
Role of the chiral anomaly in polarized deeply inelastic scattering. II.
Topological screening and transitions from emergent axionlike dynamics

Andrey Tarasov 1,2,* and Raju Venugopalan3
1Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

2Joint BNL-SBU Center for Frontiers in Nuclear Science (CFNS) at Stony Brook University,
Stony Brook, New York 11794, USA

3Physics Department, Brookhaven National Laboratory, Building 510A, Upton, New York 11973, USA

(Received 12 October 2021; accepted 23 December 2021; published 24 January 2022)

In [A. Tarasov and R. Venugopalan, Phys. Rev. D 102, 114022 (2020)], we demonstrated that the
structure function g1ðxB;Q2Þ measured in polarized deeply inelastic scattering (DIS) is dominated by the
triangle anomaly in both Bjorken (Q2 → 0) and Regge (xB → 0) asymptotics. In the worldline formulation
of quantum field theory, the triangle anomaly arises from the imaginary part of the worldline effective
action. We show explicitly how a Wess-Zumino-Witten term coupling the topological charge density to a
primordial isosinglet η̄ arises in this framework. We demonstrate the fundamental role played by this
contribution both in topological mass generation of the η0 and in the cancellation of the off-forward pole
arising from the triangle anomaly in the proton’s helicity ΣðQ2Þ. We recover the striking result by Shore and

Veneziano that Σ ∝
ffiffiffiffiffiffiffiffiffiffi
χ0ð0Þp

, where χ0 is the slope of the QCD topological susceptibility in the forward
limit. We construct an axionlike effective action for g1 at small xB that describes the interplay between
gluon saturation and the topology of the QCD vacuum. In articular, we outline the role of “over-the-barrier”
sphaleronlike transitions in spin diffusion at small xB. Such topological transitions can be measured in
polarized DIS at a future Electron-Ion Collider.

DOI: 10.1103/PhysRevD.105.014020

I. INTRODUCTION

In our previous paper [1] (henceforth Paper I), we
discussed the role of the chiral anomaly in the inclusive
polarized deeply inelastic scattering (DIS) process

eðkÞ þ NðP; SÞ → eðk0Þ þ X; ð1Þ
where k denotes the four-momentum of the lepton (e)
which scatters off a polarized target hadron (N) with four-
momentum P ¼ ðPþ;M2=2Pþ; 0⊥Þ and four-spin S (with
S2 ¼ −1) via the exchange of a virtual photon γ� with four-
momentum q ¼ k − k0. We showed, within a powerful
worldline formalism, that the anomaly provides the dom-
inant contribution to the spin-dependent structure function
g1ðxB;Q2Þ in the Bjorken and Regge limits of QCD. The
former, for center-of-mass energies

ffiffiffi
s

p
→ ∞, corresponds

to the DIS kinematics Q2 ¼ −q2 → ∞ and the Bjorken
variable xB ¼ Q2=ð2P · qÞ kept fixed; the latter refers to the
limit xB → 0 and fixed Q2.

We further demonstrated in Paper I that the leading
perturbative contributions to g1 have a power law diver-
gence in the Mandelstam variable t in the forward scatter-
ing limit t → 0 in both Bjorken and Regge asymptotics. We
noted that the nonperturbative dynamics which regulates
this divergence is also what resolves the UAð1Þ problem in
QCD. Indeed the fundamental role of this nonperturbative
dynamics was previously argued1 to be true [2–4] for the
first moment of g1ðxB;Q2Þ, the isosinglet quark helic-
ity ΣðQ2Þ.
In particular, Shore and Veneziano [4,5] showed that

ΣðQ2Þ ∝ ffiffiffiffiffiffiffiffiffiffiffiffi
dχ=dt

p jt→0, where χ is the topological suscep-
tibility of the QCD vacuum. The scale controlling this
quantity is the η0 mass, which is finite even in the chiral
limit [6,7]. The derivation in [4,5] extensively employed
functional chiral Ward identities that follow from the Wess-
Zumino action for QCD coupled to external sources [8,9].
Further, invoking QCD sum rule arguments to compute

