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A coupled-channel approach is applied to the charged tetraquark state Tþ
cc recently discovered by the

LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in
the three-body D0D0πþ channel. Special attention is paid to the three-body dynamics in the Tþ

cc due to the
finite life time of the D�. An approach to the Tþ

cc is argued to be self-consistent only if both manifestations
of the three-body dynamics, the pion exchange between the D and D� mesons and the finite D� width, are
taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially
important to precisely extract the pole position in the complex energy plane whose imaginary part is very
sensitive to the details of the coupled-channel scheme employed. The D0D0 and D0Dþ invariant mass
distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy
expansion of theD�D scattering amplitude is performed and the low-energy constants (the scattering length
and effective range) are extracted. The compositeness parameter of the Tþ

cc is found to be close to unity,
which implies that the Tþ

cc is a hadronic molecule generated by the interactions in the D�þD0 and D�0Dþ

channels. Employing heavy-quark spin symmetry, an isoscalar D�D� molecular partner of the Tþ
cc with

JP ¼ 1þ is predicted under the assumption that the DD�-D�D� coupled-channel effects can be neglected.

DOI: 10.1103/PhysRevD.105.014024

I. INTRODUCTION

The quest of exotic hadrons with configurations beyond
the naive quark-model picture of a pair of quark-antiquark
for a meson and three quarks for a baryon has been a central
issue in the study of nonperturbative quantum chromody-
namics (QCD) for decades. A breakthrough along this path
was the discovery of the Xð3872Þ (also known as χc1ð3872Þ
according to the contemporary classification scheme by
the Particle Data Group [1]) by the Belle Collaboration in
2003 [2]. It resides extremely close to the threshold of a
pair of neutral charmed mesons D0D̄�0. This exotic state
is generally considered to be an excellent candidate for a
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hadronic molecule, which is a composite object formed by
at least a pair of hadrons via the strong interaction in
analogy to atomic nuclei. However, since the quantum
numbers of the Xð3872Þ, JPC ¼ 1þþ, are also accessible
for a generic c̄c charmonium or a compact tetraquark,
debates regarding its internal structure and production
mechanisms last since its discovery; see, for example,
Refs. [3–11] and references therein for the discussion.
Quite recently, the LHCb Collaboration announced the

discovery of a double-charm exotic candidate, Tþ
cc, which

reveals itself as a high-significance peaking structure in the
D0D0πþ invariant mass distribution just below the nominal
D�þD0 threshold [12]. Further studies of the Tþ

cc performed
by LHCb [13] demonstrate quite intriguing properties of
this state and allow for several conclusions concerning its
nature:

(i) Narrow near-threshold structures are observed in the
D0D0 and DþD0 mass spectra, which supports the
conjecture that the Tþ

cc decays through a formation
of the D� meson at the intermediate stage of the
reaction with its subsequent decays to the Dπ and
Dγ final states,

Tþ
cc → D0D�þ → D0D0πþ=D0Dþπ0;

Tþ
cc → DþD�0 → DþD0π0=DþD0γ:

To produce a visible near-threshold signal in the line
shape, the D�D pair in the Tþ

cc has to be in S-wave.
This hints at the quantum numbers of the Tþ

cc to
be JP ¼ 1þ.

(ii) No signal is found in the DþD0πþ invariant mass
distribution, nor is any structure seen in the DþDþ
mass spectrum. This precludes the existence of the
Tþþ
cc isospin jI ¼ 1; I3 ¼ 1i state and hints at the Tþ

cc
being an isoscalar.

(iii) The parameters of the resonance extracted from a
generic constant-width Breit-Wigner fit built by
LHCb in Ref. [12] are

δmBW ¼ −273� 61� 5þ11
−14 keV;

ΓBW ¼ 410� 165� 43þ18
−38 keV;

where δmBW defines the mass shift, derived from the
Breit-Wigner parametrization, with respect to the
D�þD0 threshold. However, since approximately
90% of the D0D0πþ events contain a genuine
D�þ meson [13], it is natural to expect (see the
discussions in Refs. [14–16]) that the width of the
Tþ
cc should be smaller than that of the D�þ, which is

only (83.4� 1.8) keV [1]. Thus the value of ΓBW
quoted above is way too large, suggesting that a
more rigorous data analysis is required.

(iv) A more profound data analysis reported by LHCb in
Ref. [13], based on a unitarized Breit-Wigner

parametrization with a momentum-dependent width,
allowed to extract the pole position of the amplitude
on the second Riemann sheet,

ffiffiffi
s

p
pole ¼ ½−360� 40þ4

−0 − ið24� 1þ0
−7Þ� keV; ð1Þ

where, as before, the real part is given relative to the
D�þD0 threshold. The imaginary part of the pole in
Eq. (1) appears to be in a good qualitative agreement
with the natural expectation discussed above.

(v) Only a lower bound was established for a crucial
parameter of the model, g, which defines the
coupling strength of the Tþ

cc to the D�D channel,

jgj > 5.1ð4.3Þ GeV at 90ð95Þ% CL: ð2Þ

The problem is rooted in the intrinsic properties of
the resonance, which is quite narrow and located
very close to the threshold. In such circumstances,
the amplitude demonstrates a scaling behavior [17].
In addition, once the employed parametrization is
convolved with the energy resolution, the resulting
shape appears to be hardly distinguishable from the
Breit-Wigner distribution with a constant width.
As a consequence, the effective range parameter
r, which crucially depends on the value of g, was
extracted to be

0 ≤ −r < 11.9ð16.9Þ fm at 90ð95Þ %CL: ð3Þ

Similarly, using the formula proposed in Ref. [18],
the Weinberg Z-factor of the Tþ

cc, that is, the
probability to find a compact component in the
Tþ
cc wave function (a component other thanD�þD0),

was computed using the scattering length and
effective range,

Z < 0.52ð0.58Þ at 90ð95Þ %CL: ð4Þ

This implies that the properties of the Tþ
cc known so

far indicate that this state is generally consistent with
a molecular nature.

Thus from here on we assume that the Tþ
cc is an isoscalar

state and investigate if all of its properties can be described
within a model that treats it as a hadronic molecule. In the
particle basis, the isoscalar character is manifested in the
equality of the magnitudes of the couplings of the Tþ

cc to
the channels D�þD0 and DþD�0, while having opposite
signs. However, the Tþ

cc wave function is dominated by the
D�þD0 component due to the incredible proximity of the
mass of this exotic state to the threshold of this channel.
The discovery of the Tþ

cc quickly spurred a lot of
phenomenological studies [14–16,19–36]. However, con-
trary to the case of the Xð3872Þwith JPC ¼ 1þþ, where the
static one pion exchange (OPE) interaction is attractive,
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which allowed Törnqvist to correctly predict its mass long
before its experimental discovery [37], the static OPE
provides repulsive and weakly attractive potentials in the
isoscalar and isovector D�D channels with JP ¼ 1þ,
respectively [37,38], It should be noted, however, that
the static approximation for the OPE in charmonium/
double-charm systems of interest here is not justified, since
the three-body intermediate state involving the exchanged
pion can go on shell. This leads to a potential that has
different signs at different values of the momenta.
An isoscalar bound state in the D�D system was

predicted in quark model [39,40] and in hadronic-level
(with the short-distance potential modeled by meson
exchanges) calculations [25,41–46]. In addition, com-
pact double-charm tetraquarks were also predicted in
Refs. [41,47–89]. In particular, it was suggested in
Ref. [90] to search for the Tþ

cc in the channels D0D0πþ

and D0Dþγ as the LHCb had already collected a sufficient
number of events for the discovery of Tþ

cc. For a brief
review of the literature, see Ref. [25].
In this paper, we present a theoretical analysis of

the LHCb data which improves the experimental analysis
by LHCb, and the existing theoretical ones in several
aspects.

(i) We proceed beyond the simplest approach based
solely on the short-range contact interactions (see,
for example, the most recent work of Ref. [35]) and
nonperturbatively include long-range interactions
provided by the OPE mechanism. We study its
effect on the properties of the Tþ

cc under various
assumptions about its form.

(ii) We study three-body effects in the Tþ
cc state which

are expected to have a strong impact on its proper-
ties. This is because the D�’s are unstable and the
corresponding three-body DDπ thresholds lie very
close to and below the two-body D�D ones, and the
Tþ
cc resides between the mentioned two- and three-

body thresholds. The interplay of those thresholds in
the case of the Xð3872Þ was studied in detail
in Ref. [91].

