

qf=k0ÞT̃ ðk0; kÞ,
Asðk0; kÞ≡ kþ ðm2

qf=kÞ½1 − T̃ ðk0; kÞ�, and the flavor-f
quark screening mass is m2

qf≡ðαs=2πÞðN2
c−1Þ=ð2NcÞμ2f.

The fermionic HTLpt function in d ¼ 3 − 2ϵ spatial
dimensions is

T̃ ðk0; kÞ ¼ 2F1

�
1

2
; 1;

3

2
− ϵ;

k2

k20

�
: ð6Þ

Then, the self-energy for flavor-f quarks is expressed as
=k − Σðk0; kÞ ¼ A0ðk0; kÞγ0 − Asðk0; kÞγ · k̂. In this work,
we neglect the bare quark mass dependence in Σðk0; kÞ; this
treatment can be justified under the HDL approximation. In
principle this effect can be taken into account by using the
effective action presented, e.g., in Ref. [31]. The expression
will, however, be extremely complicated, so we will simply
neglect it here. Nevertheless, it is unlikely that the bare
quark mass plays an important role for our main results, i.e.,
the reduction of the scale dependent uncertainty.
The paramount advance in this work is the inclusion of

the bare mass Mf, and the quark pressure deviates from
Refs. [7,18]. Let us first write down our final expression
and then explain the notations next. In the flavor-f quark
sector the pressure contribution reads:

Pq;f ¼ m4
qf

�
CqðηfÞ þDqðηfÞ ln

Λ̄
mqf

�
þ Pqp;f þ PLd;f:

ð7Þ

We introduced Cq and Dq as functions of ηf ≡ 1þM2
f=

ð2m2
qfÞ. These definitions involve the following functions:

f�ðω̄; ηfÞ ¼
ηf � η0ðω̄; ηfÞ

1þ ω̄2
; ð8Þ

η0ðω̄;ηfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2f − ð1þ ω̄2Þ

�
ð1− T̃ ðiω̄;1ÞÞ2þ T̃ 2ðiω̄;1Þ

ω̄2

�s
;

ð9Þ

where ω̄ is a dimensionless and continuous variable. Then,
Cq and Dq are given by

CqðηfÞ ¼
X
χ¼�

1

4π3

Z
∞

0

dω̄

�
f2χ ln fχ −

∂f2χ
∂ϵ

�

þ
�
5

4
− ln 2

�
DqðηfÞ; ð10Þ

DqðηfÞ ¼ −
X
χ¼�

1

2π3

Z
∞

0

dω̄f2χ

¼ −
1

2π2
ðη2f − 1Þ: ð11Þ

We note that Dqðηf → 1Þ → 0 and Cqðηf → 1Þ ≈
−0.03653 as is consistent with Ref. [7].
The next term, Pqp;f, in Eq. (7) is the quasiparticle

contribution given by

Pqp;f ¼ 1

π2

Z
∞

0

dk k2
X
χ¼�1

½ðμf − ωfχÞθðμf − ωfχÞ� −
μ4f
12π2

:

ð12Þ

We note that the ideal term ∝ μ4f is subtracted in the above
expression since we doubly pick up two pole contributions
at ωf�. In Ref. [18] the quasiparticle contribution was
defined by taking the m2

qf derivative/integration, so that
only the difference from the ideal term was considered by
construction, and the ideal term was not subtracted but
added. Here, the quasiparticle poles, ωf�, are solutions of
the following implicit equations, i.e.,

0¼ωf�−
m2

qf

k
Q0

�
ωf�
k

�
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

fþ
�
k−

m2
qf

k
Q1

�
ωf�
k

��2s

ð13Þ

with Q0ðxÞ≡ ð1=2Þ ln½ðxþ 1Þ=ðx − 1Þ� and Q1ðxÞ≡
xQ0ðxÞ − 1 being the Legendre functions. Finally, the last
term in Eq. (7) represents the contribution from the Landau
damping, which reads:

PLd;f ¼ −
1

π3

Z
μf

0

dω
Z

∞

ω
dk k2θqfðω; k;Mf;m2

qfÞ: ð14Þ
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The integrand is given by tan θqf ¼ Y=X where

X ¼ k2 − ω2 þM2
f þ 2m2

qf þ
m4

qf

k2

�
1 −

2ω

k
Q0ðk=ωÞ

−
k2 − ω2

k2

�
Q2

0ðk=ωÞ −
π2

4

��
; ð15Þ

Y ¼ πm4
qf

k2

�
ω

k
þ k2 − ω2

k2
Q0ðk=ωÞ

�
: ð16Þ

In this case k ≥ ω holds and the argument of Q0 should be
k=ω, not ω=k. We also note that the subtraction at finiteMf

is mass dependent, i.e., ΔPq ¼ m4
qfDqðηfÞ=ð2ϵÞ.

For numerical calculations, we took Mu ¼ Md ¼ 0

and Msð2 GeVÞ ¼ 100 MeV. For Nc and Nc in αðΛ̄Þ
and MsðΛ̄Þ we took Nc ¼ Nf ¼ 3. This completes
the explanation of the formulation necessary to draw
Fig. 1.
In Fig. 3, we show the EoSs calculated based on

the formulation presented above. In Fig. 3 (Left), we
show the EoS in the form of PðεÞ. This is the same
plot as Fig. 1 above, but with an extended region of the
energy density. Because of the uncertainty out of control at
lower energy density it is reasonable to truncate the plot
around ε ≃ 500 MeV=fm3.
In Fig. 3 (Right), we show the EoS in the form of PðμÞ.

It is evident that the scale variation uncertainty in HDLpt is
not small as compared with the pQCD results. Therefore, it
is a quite nontrivial discovery that the scale variation
uncertainty in PðnBÞ is significantly smaller than that
in PðμÞ.

IV. DETAILS OF INTEGRATION: THE QUARK
CONTRIBUTION TO THE PRESSURE

Here, we will elaborate the details of integration that
appears in the derivation of Eq. (7) in the previous section.

The quark part of the pressure appears from the flavor-f
quark loop:

Pq;fðT; μfÞ ¼ tr lnG−1
f ð17Þ

¼
XZ

fKg
ln det ½=k −Mf − Σðiω̃n þ μf; kÞ�

¼ 2
XZ

fKg
ln ½A2

Sðiω̃n þ μf; kÞ þM2
f − A2

0ðiω̃n þ μf; kÞ�;

ð18Þ

where we write the sum-integral as
PR

fKg ¼ T
P

ω̃n

R
k

in d ¼ 3 − 2ϵ spatial dimensions for the momentum
integration. The functions A0 and AS are defined above.
We note that Pq;f in Eq. (17) can be regarded as a
leading contribution in the 2PI or the Cornwall-Jackiw-
Tomboulis (CJT) formalism [32,33]. This explains why
Eq. (17) misses an additional term, trΣGf, that may be
responsible for the deviation of OðαsÞ, which will be
studied below.
We recast the Matsubara sum into the contour integral

along C as depicted in the left panel of Fig. 4. We can
deform the contour C into Cqp ∪ CLd, see the right panel
of Fig. 4. We identify the terms from Cqp and CLd with
the quasiparticle contribution and the Landau damping
contribution, respectively, according to Refs. [5,7]:

Pqp=Ld;fðT; μfÞ ¼
Z
k

I
Cqp=Ld

dω
2πi

ln½A2
sðω; kÞ

þM2
f − A2

0ðω; kÞ� tanh
�
βðω − μfÞ

2

�
:

ð19Þ

The quasiparticle contribution to the integral (see the
right panel of Fig. 4) is

FIG. 3. Left: the same as Fig. 1 in the previous section with an extended region of the energy density. Right: the EoS expressed in the
form of PðμÞ.
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Pqp;f ¼
Z
k