χðtÞ, Narison, Shore and Veneziano [10,11] showed that
their results for ΣðQ2Þ are in good agreement with
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1Note that 1
9
ΣðQ2Þ ≈ R 10 dxBg1ðxB; Q2Þ, with the ≈ sign

denoting that a term needs to be added on the left-hand side
(lhs) corresponding to a linear combination of the isotriplet and
isooctet axial vector charges of the proton. These contributions
are weakly dependent on Q2 and we will ignore them henceforth
to focus on isosinglet contributions to g1ðxB; Q2Þ.
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HERMES [12] and COMPASS [13] data. A comprehensive
review of this “topological screening” picture of why the
quark helicity is anomalously small (when compared to
simple quark model expectations based on the OZI rule
[14]) can be found in [15].
Another nonperturbative approach to computing the

proton’s helicity follows ’t Hooft’s seminal work [16,17]
relating classical instanton configurations in the QCD
vacuum to UAð1Þ breaking and the origin of the mass
of the η0. This description of the anomaly in the language
on instantons, while by no means unique, is consistent
with Veneziano’s approach [7]. For the instanton picture
of the quark helicity in polarized DIS, we refer the reader
to [18–22].
In this paper, we will develop an alternative formulation

of the problem in a generalization of the worldline
framework we discussed in Paper I to include the coupling
of the Dirac fields to scalar, pseudoscalar and axial vector
fields representing low energy degrees of freedom in the
QCD effective action. As we noted in Paper I, the coupling
of the isosinglet axial vector current to low energy
dynamics of gauge fields (represented by the topological
charge density) arises from the imaginary part of the
worldline effective action. The generalization of the world-
line action to include all possible low energy degrees of
freedom will therefore include additional such imaginary
terms that must be taken into account to fully describe the
dynamics of the anomaly.
In a certain sense, as will become apparent, this

worldline approach to the role of the chiral anomaly in
proton spin threads a line between the two aforementioned
approaches, the Shore-Veneziano approach employing
chiral Ward identities and that of instanton based
approaches. This third way will prove especially benefi-
cial when we turn our attention to g1ðxB;Q2Þ at small xB.
Our first objective is to understand in detail the can-

cellation of the anomaly pole in ΣðQ2Þ; we will show how
one recovers the Shore-Veneziano results. Specifically, in
the Bjorken limit, the anomaly requires we replace the
isosinglet current Jμ5 (whose expectation value in the
polarized proton ground state is ΣðQ2Þ) with

Jμ5 →
lμ

l2
Ω; ð2Þ

where Ω ¼ αs
4π TrðFF̃Þ is the topological charge density

expressed in terms of the field strength tensor and its dual
Fμν defined as F̃μν ¼ 1

2
ϵμνρσFρσ. Here l ¼ P0 − P is the

four vector corresponding to the four-momentum transfer
from the proton to the DIS probe, with l2 ¼ t, the
Mandelstam variable. The right-hand side (rhs) of
Eq. (2) corresponds to a massless exchange from the
topological charge density Ω which couples nonperturba-
tively to the proton. However this massless exchange can
also be mediated (in the chiral limit) by a massless flavor

singlet pseudoscalar field η̄, with a similar nonperturbative
coupling to the proton. One may in the chiral limit, and at
large Nc, interpret η̄ as the “primordial” ninth Goldstone
boson. The absence of this field in the hadron spectrum is
of course the UAð1Þ problem. It is resolved by the
nontrivial susceptibility of the QCD vacuum which gen-
erates the large mass of the η0 [6,7].
We will derive explicitly in our approach the Wess-