(iii) We reliably extract the parameters of the effective
range expansion from the low-energy scattering
amplitude and discuss the consequences for the
compositeness of the Tþ

cc.
Thus, in this work, we investigate the properties of the

Tþ
cc in the framework of a nonrelativistic effective field

theory constrained with the requirements of isospin and
heavy-quark spin (HQSS) symmetries (the leading isospin
symmetry breaking is taken into account by using the
physical masses of the involved mesons).
The paper is organized as follows. In Sec. II, we define

our coupled-channel framework including the details of the
three-body dynamics. In Sec. III, we introduce different
fitting schemes and analyse the LHCb data in the D0D0πþ
channel using these schemes. Then we make predictions

for the Tþ
cc spin partners in the complementary channels.

In Sec. IV, a low-energy expansion of the scattering
amplitude is performed and the low-energy constants
(scattering length and effective range) are extracted. An
evidence that the Tþ

cc is a composite object is presented in
Sec. V. We discuss the results obtained and conclude
in Sec. VI. Generalization to the light flavor SU(3) group
is outlined in Appendix A and the effect of a finite width on
the effective range is discussed in Appendix B.

II. FRAMEWORK

A. Interactions

1. Contact potentials

The leading-order (LO) Dð�ÞDð�Þ interaction in the chiral
effective field theory follows from the effective Lagrangian
which contains only Oðp0Þ contact potentials, with p
denoting a small momentum scale [92],

LHH ¼−
D00

8
TrðH†

aHbH
†
bHaÞ−

D01

8
TrðσiH†

aHbσ
iH†

bHaÞ

−
D10

8
TrðτAaa0H†

a0Hbτ
A
bb0H

†
b0HaÞ

−
D11

8
TrðτAaa0σiH†

a0Hbτ
A
bb0σ

iH†
b0HaÞ; ð5Þ

where the subscripts að0Þ, bð0Þ denote flavor indices, τA¼1;2;3

are the isospin Pauli matrices, and the D00;10;01;11 are four
low-energy constants (LECs) describing the contact inter-
actions between the heavy-light mesons grouped into the
superfield,

Ha ¼ Pa þ Va · σ; ð6Þ

with Pa and Va annihilating the ground-state pseudoscalar
and vector charmed mesons, respectively, which in the
flavor space are written explicitly as

Pa ¼
�
D0

Dþ

�
a

; Va ¼
�
D�0

D�þ

�
a

: ð7Þ

The proximity of the Tþ
cc to the D�D thresholds suggests

that the dominating component of its wave function
consists of a D and D� meson pair in a relative S-wave.
The quantum numbers of such a system, JP ¼ 1þ, perfectly
match the findings of the LHCb Collaboration [12,13].
Then we build the D�D isoscalar (I ¼ 0) and isovector
(I ¼ 1) combinations as

jD�D; I ¼ 0i ¼ −
1ffiffiffi
2

p ðD�þD0 −D�0DþÞ;

jD�D; I ¼ 1i ¼ −
1ffiffiffi
2

p ðD�þD0 þD�0DþÞ; ð8Þ
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and employ the Lagrangian of Eq. (5) to find the corre-
sponding S-wave contact potentials,

VI¼0
CT ðD�D → D�D; 1þÞ ¼ −2ðD01 − 3D11Þ≡ v0; ð9Þ

VI¼1
CT ðD�D → D�D; 1þÞ ¼ D00 þD01 þD10 þD11 ≡ v1;

ð10Þ

where 1þ stands for the spin and parity JP. Then, in the
particle basis fD�þD0; D�0Dþg, the contact potential reads

VCTðD�D → D�D; 1þÞ ¼
�
c d

d c

�
; ð11Þ

where the diagonal and off-diagonal matrix elements are

c ¼ 1

2
ðv1 þ v0Þ; d ¼ 1

2
ðv1 − v0Þ: ð12Þ

According to the claim by LHCb [13], the Tþ
cc is an

isoscalar state, so in what follows we stick to the potential
of Eq. (9) and set to zero the contact isovector interaction,
that is, v1 ¼ 0 in Eq. (10), or equivalently d ¼ −c, to
reduce the number of free parameters. The contact poten-
tials in the complementary spin-parity Dð�ÞDð�Þ channels,
as well as their generalization to the light quark flavor
SU(3) group, can be found in Appendix A.
In this paper, we work in the strict isospin limit for the

contact potentials and take the isospin breaking effects into
account through the mass difference of the charged and
neutral Dð�Þ mesons as well as that of the pions.

2. OPE potential

The most important portion of the experimental signal is
localized within just 1 MeV below the D�þD0 threshold,
while the splitting between the D�þD0 and D�0Dþ thresh-
olds is around 1.41 MeV, which implies that the isospin
breaking effects can be significant. We stick to the notations

mð�Þ
0 andmð�Þ

c for the masses of the neutral and chargedDð�Þ

mesons, respectively, and take their values to be [1]

m0 ¼ 1864.84 MeV; mc ¼ 1869.66 MeV;

m�
0 ¼ 2006.85 MeV; m�

c ¼ 2010.26 MeV: ð13Þ
The LO Lagrangian for the D�Dπ interaction reads

[38,93–95]

L ¼ 1

4
gTrðσ · uabHbH

†
aÞ; ð14Þ

where u ¼ −∇Φ=fπ with

Φ ¼
�

π0
ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
: ð15Þ

Here fπ ¼ 92.1 MeV is the pion decay constant and the
coupling g ¼ 0.57 is determined from the experimentally
measured D�þ → D0πþ decay width.
The OPE potential can be naturally decomposed into two

contributions which correspond to the two different order-
ings in the frameworkof the time-orderedperturbation theory
(TOPT)—see Fig. 1. It should also be noticed that, given the
very limited energy and momentum ranges covered by the
theory, it is sufficient to employ a nonrelativistic approach
for all particles involved, including the pion. Thus, for the
propagator of the pion of mass mπ , we use

DπðM;p; p0; zÞ ¼ −
1

2mπ
½Dπ

1ðM;p; p0; zÞ þDπ
2ðM;p; p0; zÞ�;

Dπ
1ðM;p; p0; zÞ ¼

�
mi þmj þmπ þ

p2

2mi
þ p02

2mj
þ p2 þ p02 − 2pp0z

2mπ
−M − iϵ

�−1
;

Dπ
2ðM;p; p0; zÞ ¼

�
m�

i þm�
j þmπ þ

p2

2m�
i
þ p02

2m�
j
þ p2 þ p02 − 2pp0z

2mπ
−M − iϵ

�−1
; ð16Þ

whereM is the total energy, p and p0 stand for the incoming
and outgoing three-momenta, respectively, with pð0Þ their

magnitudes, z ¼ ðp · p0Þ=ðpp0Þ andmð�Þ
i denotes themass of

theDð�Þ in the ith channel. To guarantee a proper treatment of
the three-body effects, all recoil terms need to be kept in

Eq. (16), as discussed in detail in Refs. [96–98] in the context
of the πNN and KNN intermediate states. This is especially
relevant in the double-charm system at hand given that, near
the D�þD0 threshold, 2mD0 þmπþ −M ≈mD0 þmπþ −
mD�þ ≈ −6 MeV, and hence the effective parameter which

FIG. 1. The two TOPT contributions (V1 and V2, respectively)
to the OPE potential betweenD (single solid line) andD� (double
solid line) mesons. The dashed line stands for the pion and the
vertical thin line shows the relevant intermediate state.
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governs the pion exchange [see the first ordering Dπ
1 in

Eq. (16)],

μπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mπðmD0 þmπþ −mD�þÞ

p
≈ i41 MeV; ð17Þ

is not only quite small, but also imaginary.

