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We discuss the processes ππ → ππ and ππ → ππγ from a general quantum field theory (QFT) point of
view. In the soft-photon limit where the photon energy ω → 0 we study the theorem due to F.E. Low.
We confirm his result for the 1=ω term of the ππ → ππγ amplitude but disagree for the ω0 term. We analyze
the origin of this discrepancy. Then we calculate the amplitudes for the above reactions in the tensor-
Pomeron model. We identify places where “anomalous” soft photons could come from. Three soft-photon
approximations (SPAs) are introduced. The corresponding SPA results are compared to those obtained
from the full tensor-Pomeron model for c.m. energies

ffiffiffi
s

p ¼ 10 GeV and 100 GeV. The kinematic regions
where the SPAs are a good representation of the full amplitude are determined. Finally we make some
remarks on the type of fundamental information one could obtain from high-energy exclusive hadronic
reactions without and with soft photon radiation.

DOI: 10.1103/PhysRevD.105.014022

I. INTRODUCTION

In this paper we shall be concerned with photon emission
in some strong-interaction processes. In particular, we shall
consider soft photon emission, that is, the emission of
photons with energy ω approaching zero. For this kin-
ematic region there exists Low’s theorem [1] which is based
strictly on quantum field theory (QFT). The theorem states
that for ω → 0 the photons come exclusively from the
external hadrons in the process considered. But this poses
immediately the question: how close do we have to come to
ω ¼ 0 in order to see the behavior of the photon-emission
amplitude predicted by Low?
There have been a number of experimental studies trying

to verify Low’s theorem [2–12]. For a review of the
experimental situation see [13]. The result is, that many
experiments see rather large deviations from theoretical
calculations in the soft-photon approximation (SPA) based
on Low’s theorem. Clearly, this situation is unsatisfactory.
This has motivated the feasibility study of measuring soft-

photon phenomena in a next-generation experiment in the
framework of the heavy-ion physics program at the LHC
for the 2030’s [14]. Clearly, for preparing such soft-photon
experiments accompanying theoretical studies are needed.
One class of hadronic reactions one can study at the

LHC are exclusive diffractive proton-proton collisions.
Examples are pp elastic scattering and central exclusive
production (CEP) reactions, for instance pp → pπþπ−p.
In these reactions we can, of course, also have photon
emission:

pþ p → pþ pþ γ;

pþ p → pþ πþ þ π− þ pþ γ; ð1:1Þ

and we can study the soft-photon limit. The advantage of
these exclusive diffractive reactions is that they are “clean”
from the experimental side and that we have reasonable
theoretical models for them. We shall work within the
tensor-Pomeron model as proposed in [15]. There, the soft
Pomeron and the charge conjugationC ¼ þ1 Reggeons are
described as effective rank-2 symmetric tensor exchanges,
the Odderon and the C ¼ −1 Reggeons as effective vector
exchanges. The tensor-Pomeron model has been applied to
quite a number of CEP reactions [16–25] which can and
should all be studied by the present RHIC and LHC
experiments [26–31]. The next generation LHC experiment
[14] should be able to study these reactions in even greater
detail, in particular, in the region of low transverse
momenta. Applications of the model of [15] have further-
more been made to photoproduction of πþπ− pairs [32],
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a reaction which is also of interest for the LHC, and to
deep-inelastic lepton-nucleon scattering at low x [33].
In [34] it was shown that the experimental results [35]
on the spin dependence of high-energy proton-proton
elastic scattering exclude a scalar character of the
Pomeron couplings but are perfectly compatible with the
tensor-Pomeron model. A vector coupling for the Pomeron
could definitely be ruled out in [33].
With the present paper we want to start the theoretical

study of soft photon emission in exclusive diffractive high-
energy reactions in the TeVenergy region in the framework
of the tensor-Pomeron model. Our first example will be, for
simplicity, pion-pion elastic scattering. This is, of course,
not easy to study for experiments. But, as we shall see, we
can in this example compare our “exact” model results for
photon emission to approximations based on Low’s theo-
rem which gives the photon-emission amplitude to order
ω−1 and ω0 in the photon energy ω for ω → 0. We shall
show, as an important result, that the term of order ω0,
presented in [1], needs modifications.
Before coming to our present investigations we make

remarks on some hadronic processes where photon emis-
sion has been studied, frequently using the soft-photon
approximation.
Direct photons (i.e., photons which originate not from

hadronic decays, but from inelastic scattering processes
between partons) are an important electromagnetic probe of
the quark-gluon plasma as created in heavy-ion collisions.
Since pions are the dominant meson species produced in
the heavy-ion collisions, the photon production via brems-
strahlung in pion-pion elastic collisions was found to be a
very important source to interpret the data on the direct
photon spectra and elliptic flow simultaneously [36,37].
In [36,37] the SPA was used and, therefore, the resulting
yield of the bremsstrahlung photons depends on some
model assumptions.
The description of the photon bremsstrahlung in meson-

meson scattering beyond the SPA, within the one-boson
exchange (OBE) model, was discussed for the first time in
[38] and applied to the dilepton bremsstrahlung in pion-
pion collisions. Later on, in [39], it was applied to the low-
energy photon bremsstrahlung in pion-pion and kaon-kaon
collisions. Within the OBEmodel the interaction of pions is
described by three resonance exchanges σ, ρ and f2ð1270Þ
in the t, u and s channels (the u channel diagrams are
needed only in the case of identical pions).
In [40,41] the authors applied the covariant OBE

effective (chiral) model for the pion-pion scattering. The
“exact” OBE model result of the invariant rate of photon
bremsstrahlung was compared with that of the SPA. It was
noted there that the accuracy of the SPA approximation can
be significantly improved and the region of its applicability
can be extended by evaluating the on-shell elastic cross
section not at the c.m. energy

ffiffiffi
s

p
of the ππ → ππγ process

but at a certain smaller energy. One can see in Fig. 6 of [40]

(or Fig. 21 of [41]) that the “improved SPA model” gives a
good approximation to the “exact” OBE result up to photon
energies ≈2 GeV. There the dominant contribution to the
rates comes from low collision energies

ffiffiffi
s

p
. The deviation

between the OBE result and that calculated within the
improved SPA is most pronounced at high

ffiffiffi
s

p
and high

photon energies.
Whereas the examples of photon radiation discussed

above concerned low energy reactions, there have, of
course, also been studies of photon radiation for exclusive
reactions at the LHC. Exclusive diffractive photon brems-
strahlung in proton-proton collisions was discussed in
[42,43]. Feasibility studies of the measurement of the
exclusive diffractive bremsstrahlung cross section in pro-
ton-proton collisions at the center-of-mass energy

ffiffiffi
s

p ¼
13 TeV at the LHC were performed in [44,45].
Very interesting general investigations of photon emis-

sion in hadronic reactions have been presented, for in-
stance, in [46–51]. We shall comment on results given in
these papers below, as far as they have a bearing on our own
investigations.
Now we list the high-energy reactions which we want to

study in our present paper. In Sec. II we discuss the
reactions π−π0 → π−π0 and π−π0 → π−π0γ from a general
QFT point of view. Section III deals with the limit of
photon-energy ω → 0 and we discuss the terms in the
amplitude of orders ω−1 and ω0. In Sec. IV we introduce
our model for π∓π0 and charged-pion scattering and for the
corresponding reactions with photon emission. Section V is
devoted to a comparison of our “exact” model results to
various approximations based Low’s theorem. In Sec. VI
we give our conclusions and an outlook on further work.
In the Appendix A we compare in detail our results for
the terms of order ω−1 and ω0 in the photon emission
amplitude to results presented in the literature. In
Appendix B we discuss the cross section dσ=dω for ω → 0.

II. GENERAL PROPERTIES OF THE
REACTIONS ππ → ππ AND ππ → ππγ

Here we study general QFT relations for pion-pion
elastic scattering without and with photon radiation. We
shall work to leading order in the electromagnetic coupling.
For simplicity we shall consider π−π0 scattering, that is, the
reactions

π−ðpaÞ þ π0ðpbÞ → π−ðp1Þ þ π0ðp2Þ; ð2:1Þ

π−ðpaÞ þ π0ðpbÞ → π−ðp0
1Þ þ π0ðp0

2Þ þ γðk; ϵÞ: ð2:2Þ

Here pa, pb, p1, p2, p0
1, p

0
2 and k are the momenta of the

particles and ϵ is the polarization vector of the photon,
respectively. The energy-momentum conservation in (2.1)
and (2.2) requires
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pa þ pb ¼ p1 þ p2; ð2:3Þ

pa þ pb ¼ p0
1 þ p0

2 þ k: ð2:4Þ

We denote the amplitude for the reaction (2.1) by

T ðpa; pb; p1; p2Þ ¼ hπ−ðp1Þ; π0ðp2ÞjT jπ−ðpaÞ; π0ðpbÞi:
ð2:5Þ

Since pions haveG parity −1 all diagrams for (2.5) are one-
particle irreducible. In QFT we can extend the amplitude
(2.5) for off shell pions (Fig. 1).
This off shell scattering amplitude will still satisfy the

energy-momentum conservation (2.3) and can only depend
on the following 6 variables

sL ¼ pa ·pb þp1 ·p2;

t¼ ðpa −p1Þ2 ¼ ðpb −p2Þ2;
m2

a ¼ p2
a; m2

b ¼ p2
b; m2

1 ¼ p2
1; m2

2 ¼ p2
2: ð2:6Þ

Here we use as squared energy variable sL, following [1],
instead of the more usual Mandelstam variable s. We have

s ¼ sL þ 1

2
ðm2

a þm2
b þm2

1 þm2
2Þ: ð2:7Þ

The on- or off-shell amplitude corresponding to (2.5) as a
function of the variables (2.6) will be denoted by

Mð0ÞðsL; t; m2
a; m2

b; m
2
1; m

2
2Þ

¼ T ðpa; pb; p1; p2Þjon shell or off shell: ð2:8Þ

The on-shell amplitude (2.5) is then Mð0ÞðsL; t; m2
π; m2

π;
m2

π; m2
πÞ.

Next we study the reaction (2.2) where we have two one-
particle reducible diagrams [Figs. 2(a),(b)] and one irre-
ducible diagram [Fig. 2(c)].
For the diagrams (a) and (b) we need the off-shell ππ

amplitude (2.8), the pion propagator Δðp2Þ and the pion-
photon vertex function Γλðp0; pÞ:

ð2:9Þ

ð2:10Þ

FIG. 1. Diagram for the off shell π−π0 scattering amplitude.

(b)(a)

(c)

FIG. 2. One-particle reducible (a, b) and irreducible (c) diagrams for π−π0 → π−π0γ.
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We denote by e ¼ ffiffiffiffiffiffiffiffi
4πα

p
> 0 the πþ charge.

The expressions for the amplitudes of Figs. 2(a,b) can be
written as follows:

MðaÞ
λ ¼ −eMð0;aÞΔ½ðpa − kÞ2�Γλðpa − k; paÞ;

Mð0;aÞ ¼ Mð0Þ½ðpa − k; pbÞ þ p0
1 · p

0
2; ðpb − p0

2Þ2;
ðpa − kÞ2; m2

π; m2
π; m2

π�; ð2:11Þ

MðbÞ
λ ¼ −eΓλðp0

1; p
0
1 þ kÞΔ½ðp0

1 þ kÞ2�Mð0;bÞ;

Mð0;bÞ ¼ Mð0Þ½pa · pb þ ðp0
1 þ k; p0

2Þ; ðpb − p0
2Þ2;

m2
π; m2

π; ðp0
1 þ kÞ2; m2

π�: ð2:12Þ

The photon-emission amplitude is

hγðk; ϵÞ; π−ðp0
1Þ; π0ðp0

2ÞjT jπ−ðpaÞ; π0ðpbÞi ¼ ðϵλÞ�Mλ

ð2:13Þ

where

Mλ ¼ MðaÞ
λ þMðbÞ

λ þMðcÞ
λ : ð2:14Þ

Mλ also determines the emission of virtual photons of
mass k2 > 0 which then decay to a lepton pair. For k2 < 0

Mλ enters the amplitude for the 3-body reaction e�π−π0 →
e�π−π0. The amplitude Mλ must satisfy the gauge-
invariance relation, valid for all k2,

kλMλ ¼ kλðMðaÞ
λ þMðbÞ

λ þMðcÞ
λ Þ ¼ 0; ð2:15Þ

that is, we have

kλMðcÞ
λ ¼ −kλMðaÞ

λ − kλMðbÞ
λ : ð2:16Þ

We shall now use (2.11), (2.12), and (2.16), to get a
simple relation between kλMðcÞ

λ and Mð0;aÞ, Mð0;bÞ. For
this we recall the normalization conditions for the pion
propagator and the vertex function. We have

Δ−1ðp2Þjp2¼m2
π
¼ 0;

∂
∂p2

Δ−1ðp2Þ
����
p2¼m2

π

¼ 1;

Γλðp0; pÞjp0¼p;p2¼m2
π
¼ 2pλ: ð2:17Þ

Furthermore we have the Ward-Takahashi identity [52,53],

ðp0 − pÞλΓλðp0; pÞ ¼ Δ−1ðp02Þ − Δ−1ðp2Þ: ð2:18Þ

From (2.17) and (2.18) we obtain for p2
a ¼ m2

π

Δ½ðpa − kÞ2�Γλðpa − k; paÞkλ
¼ −Δ½ðpa − kÞ2�Γλðpa − k; paÞðpa − k − paÞλ
¼ −Δ½ðpa − kÞ2�fΔ−1½ðpa − kÞ2� − Δ−1½p2

a�g
¼ −1: ð2:19Þ

Similarly we get for p02
1 ¼ m2

π

kλΓλðp0
1; p

0
1 þ kÞΔ½ðp0

1 þ kÞ2�
¼ −½p0

1 − ðp0
1 þ kÞ�λΓλðp0

1; p
0
1 þ kÞΔ½ðp0

1 þ kÞ2�
¼ −fΔ−1½p02

1 � − Δ−1½ðp0
1 þ kÞ2�gΔ½ðp0

1 þ kÞ2�
¼ 1: ð2:20Þ

From (2.11), (2.12), (2.16), (2.19), and (2.20), we obtain

kλMðaÞ
λ ¼ eMð0;aÞ;

kλMðbÞ
λ ¼ −eMð0;bÞ; ð2:21Þ

kλMðcÞ
λ ¼ −eMð0;aÞ þ eMð0;bÞ; ð2:22Þ

where Mð0;aÞ and Mð0;bÞ are given explicitly in (2.11) and
(2.12), respectively.