Zumino-Witten (WZW) [9,23] term in the imaginary part
of the effective action that couples the isosinglet pseudo-
scalar field η̄ to the topological charge density Ω. This term
plays a fundamental role in the cancellation of the anomaly
pole because an identical pole exists in the η̄ exchange with
the proton. We will show in detail how this cancellation
arises in our approach both at leading order in the Ω and η̄
exchange, and to all orders. We will further show how this
interplay results in an anomalous Goldberger-Treiman
relation [3] and in topological mass generation of the η0.
Thus as noted, the role played by the chiral anomaly in the
proton’s spin is deeply tied to the resolution of the UAð1Þ
problem.
While these conclusions, if not the approach, are familiar

from the work of Veneziano and collaborators, our frame-
work can be extended to the computation of g1ðxB;Q2Þ in
the Bjorken and Regge asymptotics of QCD. This is
because, as demonstrated in Paper I, the triangle anomaly
in Eq. (2) is the dominant contribution to g1ðxB;Q2Þ in both
limits. In the Bjorken limit, as we will discuss briefly, the
formalism of Shore and Veneziano goes through for
g1ðxB;Q2Þ, precisely as for its first moment ΣðQ2Þ. The
corresponding matrix element can be computed on the
lattice similarly to prior lattice computations [24–27]. For
discussions of how to extract ΣðQ2Þ directly from the slope
(with t) of the topological susceptibility, see [28]; a recent
review of lattice extractions of the topological susceptibility
can be found in [29].
The situation is quite different at small xB because of the

phenomenon of gluon saturation and the emergence of a
corresponding saturation scale QS [30,31]. In Regge
asymptotics, this scale is larger than the scales governing
intrinsically nonperturbative dynamics in QCD. In the
unpolarized proton, the gauge configurations representing
the saturated state are static classical configurations [32–34]
and their dynamics is described by the color glass con-
densate (CGC) effective field theory (EFT) [35,36]. In the
polarized proton, such configurations can be dynamical on
the timescales of spin diffusion. Thus the classical configu-
rations responsible for spin diffusion in this high energy
asymptotics are not the energy degenerate instanton sol-
utions describing tunneling between different θ-vacua
(each corresponding to distinct integer valued Chern-
Simons number) but “over the barrier” topological transi-
tions that are enhanced by the large dynamical saturation
scale. A well-known example of such transitions are the
sphaleron solutions [37] conjectured to play a major role in
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electroweak baryogenesis [38]. Similar sphaleronlike topo-
logical transitions have also been discussed in the QCD
context both in-and out-of equilibrium [39–42].
With these considerations in mind, wewill write down an

“axionlike” effective action for g1ðxB;Q2Þ at small xB that
captures both the physics of gluon saturation and spin
diffusion, which are respectively controlled by QS and
the Yang-Mills topological susceptibility χYM. Depending
on their relativemagnitude (specifically ofQS andmη0 , the η0

mass), the gauge field configurations are either, as noted,
“conventionally” sphaleronlike (for mη0 > QS) or novel
topological shock wave configurations (for QS > mη0).
Wewill discuss the consequences of this interplay and other
qualitative features of the dynamics captured by the effective
action. A quantitative study of QCD evolution in this
framework, and phenomenological consequences thereof
for polarizedDISmeasurements at the Electron-IonCollider
(EIC) [43,44], will be discussed in follow-up work [45].
The paper is organized as follows. In the next section, we

will briefly recapitulate the worldline derivation of
g1ðxB;Q2Þ in Paper I which demonstrated the dominance
of the triangle graph of the anomaly in both Bjorken and
Regge asymptotics. We will emphasize that the triangle
graph, and indeed all dynamical effects of the anomaly, can
be computed directly from the imaginary part of the
worldline effective action. In Sec. III, we will discuss
the extension of the imaginary part of the worldline
effective action to include, in addition to gauge fields,
the coupling of the fermions to scalar, pseudoscalar, and
axial vector fields, which capture the dynamics of low
energy modes in the QCD effective action. We will then
show in this formalism how the WZW term coupling η̄ toΩ
arises. The profound consequences of this result for the
cancellation of the pole of the anomaly is discussed in detail
in Sec. IV. In Sec. V, we will write down the effective action
for g1ðxB;Q2Þ and sketch its key features. We end in
Sec. VI with a summary, outlook on future work, and a
discussion of some of the larger implications of our work.
In Appendix A, we provide details of the derivation of the

WZW term from the imaginary part of theworldline effective
action. In Appendix B, we will outline the derivation of the
CGC effective action in the worldline formalism for the case
where the hadron is not polarized. In Appendix C, we will
extend this discussion to the polarized proton case. In
particular, we will present an argument for the failure of
high energy expansions in perturbative QCD for operators in
the polarized proton that are sensitive to the anomaly.