The matrix of the OPE potential VOPEðM;p; p0Þ in the
particle basis,

fD�þD0ðSÞ; D�0DþðSÞ; D�þD0ðDÞ; D�0DþðDÞg; ð18Þ

where S and D in the parentheses indicate the correspond-
ing partial waves, reads

VOPE ¼ g2

12f2π

0
BBBBBB@

Vπþ
SS − 1

2
Vπ0
SS −

ffiffiffi
2

p
Vπþ
SD

1ffiffi
2

p Vπ0
SD

− 1
2
Vπ0
SS Vπþ

SS
1ffiffi
2

p Vπ0
SD −

ffiffiffi
2

p
Vπþ
SD

−
ffiffiffi
2

p
Vπþ
DS

1ffiffi
2

p Vπ0
DS

1
2
Vπþ
DD − 1

4
Vπ0
DD

1ffiffi
2

p Vπ0
DS −

ffiffiffi
2

p
Vπþ
DS − 1

4
Vπ0
DD

1
2
Vπþ
DD

1
CCCCCCA
; ð19Þ

with the individual partial-wave-projected components given by

Vπ
SSðM;p; p0Þ ¼

Z
1

−1
dzDπðM;p; p0; zÞðp2 þ p02 − 2pp0zÞ;

Vπ
SDðM;p; p0Þ ¼

Z
1

−1
dzDπðM;p; p0; zÞ

�
1

2
p2ð3z2 − 1Þ þ p02 − 2pp0z

�
;

Vπ
DSðM;p; p0Þ ¼

Z
1

−1
dzDπðM;p; p0; zÞ

�
1

2
p02ð3z2 − 1Þ þ p2 − 2pp0z

�
;

Vπ
DDðM;p; p0Þ ¼

Z
1

−1
dzDπðM;p; p0; zÞ½2ðp2 þ p02Þð3z2 − 1Þ − pp0zð9z2 − 1Þ�: ð20Þ

It is important to notice that, since the D� → Dπ vertex is
P-wave, the OPE interaction in the D�D system at hand
contains a short-range contribution and, therefore, is well
defined only in the presence of the contact potential
introduced above [99].

B. Lippmann–Schwinger equation

The dynamics of the system under study can be
described in terms of a coupled-channel Lippmann-
Schwinger equation (LSE) for the D�D → D�D T-matrix
(amplitude) satisfying three-body unitarity,

TαγðM;p;p0Þ ¼ VαγðM;p;p0Þ−
X
β

Z
d3q
ð2πÞ3VαβðM;p;qÞ

×GβðM;qÞTβγðM;q;p0Þ; ð21Þ

where the Greek indices run from 1 to 4 accounting for the
channels listed in Eq. (18) and the potential is treated as a
sum of the OPE and contact terms [91,100],

VðM;p; p0Þ ¼ VCT þ VOPEðM;p; p0Þ: ð22Þ

The contact potential in the extended basis (18) takes a
matrix form,

VCT ¼ v0
2

0
BBB@

1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

1
CCCA; ð23Þ

where, as explained above, we have set to zero the contact
isovector interaction and thus taken c ¼ −d ¼ v0=2—see
Eqs. (11) and (12). The pion exchange potential VOPE is
quoted in Eq. (19).
The full DD� propagators incorporating both the effect

of the self-energy from the Dπ loop functions and the
contributions from Dγ decay channels can be expressed as

G1ðM;pÞ ¼ G3ðM;pÞ

¼
�
m�

c þm0 þ
p2

2μc0
−M −

i
2
ΓcðM;pÞ

�−1
;

G2ðM;pÞ ¼ G4ðM;pÞ

¼
�
m�

0 þmc þ
p2

2μ0c
−M −

i
2
Γ0ðM;pÞ

�−1
;

ð24Þ
where the reduced masses are μc0 ¼ m�

cm0=ðm�
c þm0Þ and

μ0c ¼ m�
0mc=ðm�

0 þmcÞ, and the energy-dependent widths
read [91]
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ΓcðM;pÞ ¼ ΓðD�þ →DþγÞþ g2m0

12πf2πm�
c
ΣD0πþD0ðM;p;μc0Þ

þ g2mc

24πf2πm�
c
ΣDþπ0D0ðM;p;μc0Þ; ð25Þ

Γ0ðM;pÞ ¼ ΓðD�0 → D0γÞ þ g2m0

24πf2πm�
0

ΣD0π0DþðM;p; μ0cÞ

þ g2mc

12πf2πm�
0

½ΣDþπ−DþðM;p; μ0cÞ

− ΣDþπ−Dþðmc þm�
0; 0; μ0cÞ�; ð26Þ

where

ΣijkðM;p;μÞ¼
�
2μij

�
M−mi−mj−mk−

p2

2μ

��
3=2

; ð27Þ

with μij ¼ mimj=ðmi þmjÞ. Notice that D�0 has a mass
below the Dþπ− threshold and the two contributions in the
last term in Eq. (26) cancel against each other at the point
p ¼ 0 and M ¼ mc þm�

0 to ensure that m�
0 represents the

physical mass of the D�0. The three-body formalism
used here incorporates the full three-body dynamics. It
is, however, not Lorentz covariant. Meanwhile, since the
missing diagrams appear only at higher order in the power
counting, their omission is justified as shown in Ref. [101].
For alternative treatments of the three-body dynamics, see,
for example, Ref. [102] and references therein.
Since the momentum integrals in the LSE, Eq. (21),

diverge, we regularize them with a sharp cutoff Λ. The
numerical results presented below correspond to Λ ¼
0.5 GeV. However, we have verified that the physical
observables are almost Λ-independent in a reasonably wide
range ofΛ from 0.3 to 1.2 GeV, consistent with treating OPE
explicitly while effectively integrating out all higher degrees
of freedom into contact terms, as given in Eq. (22). A very
weakΛ-dependence of the results obtained should not come
as a surprise given a very large separation of scales involved.
Indeed, the signal in the data is localized withinΔ ≈ 1 MeV
from the D�D threshold, so that a typical soft scale for
the problem at hand can be estimated as Q ≃

ffiffiffiffiffiffiffiffi
mΔ

p
≃

40…50 MeV ≪ Λ, where m is a Dð�Þ-meson mass given
in Eq. (13). Therefore, in the entire interval of the cutoffs
used, the EFT expansion parameter Q=Λ appears to be
extremely small, which makes it possible to absorb the
leading-order cutoff dependence in a single momentum-
independent contact term. Note however that subleading

corrections, which scale with the inverse power of the cutoff,
still contribute to the problem and give rise to some model
dependence of the effective range in this leading-order
calculation, as discussed at the end of Sec. IV.

C. Line shape in the D0D0π + channel

To describe the D0D0πþ mass distribution, we first
proceed from the scattering amplitudes to the production
ones, so that the production amplitude in the αth channel,
UαðM;pÞ, takes the form
UαðM;pÞ ¼ Pα −

X
β

Z
d3q
ð2πÞ3 TαβðM;p; qÞGβðM; qÞPβ;

ð28Þ
wherePα is a pointlike production source for theαth channel.
In the relatively narrow energy region of interest, we consider
only an S-wave production. In addition, in the isoscalar
channel isospin symmetry requires that P2 ¼ −P1. Finally,
since the parameterP1 can always be absorbed by the overall
normalization factor, without loss of generalitywe setP1¼1,
so that the vector of the sources reads Pα ¼ ð1;−1; 0; 0Þ.
Then, the production rate for the three-body D0D0πþ

channel (see the corresponding diagrams shown in Fig. 2)
is calculated as [91]

dBr½D0D0πþ�
dM

¼N
Z

pmax

0

pdp
Z

p̄max

p̄min

p̄dp̄jqπU1ðM;pÞ

×G1ðM;pÞþ q̄πU1ðM;p̄ÞG1ðM;p̄Þj2;
ð29Þ

where N is a normalization constant,

qπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μD0πþ

�
M − 2m0 −mπþ −

p2

2μp

�s
;

q̄π ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μD0πþ

�
M − 2m0 −mπþ −

p̄2

2μp

�s
;

and

pmax¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μpðM−2m0−mπþÞ

q
;

p̄min;max¼
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μD0πþ

�
M−2m0−mπþ −

p2

2μp

�s
∓ m0p
m0þmπþ

�����;
with μp ¼ jm0ðm0 þmπþÞ=ð2m0 þmπþÞj.

FIG. 2. Graphical representation for the production amplitude in theD0D0πþ channel with theDD� final state interaction. The symbol
⊗ stands for the pointlike production source Pα, the filled circle is for the full production amplitude Uα [see Eq. (28)] while the filled
squares stand for the D�D interactions described by the solution of the LSE quoted in Eq. (21).
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D. Invariant mass distributions in the D0D0

and D0D + channels

Invariant mass distributions for the selected D0D0 (see
Fig. 2) andD0Dþ (see Fig. 3) candidates can be obtained as

dBr½D0D0�
dm00

¼N 0
Z

Mmax

m00þmπþ
dM

Z
mmax

23

mmin
23

dm23jqπU1ðM;pÞ

×G1ðM;pÞþ q̄πU1ðM;p̄ÞG1ðM;p̄Þj2;
dBr½D0Dþ�

dm0c
¼N 00

Z
Mmax

m0cþmπ0

dM
Z

mmax
23

mmin
23

dm23jqπU1ðM;pÞ

×G1ðM;pÞ− q̄πU2ðM;p̄ÞG2ðM;p̄Þj2; ð30Þ
whereN 0 andN 00 are normalization constants,m00 andm0c

are the invariant masses of D0D0 and D0Dþ, respectively,

and the particles in the final D0D0πþ and D0Dþπ0 states
are labeled as 1, 2 and 3, in order, while the relative
negative sign in the D0Dþ channel is due to the isospin
relation gD�þ→D0πþ ¼ ffiffiffi

2
p

gD�0→D0π0 ¼ −
ffiffiffi
2

p
gD�þ→Dþπ0 .