III. THE EXPANSION OF THE
PHOTON-EMISSION AMPLITUDE
TO THE ORDER ω − 1 PLUS ω0

In this section we discuss the expansion of the amplitude
Mλ (2.14) to the orders ω−1 and ω0. Here ω ¼ k0 and, if
not stated otherwise, we work in the overall c.m. system of
the reaction (2.2). We shall in the following assume that all
components of the photon momentum are proportional to
ω, kμ ∝ ω, with ω → 0. This is perfectly alright theoreti-
cally, but can this also be realized in nature? For real photon
emission, k2 ¼ 0, this clearly can be realized. It is also
possible for k2 < 0 in the 3-body collision

e� þ π− þ π0 → e� þ π− þ π0: ð3:1Þ

For k2 > 0 we can have eþe− production

π− þ π0 → eþ þ e− þ π− þ π0: ð3:2Þ

But here ω ⩾ 2me and k2 ⩾ 4m2
e, with me the electron

mass. Thus, in (3.2) we cannot reach ω ¼ 0. But the
electron mass is very small on a hadronic scale,
me ≃ 0.5 MeV, and, therefore, the limit ω → 0 should also
be of relevance for the reaction (3.2).
We start our investigation of the small ω limit with the

pion propagator (2.9). We are working to lowest order in
the electromagnetic coupling. Thus, Δ−1ðp2Þ is for us a
purely hadronic object. Its nearest singularity to p2 ¼ 0 is
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at p2 ¼ ð3mπÞ2 as we see from the Landau conditions
(cf. for instance [54]). Therefore, we can expand Δ−1ðp2Þ
around p2 ¼ m2

π as follows with c a constant:

Δ−1ðp2Þ ¼ p2 −m2
π þ cðp2 −m2

πÞ2 þ…: ð3:3Þ

This gives for p2
a ¼ m2

π and p02
1 ¼ m2

π the following

Δ−1½ðpa−kÞ2� ¼ ð−2pa ·kþk2Þ
× ½1þ cð−2pa ·kþk2ÞþOðω2Þ�;

Δ½ðpa−kÞ2� ¼ 1

−2pa ·kþ k2

× ½1−cð−2pa ·kþk2ÞþOðω2Þ�; ð3:4Þ

Δ−1½ðp0
1 þ kÞ2� ¼ ð2p0

1 · kþ k2Þ
× ½1þ cð2p0

1 · kþ k2Þ þOðω2Þ�;

Δ½ðp0
1 þ kÞ2� ¼ 1

2p0
1 · kþ k2

× ½1 − cð2p0
1 · kþ k2Þ þOðω2Þ�: ð3:5Þ

From (2.11), (2.12) and (2.14) we see that we must now

expand Γλ,Mð0;aÞ andMð0;bÞ up to order ω andMðcÞ
λ up to

order ω0 for getting the total amplitudeMλ expanded up to
order ω0.
We start with Γλðp0; pÞ which has the general expansion

Γλðp0;pÞ¼ðp0þpÞλA½p02−m2
π;p2−m2

π;ðp0−pÞ2�
þðp0−pÞλB½p02−m2

π;p2−m2
π;ðp0−pÞ2�: ð3:6Þ

The functions A and B are analytic in their variables in the
region of interest to us as we see again from the Landau
conditions. The Ward-Takahashi identity gives

ðp0 − pÞλΓλðp0; pÞ
¼ ðp02 − p2ÞA½p02 −m2

π; p2 −m2
π; ðp0 − pÞ2�

þ ðp0 − pÞ2B½p02 −m2
π; p2 −m2

π; ðp0 − pÞ2�
¼ Δ−1ðp02Þ − Δ−1ðp2Þ: ð3:7Þ

Now we set in (3.7) p ¼ pa, p0 ¼ pa − k, p2
a ¼ m2

π and get

ðp02 −m2
πÞAðp02 −m2

π; 0; k2Þ þ k2Bðp02 −m2
π; 0; k2Þ

¼ Δ−1ðp02Þ ¼ p02 −m2
π þ cðp02 −m2

πÞ2 þ…: ð3:8Þ

Therefore, we must have

Bðp02 −m2
π; 0; k2Þ ¼ ðp02 −m2

πÞB̃ðp02 −m2
π; k2Þ ð3:9Þ

and we get with p02 −m2
π ¼ −2pa · kþ k2

Að−2pa · kþ k2; 0; k2Þ ¼ 1þ cð−2pa · kþ k2Þ þOðω2Þ;
Bð−2pa · kþ k2; 0; k2Þ ¼ OðωÞ: ð3:10Þ

Inserting (3.10) in (3.6) we find

Γλðpa − k; paÞ ¼ ð2pa − kÞλ½1þ cð−2pa · kþ k2Þ�
þOðω2Þ: ð3:11Þ

In a completely analogous way we get for p02
1 ¼ m2

π

Γλðp0
1; p

0
1 þ kÞ ¼ ð2p0

1 þ kÞλ½1þ cð2p0
1 · kþ k2Þ�

þOðω2Þ: ð3:12Þ

From (3.4), (3.5), (3.11) and (3.12) we get

Δ½ðpa − kÞ2�Γλðpa − k; paÞ ¼
ð2pa − kÞλ

−2pa · kþ k2

þOðωÞ; ð3:13Þ

Γλðp0
1; p

0
1 þ kÞΔ½ðp0

1 þ kÞ2� ¼ ð2p0
1 þ kÞλ

2p0
1 · kþ k2

þOðωÞ: ð3:14Þ

Next we investigate the energy-momentum conservation
conditions (2.3) and (2.4) for the reactions (2.1) and (2.2),
respectively. It is clear that for k ≠ 0 we cannot have
p1 ¼ p0

1 and p2 ¼ p0
2 since

pa þ pb ≠ p1 þ p2 þ k: ð3:15Þ

This means that when going from (2.1) to (2.2) we must
have a change of momenta p1 → p0

1 ≠ p1 and p2 →
p0
2 ≠ p2. In fact, choosing for the reaction (2.2) some

k ≠ 0, even a small momentum k, this does not fix p0
1 and

p0
2. This is best seen in the rest system of the four-vector

pa þ pb − k. There we have p01 þ p02 ¼ 0, jp01j is fixed and
thus p01 can still vary on a sphere of radius jp01j. For the
following we work, however, in the overall c.m. system of
reaction (2.2).
We write

p0
1 ¼ p1 − l1; p0

2 ¼ p2 − l2; ð3:16Þ

and get from (2.3) and (2.4) the conditions

l1þ l2¼k; ðp1− l1Þ2¼m2
π; ðp2− l2Þ2¼m2

π: ð3:17Þ

For given k these are 6 conditions for the 8 unknowns l1, l2
giving a 2-parameter solution as it should be. Working in
the common c.m. system of the reactions (2.1) and (2.2) we
set with p̂1 ¼ p1=jp1j
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ðlμ1Þ ¼
�
l01
l1kp̂1 þ l1⊥

�
; l1⊥ · p̂1 ¼ 0;

ðlμ2Þ ¼
�
l02
l2kp̂1 þ l2⊥

�
; l2⊥ · p̂1 ¼ 0;

ðkμÞ ¼
�
ω

kkp̂1 þ k⊥

�
; k⊥ · p̂1 ¼ 0: ð3:18Þ

Inserting this in (3.17) we get the system of equations

l2 ¼ k − l1;

p0
1l

0
1 − jp1jl1k ¼

1

2
l21;

p0
1l

0
1 þ jp1jl1k ¼ p0

1k
0 þ jp1jkk −

1

2
ðk − l1Þ2: ð3:19Þ

Now we make an important choice for the following.
We assume that together with the soft photon emitted with
energy ω → 0 we consider only slight changes of the
momenta p1 → p0

1 and p2 → p0
2. That is, we assume

lμ1 ¼ OðωÞ; lμ2 ¼ OðωÞ: ð3:20Þ

With this we can neglect the quadratic terms in l1, l2, k in
(3.19). The solution of the resulting equations is

ðlμ1Þ ¼
� 1

2p0
1

ðp2 · kÞ
1

2jp1j p̂1ðp2 · kÞ þ l1⊥

�
;

ðlμ2Þ ¼
� 1

2p0
1

ðp1 · kÞ
k − 1

2jp1j p̂1ðp2 · kÞ − l1⊥

�
: ð3:21Þ

Here l1⊥ stays undetermined, corresponding to the
2-parameter freedom of the momenta p0

1, p
0
2 for given k.

This is illustrated in Fig. 3. In the order of ω considered
we get

p1 · l1 ¼ 0; p2 · l2 ¼ 0: ð3:22Þ

Now we can expand Mð0;aÞ (2.11) and Mð0;bÞ (2.12) up
to order ω. We get with sL and t from (2.6),

Mð0;aÞ ¼ Mð0Þ½ðpa − k; pbÞ þ p0
1 · p

0
2; ðpb − p0

2Þ2; ðpa − kÞ2; m2
π; m2

π; m2
π�

¼ Mð0Þ½sL − ðpb þ p1; kÞ − ðp2 · l1Þ; t − 2ðpa − p1; k − l1Þ; m2
π − 2ðpa · kÞ; m2

π; m2
π; m2

π� þOðω2Þ

¼
�
1 − ½ðpb þ p1; kÞ þ ðp2 · l1Þ�

∂
∂sL − ½2ðpa − p1; kÞ − 2ðpa · l1Þ�

∂
∂t − 2ðpa · kÞ

∂
∂m2

a

�

×Mð0ÞðsL; t; m2
a; m2

π; m2
π; m2

πÞ
����
m2

a¼m2
π

þOðω2Þ; ð3:23Þ

Mð0;bÞ ¼ Mð0Þ½pa · pb þ ðp0
1 þ k; p0

2Þ; ðpb − p0
2Þ2; m2

π; m2
π; ðp0

1 þ kÞ2; m2
π�

¼ Mð0Þ½sL − ðp1 · kÞ; t − 2ðpa − p1; kÞ þ 2ðpa · l1Þ; m2
π; m2

π; m2
π þ 2ðp1 · kÞ; m2

π� þOðω2Þ

¼
�
1 − ðp1 · kÞ

∂
∂sL − ½2ðpa − p1; kÞ − 2ðpa · l1Þ�

∂
∂tþ 2ðp1 · kÞ

∂
∂m2

1

�

×Mð0ÞðsL; t; m2
π; m2

π; m2
1; m

2
πÞ
���
m2

1
¼m2

π

þOðω2Þ: ð3:24Þ

To determine MðcÞ
λ to order ω0 we use (2.22). To order ω we get, inserting (3.23) and (3.24) in (2.22),

kλMðcÞ
λ ¼ e

�
ðpbþp2;kÞ

∂
∂sLþ2ðpa ·kÞ

∂
∂m2

a
þ2ðp1 ·kÞ

∂
∂m2

1

�
Mð0ÞðsL;t;m2

a;m2
π;m2

1;m
2
πÞ
����
m2

a¼m2
1
¼m2

π

þOðω2Þ: ð3:25Þ

From (3.25) we can read off the term of order ω0 for MðcÞ
λ :

FIG. 3. Illustration of the momentum configurations for
π−π0 → π−π0 (2.1) and π−π0 → π−π0γ (2.2) in the c.m. system.
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MðcÞ
λ ¼ e

�
ðpb þ p2Þλ

∂
∂sL þ 2paλ

∂
∂m2

a
þ 2p1λ

∂
∂m2

1

�
Mð0ÞðsL; t; m2

a; m2
π; m2

1; m
2
πÞ
����
m2

a¼m2
1
¼m2

π

þOðωÞ: ð3:26Þ

Now we collect everything together and we obtain from (2.14), (3.13), (3.14), (3.23), (3.24), and (3.26) the following
expansion for the amplitude π−π0 → π−π0γ:

Mλ ¼ MðaÞ
λ þMðbÞ

λ þMðcÞ
λ

¼ eMð0ÞðsL; t; m2
π; m2

π; m2
π; m2

πÞ
� ð2pa − kÞλ
2ðpa · kÞ − k2

−
ð2p0

1 þ kÞλ
2ðp0

1 · kÞ þ k2

	

þ 2e
∂
∂sL M

ð0ÞðsL; t; m2
π; m2

π; m2
π; m2

πÞ
�
−ðpb · kÞ

paλ

ðpa · kÞ
þ pbλ

	

− 2e
∂
∂tM

ð0ÞðsL; t; m2
π; m2

π; m2
π; m2

πÞ½ðpa − p1; kÞ − ðpa · l1Þ�
�

paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
	

þOðωÞ: ð3:27Þ

In the first term on the right-hand side (r.h.s.) of (3.27) we should, for consistency of the expansion in ω up to ω0, make the
following replacements:

ð2pa − kÞλ
2ðpa · kÞ − k2

→
paλ

ðpa · kÞ
þ 1

2ðpa · kÞ2
½paλk2 − kλðpa · kÞ�;

ð2p0
1 þ kÞλ

2ðp0
1 · kÞ þ k2

→
p1λ

ðp1 · kÞ
þ 1

2ðp1 · kÞ2
½p1λð2ðl1 · kÞ − k2Þ − ð2l1λ − kλÞðp1 · kÞ�: ð3:28Þ

With (3.27) and (3.28) we have obtained the terms of order ω−1 and ω0 in the expansion of the amplitude for the reaction
(2.2). Now we compare our result with the corresponding one given in Eq. (2.16) of [1]. Using our notation we get for real
photons, k2 ¼ 0, from Low’s result an amplitude M̃λ as follows:

M̃λ ¼ eMð0ÞðsL; t; m2
π; m2

π; m2
π; m2

πÞ
�

paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
	

þ e
∂
∂sL M

ð0ÞðsL; t; m2
π; m2

π; m2
π; m2

πÞ
�
−
ðpb · kÞ
ðpa · kÞ

paλ −
ðp2 · kÞ
ðp1 · kÞ

p1λ þ pbλ þ p2λ

	
þOðωÞ: ð3:29Þ

The term of order ω−1 in (3.29) agrees with that from (3.27), (3.28) for k2 ¼ 0 but the terms of order ω0 from (3.27), (3.28)
and (3.29) disagree. What is the origin of this discrepancy? To elucidate this we have a look at the derivation of (3.29).
Following [1] we consider the reactions

π−ðpaÞ þ π0ðpbÞ → π−ðp1Þ þ π0ðp2Þ ð3:30Þ

and

π−ðpaÞ þ π0ðpbÞ → π−ðp1Þ þ π0ðp2Þ þ γðk; ϵÞ: ð3:31Þ

But note that requiring energy-momentum conservation for (3.30),

pa þ pb ¼ p1 þ p2; ð3:32Þ

we cannot have also energy-momentum conservation for (3.31) if k ≠ 0:

pa þ pb ≠ p1 þ p2 þ k: ð3:33Þ
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Thus, (3.31) is a fictitious process. We continue, nevertheless, with the analysis along the same lines as in Sec. II. We get
then for (3.31) setting k2 ¼ 0:

M̃λ ¼ M̃ðaÞ
λ þ M̃ðbÞ

λ þ M̃ðcÞ
λ ; ð3:34Þ

M̃ðaÞ
λ ¼ þeM̃ð0;aÞ paλ

ðpa · kÞ
; ð3:35Þ

M̃ð0;aÞ ¼ Mð0Þ½ðpa − k; pbÞ þ ðp1 · p2Þ; ðpb − p2Þ2; ðpa − kÞ2; m2
π; m2

π; m2
π�

¼ Mð0Þ½sL − ðpb · kÞ; t; m2
π − 2ðpa · kÞ; m2

π; m2
π; m2

π�

¼
�
1 − ðpb · kÞ

∂
∂sL − 2ðpa · kÞ

∂
∂m2

a

�
Mð0ÞðsL; t; m2

a; m2
π; m2

π; m2
πÞ
����
m2

a¼m2
π

þOðω2Þ: ð3:36Þ

M̃ðbÞ
λ ¼ −eM̃ð0;bÞ p1λ

ðp1 · kÞ
; ð3:37Þ

M̃ð0;bÞ ¼ Mð0Þ½ðpa · pbÞ þ ðp1 þ k; p2Þ; ðpb − p2Þ2; m2
π; m2

π; ðp1 þ kÞ2; m2
π�

¼
�
1þ ðp2 · kÞ

∂
∂sL þ 2ðp1 · kÞ

∂
∂m2

1

�
Mð0ÞðsL; t; m2

π; m2
π; m2

1; m
2
πÞ
����
m2

1
¼m2

π

þOðω2Þ: ð3:38Þ

We determine M̃ðcÞ
λ to order ω0 again from the gauge invariance condition

kλM̃ðcÞ
λ ¼ −kλM̃ðaÞ

λ − kλM̃ðbÞ
λ : ð3:39Þ

This gives in a way completely analogous to (3.25), (3.26)

M̃ðcÞ
λ ¼ e

�
ðpb þ p2Þλ

∂
∂sL þ 2paλ

∂
∂m2

a
þ 2p1λ

∂
∂m2

1

�
Mð0ÞðsL; t; m2

a; m2
π; m2

1; m
2
πÞ
����
m2

a¼m2
1
¼m2

π

þOðωÞ: ð3:40Þ

From (3.35)–(3.40) we get, indeed, (3.29).

Our conclusion is, thus, as follows. The term of order ω0

in the expansion of the amplitude given in [1] corresponds
to the fictitious process (3.31) which does not respect
energy-momentum conservation. The correct expansion up
to orderω0 for the amplitude of the physical process (2.2) is
given in (3.27), (3.28).
In Appendix A we make some remarks on selected

papers from the literature where Low’s theorem is dis-
cussed. Our conclusion is that none of the papers which we
have studied gives a derivation of (3.13) and (3.14) as we
have done it, using the Ward-Takahashi identity, and none
gives a result for the term of order ω0 equivalent to the one
obtained from our Eqs. (3.27), (3.28).

IV. THE REACTIONS ππ → ππ AND ππ → ππγ
IN THE TENSOR-POMERON MODEL

In this section we shall discuss elastic ππ scattering,
without and with photon emission, in the tensor-Pomeron
model [15]. Let us make some remarks on the tensor-
Pomeron model which is a special Regge-type model. Of

course, Regge theory for high-energy reactions has a long
history, starting from papers around the 1960s. Some early
papers are [55–57], for reviews see [58–62]. In the tensor-
Pomeron model of [15] the assumption is made that the
Pomeron and the charge-conjugation C ¼ þ1 Reggeons
f2R, a2R couple to hadrons like symmetric tensors of rank 2,
the Odderon and the C ¼ −1 Reggeons ωR, ρR as vectors.
The idea, that the Pomeron couplings could be related to a
tensor coupling was, to our knowledge, first proposed in
[63]. There the Pomeron couplings were related to the
couplings of the energy-momentum tensor. For more his-
torical remarks on the tensor Pomeron ideas we refer to [34].
The tensor-Pomeron model [15], which we shall use in the
following, is for soft hadronic high-energy reactions and has
its origin in general investigations of the soft, nonperturba-
tive, Pomeron in QCD using functional-integral techniques
[64]. We note that also in holographic QCD a tensor
character of the Pomeron couplings is preferred [65,66].
In [15] the constants in the vertex functions describing the
Pomeron-hadron couplings were, as far as possible, deter-
mined from comparisons of theory and experiment.
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Now we shall first, for simplicity, discuss the reactions π−π0 → π−π0 and π−π0 → π−π0γ [see (2.1), (2.2)] and then turn
to charged-pion scattering.

A. The reactions π −π0 → π −π0 and π −π0 → π −π0γ

We consider the elastic ππ scattering at high c.m. energy
ffiffiffi
s

p
where Pomeron (P) exchange dominates. The amplitude for

the subleading Reggeon (f2R, ρR) exchanges will be treated in Sec. IV B. The propagator and the pion couplings of the
tensor Pomeron are given in (3.10), (3.11) and (3.34), (3.45), (3.46) of [15], respectively,

ð4:1Þ

αPðtÞ ¼ αPð0Þ þ α0Pt; αPð0Þ ¼ 1þ ϵP;

ϵP ¼ 0.0808; α0P ¼ 0.25 GeV−2; ð4:2Þ

ð4:3Þ

βPππ ¼ 1.76 GeV−1; FMðtÞ ¼
m2

0

m2
0 − t

;

m2
0 ¼ 0.50 GeV2: ð4:4Þ

The Pomeron-exchange diagram for the reaction (2.1)
π−π0 → π−π0, allowing the pions to be off-shell, is shown
in Fig. 4, and easily evaluated. We get with the kinematic
variables of (2.6) and (2.7) for (2.8):

Mð0Þ
P ðsL; t; m2

a;m2
b; m

2
1; m

2
2Þ

¼ iFPðs; tÞ
�
2ðpa þ p1; pb þ p2Þ2

−
1

2
ðpa þ p1Þ2ðpb þ p2Þ2

	

¼ iFPðs; tÞ
�
2ð2sL þ tÞ2

−
1

2
ð−tþ 2m2

a þ 2m2
1Þð−tþ 2m2

b þ 2m2
2Þ
	
: ð4:5Þ

Here we set

FPðs; tÞ ¼ FP

�
sL þ 1

2
ðm2

a þm2
b þm2

1 þm2
2Þ; t

	

¼ ½2βPππFMðtÞ�2
1

4s
ð−isα0PÞαPðtÞ−1: ð4:6Þ

For the scattering of π−π0 → π−π0 with on-shell pions
this gives

FIG. 4. Diagram with Pomeron exchange for π−π0 → π−π0 in
the tensor-Pomeron model.
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hπ−ðp1Þ; π0ðp2ÞjT jπ−ðpaÞ; π0ðpbÞijon shell ¼ Mð0Þ
P ðsL; t; m2

π; m2
π; m2

π; m2
πÞ

¼ iFPðs; tÞ
�
2ðpa þ p1; pb þ p2Þ2 −

1

2
ðpa þ p1Þ2ðpb þ p2Þ2

	

¼ 8is2FPðs; tÞ
�
1 −

4m2
π − t
s

þ 3

16s2
ð4m2

π − tÞ2
	
; ð4:7Þ

σtotðπ−π0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p Imhπ−ðpaÞ; π0ðpbÞjT jπ−ðpaÞ; π0ðpbÞi

¼ 2ð2βPππÞ2ðsα0PÞϵP cos
�
π

2
ϵP

��
1 −

4m2
π

s

�
−1=2

�
1 −

4m2
π

s
þ 3

16

�
4m2

π

s

�
2
	
: ð4:8Þ

Now we come to the photon-emission process (2.2)

π−ðpaÞ þ π0ðpbÞ → π−ðp0
1Þ þ π0ðp0

2Þ þ γðk; ϵÞ: ð4:9Þ

The relevant kinematic variables are here

s ¼ ðpa þ pbÞ2 ¼ ðp0
1 þ p0

2 þ kÞ2;
t1 ¼ ðpa − p0

1Þ2 ¼ ðpb − p0
2 − kÞ2;

t2 ¼ ðpb − p0
2Þ2 ¼ ðpa − p0

1 − kÞ2: ð4:10Þ

We have to calculateMλP (2.13), (2.14) from the diagrams

of Fig. 5. First we calculateMðaÞ
λP andMðbÞ

λP from (2.11) and
(2.12), respectively, inserting for Mð0Þ the tensor-Pomeron
expression (4.5). Furthermore, we use the standard pion

propagator and the standard γππ vertex function (see e.g.,
[15,32]). This gives

Δ½ðpa − kÞ2�Γλðpa − k; paÞ ¼
ð2pa − kÞλ

−2ðpa · kÞ þ k2
;

Γλðp0
1; p

0
1 þ kÞΔ½ðp0

1 þ kÞ2� ¼ ð2p0
1 þ kÞλ

2ðp0
1 · kÞ þ k2

: ð4:11Þ

From (3.13) and (3.14) we see that in QFT these relations
are exact for ω → 0 up to corrections of order ω. For us
(4.11) is part of our model assumptions.
With (4.5) and (4.11) we get from (2.11) the following

amplitude MðaÞ
λP corresponding to the diagram of Fig. 5(a):

MðaÞ
λP ¼ −eMð0;aÞ

P
ð2pa − kÞλ

−2ðpa · kÞ þ k2
;

Mð0;aÞ
P ¼ iFP½ðpa þ pb − kÞ2; t2�

�
2ðpa þ p0

1 − k; pb þ p0
2Þ2 −

1

2
ðpa þ p0

1 − kÞ2ðpb þ p0
2Þ2

	
: ð4:12Þ

From (2.12) we get for MðbÞ
λP corresponding to the diagram of Fig. 5(b):

MðbÞ
λP ¼ −e

ð2p0
1 þ kÞλ

2ðp0
1 · kÞ þ k2

Mð0;bÞ
P ;

Mð0;bÞ
P ¼ iFPðs; t2Þ

�
2ðpa þ p0

1 þ k; pb þ p0
2Þ2 −

1

2
ðpa þ p0

1 þ kÞ2ðpb þ p0
2Þ2

	
: ð4:13Þ

(a) (b) (c)

FIG. 5. Pomeron-exchange diagrams for π−π0 → π−π0γ in the tensor-Pomeron model.
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For MðcÞ
λP we get from (2.22)

kλMðcÞ
λP ¼ −eMð0;aÞ

P þ eMð0;bÞ
P

− ie

�
FPðs; t2Þ½−8ðk; pb þ p0

2Þðpa þ p0
1; pb þ p0

2Þ þ 2ðk; pa þ p0
1Þðpb þ p0

2Þ2�

þ ½FP½ðpa þ pb − kÞ2; t2Þ� − FPðs; t2Þ�

×

�
2ðpa þ p0

1 − k; pb þ p0
2Þ2 −

1

2
ðpa þ p0

1 − kÞ2ðpb þ p0
2Þ2

	�
: ð4:14Þ

Using the explicit expression for FPðs; t2Þ (4.6) we get

FP½ðpa þ pb − kÞ2; t2Þ� − FPðs; t2Þ ¼ FPðs; t2Þð2 − αPðt2ÞÞ
2ðpa þ pb; kÞ − k2

s
gPðϰ; t2Þ; ð4:15Þ

where we define

ϰ ¼ 2ðpa þ pb; kÞ − k2

s
; ð4:16Þ

gPðϰ; t2Þ ¼
1

ð2 − αPðt2ÞÞϰ
½ð1 − ϰÞαPðt2Þ−2 − 1�

¼ 1þ ϰ

2!
ð3 − αPðt2ÞÞ þ

ϰ2

3!
ð3 − αPðt2ÞÞð4 − αPðt2ÞÞ þ…: ð4:17Þ

The series expansion in (4.17) is absolutely convergent for jϰj < 1 which is the only region of interest for us.
Inserting (4.15) in (4.14) we get

kλMðcÞ
λP ¼ −ieFPðs; t2Þ

�
−8ðk; pb þ p0

2Þðpa þ p0
1; pb þ p0

2Þ þ 2ðk; pa þ p0
1Þðpb þ p0

2Þ2

þ 2ðpa þ pb; kÞ − k2

s
ð2 − αPðt2ÞÞgPðϰ; t2Þ

×

�
2ðpa þ p0

1 − k; pb þ p0
2Þ2 −

1

2
ðpa þ p0

1 − kÞ2ðpb þ p0
2Þ2

	�
: ð4:18Þ

From this we see that a simple solution of (4.18) for MðcÞ
λP is

MðcÞ
λP ¼ −ieFPðs; t2Þ

�
−8ðpb þ p0

2Þλðpa þ p0
1; pb þ p0

2Þ þ 2ðpa þ p0
1Þλðpb þ p0

2Þ2

þ ð2pa þ 2pb − kÞλð2 − αPðt2ÞÞgPðϰ; t2Þ

×
1

s

�
2ðpa þ p0

1 − k; pb þ p0
2Þ2 −

1

2
ðpa þ p0

1 − kÞ2ðpb þ p0
2Þ2

	�
: ð4:19Þ

However, we could add to MðcÞ
λP from (4.19), for instance, terms proportional to

paλðp0
1 · kÞ − p0

1λðpa · kÞ; ð4:20Þ

or

ελμνρp
μ
apν

bk
ρðεαβγδpα

ap
β
bp

0γ
1 p

0δ
2 Þ; ð4:21Þ
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and still have a solution of (4.18). Thus, the solution (4.19)

for MðcÞ
λP is in general not unique as it is to order ω0; see

(3.26). This fact is well known in the literature; see for
instance [50].
Collecting now everything together we get for the

amplitude of reaction (4.9) in our model

Mðπ−π0→π−π0γÞ
λP ¼ MðaÞ

λP þMðbÞ
λP þMðcÞ

λP ð4:22Þ

with MðcÞ
λP given in (4.19) and MðaÞ

λP and MðbÞ
λP obtained

from (4.12), (4.13) and (4.15), as follows:

MðaÞ
λP ¼ ieFPðs; t2Þ

�
1þ ð2 − αPðt2ÞÞ

2ðpa þ pb; kÞ − k2

s
gPðϰ; t2Þ

	