II. ANOMALY DOMINANCE OF g1ðxB;Q2Þ
We will first briefly recapitulate2 here the worldline

derivation in Paper I where we demonstrated that the
triangle graph of the anomaly dominates g1ðxB;Q2Þ in

both the Bjorken and Regge limits of DIS. We will also
discuss the result in Paper I showing that the triangle graph
can be recovered directly from the imaginary part of the
worldline effective action. This will serve to motivate our
focus in the rest of this paper on the role of the imaginary
part of the effective action. As is well known [46], its
contributions can be fundamentally understood as arising
from the noninvariance of the measure of the QCD path
integral under a global chiral rotation [47].
The g1ðxB;Q2Þ structure function can be extracted most

generally from the antisymmetric piece of the hadron tensor
[48], which can be expressed as

W̃μνðq; P; SÞ ¼
2MN

P · q
ϵμναβqα

�
Sβg1ðxB;Q2Þ

þ
�
Sβ −

ðS · qÞPβ

P · q

�
g2ðxB;Q2Þ

�
; ð3Þ

where MN denotes the proton mass and the totally
antisymmetric Levi-Civita tensor ϵμναβ is defined
with ϵ0123 ¼ −1. For a longitudinally polarized target,

SμðλÞ ≃ 2λ̃P
MN

Pμ, with λ̃P ¼ � 1
2
representing the proton’s

helicity; in this case, the g2 structure function does not
contribute.
The full hadron tensor itself can be expressed as the

imaginary part of the expectation value of the polarization
tensor:

Wμνðq;P;SÞ¼ 1

πe2
Im
Z

d4xeiqxhP;Sj δ2Γ½a;A�
δaμðx2Þδaνð−x

2
Þ jP;Si;

ð4Þ
where Γ½a; A� is the QEDþ QCD worldline effective
action, aμðxÞ denotes the QED electromagnetic field and
A is the four-vector denoting the QCD gauge field. Its
antisymmetric piece, which appears on the lhs of Eq. (3),
can be written as

iW̃μνðq;P;SÞ¼ 1

2πe2
Im
Z

d4xe−iqx
Z

d4k1
ð2πÞ4

×
Z

d4k3
ð2πÞ4 e

−ik1x2eik3
x
2hP;SjΓ̃μν

A ½k1;k3�jP;Si:

ð5Þ
Here Γ̃μν

A ½k1; k3�≡ Γ̃μν½k1; k3� − ðμ ↔ νÞ, with

Γ̃μν½k1; k3�≡
Z

d4z1d4z3
δ2Γ½a; A�

δaμðz1Þδaνðz3Þ
����
a¼0

eik1z1eik3z3 ;

ð6Þ

where k1 and k3 denote the incoming photon four-
momenta. Because the rhs of Eq. (5) corresponds to the
same in-out ground state of the proton, k1 ¼ −k3 ¼ −q in2We refer interested readers to Paper I for more details [1].
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the forward limit. However to extract the infrared pole of
the anomaly, as discussed at length in Paper I, one needs to
keep the incoming photon momenta distinct in computing
the off-forward matrix element hP0j…jPi in Eq. (4), with
P0 − P≡ l and t ¼ l2, and then subsequently take t → 0 in
the final expression.
To compute iW̃μνðq; P; SÞ, and hence g1ðxB;Q2Þ, we

employed a powerful worldline formalism in Paper I; to one
loop accuracy, the QEDþ QCD effective action in this
formalism3 can be expressed as [46]