1

Further, in Eq. (30),

qπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ1ðM −m23 −m1Þ

p
; q̄π ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2ðM −m2 −m31Þ

p
;

m31 ¼
Mm123 −m12ðm1 þm2Þ −m23ðm2 þm3Þ þm2

1 þm2
2 þm2

3

m1 þm3

; ð31Þ

with μi ¼ miðm123 −miÞ=m123, m123 ¼ m1 þm2 þm3, and mij the invariant mass of particles i and j. The limits of
integration mmin

23 and mmax
23 are determined as

mmin
23 ¼ m2 þm3 þ

μ23½2μ12m123

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ3ðM −m12 −m3Þ

p
−m1m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ12ðm12 −m1 −m2Þ

p �2
2μ212m

2
3ðm1 þm2Þ2

;

mmax
23 ¼ m2 þm3 þ

μ23½2μ12m123

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ3ðM −m12 −m3Þ

p þm1m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ12ðm12 −m1 −m2Þ

p �2
2μ212m

2
3ðm1 þm2Þ2

;

with μij ¼ mimj=ðmi þmjÞ.

III. DATA ANALYSIS

A. Strategy and fitting schemes

From the consideration of the previous section one can
easily see that the D�Dπ vertex, described by the
Lagrangian of Eq. (14), gives rise to two complemen-
tary effects: pion exchange in the D�D system and a
momentum-dependent self-energy of the D�, encoded in
the momentum-dependent widths given in Eqs. (25)

and (26). Therefore, a self-consistent treatment of the
three-body dynamics requires that both above effects be
simultaneously included in order not to violate three-
body unitarity [103]. In particular, keeping a nontrivial
momentum dependence of the D� self-energy, thus
accounting for the virtual dressing process D� →
Dπ → D�, while neglecting the pion exchange between
the D� and D as the Tþ

cc constituents breaks three-body
unitarity, which may cause troubles when precisely
extracting and interpreting the parameters of the reso-
nance and the low-energy constants in the effective range
expansion of the amplitude. Thus, in order to assess the
role of the three-body effects, we consider the following
three different fit schemes:

(i) Scheme I (no three-body effects): only the LO
contact potentials in theD�D channels are employed
with the constant D� widths, Γ0ðM;pÞ ¼ 53.7 keV
and ΓcðM;pÞ ¼ 82.5 keV. This scheme is similar in
spirit to the one used in Ref. [35].

(ii) Scheme II (partial three-body effects): the dynamical
widths of the D� mesons, as given in Eqs. (25) and

FIG. 3. Graphical representation for the two contributions to the
production amplitude in the D0Dþπ0 channel (filled circle)
defined in a similar way to that depicted in Fig. 2.

1In Eq. (30), dBr½D0D0�=dm00 and dBr½D0Dþ�=dm0c should
be understood as the number-of-events distributions measured
experimentally. Thus, the overall normalization constants depend
on the detection efficiency and vary for different final states. The
symmetry factor 1=2 in the phase space integration for the
D0D0πþ channel due to the presence of identical D0 mesons is
absorbed by N 0. Similarly, the 1=2 factor due to the isospin
relation for the axial coupling constants, which appears in the
amplitude squared of theD0Dþπ0 channel relatively to that of the
D0D0πþ channel, is absorbed by N 00.
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(26), are implemented while the OPE potential is not
included.

(iii) Scheme III (full three-body effects): the complete
potential of Eq. (22), which incorporates both the
contact and OPE interactions, is used to ensure that
the full three-body dynamics is self-consistently
taken into account, and in this way three-body
unitarity is preserved.

We would like to mention that a direct comparison of our
results with those from the LHCb analysis of Ref. [13] is
not possible, since that analysis includes some OPE effects,
but not all [104].
Once the parameters are fixed from the best fit to the

data, we search for poles of the amplitude in the complex
energy plane. Then the physical Tþ

cc state is associated
with the corresponding pole, and its effective coupling gα
to the channel α is obtained from the residue of the
scattering amplitude,

gαgβ ¼ lim
M→Mpole

ðM2 −M2
poleÞTαβðMÞ: ð32Þ

Here the on-shell scattering amplitude TαβðMÞ is evalu-
ated from Eq. (21) by imposing the condition that pð0Þ
is the pole momentum of the two-body propagator
GαðβÞðM;pÞ, which reduces to Eq. (39) given below
for a constant D� width.

B. Fits to the D0D0π + spectrum and predictions
for the D0D0 and D0D+ line shapes

The expression of Eq. (29) for the line shape in the
channel D0D0πþ contains only two free parameters: the
strength of the contact potential v0 from Eq. (9) and
the overall normalization factor N , with the shape
depending only on the former one. The signal function
is supplemented with the combinatorial background

taken directly from the LHCb analysis of
Refs. [12,13]. In addition, the experimental energy
resolution is taken into account using the resolution
function given in Ref. [13].2 The fit results for the three
schemes introduced in Sec. III A are shown in Fig. 4,
and the best fit parameters are collected in Table I. The
quality of each fit can be assessed through the corre-
sponding value of χ2=d:o:f: quoted in the same table.
The pole position responsible for the Tþ

cc in each scheme
is given in Table II. The real and imaginary parts of the
pole position are treated as the binding energy and half
of the width, respectively.
In Scheme I, where a constant width of the D� is

employed and hence the three-body cut does not show
up, the Riemann surface contains four sheets. Then the
Tþ
cc pole is located on the first (physical) Riemann sheet

(RS-I), just below the D�þD0 threshold and thus it
describes a shallow bound state. This Riemann sheet
(RS) corresponds to positive values of the imaginary part
of all involved momenta. It has to be noticed, however,
that by including a constant D� width (or, equivalently, a
complex D� mass), one distorts the two-body cut, which
does not any longer spread along the real axis, so that the
bound state pole below the threshold on RS-I naturally
acquires an imaginary part.

FIG. 4. Fitted line shapes before (left plot) and after (right plot) convolution with the energy resolution function—see footnote for its
explicit form. The background is taken from the LHCb analysis [12,13]. The experimental binning with the bin size of 200 keV is
included in the fits.

2The resolution function for the Tþ
cc mass distribution, RLHCb,

is parameterized by a sum of two Gaussian functions,

RLHCbðM;M0Þ ¼ αGðM;M0; σ1Þ þ ð1 − αÞGðM;M0; σ2Þ;

Gðx; μ; σÞ ¼ 1ffiffiffiffiffi
2π

p
σ
exp

�
−
ðx − μÞ2
2σ2

�
; ð33Þ

with the parameters σ1 ¼ 1.05 × 263 keV, σ2 ¼ 2.413 × σ1, and
α ¼ 0.778 taken from Ref. [13].
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In Schemes II and III, when the three-body channels (DDπ) are included explicitly, the three-body cuts appear with their
branch points at the three-body thresholds. Thus, in these two schemes, the Tþ

cc pole is located in the lower half plane of the
second Riemann sheet (RS-II)3 and its position can be accessed through the analytic continuation of the self-energy [105],

ΣijkðM;p; μÞ →
(
−ΣijkðM;p; μÞ; ImM < 0 &ReðM −mi −mj −mk −

p2

2μÞ > 0;