×

�
2ðpa þ p0

1 − k; pb þ p0
2Þ2 −

1

2
ðpa þ p0

1 − kÞ2ðpb þ p0
2Þ2

	 ð2pa − kÞλ
2ðpa · kÞ − k2

; ð4:23Þ

MðbÞ
λP ¼ −ieFPðs; t2Þ

�
2ðpa þ p0

1 þ k; pb þ p0
2Þ2 −

1

2
ðpa þ p0

1 þ kÞ2ðpb þ p0
2Þ2

	 ð2p0
1 þ kÞλ

2ðp0
1 · kÞ þ k2

: ð4:24Þ

These results hold for arbitrary k. Below in Sec. V we shall
consider only real photon emission where we have k2 ¼ 0.
Some comments on these results are in order. We are

interested in soft photon emission where ω ≪
ffiffiffi
s

p
. We have

then from (4.16) and (4.17) jϰj ¼ Oðω= ffiffiffi
s

p Þ and

gPðϰ; t2Þ ≈ 1. Looking at MðaÞ
λP we see that there the term

proportional to gPðϰ; t2Þ is a correction of order ω=
ffiffiffi
s

p

relative to the leading term. On the other hand, inMðcÞ
λP the

term proportional to gPðϰ; t2Þ is not suppressed relative to
the first term in the wavy brackets of (4.19). But in the soft

photon region MðcÞ
λP is, anyway, only of order ω=

ffiffiffi
s

p

relative to MðaÞ
λP and MðbÞ

λP . Thus, in the soft-photon region
our model should give reliable results. But the question
arises how high we can go in ω and still trust the model. We
have, as basis of the model, used the high-energy approxi-
mation, given by the Pomeron-exchange term, for the ππ
scattering amplitude. Therefore, in Mð0Þ (4.5), (4.6) the
c.m. energy squared s should be large enough, above the
resonance region, say

s ⩾ s0 ¼ ð5 GeVÞ2: ð4:25Þ

But in the reaction ππ → ππγ we need the off-shell
amplitudes Mð0;aÞ (4.12) and Mð0;bÞ (4.13) where the
squared c.m. energies are, respectively,

sa ¼ ðpa þ pb − kÞ2 ¼ ðp0
1 þ p0

2Þ2; ð4:26Þ

sb ¼ s: ð4:27Þ

Surely, in order to apply our Regge model also for Mð0;aÞ
we should require

sa¼ðpaþpb−kÞ2¼ s−2ðpaþpb;kÞþk2 ⩾ s0: ð4:28Þ

In the overall c.m. system this means

ω ⩽
1

2
ffiffiffi
s

p ðs − s0 þ k2Þ: ð4:29Þ

Below, in Sec. V, we shall take this constraint into account.
In [32] vertices for the coupling of γππ and Pγππ were

derived from a Lagrangian; see (B.66)–(B.71) there. Using
these vertices for evaluating the diagrams of Fig. 5 and
using in all three diagrams the Pomeron propagator

ΔðPÞ
μν;κλðs; t2Þ with the common value s ¼ ðpa þ pbÞ2 gives

MðaÞ
λP , M

ðbÞ
λP and MðcÞ

λP as in (4.23), (4.24), and (4.19),
respectively, but setting gPðϰ; t2Þ ¼ 0. Thus, our full results

for MðaÞ
λP , M

ðbÞ
λP , M

ðcÞ
λP above are an improvement of the

simple results, as we respect now the general QFT structure
of the amplitudes shown in Fig. 2. As discussed above, for
soft photons the improvement amounts to suitable additions
of nonleading terms of relative order ω=

ffiffiffi
s

p
.

What about anomalous soft photons in this framework?
Given the amplitude for π−π0 → π−π0 we have constructed

MðaÞ
λP andMðbÞ

λP in a straightforward way. Of course, we had
to extrapolate to off-shell pions and to assume (4.11) to
hold not only for ω → 0. But by and large we think that

MðaÞ
λP and MðbÞ

λP leave little room for anomalous soft

photons. This is quite different for MðcÞ
λP which we

determined here as the simplest solution of the gauge-
invariance condition (4.18). Clearly, other solutions of

(4.18) forMðcÞ
λP are possible which could describe “anoma-

lous” production of soft photons. One of the present authors
has been involved in a suggestion for the origin of such
anomalous soft photons: “synchrotron radiation from the
vacuum” [67–71]. For a list of suggestions by other authors
we refer to [13].
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B. Charged-pion scattering without
and with photon radiation

In this section we consider the following reactions at
high energies in the tensor-Pomeron model:

π−ðpaÞ þ πþðpbÞ → π−ðp1Þ þ πþðp2Þ; ð4:30Þ

π−ðpaÞ þ πþðpbÞ → π−ðp0
1Þ þ πþðp0

2Þ þ γðk; ϵÞ; ð4:31Þ

and

π�ðpaÞ þ π�ðpbÞ → π�ðp1Þ þ π�ðp2Þ; ð4:32Þ

π�ðpaÞ þ π�ðpbÞ → π�ðp0
1Þ þ π�ðp0

2Þ þ γðk; ϵÞ: ð4:33Þ

Again we leave k arbitrary and do not require k2 ¼ 0.
The diagrams for the elastic scattering processes (4.30)

and (4.32) are analogous to the one in Fig. 4 but now we
include the subleading f2R and ρR Reggeon exchanges; see
Fig. 6. To evaluate these diagrams we need the effective f2R
and ρR propagators and their couplings to pions. In our
model these are given in (3.12)–(3.15) and (3.53), (3.54),
(3.63), (3.64) of [15], respectively. The f2R propagator

and the f2Rππ couplings are as in (4.1)–(4.3) with the
replacements

αPðtÞ → αf2RðtÞ ¼ αf2Rð0Þ þ α0f2Rt;

αf2Rð0Þ ¼ 0.5475; α0f2R ¼ 0.9 GeV−2;

2βPππ →
gf2Rππ
2M0

;

gf2Rππ ¼ 9.30; M0 ¼ 1 GeV: ð4:34Þ

For the effective ρR propagator and the ρRππ coupling we
have

ð4:35Þ

αρRðtÞ ¼ αρRð0Þ þ α0ρRt;

αρRð0Þ ¼ 0.5475; α0ρR ¼ 0.9 GeV−2;

M− ¼ 1.41 GeV: ð4:36Þ

ð4:37Þ

where FMðtÞ is defined in (4.4).

FIG. 6. The diagram for π−πþ → π−πþ elastic scattering with
exchange of the Pomeron, the f2R, and the ρR Reggeons.
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Now everything is prepared to evaluate the diagram of Fig. 6 for the general off-shell π−πþ scattering amplitude. We get
[cf. (2.8) and (4.5)]

hπ−ðp1Þ; πþðp2ÞjT jπ−ðpaÞ; πþðpbÞijoff shell ¼ Mð0Þπ−πþðsL; t; m2
a; m2

b; m
2
1; m

2
2Þ

¼ Mð0Þ
P þMð0Þ

f2R
þMð0Þ

ρR ; ð4:38Þ

where

Mð0Þ
P ¼ iFPðs; tÞ

�
2ðpa þ p1; pb þ p2Þ2 −

1

2
ðpa þ p1Þ2ðpb þ p2Þ2

	

¼ iFPðs; tÞ
�
2ð2sL þ tÞ2 − 1

2
ð−tþ 2m2

a þ 2m2
1Þð−tþ 2m2

b þ 2m2
2Þ
	
; ð4:39Þ

Mð0Þ
f2R

¼ iF f2Rðs; tÞ
�
2ðpa þ p1; pb þ p2Þ2 −

1

2
ðpa þ p1Þ2ðpb þ p2Þ2

	

¼ iF f2Rðs; tÞ
�
2ð2sL þ tÞ2 − 1

2
ð−tþ 2m2

a þ 2m2
1Þð−tþ 2m2

b þ 2m2
2Þ
	
; ð4:40Þ

Mð0Þ
ρR ¼ F ρRðs; tÞðpa þ p1; pb þ p2Þ ¼ F ρRðs; tÞð2sL þ tÞ: ð4:41Þ

Here FPðs; tÞ is defined in (4.6) and we have set

F f2Rðs; tÞ ¼
�
gf2Rππ
2M0

FMðtÞ
	
2 1

4s
ð−isα0f2RÞαf2R ðtÞ−1; ð4:42Þ

F ρRðs; tÞ ¼
�
gρRππ
2M−

FMðtÞ
	
2

ð−isα0ρRÞαρR ðtÞ−1: ð4:43Þ

For the on-shell elastic π−πþ scattering we get, setting m2
a ¼ m2

b ¼ m2
1 ¼ m2

2 ¼ m2
π in (2.6), (2.7) and (4.39)–(4.41)

hπ−ðp1Þ; πþðp2ÞjT jπ−ðpaÞ; πþðpbÞi ¼ Mð0Þπ−πþðsL; t; m2
π; m2

π; m2
π; m2

πÞ
≡Mð0Þπ−πþðs; tÞ

¼ i½FPðs; tÞ þ F f2Rðs; tÞ�
�
2ðpa þ p1; pb þ p2Þ2 −

1

2
ðpa þ p1Þ2ðpb þ p2Þ2

	
þ F ρRðs; tÞðpa þ p1; pb þ p2Þ

¼ 8is2½FPðs; tÞ þ F f2Rðs; tÞ�
�
1 −

4m2
π − t
s

þ 3

16s2
ð4m2

π − tÞ2
	

þ 2sF ρRðs; tÞ
�
1 −

4m2
π − t
2s

	
: ð4:44Þ

For brevity of notation we use in the following the notation Mð0Þπ−πþðs; tÞ for the on-shell pion-pion elastic scattering
amplitude.
Turning now to the reactions (4.32) of like sign ππ scattering we get from the diagrams analogous to Fig. 6 the following

for on-shell pions

LEBIEDOWICZ, NACHTMANN, and SZCZUREK PHYS. REV. D 105, 014022 (2022)

014022-14



hπþðp1Þ; πþðp2ÞjT jπþðpaÞ; πþðpbÞi ¼ hπ−ðp1Þ; π−ðp2ÞjT jπ−ðpaÞ; π−ðpbÞi

¼ 8is2½FPðs; tÞ þ F f2Rðs; tÞ�
�
1 −

4m2
π − t
s

þ 3

16s2
ð4m2

π − tÞ2
	

− 2sF ρRðs; tÞ
�
1 −

4m2
π − t
2s

	
þ ðp1 ↔ p2Þ: ð4:45Þ

The exchange p1 ↔ p2 implies t ↔ u where u ¼ −s − tþ 4m2
π .

The total cross sections for ππ scattering are obtained from the forward-scattering amplitudes using the optical theorem.
In this way we get from (4.44) for π−πþ scattering

σtot;π−πþðsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2
πÞ

p Imhπ−ðpaÞ; πþðpbÞjT jπ−ðpaÞ; πþðpbÞi

¼ 2

�
1 −

4m2
π

s

�
−1=2

��
ð2βPππÞ2ðsα0PÞαPð0Þ−1 cos

�
π

2
ðαPð0Þ − 1Þ

�

þ
�
gf2Rππ
2M0

�
2

ðsα0f2RÞαf2R ð0Þ−1 cos
�
π

2
ðαf2Rð0Þ − 1Þ

�	�
1 −

4m2
π

s
þ 3m4

π

s2

�

þ
�
gρRππ
2M−

�
2

ðsα0ρRÞαρR ð0Þ−1 sin
�
π

2
ð1 − αρRð0ÞÞ

��
1 −

2m2
π

s

��
: ð4:46Þ

The total cross sections for πþπþ and π−π− scattering are
obtained from (4.45) for t ¼ 0. Here for s ≫ 4m2

π and t ¼ 0
the term ðp1 ↔ p2Þ is highly suppressed and, thus, very
small. Neglecting the term ðp1 ↔ p2Þ for t ¼ 0 we get the
total cross sections for πþπþ and π−π− scattering as in
(4.46) but with a sign change in the ρR term.
For the photon emission process (4.31) we have 6

diagrams shown in Fig. 7. The diagrams for (4.33) are
analogous but in addition we have the diagrams with p0

1 and
p0
2 interchanged. The kinematic variables for these reac-

tions are as in (4.10). We have

hπ−ðp0
1Þ; πþðp0

2Þ; γðk; ϵÞjT jπ−ðpaÞ; πþðpbÞi
¼ ðϵλÞ�Mðπ−πþ→π−πþγÞ

λ ; ð4:47Þ

hπþðp0
1Þ; πþðp0

2Þ; γðk; ϵÞjT jπþðpaÞ; πþðpbÞi
¼ ðϵλÞ�Mðπþπþ→πþπþγÞ

λ : ð4:48Þ

Our building blocks for these Mλ amplitudes are

MðaÞ
λ ;…;MðfÞ

λ corresponding to the diagrams (a)–(f) from
Fig. 7. We have here

(a) (b) (c)

(d) (e) (f)

FIG. 7. Diagrams for the reaction π−πþ → π−πþγ with exchange of the Pomeron, the f2R, and the ρR Reggeons.
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MðaÞ
λ ¼ MðaÞ

λP þMðaÞ
λf2R

þMðaÞ
λρR

ð4:49Þ

and similarly for MðbÞ
λ ;…;MðfÞ

λ . The amplitudes MðaÞ
λP , M

ðbÞ
λP , and MðcÞ

λP are as in (4.23), (4.24), and (4.19), respectively.