�Z
∞

ω̃fþ

dω
2π

½Disc arg ðA2
sðω; kÞ þM2

f − A2
0ðω; kÞÞ�

�
tanh

�
βðω − μfÞ

2

�
− tanh

�
βð−ω − μfÞ

2

��

þ
Z

ω̃f−

k

dω
2π

½Disc arg ðA2
sðω; kÞ þM2

f − A2
0ðω; kÞÞ�

�
tanh

�
βðω − μfÞ

2

�
− tanh

�
βð−ω − μfÞ

2

���

¼
Z
k

�Z
∞

ω̃fþ

dω
2π

ð−2πÞ
�
2 −

2

eβðω−μfÞ þ 1
−

2

eβðωþμfÞ þ 1

�
þ
Z

ω̃f−

k

dω
2π

ð2πÞ
�
2 −

2

eβðω−μfÞ þ 1
−

2

eβðωþμfÞ þ 1

��

¼ 2

Z
k

X
χ;s¼�

T ln ½1þ e−βðωfχþsμfÞ� − 2

Z
k

X
s¼�

T ln ½1þ e−βðkþsμfÞ� þ 2

Z
k
½ωfþðkÞ þ ωf−ðkÞ − k�; ð20Þ

where we defined as Disc fðωÞ≡ fðωþ i0þÞ − fðω − i0þÞ, used A2
0;sðω; kÞ ¼ A2

0;sð−ω; kÞ, and dropped an irrelevant
infinity from the upper bound of the ω-integration. The dispersion relation for quarks ωf� is obtained by solving Eq. (13)
above. For the moment we can drop the third term in Eq. (20) that is independent of T and μf (which will be reassembled
later). Finally, we obtain:

Pqp;fðT ¼ 0; μfÞ ¼
1

π2

Z
∞

0

dkk2
X
χ¼�1

½ðμf − ωfχÞθðμf − ωfχÞ� −
μ4f
12π2

; ð21Þ

which completes the derivation of Eq. (12) above. The s ¼ −1 term in the sum of Eq. (20) vanishes at T → 0 because of the
step function θð−μf − ωfχÞ.
The Landau damping contribution to the integral is

PLd;f ¼
Z
k

Z
k

−k

dω
2π

Disc arg ðA2
sðω; kÞ þM2

f − A2
0ðω; kÞÞ tanh

�
βðω − μfÞ

2

�

¼ −
1

π

Z
k

Z
k

0

dω2θqfðω; k;M2
f; m

2
qfÞ

�
1

eβðω−μfÞ þ 1
þ 1

eβðωþμfÞ þ 1
− 1

�
: ð22Þ

In the last line we introduced [with X and Y defined in Eqs. (15) and (16) above, respectively]:

2θqf ¼ 2 arctanY=X ¼ Disc arg ðA2
sðω; kÞ þM2

f − A2
0ðω; kÞÞ

¼ Disc arctan

�
Im½A2

sðω; kÞ þM2
f − A2

0ðω; kÞ�
Re½A2

sðω; kÞ þM2
f − A2

0ðω; kÞ�
�

¼ Disc arctan

( m4
qf

k2 ½−2Imð2F1ð12 ; 1; 32 ; k
2

ω2ÞÞ − k2−ω2

ω2 Imð2F1ð12 ; 1; 32 ; k
2

ω2Þ2Þ�
k2 − ω2 þM2

f þ 2m2
qf þ

m4
qf

k2 ½1 − 2Reð2F1ð12 ; 1; 32 ; k
2

ω2ÞÞ − k2−ω2

ω2 Reð2F1ð12 ; 1; 32 ; k
2

ω2Þ2Þ�

)