ΣijkðM;p; μÞ; ImM < 0 &ReðM −mi −mj −mk −
p2

2μÞ < 0;
ð34Þ

with Σijk defined in Eq. (27). Then, in the energy range
near the Tþ

cc pole, the D0D0πþ and DþD0π0 channels are
on their unphysical RSs while the DþDþπ− is on its
physical RS.
A comment on the role played by the three-body

dynamics in the Tþ
cc is in order here. As mentioned above,

the imaginary part of the pole can be treated as half of the
Tþ
cc width. It is, therefore, instructive to notice that

neglecting the three-body dynamics due to the finite life
time of the D� one overestimates the Tþ

cc width by up to a
factor of 2 (compare the imaginary parts of the pole
positions for Schemes I and II quoted in Table II). This
shift is partially overcome once also the three-body cut is
included in the scattering potential. If after neglecting the
three-body effects, one employs the static approximation
for the OPE, together with a constant width of the D�, the
half width of the Tþ

cc would turn out to be around 70 keV
thus overestimating the full result in Scheme III by a factor
of 2.5. These results agree with the conclusions obtained in
Ref. [91] about the role of the three-bodyDD̄π dynamics in
the Xð3872Þ.
In Table III, we compile the values of the effective

coupling constants to the different channels extracted as
detailed in Eq. (32). For convenience, we also define these

couplings in the isospin basis. In Schemes I and II, where
only isospin conserving contact interactions are retained,
the coupling of the Tþ

cc to the isovector channel vanishes
exactly, while in Scheme III, because of the isospin
symmetry breaking effects in the OPE driven by the mass
difference between the charged and neutral pions, there is a
non-vanishing, though very small, admixture of the iso-
vector component. The D-wave couplings in Scheme III
(given only in the isospin basis) are strongly suppressed
compared with the S-wave ones. This should not come as a
surprise given the very limited near-threshold energy range
spanned by the signal.
With the contact interaction parameter v0 [see Eq. (9)]

determined from the fit, it is straightforward to predict the
invariant mass distributions in the D0D0 and D0Dþ
channels as given in Eq. (30), and the results are presented
in Figs. 5 and 6. In both figures, the left and right panels
show the corresponding distributions before and after
convolution with the experimental energy resolution func-
tion, respectively. For the latter, we use the same form as
that for the experimental D0D0πþ mass distribution with
the two Gaussian functions given in Eq. (33)—see foot-
note 2. Both distributions present a narrow peak just above
the corresponding DD threshold, which is a reflection of
the Tþ

cc, as a very shallow bound state of the D and D�,
decaying into DDπ through the intermediate off-shell D�
with a very small energy released in the transition
D� → Dπ. Thus the form of the DD mass distributions
supports the interpretation of the Tþ

cc as a weakly bound

TABLE I. Values of χ2=d:o:f: for the three fit schemes, together with the fitted values of v0 [see Eq. (9)]. The
cutoff in the LSE is set to Λ ¼ 0.5 GeV.

Scheme I II III

χ2=d:o:f: 0.79 0.74 0.71
v0 [GeV−2� −23.34� 0.08 −22.88þ0.08

−0.06 −5.04þ0.10
−0.08

TABLE II. The pole position of the Tþ
cc relative to the D�þD0 threshold and the Riemann sheet (RS) where the

pole is located in each scheme (see the text for details). The errors are statistical propagated from fitting to the LHCb
data while the uncertainties from the cutoff variation are well within the errors quoted here.

Scheme I II III

Pole [keV] −368þ43
−42 − ið37� 0Þ (RS-I) −333þ41

−36 − ið18� 1Þ (RS-II) −356þ39
−38 − ið28� 1Þ (RS-II)

3Note that here RS-II is not the second Riemann sheet in the
usual sense in two-body scattering. Instead, we use it to refer to
the unphysical RS, specified by Eq. (34), with respect to the
branch points at the three-body thresholds.
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D�D molecule. For a calculation of the same distributions
in a formalism with perturbative pions, we refer to the work
in Ref. [16]. A more precise measurement of the DD
invariant mass distributions would be helpful to understand
the DD interaction.4

C. Heavy-quark spin symmetry partners of T +
cc

According to HQSS, in a given isospin sector, the
interaction of certain Dð�ÞDð�Þ pairs can be related to that
of the D�D in the heavy-quark limit—see, for example,
Appendix A. In particular,

VI¼0ðD�D� → D�D�; 1þÞ ¼ VI¼0ðD�D → D�D; 1þÞ;
ð35Þ

which holds for both the contact and OPE potentials
and is generally true for all interactions that preserve
HQSS. The isoscalar Tþ

cc hints at the possible existence
of a heavy-quark spin partner in the isoscalar JP ¼ 1þ
sector. An additional D�D� state, T�þ

cc as introduced in
Ref. [35], can be predicted based on Eq. (35), pro-
vided that the DD�-D�D� coupled-channel effects are
neglected.
While being of little effect for the Tþ

cc itself, D-waves
(and especially S-D transitions) are known to play an
important role for a precise prediction of the spin partner
states, since the energy region covered by the effective field
theory needs to be quite large (about 150 MeV in the charm
sector that results in momenta as large as 500 MeV) [108].
Renormalization of the OPE in the theory with such a
large applicability domain requires an inclusion of
higher, momentum-dependent contact interactions and, to
fix those, experimental data with a nontrivial signal far

beyond just a narrow near-threshold region are needed.
Such studies were performed recently in the context of
the Zbð10610Þ and Zbð10650Þ [109,110] and the LHCb
pentaquarks [111].
Given the very limited data on the double-charm sector

available at the moment, a precise prediction of the T�þ
cc is

not possible yet, and cannot go further than providing naive
estimates based solely on identical LO contact potentials in
different channels. Nonetheless, as an estimation, we could
simply neglect the DD�-D�D� coupled-channel effects
and try to test the significance played by the OPE poten-
tial based on Eq. (35). Once the coupled channels are
neglected, the OPE potentials for the D�D� → D�D�
transitions have no three-body cut since there is no D� →
Dπ vertex. It should be noted that the D�D� propagator
contains a four-body cut due to the self-energies of two D�
that is, however, a higher-order effect lying beyond the
scope of this work. Therefore, as long as only the mass of
the spin partner of the Tþ

cc is concerned, it is safe to neglect
the D� width.5 We find that the isoscalar D�D� amplitude
with JP ¼ 1þ possesses a pole on RS-I with the binding
energy (the real part relative to the D�D� threshold)

Scheme I ∶ δ�þcc ¼ −1444ð61Þ keV;
Scheme II ∶ δ�þcc ¼ −1138ð50Þ keV;
Scheme III ∶ δ�þcc ¼ −503ð40Þ keV; ð36Þ

where δ�þcc ¼ mT�þ
cc
−m�

c −m�
0. A large spread in the

predictions for the mass of the Tþ
cc spin partner in the

three schemes employed implies a possibly significant role
of the OPE interaction.
Further considerations, which might be relevant for

hypothetical SU(3) siblings of the Tþ
cc and T�þ

cc containing
s̄ antiquark(s) can be found at the end of Appendix A.

TABLE III. Effective couplings extracted as indicated in Eq. (32). Note that in Schemes II and III, the couplings
are complex, with nonzero imaginary parts, although much smaller than the corresponding real parts. The dots mean
that the D wave coupling is not included.

Scheme I II III

gD�þD0ðSÞ 1.03� 0.03 ð1.00� 0.03Þ − ið0.01� 0.00Þ ð1.03� 0.02Þ − ið0.01� 0.01Þ
gD�0DþðSÞ −1.03� 0.03 ð−1.00� 0.03Þ þ ið0.01� 0.00Þ ð−0.99� 0.02Þ þ ið0.01� 0.01Þ
gðI¼0Þ
D�D ðSÞ −1.45� 0.04 ð−1.42� 0.03Þ þ ið0.01� 0.00Þ ð−1.43� 0.03Þ þ ið0.02� 0.00Þ
gðI¼1Þ
D�D ðSÞ 0.00� 0.00 ð0.00� 0.00Þ þ ið0.00� 0.00Þ ð−0.03� 0.00Þ þ ið0.00� 0.00Þ
gðI¼0Þ
D�D ðDÞ � � � � � � ð0.02� 0.00Þ þ ið0.00� 0.00Þ
gðI¼1Þ
D�D ðDÞ � � � � � � ð−0.00� 0.00Þ þ ið0.00� 0.00Þ

4The impact of DD̄ interactions on the Xð3872Þ → D0D̄0π0

decay is studied in Refs. [106,107]. It is found in Ref. [106] that
the impact can be sizeable if there is a near-threshold DD̄ bound/
virtual state. Analogously, from the nice agreement of the DD
invariant mass distributions in Figs. 5 and 6, one is tempted to
conclude that there is likely no near-threshold DD bound/virtual
state, consistent with the spectrum predicted in Ref. [25].