From these we obtain the amplitudes MðaÞ
λf2R

, MðbÞ
λf2R

, and MðcÞ
λf2R

with the replacements (4.34). For ρR exchange we get

MðaÞ
λρR

¼ eMð0;aÞ
ρR

ð2pa − kÞλ
2ðpa · kÞ − k2

;

Mð0;aÞ
ρR ¼ F ρRðs; t2Þ

�
1þ ð1 − αρRðt2ÞÞ

2ðpa þ pb; kÞ − k2

s
gρRðϰ; t2Þ

	
ðpa þ p0

1 − k; pb þ p0
2Þ; ð4:50Þ

MðbÞ
λρR

¼ −e
ð2p0

1 þ kÞλ
2ðp0

1 · kÞ þ k2
Mð0;bÞ

ρR ;

Mð0;bÞ
ρR ¼ F ρRðs; t2Þðpa þ p0

1 þ k; pb þ p0
2Þ; ð4:51Þ

MðcÞ
λρR

¼ eF ρRðs; t2Þ
�
2ðpb þ p0

2Þλ −
ð2pa þ 2pb − kÞλ

s
ð1 − αρRðt2ÞÞgρRðϰ; t2Þðpa þ p0

1 − k; pb þ p0
2Þ
�
: ð4:52Þ

Here ϰ and gPðϰ; tÞ are defined in (4.16) and (4.17), respectively, gf2Rðϰ; tÞ is defined analogously

gf2Rðϰ; tÞ ¼
1

ð2 − αf2RðtÞÞϰ
½ð1 − ϰÞαf2R ðtÞ−2 − 1�; ð4:53Þ

and gρRðϰ; tÞ is defined as

gρRðϰ; tÞ ¼
1

ð1 − αρRðtÞÞϰ
½ð1 − ϰÞαρR ðtÞ−1 − 1�;

¼ 1þ ϰ

2!
ð2 − αρRðtÞÞ þ

ϰ2

3!
ð2 − αρRðtÞÞð3 − αρRðtÞÞ þ…: ð4:54Þ

We emphasize that MðcÞ
λP , M

ðcÞ
λf2R

and MðcÞ
λρR

are obtained as the simplest solution of the gauge-invariance relation

kλðMðaÞ
λ þMðbÞ

λ þMðcÞ
λ Þ ¼ 0: ð4:55Þ

For the diagrams of Fig. 7(d)–(f) we find

MðdÞ
λ ¼ −MðaÞ

λ jpa;p0
1
↔pb;p0

2
; ð4:56Þ

MðeÞ
λ ¼ −MðbÞ

λ jpa;p0
1
↔pb;p0

2
; ð4:57Þ

MðfÞ
λ ¼ −MðcÞ

λ jpa;p0
1
↔pb;p0

2
: ð4:58Þ

Note that ðpa; p0
1Þ ↔ ðpb; p0

2Þ implies t1 ↔ t2; see (4.10). We have also here

kλðMðdÞ
λ þMðeÞ

λ þMðfÞ
λ Þ ¼ 0: ð4:59Þ

For the amplitudes (4.47) and (4.48) we get finally

Mðπ−πþ→π−πþγÞ
λ ¼ MðaÞ

λ þMðbÞ
λ þMðcÞ

λ þMðdÞ
λ þMðeÞ

λ þMðfÞ
λ ; ð4:60Þ
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Mðπþπþ→πþπþγÞ
λ ¼ −ðM̂ðaÞ

λ þ M̂ðbÞ
λ þ M̂ðcÞ

λ Þ þ M̂ðdÞ
λ þ M̂ðeÞ

λ þ M̂ðfÞ
λ þ ðp0

1 ↔ p0
2Þ: ð4:61Þ

Here we define

M̂ðaÞ
λ ¼ MðaÞ

λP þMðaÞ
λf2R

−MðaÞ
λρR

ð4:62Þ

and similarly for M̂ðbÞ
λ ;…;M̂ðfÞ

λ .
The inclusive cross section for the real-photon yield of the reaction (4.31) is as follows

dσðπ−πþ → π−πþγðkÞÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p d3k

ð2πÞ32k0
Z

d3p0
1

ð2πÞ32p00
1

d3p0
2

ð2πÞ32p00
2

× ð2πÞ4δð4Þðp0
1 þ p0

2 þ k − pa − pbÞMðπ−πþ→π−πþγÞ
λ ðMðπ−πþ→π−πþγÞ

ρ Þ�ð−gλρÞ ð4:63Þ

and similarly for πþπþ → πþπþγ, including a statistic factor 1=2.
In the following we shall compare our “exact”model results, which we shall call “standard” results, for (4.60) and (4.61),

using (4.23), (4.24), (4.19), (4.49)–(4.52), and (4.56)–(4.58), to various soft-photon approximations (SPAs). Below we list
the explicit expressions for photon emission in π−πþ scattering.

SPA1: Here we keep only the pole terms ∝ ω−1 for MðaÞ
λ � � �MðfÞ

λ in (4.60). From (4.19), (4.23), (4.24), (4.44),
(4.49)–(4.52), and (4.56)–(4.58) we see that this amounts to the following replacements, using k2 ¼ 0, and p0

1 → p1,
p0
2 → p2:

MðaÞ
λ → eMð0Þπ−πþðs; tÞ paλ

ðpa · kÞ
;

MðbÞ
λ → −eMð0Þπ−πþðs; tÞ p1λ

ðp1 · kÞ
;

MðcÞ
λ → 0;

MðdÞ
λ → −eMð0Þπ−πþðs; tÞ pbλ

ðpb · kÞ
;

MðeÞ
λ → eMð0Þπ−πþðs; tÞ p2λ

ðp2 · kÞ
;

MðfÞ
λ → 0: ð4:64Þ

From (4.60) and (4.64) we get then

Mðπ−πþ→π−πþγÞ
λ → Mðπ−πþ→π−πþγÞ

λ;SPA1

¼ eMð0Þπ−πþðs; tÞ
�

paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
−

pbλ

ðpb · kÞ
þ p2λ

ðp2 · kÞ
	
: ð4:65Þ

Inserting this in (4.63) we get the following SPA1 result for the inclusive photon cross section where, for consistency,
we neglect the photon momentum k in the energy-momentum conserving δð4Þð:Þ function:

dσðπ−πþ → π−πþγðkÞÞSPA1 ¼
d3k

ð2πÞ32k0
Z

d3p1d3p2e2

×

�
paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
−

pbλ

ðpb · kÞ
þ p2λ

ðp2 · kÞ
	

×

�
paρ

ðpa · kÞ
−

p1ρ

ðp1 · kÞ
−

pbρ

ðpb · kÞ
þ p2ρ

ðp2 · kÞ
	
ð−gλρÞ

×
dσðπ−πþ → π−πþÞ

d3p1d3p2

; ð4:66Þ
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where

dσðπ−πþ → π−πþÞ
d3p1d3p2

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

ð2πÞ32p0
1ð2πÞ32p0

2

ð2πÞ4δð4Þðp1 þ p2 − pa − pbÞjMð0Þπ−πþðs; tÞj2: ð4:67Þ

In (4.66), (4.67) we have a frequently used SPA. One takes the distribution of the particles without radiation [see
(4.67)] and multiplies with the square of the emission factor in the square brackets in (4.65).

SPA2: Here we take into account that the squared momentum transfer is t2 for the diagrams of Fig. 7(a)–(c) and t1 for
those of Fig. 7(d)–(f), where t1;2 are defined in (4.10). We make in (4.63) the replacement:

Mðπ−πþ→π−πþγÞ
λ → Mðπ−πþ→π−πþγÞ

λ;SPA2

¼ eMð0Þπ−πþðs; t2Þ
�

paλ

ðpa · kÞ
−

p0
1λ

ðp0
1 · kÞ

	
þ eMð0Þπ−πþðs; t1Þ

�
−

pbλ

ðpb · kÞ
þ p0

2λ

ðp0
2 · kÞ

	
: ð4:68Þ

In the calculation of the photon distribution we keep the correct energy-momentum conserving δð4Þð:Þ function
in (4.63).

SPA3: In our third example we make in (4.63) the replacement

Mðπ−πþ→π−πþγÞ
λ → Mðπ−πþ→π−πþγÞ

λ;SPA3

¼ eMð0Þπ−πþðs; t0Þ
�

paλ

ðpa · kÞ
−

p0
1λ

ðp0
1 · kÞ

−
pbλ

ðpb · kÞ
þ p0

2λ

ðp0
2 · kÞ

	
; ð4:69Þ

where we choose

t0 ¼ minðt1; t2Þ: ð4:70Þ
Also here we keep the correct energy-momentum conserving δð4Þð:Þ function in the evaluation of (4.63).

We shall also consider approximations which we
shall call “improved SPA1” and “improved SPA2”, respec-
tively. For this we consider Fig. 7. In the diagrams (a) and
(d) the squared c.m. energy of the off-shell ππ → ππ
amplitude is sa ¼ ðpa þ pb − kÞ2, in the diagrams (b)
and (e) it is s ¼ ðpa þ pbÞ2; see (4.26), (4.27). For real
photons, k2 ¼ 0, and working in the overall c.m. system
we have

sa ¼ s − 2ω
ffiffiffi
s

p
: ð4:71Þ

Now we take, as a compromise, the average value s̃ of sa
and s,

s̃ ¼ s − ω
ffiffiffi
s

p
; ð4:72Þ

as squared c.m. energy of the ππ → ππ amplitudes. With
the amplitudes Mð0Þπ−πþðs̃; tÞ and Mð0Þπ−πþðs̃; t1;2Þ in
(4.65) and (4.68), respectively, we get what we call the
improved SPA1 and SPA2 results. The prescription to
replace s by s̃ (4.72) has been advocated by Linnyk
et al. [40,41].

V. RESULTS

Below we show our results for elastic ππ → ππ scatter-
ing (subsection VA) and results for the ππ → ππγ reaction
(subsection V B).

A. Comparison with the total and elastic ππ
cross sections

Here we compare our model results with the π−πþ and
π�π� total and total elastic cross section data.
First we briefly review the experimental results for the ππ

total and elastic cross sections. There are no direct measure-
ments of total and elastic ππ cross sections at present.
However, indirect data at low and intermediate

ffiffiffi
s

p
, the

pion-pion center-of-mass energy, have been extracted from
reactions likeπ−p → πþπ−n,π−π−Δþþ [72–75] andπ�p →
ΔþþX and π�n → pX [76,77]. They are compared with our
predictions inFig. 8. In the left panel the experimental data are
from [72–78]1 while in the right panel from [81,82].

1There are also the data of the total π−π− cross section from
[72,75] (see, e.g., Fig. 3 of [79] or Fig. 2 of [80]). It was stated in
[79] that these results are not consistent with other data at lower
energies probably due to incorrect treatment of final state
interactions. The uncertainties of these data are therefore very
large and hence we do not show them in Fig. 8.
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FIG. 9. The two-dimensional distributions in (ω; k⊥), (ω; y), and (k⊥; y), for the π−πþ → π−πþγ reaction including only the Pomeron
exchange. Calculations were done for

ffiffiffi
s

p ¼ 10 GeV, 0.001 GeV < k⊥ < 0.2 GeV, ω < 3 GeV, and jyj < 8. The lines plotted in the
panel (a) correspond to the photon rapidities y ¼ 1; 2;…; 6. In panels (b) and (c) we show the results only for 0 < y < 8 since these
distributions are symmetric under y → −y.
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ffiffiffi
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p
together with

the experimental data. The single Pomeron exchange is given by the blue solid line, the Pomeron plus f2R Reggeon exchanges by the blue
dotted line, the complete result (Pþ f2R þ ρR) for the opposite-sign pions and the same-sign pions is given by the black long-dashed line
and the red short-dashed line, respectively. In the right panel we show also the f2R Reggeon and the ρR Reggeon terms separately.
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FIG. 10. The ratios Rðω; k⊥Þ (5.2) for the π−πþ → π−πþγ reaction for
ffiffiffi
s

p ¼ 10 GeV for the three soft-photon approximations SPA1
(4.65), SPA2 (4.68), and SPA3 (4.69). The lines corresponding to the photon rapidities y ¼ 1; 2;…; 6 are also plotted. The right panels
show the region of small k⊥ and small ω in greater detail.
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We present for the scattering of π−πþ (opposite-sign
pions) and π�π� (same-sign pions) the total (left panel) and
total elastic (right panel) cross sections versus

ffiffiffi
s

p
. The

results for the single Pomeron exchange (P), for the
Pomeron and f2R Reggeon exchanges (Pþ f2R), and
the complete results (Pþ f2R þ ρR) are shown. The
corresponding theoretical expressions are given in
(4.34)–(4.46). According to our model we treat the ρR
Reggeon as effective vector exchange and the Pomeron and
f2R Reggeon as effective tensor exchanges. Thus, in the
Regge parametrization of the π�π� cross section, the ρR
contributes with a sign opposite to P and f2R.
We find good agreement with the experimental data

taking into account the default values from [15] for the
parameters of the propagators and vertices. One has to keep
in mind that for the subleading exchanges the errors of the
coupling constants are quite large, in particular for the
coupling gρRππ , as was discussed in Sec. 7.1 of [15]. In
addition one also has to keep in mind that there should be a
smooth transition from Reggeon to particle exchanges
when going to very low energies. Note that the same-
sign-pions channels do not contain s channel resonances in
contrast to the opposite-sign-pions channel. Thus, our
theoretical results, which include only t-channel
exchanges, are in better agreement with the experimental
data for σπ

�π� than for σπ
−πþ. Moreover, such effects as

absorption corrections and multiple soft and hard
exchanges, discussed in [83], were not included in our
calculation. Clearly, all these topics deserve careful analy-
ses, but this goes beyond the scope of the present paper.
There are also the data of π�π− total cross sections from

the analysis performed in [84]. In thatwork, a tripleReggeon
model with absorption was used to extract σπ

�π−
tot from the

π�p → ΔþþX and π�n → pX processes. The authors

of [84] found that the inclusion of absorptive corrections
in these two reactions decreases the results by about 10% to
15%. The uncertainty of these results is large and therefore
we do not show these data in Fig. 8 and instead we refer to
[83,85]. In [83] the effect of absorption corrections (double-
scattering effect) on the total cross section for ππ scattering
as a function of

ffiffiffi
s

p
was discussed. The t-dependence of the

elastic ππ cross sections was also discussed there. The
authors of [83] found that the absorption is much weaker for
the same-sign pions than for the opposite-sign pions; see,
e.g., Figs. 5, 9 and Table 2 of [83].
The total πþπ− and π�π� cross sections including

subleading Reggeon exchanges were also discussed in
[79,80,86]. There is the question of the reliability of the
Regge model down to low energies and whether in the
region of low

ffiffiffi
s

p
but not low jtj the Regge parametrization

can be properly applied. On general grounds, one expects
Regge theory to work when s ≫ jtj, s0 [see (4.25)] and
jtj ≲ 1 GeV2 and, in fact, the Regge parametrization for ππ
becomes unreliable at large jtj. The interested reader may
consult Refs. [79,80] for the detailed discussion of this and
other related issues.
In the next subsection we shall discuss soft-photon

emission in ππ scattering for c.m. energies
ffiffiffi
s

p ¼
10 GeV and 100 GeV. We see from Fig. 8 that at

ffiffiffi
s

p ≳
100 GeV the ππ cross sections are completely dominated
by the Pomeron-exchange contribution. At least, this is the
result of our model. Therefore, in Sec. V B we shall take
into account only the Pomeron-exchange term for the
reactions ππ → ππγ at

ffiffiffi
s

p
⩾ 100 GeV. At

ffiffiffi
s

p
≃ 10 GeV

wewill show results including the Pomeron exchange alone
and in addition the ρR and f2R Reggeon exchanges. As we
will show below in Fig. 14, the secondary Reggeon
exchanges play a significant role there.