¼ 2 arctan

( m4
qf

k2 ½−2ð− πω
2kÞ − k2−ω2

ω2 ð− πω2

2k2 lnðkþω
k−ωÞÞ�

k2 − ω2 þM2
f þ 2m2

qf þ
m4

qf

k2 ½1 − 2 ω
2k lnðkþω

k−ωÞ − k2−ω2

ω2
ω2

4k2 ½ln ðkþω
k−ωÞ2 − π2��

)
: ð23Þ

FIG. 4. Left: original contour C corresponding to the Matsubara sum. Right: deformed contours, Cqp and CLd.
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Again, we only keep the T and μf dependent parts in Eq. (22), so that the T → 0 limit leads to

PLd;fðT ¼ 0; μfÞ ¼ −
1

π3

Z
μf

0

dω
Z

∞

ω
dk k2θqfðω; k;Mf;m2

qfÞ; ð24Þ

which completes the derivation of Eq. (14) in the previous section.
We here reassemble the T and μf independent terms that we dropped above. To this end it is convenient to think of the

T ¼ μf ¼ 0 limit in Eq. (18), in which the Matsubara sum reduces to T
P

n →
R∞
−∞

dω̄
2π , so that the pressure reads:

P⋆
qf ¼ 2

Z
∞

−∞

dω̄
2π

Z
k
ln ½A2

Sðiω̄; kÞ þM2
f − A2

0ðiω̄; kÞ�

¼ 4

Z
∞

0

dω̄
2π

Z
k
k ln

�
ð1þ ω̄2Þk2 þM2

f þ 2m2
qf þ

m4
qf

k2

�
ð1 − T̃ ðiω̄; 1ÞÞ2 − T̃ 2ðiω̄; 1Þ

ω̄2

��

¼ −
Λ̄2ϵeγEϵ

4π5=2
Γð2 − ϵÞΓðϵ − 2Þ

Γð3
2
− ϵÞ m4−2ϵ

qf

Z
∞

0

dω̄½ðfþðω̄; ηfÞÞ2−ϵ þ ðf−ðω̄; ηfÞÞ2−ϵ�; ð25Þ

where we used the following integral:

Z
∞

0

dk kα lnðk2 þm2Þ ¼ Γð1þα
2
ÞΓð1−α

2
Þ

1þ α
m1þα: ð26Þ

The function f�ðω̄; ηfÞ with ηf ≡ 1þM2
f=ð2m2

qfÞ is defined as in Eqs. (8) and (9) above. The limit of ϵ → 0 gives:

P⋆
qf ¼ −

m4
qf

4π3

�
1

ϵ
þ ln

Λ̄2

m2
D
þ 5

2
− 2 ln 2

��X
χ¼�

Z
∞

0

dω̄f2χ − ϵ
X
χ¼�

Z
∞

0

dω̄

�
f2χ ln fχ − 2fχ

∂fχ
∂ϵ

��

¼ m4
qf

�
CqðηfÞ þDqðηfÞ ln

Λ̄
mqf

�
þm4

qfDqðηfÞ
1

2ϵ
: ð27Þ

The constants Cq and Dq are defined in Eqs. (10) and (11)
in the previous section, respectively. The ultraviolet diver-
gence is subtracted by the term ΔPq in Eq. (4) above:

ΔPq ¼ m4
qfDqðηfÞ

1

2ϵ
: ð28Þ

In this way the above procedures complete the derivation of
Eq. (7) in the previous section.

V. DISCUSSIONS

Here, we discuss the speed of sound that could exceed
the conformal limit, and the robustness against the OðαsÞ
corrections to match the conventional pQCD calculation.

A. Speed of sound

The EoS from our resummed perturbation theory has a
notable feature in addition to the smaller uncertainty. We
have calculated the speed of sound, c2s ¼ ∂P=∂ε, which is
depicted in Fig. 5. To make clear the relevance to the
neutron star environment, we chose the horizontal axis as
the baryon number density nB in the unit of the normal
nuclear density n0.