5One can also use a complexD� mass to include its width, as in
Scheme I. We have explicitly checked that the inclusion of
constant widths of the D�’s does not affect the mass of the T�þ

cc in
Schemes I and II. For Scheme III, the effect of the D� width on
the mass of the T�þ

cc is around 30 keV, that is, well within the
uncertainty quoted in Eq. (36).
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IV. LOW-ENERGY EXPANSION
OF THE AMPLITUDE

In this section we discuss the low-energy expansion of
the scattering amplitude D�D → D�D and extract the
corresponding parameters. The absolute value of the
D�D scattering amplitude in the isospin basis is depicted
in Fig. 7. The low-energy S-wave scattering parameters
such as the scattering length a0 and the effective range r0
can be determined by scrutinizing the behavior of the
scattering amplitude in the vicinity of theD�þD0 threshold.
These parameters are defined using the effective range
expansion of the scattering amplitude as

TD�þD0→D�þD0ðkÞ ¼ −
2π

μc0

�
1

a0
þ 1

2
r0k2 − ikþOðk4Þ

�
−1
:

ð37Þ

FIG. 5. The D0D0 invariant mass distribution of the Tþ
cc → D0D0πþ decay predicted using the contact interaction parameter v0 [see

Eq. (9)] determined from fitting the D0D0πþ spectrum (see Table I) before (left plot) and after (right plot) convolution with the energy
resolution function.

FIG. 6. The same as in Fig. 5 but for the D0Dþ invariant mass distribution of the Tþ
cc → D0Dþπ0=γ decays.

FIG. 7. The absolute value of the D�D → D�D scattering
amplitudes for the parameters of Scheme III (see Table I).
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It is important to notice that the finite width of the D�
drives the three-momentum k ill-defined in the vicinity of
the two-body D�D threshold (a detailed discussion of this
and related issues can be found in Refs. [112,113], the
problem is revisited in a recent work [114]). In order to get
a deeper insight into this problem, let us start from a single-
channel study with a constant contact potential VCT. This
corresponds to a single-channel version of our Scheme I.
Then it is easy to find that the inverse scattering amplitude
is simply

T−1ðMÞ ¼ V−1
CT þ JðMÞ; JðMÞ ¼

Z
d3p
ð2πÞ3GðM;pÞ;

ð38Þ

where GðM;pÞ is the Green’s functions of the form as
defined in Eq. (24). Therefore, in this trivial example,

the effective range is just r0 ∝ −Re dJðMÞ
dM jM¼Mthrþ0þ

with Mthr for the corresponding two-body threshold.6

However, a finite width of the D� significantly modifies
the behavior of JðMÞ near the two-body threshold, since
the sharp cusp is smeared by the D� width (see Fig. 8).
Therefore, the effective range expansion in the vicinity of
the D�D threshold has a very small radius of convergence
set by the nearby complex D�D branch point, namely, k ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μc0ΓD�þ

p
≈ 9 MeV [114]; see also Appendix B.

A way to bypass this problem is to use a complex
D� mass in the relation between the energy M and
momentum k,

M ¼ m�
c − iΓc=2þm0 þ

k2

2μc0
: ð39Þ

Then the expansion point k → 0 is now equivalent to M ¼
m�

c − iΓc=2þm0 in the complex energy plane, which is
nothing but the branch point for the two-body unitarity cut
on the unphysical RS [112]. In other words, the effective
range expansion is defined around the pole of the Green’s
function GðM;pÞ. That this holds true approximately also
in the presence of three-body unitarity was demonstrated in
Ref. [113] (see Figs. 2 and 3 in the cited work). Formulated
in this way, the suggested approach is straightforwardly
generalized to Schemes II and III.7 Then, the effective range
expansion with the scattering parameters extracted in this
way and collected in Table IV matches very well the exact

amplitude in the low-energy region of interest, especially in
the vicinity of the D�D threshold, as naturally expected for
a properly defined low-energy expansion. It is instructive to
note that the scattering length extracted at the complex
threshold slightly deviates from the value of the amplitude
at the nominal D�þD0 threshold, −ðμc0=ð2πÞÞT thr, where
the threshold mthr ¼ m�

c þm0 is real by definition (see
Table IV).
As shown in Ref. [114], in the approach involving

D�þD0 and D�0Dþ coupled channels, the largest contri-
bution to the effective range for the Tþ

cc originates from
isospin breaking (IB) related to the Dð�Þ-meson mass
differences, that is, from the coupling of D�þD0 to the
slightly higher D�0Dþ channel. This gives

ΔrIB ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μc0
2μ20cðm�

0 þmc −m�
c −m0Þ

r
≈ −3.78 fm: ð40Þ

By comparing this result with the effective range for
Schemes I and II in Table IV, one finds, in line with
Ref. [114], that the residual finite range correction is ≃1 fm
for the cutoff Λ ¼ 0.5 GeV, and it may be reduced to
0.5 fm if the cutoff is increased to 1 GeV. On the other hand,
the comparison of the effective range for Schemes III and I/
II shows the difference ≃0.4 fm, which is the effect from
the OPE.
We note that the finite range corrections to the effective

range r0 are proportional to Λ−1 [114], where Λ can be
regarded as a scale corresponding to heavier-meson
exchange contributions not included here explicitly. It is
instructive to estimate the model uncertainty of the ERE
parameters due to the variation of the cutoff parameter Λ.
We, therefore, vary it in a rather wide range [0.3, 1.2] GeV,
consistent with the effective field theory built in this work
and used to fit the LHCb data. The systematic model

FIG. 8. Real part of the single-channel loop function JðMÞ
introduced in Eq. (38) for a zero (blue solid line) or finite (red
dashed line) constant D�þ width. The vertical dotted line marks
the D�þD0 threshold.

6Note that the limit M → Mthr has to be taken from above the
threshold, as indicated by 0þ, since below the threshold the
analytic continuation of the momentum k also contributes to
JðMÞ. This conclusion survives in the presence of three-body
unitarity, as shown in Appendix B, where it is demonstrated that
the effective range calculated naively from below the two-body
threshold diverges in the limit of an infinitely small width.

7In these schemes RS-I and RS-II are continuously connected
to each other along the three-body cut on the real axis.
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uncertainty of each quantity is then associated with the
largest deviation from its central value calculated for
Λ ¼ 0.5 GeV. These model uncertainties are also collected
in Table IV, as shown in the second line for each scheme.
From this table one can see that the model uncertainty for
the scattering length a0 is comparable or less than the
statistical one. On the contrary, for the effective range r0 the
model uncertainty dominates, which should not come as a
surprise given that the effective theory is constructed to LO.
To improve on that, the next-to-leading Oðk2Þ contact
potential needs to be invoked to absorb the residual
Λ-dependence of the effective range which, however,
would not be accurately fixed by the limited data currently
available. Meanwhile, we still find that in our effective field
theory approach the effective range is constrained better
than in the LHCb analysis [13].

V. COMPOSITE OR COMPACT?

With the parameters of the low-energy expansion of the
amplitude reliably extracted from the fit to the experimental
data, we are in a position to address the question of the
nature of the Tþ

cc state. Namely, whether or not our original
assumption on the Tþ

cc as aD�Dmolecule is supported by a
formal calculation of its compositeness parameter X̄A
constructed from the scattering length and effective range
as [18,115]

X̄A ¼
�
1þ 2

���� r00
Rea0

����
�

−1=2
; ð41Þ

where r00 ¼ r0 − ΔrIB is the effective range in the D�þD0

channel after the coupled-channel isospin-violation correc-
tions defined in Eq. (40) were subtracted [114].
Then X̄A ≃ 1 would correspond to a composite state

formed by the D and D� while X̄A ≪ 1 would imply a
compact state. A similar formulation was used byWeinberg
in its original paper [115] where the measured low-energy
parameters (the scattering length and effective range) were

formally demonstrated to be consistent with the deuteron
being a compound rather than an elementary state.8

The compositeness X̄A estimated for each scheme with
the help of Eq. (41) and the values of the a0 and r0 listed in
Table IV is given in the fifth column of the same table. One
can see that indeed X̄A ≃ 1, so that the assumption of the
molecular nature of the Tþ

cc is fully justified. Furthermore,
as an independent additional check, we evaluate the
compositeness of this resonance in each coupled channel
involved individually [117–120],

Xi ¼ g2i
dJiðMpoleÞ
dM2

pole

; ð42Þ

where i ¼ D�þD0, D�0Dþ and gi’s are the couplings of the
Tþ
cc to the ith channel listed in Table II. It is instructive to

notice that the values of X1 and X2 given in Table IV sum
exactly to unity thus ensuring the Tþ

cc to be indeed a
molecular state with the relevant set of coupled channels
saturated by the D�þD0 and D�0Dþ.