0 2 4 6 8 10
y

4−10

3−10

2−10

1−10

1

10

210

310

410

b)μ
/d

y 
(

σd

γ +π-π → +π-π
 < 3 GeVω = 10 GeV, s

   < 1 MeV0.1 MeV < k
   < 10 MeV1 MeV < k
   < 100 MeV10 MeV < k

0 2 4 6 8 10
y

4−10

3−10

2−10

1−10

1

10

210

310

410

b)μ
/d

y 
(

σd

γ +π-π → +π-π
 < 40 GeVω = 100 GeV, s
   < 1 MeV0.1 MeV < k

   < 10 MeV1 MeV < k
   < 100 MeV10 MeV < k

FIG. 11. The distributions in rapidity of the photon in the π−πþ → π−πþγ reaction calculated for
ffiffiffi
s

p ¼ 10 GeV, ω < 3 GeV (left
panel) and for

ffiffiffi
s

p ¼ 100 GeV, ω < 40 GeV (right panel) for different k⊥ intervals. Plotted are the results only for positive y since the
distributions are symmetric under y → −y.
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FIG. 12. The differential distributions in transverse momentum of the photon and in the energy of the photon for the π−πþ → π−πþγ
reaction. The calculations were done for

ffiffiffi
s

p ¼ 10 GeV and ω < 3 GeV. The black solid line corresponds to the standard result, the red
long-dashed line corresponds to SPA1 (4.65), the green dashed line corresponds to SPA2 (4.68), and the blue dotted line corresponds to
SPA3 (4.69).
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FIG. 13. The ratios σSPA=σstandard given by (5.3) and (5.4), respectively. The oscillations in the SPA1 results are of numerical origin.
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B. Comparison of our “exact” model or “standard”
results for the ππ → ππγ reactions with various

soft-photon approximations

First, in Fig. 9, we present the two-dimensional distri-
butions in (ω; k⊥), (ω; y), and (k⊥, y), for the π−πþ →
π−πþγ reaction for our “standard” result (4.60), (4.63),
including only the Pomeron exchange. Calculations were
done for the pion-pion collision energy

ffiffiffi
s

p ¼ 10 GeV.
Here, ω ¼ k0 is the center-of-mass photon energy, k⊥ is the
absolute value of the photon transverse momentum, and y is
the rapidity of the photon. We must remember here, that in
order to stay with all amplitudes in the Regge regime we
certainly have to require (4.29) which reads here, with
k2 ¼ 0 and s0 ¼ 25 GeV2,

ω ⩽
1

2
ffiffiffi
s

p ðs − s0Þ ¼ 3.75 GeV: ð5:1Þ

To be on the safe side, we shall in the following only show
results for ω < 3 GeV. In the panel (a) we show the lines

corresponding to the absolute value of the rapidity of the
photon y ¼ 1; 2;…; 6. Large y is near the ω axis and y ¼ 0
on the k⊥ axis. There are in all three plots also regions that
are not accessible kinematically. From the panel (b) we see
that an upper cut on ω is effecting the upper limit of the
allowed y range.
Now we compare our “exact” model or “standard” result

for the π−πþ → π−πþγ reaction to various soft-photon
approximations (SPAs) discussed in Sec. IV B. We
consider

ffiffiffi
s

p ¼ 10 GeV and include only the Pomeron
exchange.
A quantity of great interest is the ratio of the cross

section calculated in one of the SPAs to the “standard”
result. This ratio will now be studied as a function of
ω ¼ k0 and k⊥ in the ω-k⊥ plane. In Fig. 10 we show, in
two-dimensional plots, the ratio

Rðω; k⊥Þ ¼
d2σSPA=dωdk⊥

d2σstandard=dωdk⊥
: ð5:2Þ
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FIG. 14. The ratios σðPþRÞ
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standard in the π−πþ → π−πþγ reaction calculated for

ffiffiffi
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p ¼ 10 GeV, 1 MeV < k⊥ < 10 MeV, and
ω < 3 GeV.
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The results for the three scenarios of the SPA amplitudes
are presented. The result on the panels (a) corresponds to
SPA1 (4.65), the result on the panels (b) corresponds to
SPA2 (4.68), and the result on the panels (c) corresponds
to SPA3 (4.69). We also show the lines corresponding
to y ¼ 1; 2;…; 6.
Now we discuss results separately for the three k⊥

intervals of photon transverse momenta: 0.1 MeV < k⊥ <
1 MeV, 1MeV<k⊥<10MeV, 10MeV<k⊥<100MeV.
We do so due to difficulties in the numerical evaluation of
integrals. In Fig. 11 we show the distributions in y for the
standard results [see Eq. (4.60)] including only the
Pomeron exchange. Calculations were done for

ffiffiffi
s

p ¼
10 GeV and 100 GeV. When going from

ffiffiffi
s

p ¼ 10 GeV
to

ffiffiffi
s

p ¼ 100 GeV the maximum of the y distribution shifts
from ymax ≃ 3.4 to ymax ≃ 5.8.
In Fig. 12 we present the distributions in k⊥ and ω for the

reaction π−πþ → π−πþγ calculated for
ffiffiffi
s

p ¼ 10 GeV

including only the Pomeron exchange. Results are shown
for three k⊥ intervals for our model and for the various
SPAs. From the semilogarithmic plots of Fig. 12 we see that
the three SPAs follow the general trend of our standard
results quite well for k⊥ ≲ 20 MeV and for ω≲ 1 GeV.
But let us now have a closer look at these kinematic regions
at a linear scale.
Figure 13 shows the ratios of the SPAs to the standard

cross section:

dσSPA=dk⊥
dσstandard=dk⊥

; ð5:3Þ

dσSPA=dω
dσstandard=dω

; ð5:4Þ

as functions of k⊥ and ω, respectively. The rapid fluctua-
tions of the ratio as a function of k⊥ are due to different
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FIG. 15. The two-dimensional distributions in (ω; k⊥), (ω; y), and (k⊥; y), for the reaction π−πþ → π−πþγ at
ffiffiffi
s

p ¼ 100 GeV. This is
the same as in Fig. 9 but for

ffiffiffi
s

p ¼ 100 GeV, ω < 10 GeV, and jyj < 11. The lines plotted in the panel (a) correspond to the photon
rapidities y ¼ 4, 6, 8.
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organization of integration in the two codes: one for the full
three-body phase space (standard approach, SPA2, SPA3)
and one for the two-body phase space supplemented by
additional integration over photon three momentum
(SPA1). The SPAs which we consider deviate from the
standard results only at the percent level for 0.1 MeV <
k⊥ < 1 MeV but at the 10% to 50% level for
k⊥ ≅ 50 MeV; see the left panels of Fig. 13. From the
right panels of Fig. 13 we see that the deviations of the
SPAs from the standard results are up to around 50% for
ω < 1.5 GeV. We also note that the discrepancies of the
SPAs to the standard results typically increase rapidly with
growing k⊥ andω. For the SPA1 approximation we have on
purpose set k ¼ 0 in the energy-momentum conserving
delta function in (4.63), since this corresponds to a
frequently used procedure in the literature. Thus, the
SPA1 approach does not respect the upper kinematic limit
for ω. But this is no problem for us since we are interested
here only in soft-photon production. But we note that the

accuracy of the SPA1 can be significantly improved and
the region of its applicability can be extended by keeping
the correct energy-momentum conservation as in the SPA2
and SPA3.
Now we wish to illustrate the effect of inclusion of

Reggeon exchanges (ρR and f2R) in addition to the
Pomeron exchange. In Fig. 14 we show the ratio

σðPþRÞ
standard=σ

ðPÞ
standard for our model as a function of k⊥, ω,

and y. Inclusion of the subleading Reggeon exchanges in
the calculations leads to a sizable increase of the cross
section. We get for the ratio of the total cross sections with
the cuts 1 MeV < k⊥ < 10 MeV and ω < 3 GeV

σðPþRÞ
standard

σðPÞstandard

¼ 29.50 μb
21.76 μb

≃ 1.36; ð5:5Þ

that is, an about 36% increase due to the Reggeon
exchanges. From the ratios of differential distributions in
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FIG. 16. The ratios Rðω; k⊥Þ (5.2) for the π−πþ → π−πþγ reaction for
ffiffiffi
s

p ¼ 100 GeV for the three SPAs. The lines corresponding to
the photon rapidities y ¼ 4, 6, 8 are also plotted.
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FIG. 17. The same as in Fig. 12 but for
ffiffiffi
s

p ¼ 100 GeV. Shown are results for three k⊥ intervals and with cuts on ω specified in the
figure legends.
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ω and in y we see that these ratios vary from 1.25 to 1.55
depending on kinematics.
Now we turn to the results at c.m. energy

ffiffiffi
s

p ¼
100 GeV. Here we include in the calculations only the

Pomeron-exchange contributions. As we see already from
Fig. 8 the nonleading exchanges are negligible there.
In Fig. 15 we show the distributions in (ω, k⊥), (ω, y),

and (k⊥, y), for our standard results. Here we consider only
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FIG. 18. The same as in Fig. 13 but for
ffiffiffi
s

p ¼ 100 GeV. Shown are results for three k⊥ intervals and with cuts on ω specified in the
figure legends. The oscillations in the SPA1 results are of numerical origin.
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c.m. photon energies ω < 10 GeV. The constraint (4.29),
setting k2 ¼ 0, is then always well satisfied. That is, we are
in the Regge regime for all relevant amplitudes. These
distributions are the analogs of those shown in Fig. 9
for

ffiffiffi
s

p ¼ 10 GeV.
Figure 16 shows the ratios Rðω; k⊥Þ (5.2) for the reaction

π−πþ → π−πþγ at
ffiffiffi
s

p ¼ 100 GeV for the approximations
SPA1 (4.65), SPA2 (4.68) and SPA3 (4.69).
In Figs. 17 and 18 we show the results for

ffiffiffi
s

p ¼
100 GeV which are analogs of those shown in Figs. 12
and 13 for

ffiffiffi
s

p ¼ 10 GeV. The calculations were done with
cuts on ω specified in the figure legends. In all cases the
constraint on ω from (4.29) is well satisfied. We see that atffiffiffi
s

p ¼ 100 GeV the three SPAs are all close to our standard
results in the region of small k⊥ and ω. For 0.1 MeV <
k⊥ < 1 MeV the SPA1 result deviates strongly from the
standard result for ω≳ 4 GeV; see the upper most
right panel of Fig. 17. This is due to the incorrect
energy-momentum δ function used, on purpose, there;

see (4.64)–(4.67). Figure 18 shows that for k⊥ ≲
10 MeV the deviations of the SPAs from the standard
results are only at the percent level. For the ω distributions
these differences are up to around 10% for ω≲ 3 GeV.
We also note that in Fig. 18 the SPA results are in most

cases above the standard results (ratio > 1) but in some
cases also below (ratio < 1). Thus, the ratios SPA/standard
depend strongly on the kinematics.
As for

ffiffiffi
s

p ¼ 10 GeV, the rapid oscillations of the ratios
for SPA1 in Fig. 18 are a numerical artefact caused by
different integration procedures in two different codes.
At this point we can discuss the qualitative accuracy

estimates of the SPA1 approximation as given a long
time ago in [46]. For the scattering reaction this
estimate is given following Eq. (19) of [46] and reads
for our case

pa · k ≈ p1 · k ≪ m2
π; ð5:6Þ

pb · k ≈ p2 · k ≪ m2
π: ð5:7Þ
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FIG. 19. The ratio SPA1/standard (5.2) for
ffiffiffi
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ffiffiffi
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FIG. 20. The ratios Rðω; k⊥Þ (5.2) for the π−πþ → π−πþγ reaction for our improved SPA scenarios for
ffiffiffi
s

p ¼ 10 GeV and 100 GeV.
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In the c.m. system, choosing pa in z direction, pa · k (pb · k)
can only become small for the longitudinal component kL
of k being positive (negative). We have then

pa · k¼ p0
aω− jpajkL ¼ p0

aω− jpaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2⊥

q

¼ 2m2
πω

2 þ 1
2
ðs− 4m2

πÞk2⊥ffiffiffi
s

p
ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4m2

π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2⊥

p for kL > 0; ð5:8Þ

and

pb · k¼
2m2

πω
2 þ 1

2
ðs− 4m2

πÞk2⊥ffiffiffi
s

p
ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4m2

π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2⊥

p for kL < 0: ð5:9Þ

In Fig. 19 we show again the ratio SPA1/standard in the
ω-k⊥ plane together with the lines

2m2
πω

2þ 1
2
ðs−4m2

πÞk2⊥ffiffiffi
s

p
ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s−4m2

π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−k2⊥

p ¼ cm2
π; c¼ 1.0;0.5;0.1;0.01:

ð5:10Þ

If the accuracy estimate (5.6), (5.7) would be valid, say
with pa · k ⩽ cm2

π and pb · k ⩽ cm2
π and c ¼ 0.1 or 0.01,

the area below the corresponding curves in Fig. 19 should
be colored green, indicating that there the SPA1 is a good
representation of our standard result. But we see from
Fig. 19 that the green areas, which we obtained from
explicit calculations, seem to have only very little to do
with the qualitative conditions (5.6), (5.7). The areas below
the curves of constant c have regions where the SPA1 is not
a good representation of the standard results. On the other
hand, there are large green areas above these curves where
the SPA1 gives a good representation of the standard
results. Of course, all these statements refer to a comparison
of SPA1 to our standard results and things could be
different for possible other calculations including, for
instance, anomalous terms.
Figure 20 shows the ratios Rðω; k⊥Þ for the two

“improved SPA” scenarios calculated for
ffiffiffi
s

p ¼ 10 GeV
and 100 GeV. Comparing these results to the corresponding
results from Figs. 10 and 16 we observe that the improved
SPAs greatly reduce the discrepancies to our standard
results. This is particularly the case for the improved
SPA1 case. One can see from Figs. 20(a) and (e) that
the improved SPA1 is a good approximation with the
accuracy up to 10% for k⊥ ≲ 0.2 GeV and ω≲ 2 GeV forffiffiffi
s

p ¼ 10 GeV, and for k⊥ ≲ 0.2 GeV and ω≲ 20 GeV
for

ffiffiffi
s

p ¼ 100 GeV.