There is an empirical conjecture to claim that the speed
of sound may not exceed the conformal limit, i.e.,
c2s ¼ 1=3. In the high density limit, asymptotically, all
mass scales and interactions are negligible and the con-
formal limit should be eventually saturated. In the pQCD
calculation, the first correction from the conformal limit is

FIG. 5. Speed of sound c2s from the EoSs; the blue band
represent the results from our HDLpt EoS, and the orange band
from the pQCD for reference.
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negative, so that the conformal limit is approached from
c2s < 1=3 with increasing density. Also at finite temper-
ature, the lattice-QCD results demonstrate that the con-
formal bound c2s < 1=3 holds [34]. Known examples of
QCD calculations seem to respect the conformal limit
(see Ref. [35] for an exception at finite isospin chemical
potential). However, no field-theoretical proof exists to
guarantee c2s < 1=3. The recent analysis based on neutron
star data, especially the two-solar-mass condition, indeed
suggest a possibility of c2s > 1=3 at sufficiently high baryon
density [36–38].
Figure 5 shows that our resummed EoS slightly violates

the conformal bound and c2s approaches 1=3 from above.
It is evident that our result is a counterexample to the
conjecture of c2s < 1=3. The quantitative difference is
numerically small between EoSs from our HDLpt and
pQCD, and the violation of the conformal bound is tiny, but
this comparison on Fig. 5 implies that one should be careful
about the robustness of the speed of sound bound (see, for
example, discussions in Refs. [39]).

B. OðαsÞ correction
The HDLpt has a deviation of OðαsÞ in the pressure, as

mentioned in the beginning, from the conventional pQCD
calculation. Our HDLpt predicts c2s > 1=3 even if we add a
correction to match the OðαsÞ terms. For analytical
simplicity we will show the calculation in the massless
case only. It is known that the expansion of PHDLpt in
powers of mqf=μf ≪ 1 gives, for Nc ¼ 3 [18]:

PHDLpt

Pideal
≈1− 6

m2
qf

μ2f
þO

�
m4

qf

μ4f

�
¼ 1− 4

αs
π
þOðα2sÞ; ð29Þ

where the ideal pressure is Pideal ¼ NcNfμ
4
f=ð12π2Þ. The

conventional pQCD result is [9,10]

PpQCD

Pideal
¼ 1 − 2

αs
π
þOðα2sÞ: ð30Þ

Therefore we can match the OðαsÞ terms by adding the
following correction to PHDLpt:

Pcorr ¼ 2
αs
π
Pideal: ð31Þ

In Fig. 6 we plot the speed of sound evaluated by PHDLpt

and PHDLpt þ Pcorr both in the massless case. Figure 6
clearly shows that even with the Pcorr correction, the speed
of sound still approaches c2s ¼ 1=3 from the above as the

density increases. This implies that c2s > 1=3 could be
attributed to the higher order effects from the resummation.

VI. SUMMARY

In this work we showed results with the smaller scale
variation uncertainty for the cold dense matter EoS in the
form of PðεÞ. The formalism we adopted here is the HDLpt,
which has already been successful in finite temperature
QCD. The important observation is that, as compared to the
pQCD calculation, quarks are screened by self-energy
insertions, and the baryon density is suppressed. This means
that the corresponding chemical potential for a given baryon
density is shifted to be larger, particularly for Λ̄ ¼ μ. It was
the source of the large uncertainty in the pQCD calculation,
so the improvements for Λ̄ ¼ μ helps lessen the uncertainty
band.We also emphasize the importance of the inclusion of a
bare quarkmass andwenumerically solved theβ equilibrium
and charge neutrality conditions. Our treatments with the
bare quark mass are messy, but contributions from finite
strange quark mass are crucial for the realistic environments
of neutron stars under the β equilibrium. Our results con-
stitute aQCD-based example of the conformal limit violation
at finite density, which can be in consonance with the state-
of-the-art neutron star observations. It would be an exciting
program to apply our EoS to the neutron star phenomenol-
ogy. We will report phenomenological implications soon.
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