VI. DISCUSSION

In this work we employed a coupled-channel approach
based on a nonrelativistic effective field theory to analyze
the experimental data on the charged double-charm meson
Tþ
cc recently discovered by the LHCb Collaboration. The

effective potential at LO includes one isoscalar momentum-
independent contact interaction and the OPE. The data are
found to be fully consistent with the Tþ

cc being a weakly
bound D�D molecule, with the corresponding pole lying
just below the D�þD0 threshold. The found pole can be
associated with a bound state with respect to the two-body
channels, with the reservation that its nomenclature for-
mally depends on the way the three-body dynamics is
introduced: it appears slightly shifted from the real axis if
constant D�’s widths are included effectively or should be

TABLE IV. The S-wave scattering length a0 and effective range r0 parameters defined in Eq. (37) extracted as explained in the text
[see the discussion around Eq. (39)]. The compositeness X̄A is obtained using Eq. (41) and the compositeness X1 and X2 are calculated
using Eq. (42). Because of the finite widths of the D�s, the results for the Xi’s become complex, though their imaginary parts are
negligible and, therefore, only the real parts are given in the Table. For each value, the error in the first line is statistical propagated from
fitting to the LHCb data; the error in the second line is systematic from model uncertainty. It is estimated by varying the cutoff parameter
Λ in the interval of [0.3, 1.2] GeV and taken as the largest deviation from the central value. The central value is evaluated for
Λ ¼ 0.5 GeV.

− μc0
2π T thr [fm] a0 [fm] r0 [fm] X̄A X1 X2

I ð−7.38þ0.46
−0.57
�0.36

Þ þ ið1.96þ0.34
−0.57
�0.18

Þ ð−6.31þ0.36
−0.45
�0.27

Þ þ ið0.05þ0.01
−0.01
�0.00

Þ −2.78 �0.01
�0.66 0.87 �0.01

�0.07 0.71 �0.01
�0.02 0.29 �0.01

�0.02

II ð−8.00þ0.49
−0.68
�0.35

Þ þ ið1.88þ0.36
−0.24
�0.18

Þ ð−6.64þ0.36
−0.50
�0.27

Þ − ið0.10þ0.01
−0.02
�0.01

Þ −2.80 �0.01
�0.59 0.88 �0.01

�0.06 0.71 �0.01
�0.02 0.29 �0.01

�0.02

III ð−7.76þ0.45
−0.53
�0.32

Þ þ ið2.44þ0.38
−0.29
�0.18

Þ ð−6.72þ0.36
−0.45
�0.27

Þ − ið0.10þ0.03
−0.03
�0.03

Þ −2.40 �0.01
�0.85 0.84 �0.01

�0.06 0.73 �0.01
�0.11 0.27 �0.01

�0.02

8For detailed discussions of the positive effective range case, as
it occurs for the deuteron, see Refs. [18,116].
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regarded as a pole on an unphysical RS if dynamical D�’s
widths are considered and the three-body cuts are
introduced.
A self-consistent treatment of the three-body dynamics is

our special concern, given the lessons previously learnt
from the studies of another near-threshold charmoniumlike
state: the Xð3872Þ. In particular, we emphasize that the
constraints of three-body unitarity can only be fulfilled if
both dynamical ingredients, momentum-dependent D�’s
widths due to the D� → Dπ decay channels and the OPE
between the D and D� mesons (Tþ

cc constituents) are
included simultaneously. The inclusion of only one effect
from those mentioned above, as in Ref. [13], results in a
violation of three-body unitarity and leads to unreliable
results, especially for the precise determination of the Tþ

cc
pole position in the complex energy plane. On the other
hand, a simultaneous neglect of both of these three-body
effects, and restricting oneself to the static OPE together
with the use of constant widths for the D�’s produces a
severe overestimation of the Tþ

cc width, evaluated as twice
the imaginary part of the Tþ

cc pole.9 For this reason the
appropriate treatment of the OPE appears to be an impor-
tant prerequisite of any precise approach to the Tþ

cc and,
unless the opposite is proven, other narrow near-threshold
states wherever the pion exchange introduces nearby three-
body branch points.
The low energy expansion of the amplitude is performed

along the lines of the recent work [114] and the scattering
length and effective range are extracted. It is observed that
the effective range takes moderate negative values which
are however very well understood within the molecular
picture, as they come from the D�0Dþ channel, coupled to
D�þD0, that has a slightly higher threshold than that of the
D�þD0 due to isospin symmetry breaking. Once this
contribution is subtracted, the residual effective range
appears to be small and positive in line with the expected
size of the finite-range corrections. This residual effective-
range contribution is directly related to the coupling of the
Tþ
cc to its constituents, while the isospin breaking effects in

this coupling can be safely neglected.
Equipped with the low-energy parameters extracted from

data, we have evaluated the compositeness of the Tþ
cc state

using two methods. As expected, both provide similar
results, and we have found that the data are fully consistent
with the Tþ

cc as a shallow D�D molecular state with the
compositeness close to unity.
Finally, based on HQSS, we have predicted the existence

of an isospin scalar D�D� molecule with JP ¼ 1þ, under
the assumption that theDD�-D�D� coupled-channel effects
can be neglected. We found in particular that the inclusion
of the OPE has a visible impact on its binding energy,

moving the state toward the threshold. However, a precise
prediction for the spin partner of the Tþ

cc is unlikely possible
until the OPE potential and DD�-D�D� coupled-channel
effects are properly taken into account, which is not
possible yet given the limited data currently available on
the double charm sector.
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APPENDIX A: CONTACT POTENTIALS IN THE
ISOSPIN AND SU(3) LIMIT

The contact potentials for the different isospin/spin-
parity Dð�ÞDð�Þ → Dð�ÞDð�Þ S-wave channels derived from
the Lagrangian of Eq. (5) read

VI¼0
CT ðD�D → D�D; 1þÞ ¼ −2ðD01 − 3D11Þ;

VI¼0
CT ðD�D� → D�D�; 1þÞ ¼ −2ðD01 − 3D11Þ;
VI¼0
CT ðD�D → D�D�; 1þÞ ¼ −D00 þD01 þ 3D10 − 3D11;

ðA1Þ

with VI¼0
CT ðDð�ÞDð�Þ → Dð�ÞDð�Þ; 0þÞ ¼ VI¼0

CT ðD�D� →
D�D�; 2þÞ ¼ 0 as per Bose statistics, and

9Needless to say that a naive Breit-Wigner fit to the data [12]
returns the Tþ

cc width far beyond the theoretically acceptable
values.
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VI¼1
CT ðDD → DD; 0þÞ ¼ 1

2
ðD00 þ 3D01 þD10 þ 3D11Þ;

VI¼1
CT ðD�D� → D�D�; 0þÞ ¼ −

1

2
ðD00 − 5D01 þD10 − 5D11Þ;

VI¼1
CT ðDD → D�D�; 0þÞ ¼ −

ffiffiffi
3

p

2
ðD00 −D01 þD10 −D11Þ;

VI¼1
CT ðD�D → D�D; 1þÞ ¼ D00 þD01 þD10 þD11;

VI¼1
CT ðD�D� → D�D�; 2þÞ ¼ D00 þD01 þD10 þD11; ðA2Þ

with VI¼1
CT ðD�D → D�D�; 1þÞ ¼ VI¼1

CT ðD�D� → D�D�; 1þÞ ¼ 0 (Bose statistics). Here we used that the isoscalar
(isovector) wave function for two identical particles with isospin I ¼ 1=2 are antisymmetric (symmetric), respectively.
There are in total four independent LECs, which can be assigned to configurations for the light-quark subsystem in the

Dð�ÞDð�Þ wave function with I ¼ 0, 1 and degrees of freedom coupled to the spin sl ¼ 0, 1 [7,121–123]. Denoting these

new LECs by DI¼0;1
sl¼0;1, one readily finds that

DI¼0
sl¼1 ¼ 3D10 þ 3D11 −D00 −D01; DI¼1

sl¼1 ¼ D00 þD01 þD10 þD11;

DI¼0
sl¼0 ¼ D00 − 3D10 − 3D01 þ 9D11; DI¼1

sl¼0 ¼ 3D01 þ 3D11 −D00 −D10: ðA3Þ

The extension of the contact potentials quoted above to
the light quark flavor SU(3) sector is straightforward and
amounts to replacing the Pauli matrices τ by the Gell-Mann
ones λ and including the antistrange-charmed mesons in the
superfield H. Then the light-quark subsystem in the HH
system can be decomposed into SU(3) irreducible repre-
sentations (irreps) as 3̄ ⊗ 3̄ ¼ 3 ⊕ 6̄. Hence, there are still

only four independent LECs, DR¼3;6̄
sl¼0;1, which correspond to

the 3 and 6̄ flavor configurations combined with sl ¼ 0, 1.
The 3 irrep of SU(3) contains one isospin singlet (I ¼ 0Þ
and one doublet (I ¼ 1=2) and the 6̄ irrep contains one
isospin triplet (I ¼ 1), one doublet and one singlet. It
trivially follows that