VI. CONCLUSIONS

In this paper we have studied elastic pion-pion scattering
without and with photon radiation. In Sec. II we have given
a detailed analysis, from a QFT point of view, of the

reactions π−π0 → π−π0 and π−π0 → π−π0γ. We have used
this analysis in Sec. III to derive the expansion of the
amplitude for π−π0 → π−π0γ in powers of ω, the photon
energy in the overall c.m. system, for ω → 0. The term of
order ω−1 agrees with that given by F.E. Low in [1] but, to
our great surprise, our term of order ω0 disagrees with that
given in [1]. We have analyzed this important discrepancy
and we have shown that our expansion is for the photon-
emission amplitude satisfying energy-momentum conser-
vation. In contrast, we find that the term of order ω0 from
[1] corresponds to the expansion of an amplitude violating
energy-momentum conservation for photon-momentum
k ≠ 0. In Appendix A we compare our findings for this
term of order ω0 to further results from the literature. We
find that our result is new compared to the results of the
papers which we study in Appendix A. We emphasize that
our result for the ω0 term is a strict consequence of
QFT. Therefore, absolutely no model dependence is con-
tained there.
In Sec. IV we have calculated the amplitudes for ππ →

ππ and ππ → ππγ in the tensor-Pomeron model. The
diagrams for the latter process where the photon is emitted
from the external pion lines [Figs. 7(a),(b),(d),(e)] are
determined completely by the (off-shell) ππ → ππ scatter-
ing amplitude. The amplitudes corresponding to the dia-
grams of Fig. 7(c) and Fig. 7(f), the “structure terms,” have
to satisfy gauge-invariance constraints involving the pre-
vious amplitudes. We have given a solution of these
constraints which involves again only the (off-shell) ππ →
ππ scattering amplitude. But we have emphasized that this
solution is not unique (as is well known in the literature, see
e.g., [50]) and there “anomalous” terms in the ππ → ππγ
amplitudes, not directly related to the ππ → ππ amplitude,
could come up. We considered then as “standard,” or
“exact” model, our ππ → ππγ amplitudes without such
anomalous terms. Clearly, in Sec. IV we used a model. We
summarize here our main model assumptions.
(1) We used the tensor-Pomeron model, both for the on-

shell and off-shell ππ → ππ amplitudes. For the
high-energy reactions which are our main interest
we needed the effective Pomeron propagator
and the Pomeron ππ vertex. These quantities were
taken from [15] where they were derived from
comparison of theory to data, in particular for
nucleon-(anti)nucleon and pion-nucleon scattering.

(2) We used the standard pion propagator and γππ
vertex; see (4.11). Possible off-shell form factors
in the Pomeron- and photon-pion vertices and the
pion propagator are set to one.

(3) To determine the structure terms [Figs. 5(c), 7(c), 7(f)]
we used the simplest solutions of the respective
gauge-invariance relations; see (4.18), (4.19), (4.52).
Throughout our paper we denote as anomalous terms
possible additional structure terms,which then have to
satisfy the gauge-invariance relations by themselves.
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In our model we excluded such anomalous terms in
the radiative amplitudes.
We consider point (3) as our main model

assumption.
We have defined three soft-photon approximations to
our above “exact model”: SPA1, SPA2, and SPA3; see
Sec. IV B. In the SPA1 the photon momentum k was, on
purpose, omitted in the energy-momentum conserving
δð4Þð:Þ function in the evaluation of the cross section. In
the SPA2 and SPA3 the correct energy-momentum con-
servation was required.
In Sec. V we have presented quantitative calculations for

the elastic ππ scattering without and with photon radiation
within the tensor-Pomeron model. We have shown results
for our “standard model” and for the three SPAs for two
different collision energies

ffiffiffi
s

p ¼ 10 GeV and 100 GeV.
We have shown, for instance, the results of our model for
the two-dimensional distributions in photon transverse
momentum k⊥ and rapidity y [Figs. 9(c) and 15(c)]. Forffiffiffi
s

p ¼ 10 GeV the distribution is largest for k⊥ ≲ 0.1 GeV
and 2≲ y≲ 5. For

ffiffiffi
s

p ¼ 100 GeV the distribution is
largest for k⊥ ≲ 0.004 GeV and 3≲ y≲ 7. These are the
results of our calculations in the framework of our standard
model where we have listed the assumptions in (1), (2), (3)
above. We note that the distributions in k⊥ and y give very
small values for y ≈ 0, that is, in the midrapidity region.
Clearly, this is then a region where anomalous contribu-
tions to the radiative amplitude could be large compared to
our standard. But we note that such anomalous contribu-
tions cannot come directly from the high-energy exchange
object, the Pomeron P. Charge-conjugation (C) invariance
of the strong and electromagnetic interactions forbids a
PPγ vertex. The Pomeron has C ¼ þ1 and the photon
C ¼ −1. But in ππ scattering there can be central exclusive
production (CEP) of single photons by the fusion reactions
Pþ ρR → γ and f2R þ ρR → γ. In the terminology used in
our paper these would be called anomalous photon con-
tributions even if their origin is quite conventional. These
photons, indeed, can be expected to populate preferentially
the midrapidity region; see [43].
Another main purpose of our paper was a study of the

various soft-photon approximations (SPAs). How close or
far away are they from our standard results? As expected,
the SPAs are good approximations to the standard results
for low k⊥ and low ω. To be concrete: this means k⊥ ≲
10 MeV and ω≲ 50 MeV for

ffiffiffi
s

p ¼ 10 GeV (see Fig. 10)
and k⊥ ≲ 10 MeV and ω≲ 0.5 GeV for

ffiffiffi
s

p ¼ 100 GeV
(see Fig. 16). For larger values of k⊥ and/or ω the
discrepancies between the standard and SPA results
increase rapidly. But these discrepancies also depend on
the detailed kinematics. The “improved SPA” approaches
with the variable s̃, defined in (4.72), in the ππ → ππ
amplitudes greatly reduce the discrepancies to our standard
results, especially in the case of SPA1 (see Fig. 20). For
these numerical studies we have considered only the

leading exchange at high energies, the Pomeron. This
should be a very good approximation for

ffiffiffi
s

p ¼100GeV.
For

ffiffiffi
s

p ¼ 10 GeV we have also considered the subleading
Reggeon exchanges and we found that they increase the
cross sections for π−πþ → π−πþγ by about 20% to 40%.
As already mentioned in the Introduction there are plans

for a new detector for the LHC, ALICE 3. One physics aim
for this new initiative is an experimental study of soft-
photon emission in hadronic reactions. What can we say in
this context from our investigation of ππ scattering without
and with photon radiation? From the theory side we have a
good model for the basic process ππ → ππ. This allowed us
to construct our standard amplitude for ππ → ππγ but we
have excluded anomalous terms, as described above.
Suppose now that we have experimental measurements
at all photon energies ω. Then we could study, as an
example, the ratio

RexpðωÞ ¼
dσexp=dω

dσstandard=dω
: ð6:1Þ

From the results of our present paper we know that the
terms of order 1=ω and ω0 in the expansion of the standard
amplitude are strict results from QFT without approxima-
tions, given the on-shell ππ → ππ amplitudes. Therefore, if
QFT describes experiment we must have (see Appendix B
for a detailed discussion)

lim
ω→0

RexpðωÞ ¼ 1; lim
ω→0

dRexpðωÞ
dω

¼ 0: ð6:2Þ

A violation of these relations would mean a terrible crisis
for QFT. For higherω a value RexpðωÞ ≠ 1would mean that
there are soft photons from anomalous terms (in the sense
defined above) present in experiment. From our point of
view the origin of such anomalous terms should be
searched for in nonperturbative QCD. One will have to
first consider carefully all conventional sources of anoma-
lous photons like photons from central exclusive produc-
tion reactions (see above) and then more unconventional
sources; see for instance [13] and [67–71]. Let us note that
for very small ω one has to take care of infrared divergences
and multiple soft photon emission. But these effects can be
calculated with the methods originally developed by Bloch
and Nordsieck [87].
What can we do if we do not have a good model for the

amplitude of the basic process, e.g., for multi-particle
production? Typically one has then the experimental or
theoretical distributions of particles and one uses the analog
of our SPA1 approximation (4.64)–(4.67) instead of
dσstandard=dω in (6.1):

R̃expðωÞ ¼
dσexp=dω

dσSPA1=dω
: ð6:3Þ
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Then, the firm prediction from QFT is only

lim
ω→0

R̃expðωÞ ¼ 1: ð6:4Þ

Note that the ratios RðωÞ for SPA1 shown in the right
panels of Figs. 13 and 18 do not satisfy

lim
ω→0

dRðωÞ
dω

¼ 0; ð6:5Þ

and this must be expected to be the case in general. If then
R̃expðωÞ turns out ≠ 1 for larger ω the conclusions for
anomalous terms in the photon-emission process will not
be so straightforward, since it will depend on an estimate of
the accuracy of the SPA used. For our ππ scattering reaction
these accuracies can be read off, as function of the kinematic
region considered, from the figures shown in Sec. V. But, in
general, such accuracy estimates are a difficult task.
In the future we plan to study proton-proton elastic

scattering and central exclusive production (CEP) reactions
like pp → pπþπ−p without and with soft photon produc-
tion using the methods which we have developed here for
the ππ scattering case. We hope that with the planned
ALICE 3 detector at the LHC our theoretical studies of soft
photon emission in exclusive reactions will find their
experimental counterparts. The goals will be to establish
if QFT has a crisis there in the sense of a violation of
relations of the type (6.2) and if anomalous soft photons,
compatible with QFT, are present.

ACKNOWLEDGMENTS

We thank Johanna Stachel, Peter Braun-Munzinger,
Carlo Ewerz, and Stefan Flörchinger for very useful

discussions and for providing us information on relevant
literature. We thank Charles Gale and Heinrich Leutwyler
for correspondence on the topics of our paper. This work is
partially supported by the Polish National Science Centre
under Grant No. 2018/31/B/ST2/03537 and by the Center
for Innovation and Transfer of Natural Sciences and
Engineering Knowledge in Rzeszów (Poland).

APPENDIX A: SOME REMARKS ON THE
LITERATURE CONCERNING

LOW’S THEOREM

Here we compare our findings concerning the revision of
the orderω0 term in the soft-photon expansion from Sec. III
to results from a number of papers from the literature. We
find it surprising that so many versions of “Low’s theorem”
can be found in the literature. This, clearly, poses the
question if they are all equivalent. A genuine theorem of
QFT should give a unique result. We think that a clarifi-
cation of this question is important especially for exper-
imentalist trying to check this theorem. They should know
precisely what they are supposed to check. In this spirit, as
a service to experimentalists, and in order to answer to
various points raised by the referee of our paper, we shall in
the following compare results from the literature to our
findings.
For these comparisons we shall mainly restrict ourselves

to the simple pion-pion scattering reactions (2.1) and (2.2).
We start by recalling our Eqs. (3.27) and (3.28) which

we specialize here for real photons, k2 ¼ 0. We get then
for π−π0 → π−π0γ, dropping gauge terms proportional
to kλ,

Mλ ¼ e

�
paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
	
Mð0ÞðsL; t; m2

π; m2
π; m2

π; m2
πÞ

þ e

�
−

1

ðp1 · kÞ2
½p1λðl1 · kÞ − l1λðp1 · kÞ� þ 2

�
−
ðpb · kÞ
ðpa · kÞ

paλ þ pbλ

	 ∂
∂sL

− 2½ðpa − p1; kÞ − ðpa · l1Þ�
�

paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
	 ∂
∂t
�
Mð0ÞðsL; t; m2

π; m2
π; m2

π; m2
πÞ þOðωÞ: ðA1Þ

Now we have a look at Gribov’s paper [46]. As far as we
can see the emphasis there is on the question of determining
the kinematic region of validity of the ω−1 term in Low’s
theorem. The ω0 term is only mentioned in the context of
the cancellation of the off-mass-shell effects. This happens

also in our calculation when adding the amplitudes MðaÞ
λ ,

MðbÞ
λ , andMðcÞ

λ in (3.27). The question where the ω−1 term

gives a reliable result is discussed in detail in our Sec. V
where we also compare to [46].
Next we study Lipatov’s paper [47]. From the many

interesting considerations presented in this paper we are
only concerned with the form of Low’s theorem given there
for the photon case. From Eq. (11) of [47] we get for our
process (2.2), using our notation,
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MλjLipatov ¼ e

�
paλ

ðpa · kÞ
−

p0
1λ

ðp0
1 · kÞ

	
Mð0ÞðsL; t; m2

π; m2
π; m2

π; m2
πÞ

− eðpa − p1; kÞ
�

paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
	 ∂
∂tM

ð0ÞðsL; t; m2
π; m2

π; m2
π; m2

πÞ: ðA2Þ

This result clearly is different from our Eq. (A1). There is in
(A2) no term ∂Mð0Þ=∂sL and the term proportional to
∂Mð0Þ=∂t is different from our result.
Concerning the paper [48] we see no overlap and,

therefore, no conflict with our results. In [48] hard
processes with photon emission are considered. Let Q
be the scale of a hard process. Then, including photon
radiation, the region of ω mainly discussed in [48] is
m2=Q ⩽ ω≲m, withm being some mass scale. But we are
considering a soft process and we are interested in the strict
limit ω → 0.
Concerning the papers which we want to discuss next we

would like to make a general remark. In many papers the
results for the soft-photon expansion of the amplitude, say for
π−π0 → π−π0γ, contains derivatives with respect to the
momenta of the basic amplitude, here for π−π0 → π−π0.
Let us consider as in (2.8) the, in general off-shell, amplitude

T̃ ðpa; pb; p1; p2Þ
¼ T ðpa; pb; p1; p2Þjoff shell or on shell: ðA3Þ

In order to calculate derivatives like ∂T̃ =∂pμ
a we have to

consider

T̃ ðpa þ δpa; pb; p1; p2Þ ¼ T ðpa; pb; p1; p2Þ

þ δpμ
a
∂T̃
∂pμ

a
ðpa; pb; p1; p2Þ

þOððδpaÞ2Þ: ðA4Þ

But clearly, with (A4) we have to go outside the physical
region for T̃ which requires always paþpb−p1−p2¼0.
Thus, it is our opinion that all expressions for Low’s theorem
which contain derivatives like ∂T̃ =∂pμ

a etc., have to be
considered as potentially problematic.
Keeping this in mind we shall now discuss the aspects

relevant for Low’s theorem in the paper by H. Gervais [49].
In [49] the reactions considered are fermion-scalar (f-s)
elastic scattering and the corresponding photon-emission
process. In our notation we have then

fðpaÞ þ sðpbÞ → fðp1Þ þ sðp2Þ; ðA5Þ

fðpaÞ þ sðpbÞ → fðp0
1Þ þ sðp0

2Þ þ γðk; ϵÞ: ðA6Þ

The masses of f and s are mf and ms. Now it is correctly
stated in [49] that the momenta of f and s cannot all stay

fixed when going from (A5) to (A6); see Eq. (9) of [49].
The four variables ξi, ηi (i ¼ 1, 2) introduced there
correspond to our l1;2 variables; see (3.16). We have only
two such variables since we keep pa and pb the same in
(A5) and (A6) which is, of course, legitimate. Let
T̃ ðpa; pb; p1; p2Þ be the elastic amplitude, stripped from
the spinors, and, in general, for off-shell particles. The
relevant formula giving the terms of order ω−1 and ω0 for
the amplitude from (A6) is then Eq. (20) of [49]. There, the
following expressions, using our notation, occur:

I1 ¼
�
−lα1

∂
∂pα

1

− lα2
∂

∂pα
2

− kα
∂

∂pα
a

	
T̃ ðpa; pb; p1; p2Þ;

I2 ¼
�
−lα1

∂
∂pα

1

− lα2
∂

∂pα
2

þ kα
∂

∂pα
1

	
T̃ ðpa; pb; p1; p2Þ;

I3μ ¼
∂

∂paμ
T̃ ðpa; pb; p1; p2Þ;

I4μ ¼
∂

∂p1μ
T̃ ðpa; pb; p1; p2Þ: ðA7Þ

We shall now choose a simple trial function for T̃ :

T̃ ðpa; pb; p1; p2Þ ¼ h½p2
a þ p2

1 − p2
b − p2

2�: ðA8Þ

On shell we have

T̃ ðpa; pb; p1; p2Þon shell ¼ h½2m2
f − 2m2

s �
¼ const: ðA9Þ

We shall assume that hð2m2
f − 2m2

sÞ ≠ 0 and that also the
derivative

h0½2m2
f − 2m2

s � ≠ 0; ðA10Þ

but otherwise arbitrary. Evaluating I1;…; I4 from (A7) we
get, using (3.22),

I1 ¼ ½−ðl1 · p1Þ þ ðl2 · p2Þ − ðk · paÞ�2h0ð2m2
f − 2m2

sÞ
¼ −ðk · paÞ2h0ð2m2

f − 2m2
sÞ;

I2 ¼ ðk · p1Þ2h0ð2m2
f − 2m2

sÞ;
I3μ ¼ 2paμh0ð2m2

f − 2m2
sÞ;

I4μ ¼ 2p1μh0ð2m2
f − 2m2

sÞ: ðA11Þ
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We conclude, that the expression (20) of [49] which is
supposed to give Low’s theorem up to order ω0 contains, in
our simple example, the arbitrary quantity h0ð2m2

f − 2m2
sÞ.

Thus, in our opinion, this equation has a problem. On the
other hand, inserting T̃ from (A8) in our Eq. (A1) we get a
sensible result. Here, the on shell T̃ equals the constant
(A9) and on the right-hand side (r.h.s.) of (A1) only the
terms proportional to Mð0Þ survive, ∂Mð0Þ=∂sL and
∂Mð0Þ=∂t being zero.
Finally we want to discuss the form of Low’s theorem

presented in Eqs. (2.8), (2.9) of [50] and (25), (26) of [51].
For our reactions (2.1) and (2.2) these give forMλ from our
Eq. (2.13)

Mλ¼
�

e
ðpa ·kÞ

ðpaλ−iηakνJaλνÞ−
e

ðp1 ·kÞ
ðp1λ−iη1kνJ1λνÞ

�
× T̃ ðpa;pb;p1;p2ÞþOðωÞ: ðA12Þ

Here

Jaλν ¼ i

�
paλ

∂
∂pν

a
− paν

∂
∂pλ

a

�
;

J1λν ¼ i

�
p1λ

∂
∂pν

1

− p1ν
∂

∂pλ
1

�
; ðA13Þ

and we have inserted factors ηa ¼ �1 and η1 ¼ �1 in
(A12) because we could not always find out the precise
momentum orientations used in [50] and [51]. But this will
play no role in the following.
Now we shall use as trial function in (A12)

T̃ ðpa; pb; p1; p2Þ ¼ h̃½ðpa þ pbÞ2 − ðp1 þ p2Þ2�; ðA14Þ

where h̃ is a function satisfying

h̃ð0Þ ≠ 0 and h̃0ð0Þ ≠ 0 ðA15Þ

but otherwise arbitrary. In the physical region we have, on
shell and off shell, pa þ pb ¼ p1 þ p2, and therefore our
Mð0Þ from (2.8) is given by

Mð0Þ ¼ h̃ð0Þ ¼ const: ðA16Þ

Thus, from (A1) we get our result as

Mλ ¼ e
n paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
−

1

ðp1 · kÞ2
½p1λðl1 · kÞ − l1λðp1 · kÞ�

o
h̃ð0Þ

þOðωÞ: ðA17Þ

On the other hand, from (A12) we find

Mλ¼e

��
paλ

ðpa ·kÞ
−

p1λ

ðp1 ·kÞ
	
h̃ð0Þ

þ
�
ηa

�
paλ

ðpb ·kÞ
ðpa ·kÞ

−pbλ

�

þη1

�
p1λ

ðp2 ·kÞ
ðp1 ·kÞ

−p2λ

�	
2h̃0ð0Þ

�
þOðωÞ: ðA18Þ

Clearly, the results (A17) and (A18) differ. In (A18) we also
see the completely arbitrary quantity h̃0ð0Þ occurring. That
is, at least for this example (A1) and (A12) are not
equivalent.
The reader may wonder if our trial function (A14) is

reasonable since in π−π0 → π−π0 we have the same
particles in the initial and the final state. Should there be
some symmetry requirement for h̃ð·Þ? We can counter such
an argumentation by considering instead of π−π0 → π−π0

the reaction π−π0 → K−K0 where there is no symmetry
between the initial and the final state. The results (A17) and
(A18) stay the same.
With this we close our remarks on some papers from the

literature.

APPENDIX B: THE CROSS SECTION
dσ=dω FOR ω → 0

In this Appendix we shall discuss the cross section
dσ=dω for ω → 0 for the reaction π−π0 → π−π0γ for real
photon emission. The results for charged-pion scattering
are analogous.
We consider, thus, the reaction (2.2) where the scattering

amplitude is defined in (2.13). The cross section is given as
in (4.63). We work in the overall c.m. system, setting k0 ≡
ω and

Mλ ≡Mðπ−π0→π−π0γÞ
λ : ðB1Þ

dσðπ−π0→π−π0γðkÞÞ

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2

πÞ
p d3k

ð2πÞ32k0
Z

d3p0
1

ð2πÞ32p00
1

d3p0
2

ð2πÞ32p00
2

×ð2πÞ4δð4Þðp0
1þp0

2þk−pa−pbÞð−1ÞMλðMλÞ�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2

πÞ
p 1

24ð2πÞ5ωdωdΩk̂

Z
dΩp̂1

0

Z
∞

0

djp01j
jp01j2
p00
1 p

00
2

×δðp00
1 þp00

2 þω−
ffiffiffi
s

p Þð−MλMλ�Þ: ðB2Þ

Here we have
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p00
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp01j2 þm2

π

q
;

p02 ¼ −p01 − k;

p00
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp02j2 þm2

π

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp01j2 þ 2jp01jωðp̂01 · k̂Þ þ ω2 þm2

π

q
; ðB3Þ

where p̂01 ¼ p01=jp01j and k̂ ¼ k=jkj ¼ k=ω. The δ function
of the energies in (B2) requires

p00
1 þ p00

2 ¼ ffiffiffi
s

p
− ω ðB4Þ

which allows us to calculate jp01j for given
ffiffiffi
s

p
, ω, p̂01 and k̂.

We get as solution

jp01j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð ffiffiffi

s
p

− 2ωÞ2 − 4ð ffiffiffi
s

p
− ωÞ2m2

π

4½ð ffiffiffi
s

p
− ωÞ2 − ω2ðp̂01 · k̂Þ2�

þ 1

4

� ffiffiffi
s

p ð ffiffiffi
s

p
− 2ωÞωðp̂01 · k̂Þ

ð ffiffiffi
s

p
− ωÞ2 − ω2ðp̂01 · k̂Þ2

	2s
−
1

2

ffiffiffi
s

p ð ffiffiffi
s

p
− 2ωÞωðp̂01 · k̂Þ

ð ffiffiffi
s

p
− ωÞ2 − ω2ðp̂01 · k̂Þ2

: ðB5Þ

For ω ¼ 0 this gives, as it must be,

jp01jjω¼0 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

π

q
: ðB6Þ

Now we define the phase space function

Jðs;ω; p̂01; k̂Þ ¼
Z

∞

0

djp01j
jp01j2
p00
1 p

00
2

δðp00
1 þ p00

2 þ ω −
ffiffiffi
s

p Þ

¼ jp01j2
jp01jp00

2 þ p00
1 ½jp01j þ ωðp̂01 · k̂Þ�

: ðB7Þ

Here p00
1 and p00

2 have to be substituted according to (B3)
and finally everywhere jp01j from (B5) has to be inserted.
For ω ¼ 0 we get

Jðs; 0; p̂01; k̂Þ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

s

r
: ðB8Þ

Collecting everything together we find

dσ
dω

ðπ−π0 → π−π0γÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5 ω

×
Z

dΩk̂dΩp̂1
0Jðs;ω; p̂01; k̂Þð−MλMλ�Þ: ðB9Þ

We are interested in the behavior of dσ=dω for ω → 0.
Therefore, we shall now consider the expansion of Mλ in
powers of ω as given in (A1). We have used in (B9) k̂ and
p̂01 as phase-space variables. Therefore, we should choose
the expansion of Mλ keeping p̂01 fixed, independent of ω:

p̂01 ¼ p̂1: ðB10Þ

This means that we choose in the expansion (A1)

l1⊥ ¼ 0; ðB11Þ

see (3.21). Then kμ, lμ1 and lμ2 are, for fixed k̂, strictly
proportional to ω. Therefore, we can write from (A1):

Mλ ¼
1

ω
M̂ð0Þ

λ þ M̂ð1Þ
λ þOðω2Þ; ðB12Þ

where

M̂ð0Þ
λ ¼M̂ð0Þ

λ ðs; p̂a; p̂1; k̂Þ

¼ eω

�
paλ

ðpa ·kÞ
−

p1λ

ðp1 ·kÞ
	
Mð0ÞðsL;t;m2

π;m2
π;m2

π;m2
πÞ;

ðB13Þ

M̂ð1Þ
λ ¼ M̂ð1Þ

λ ðs; p̂a; p̂1; k̂Þ

¼ e

�
−

1

ðp1 · kÞ2
�
p1λðl1 · kÞ− l1λðp1 · kÞ

	

þ 2

�
−
ðpb · kÞ
ðpa · kÞ

paλ þpbλ

	 ∂
∂sL

− 2½ðpa −p1; kÞ− ðpa · l1Þ�
�

paλ

ðpa · kÞ
−

p1λ

ðp1 · kÞ
	 ∂
∂t
�

×Mð0ÞðsL; t;m2
π;m2

π;m2
π;m2

πÞ: ðB14Þ

Inserting (B12) in (B9) we find

dσ
dω

ðπ−π0 → π−π0γÞ

¼ 1

ω
½Að0Þðs;ωÞ þ ωAð1Þðs;ωÞ þOðω2Þ�; ðB15Þ

where we have with (B10)

Að0Þðs;ωÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p 1

24ð2πÞ5
Z

dΩk̂dΩp̂1

× Jðs;ω; p̂1; k̂Þð−M̂ð0Þ
λ M̂ð0Þλ�Þ; ðB16Þ
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Að1Þðs;ωÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2

πÞ
p 1

24ð2πÞ5
Z

dΩk̂dΩp̂1
Jðs;ω; p̂1; k̂Þ

× ½−M̂ð1Þ
λ ðM̂ð0ÞλÞ�−M̂ð0Þ

λ ðM̂ð1ÞλÞ��: ðB17Þ

We clearly have from (B16)

Að0Þðs;ωÞ ≠ 0: ðB18Þ

Furthermore, Að0Þðs;ωÞ and Að1Þðs;ωÞ are continuous
functions of ω in the region of interest for us.
Given the amplitude Mð0Þ for the basic process π−π0 →

π−π0 the result for dσ=dω in (B15) is a strict consequence
of QFT. Thus, the experimental cross section should also be
of the form

dσ
dω

ðπ−π0 → π−π0γÞ
����
exp

¼ 1

ω
½Að0Þðs;ωÞ þ ωAð1Þðs;ωÞ þOðω2Þ�: ðB19Þ

Therefore, if we have a good “standard” representation of
the basic π−π0 → π−π0 process, compatible with experi-
ment, and if the corresponding calculation of dσ=dω
respects the rules of QFT, in particular the relation (A1),
this standard result must also give the expansion (B15) for
ω → 0 and we shall then have

RexpðωÞ ¼
dσexp=dω

dσstandard=dω
¼ 1þOðω2Þ: ðB20Þ

Equation (B20) should, in particular, be true for our
standard result as discussed in Sec. IVA for π−π0 →
π−π0γ and in Sec. IV B for charged-pion scattering. Of
course, there we must stay in the relevant energy range, that
is for large

ffiffiffi
s

p
where Pomeron exchange is dominant.

From Eq. (B20) we get immediately Eq. (6.2) for which
we have, thus, given a detailed derivation. Finally we note

that (B20) and (6.2) will also hold if cuts in phase space are
introduced, e.g., of the following forms:

jp̂a · k̂j ⩽ c < 1; ðB21Þ

or

jp̂1 · k̂j ⩽ c < 1; ðB22Þ

or

ðjp̂a · k̂j ⩽ c < 1Þ ∧ ðjp̂1 · k̂j ⩽ c < 1Þ: ðB23Þ

Applying, for instance, the cut (B21) we have to replace in
(B16) and (B17) the kinematic function Jðs;ω; p̂1; k̂Þ from
(B7) by

Jðs;ω; p̂1; k̂Þθðc − jp̂a · k̂jÞ: ðB24Þ

If this cut is applied both to the standard calculation and to
the experimental determination of dσ=dω the result is again
(B20). The analogous statements hold for the cuts of the
type (B22) and (B23).
Finally we note that relations for the radiative cross

sections for ω → 0 were discussed already a long time ago
by Burnett and Kroll [88]. They considered, in particular,
the case where the charged particle carries spin 1=2. The
critique which we have to formulate here is that their results
contain derivatives of the nonradiative amplitudes with
respect to one momentum keeping the other ones fixed, i.e.,
derivatives where one has to extrapolate into the unphysical
region; see (A4). We have shown in Appendix A that in this
way one can get essentially any arbitrary result. We have
demonstrated in our present paper that such extrapolations
into the unphysical region of the basic amplitude are never
necessary when our methods are used.
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