DR¼6̄
sl¼0;1 ¼ DI¼1

sl¼0;1; DR¼3
sl¼0;1 ¼ DI¼0

sl¼0;1; ðA4Þ

since the isoscalar state in the 3 irrep of SU(3) does not
involve the charm-strange mesons while that in the 6̄ is

constructed out of the Dð�Þ
s Dð�Þ

s pair [124]. The identifica-

tion of the four LECsDR¼3;6̄
sl¼0;1 allows to describe the contact

interaction of any Dð�Þ
ðsÞD

ð�Þ
ðsÞ → Dð�Þ

ðsÞD
ð�Þ
ðsÞ transition, for any

isospin (I ¼ 0; 1=2, 1) and JP ¼ 0þ; 1þ; 2þ, in terms of the
LECs which appear in the Lagrangian of Eq. (5), as was
done in Ref. [122] for the HH̄ case.10 For example,

VCTðD�
sD�

s → D�
sD�

s ; 2
þÞ ¼ DR¼6̄

sl¼1

¼ VI¼1
CT ðD�D� → D�D�; 2þÞ;

VCTðD�
sD�

s → D�
sD�

s ; 0
þÞ ¼ 1

4
ð3DR¼6̄

sl¼0 þDR¼6̄
sl¼1Þ

¼ VI¼1
CT ðD�D� → D�D�; 0þÞ:

ðA5Þ

The Tþ
cc would be placed in the 3 irrep of SU(3)

with JP ¼ 1þ. We see in Eq. (A1) that VI¼0
CT ðD�D→

D�D;1þÞ¼VI¼0
CT ðD�D�→D�D�;1þÞ¼−2ðD01−3D11Þ¼

ðDR¼3
sl¼0þDR¼3

sl¼1Þ=2, and hence from the isoscalar factors
compiled in Ref. [124], we would find the same contact
interactions for the ½D�Ds�A → ½D�Ds�A and ½D�D�

s �A →
½D�D�

s �A transitions in the ccs̄ sector. Here the subscript A
stands for normalized antisymmetric states ½D�Ds�A ¼
ðD�Ds −D�

sDÞ= ffiffiffi
2

p
and ½D�D�

s �A ¼ ðD�D�
s −D�

sD�Þ= ffiffiffi
2

p
.

As a consequence, there might exist strange partners with
JP ¼ 1þ of the Tþ

cc in the D�Ds and D�D�
s channels with

masses around the corresponding thresholds, as a result of
the common contact interaction ðDR¼3

sl¼0 þDR¼3
sl¼1Þ=2. These

predictions are obviously subject to SU(3) symmetry
breaking corrections.

APPENDIX B: THE EFFECT OF A FINITE
WIDTH ON THE EFFECTIVE RANGE

In this Appendix we employ a simple coupled-channel
model to investigate the influence of the three-body
dynamics on the effective range for a near-threshold
resonance X. We follow the lines of Ref. [113] and consider
a Fock space consisting of three states: a compact seed,

10Equivalently, if we denote by D0
00;01;10;00 the constants of a

Lagrangian as that of Eq. (5), but where the SU(2) Pauli matrices
have been replaced by the SU(3) Gell-Mann ones, these new
LECs will be given by D0

00 ¼ D00 −D10=3, D0
01 ¼ D01 −D11=3,

D0
10 ¼ D10 and D0

11 ¼ D11.
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labeled as X0, an ab pair in their relative S-wave, and
the a½cd� state, where the particles c and d are the pro-
ducts of the decay b → cþ d which proceeds in a partial
wave defined by the angular momentum l (the discussion
around Eq. (38) corresponds to a P-wave decay with
l ¼ 1). Thus the wave function of the resonance X can
be written as

jXi ¼

0
B@

CjX0i
χðpÞjabi

φðp; qÞja½cd�i

1
CA; ðB1Þ

where p and q are the center-of-mass momenta in the ab
and cd subsystems, respectively. The two- and three-body

thresholds, Mð2Þ
thr and Mð3Þ

thr , respectively, are split by

ER ¼ Mð2Þ
thr −Mð3Þ

thr > 0; ðB2Þ

and the width of the unstable constituent b is

ΓR ¼ glE
lþ1=2
R ; ðB3Þ

where gl is a coupling constant which governs the decay
b → cþ d. It also proves convenient to define a dimen-
sionless ratio

λ ¼ ΓR

2ER
; ðB4Þ

which in what follows will be assumed to be small, λ ≪ 1,
corresponding to the case of a narrow constituent.
The system of coupled-channel Lippmann–Schwinger

equations for the state (B1) was solved in Ref. [113] for the
interaction between channels exhausted by the transi-
tions X0 ↔ ab and ab ↔ acd described by momentum-
dependent form factors whose explicit form is not impor-
tant. As a result, the line shapes in the three-body final
state acd were obtained and compared with the predictions
of simple prescriptions found in the literature. The scatter-
ing amplitude in the S-wave two-body channel was found
to be

Tðaþ b → aþ bÞ ¼ π

μ

g
E − EX þGXðEÞ

; ðB5Þ

where the self-energy GXðEÞ of the resonance X can be
written as

ReðGXðEÞÞ ¼
1

2
gκeffðEÞ; ImðGXðEÞÞ ¼

1

2
gkeffðEÞ;

ðB6Þ

with g being an effective coupling constant. In the
limit ΓR → 0 the quantities keff and κeff turn to the usual

two-body momentum k ¼ ffiffiffiffiffiffiffiffiffi
2μE

p
above the two-body

threshold and its analytical continuation below the thresh-
old, respectively. Here we choose the energy E to be

counted from the two-body threshold Mð2Þ
thr (note also that

it is counted from the lower-lying three-body threshold
in Ref. [113], so an energy shift by ER is required to
arrive from the formulas derived in Ref. [113] to those
quoted below).
Since here we are interested in the contribution to the

effective range r0 coming from the width of the unstable
constituent b, it is sufficient to consider only the function
κeffðEÞ introduced in Eq. (B6). Then, according to the
findings of Ref. [113],

κeffðEÞ ¼ κ1ðEÞ þ κ2ðEÞ − κ1ðEXÞ − κ2ðEXÞ; ðB7Þ

where

κ1ðEÞ ¼ −
1

πμ

Z
∞

0

p2dp
E − p2

2μ

ðE − p2

2μÞ2 þ
g2l
4
ðEþ ER − p2

2μÞ2lþ1

ðB8Þ

and

κ2ðEÞ ¼ −
gl
2πμ

Z
∞ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðERþEÞ

p p2dp

×
ðp2

2μ − ER − EÞð2lþ1Þ=2

ðE − p2

2μÞ2 þ
g2l
4
ðEþ ER − p2

2μÞ2lþ1
: ðB9Þ

Notice that κ2ðEÞ is suppressed as compared to κ1ðEÞ by
a factor gl ∝ λ, which is small by assumption, thus in what
follows we use that

κeffðEÞ ≈ κ1ðEÞ − κ1ðEXÞ; ðB10Þ

where the last, constant term does not contribute to the
effective range evaluated as a derivative in the energy
from κeffðEÞ.
Then, using the explicit expression for κ1ðEÞ from

Eq. (B8), it is easy to arrive at the contribution to the
effective range

Δr0 ¼ −
1

μ

∂κeffðEÞ
∂E

����
E¼0−

¼ −
IðλÞffiffiffiffiffiffiffiffiffiffiffi
2μER

p ; ðB11Þ

where the dimensionless single-parameter function IðλÞ is

IðλÞ ¼ 1

π

Z
∞

0

dx
ffiffiffi
x

p
x2 þ λ2ð1 − xÞ2lþ1

≈
λ→0

1

π

Z
∞

0

dx
ffiffiffi
x

p
x2 þ λ2

¼ 1ffiffiffiffiffi
2λ

p : ðB12Þ
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Collecting all results together we finally arrive at

Δr0 ≈ −
1ffiffiffiffiffiffiffiffiffiffiffi
2μΓR

p ; ðB13Þ

that provides an uncontrollably large negative contribution
to the effective range in the limit ΓR → 0.

Interpretation of the result obtained is straightforward:
since the three-body threshold lies below the two-body
one, for any finite width ΓR, the self-energy GXðEÞ
analytically continues below Mð2Þ

thr and, therefore, for
ΓR → 0 the contribution described by Eq. (B13) turns to
−Re dJðMÞ

dM jM¼Mthrþ0− which is indeed infinite in this limit—
see Fig. 8.
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