Γ½a;A� ¼−
1

2

Z
∞

0

dT
T

Trc

Z
Dx
Z

Dψ

×exp

�
−
Z

T

0

dτ

�
1

4
_x2þ1

2
ψμ _ψ

μþ ig_xμðAμþaμÞ

− igψμψνFμνðAþaÞ
	�

; ð7Þ

where xμðτÞ and ψμðτÞ are respectively 0þ 1-dimensional
scalar coordinate and Grassmann variables coupled to the
background electromagnetic (aμ) and gluon (Aμ) fields.
Note that the scalar functional integral has periodic (P)
boundary conditions while the Grassmannian functional
integral has antiperiodic (AP) boundary conditions.
In this formalism, Γ̃μν

A ½k1; k3� on the r.h.s of Eq. (5) can be
written, to one loop accuracy, as

Γ̃μν
A ½k1; k3� ¼

Z
d4k2
ð2πÞ4

Z
d4k4
ð2πÞ4 Γ

μναβ
A ½k1; k3; k2; k4�

× TrcðÃαðk2ÞÃβðk4ÞÞ; ð8Þ

where the Ã denote the Fourier transforms of the back-
ground gauge fields, the trace is over their color degrees of
freedom and the box diagram in the rhs takes the form,

Γμναβ
A ½k1; k3; k2; k4�

¼ −
g2e2e2f

2

Z
∞

0

dT
T

Z
Dx
Z

Dψ

× exp
�
−
Z

T

0

dτ
�
1

4
_x2 þ 1

2
ψ · _ψ

	�

×
Y4
k¼1

Z
T

0

dτk

�X9
n¼1

Cμναβn;ðτ1;τ2;τ3;τ4Þ½k1; k3; k2; k4�

− ðμ ↔ νÞ
�
ei
P

4

i¼1
kixi : ð9Þ

The coordinate (xi ≡ xðτiÞ) and Grassmann variables
(ψ i ≡ ψðτiÞ) in the coefficients Cμναβn;ðτ1;τ2;τ3;τ4Þ½k1; k3; k2; k4�
on the rhs depend on the proper time coordinates of the
interaction of the worldlines with the external electromag-
netic and gauge fields. Fully general expressions for these
coefficients were provided in Paper I.
The worldline representation of the box diagram pro-

vides a useful intuition by mapping the ordering of the
momentum labels of the four vertices to that of the
corresponding proper times. This allows one to understand
the usual triangle limit of the box diagram in Bjorken
asymptotics as “pinching” τ1 → τ3 as k1 → k3 (with
corrections of order 1=Q). More unexpectedly, it allows
one to interpret Regge asymptotics as τ2 → τ4 in the
shockwave limit k2 → k4 of the gauge fields with correc-
tions of orderOðxBx Þ, as xB → 0 for gluon momenta carrying
a finite but small fraction x of the hadron’s large “þ”
momentum. This gives rise to an “inverted triangle” which
too is sensitive to the anomaly.
Indeed, we showed in Paper I that the computation of

Eq. (8) in either limit gives identically,

Sμg1ðxB;Q2Þ

¼
X
f

e2f
αs

iπMN

Z
1

xB

dx
x

�
1−

xB
x

	

×
Z

dξ
2π

e−iξx lim
lμ→0

lμ

l2
hP0;SjTrcFαβðξnÞF̃αβð0ÞjP;Si: ð10Þ

Here αs is the QCD coupling, the sum is over nf
quark flavors4 with electric charge ef. The structure of
the rhs is dominated by the triangle graph in either limit;
therefore the operator that governs the rhs is the topological
charge density Ω ¼ αs

4π TrðFF̃Þ, with F̃μν ¼ 1
2
ϵμνρσFρσ.

While the structure of the operator is identical in both
limits, we will see that one obtains qualitatively different
results in the two limits. The other noteworthy feature of
Eq. (10) is the pole lμ=l2, which is a consequence of the
anomaly equation for J5μ; the cancellation of this pole will
be the topic of Section IV.
We also showed in Paper I that the anomaly can be

extracted directly and with relative ease [46,49] from the
imaginary part of the effective action. Contributions to the
imaginary part WI (as we will discuss shortly) can be
extracted by adding auxiliary terms to the worldline
effective action that contain odd powers of γ5. To extract
the triangle graph, it is sufficient to include the interaction
term with the axial vector field =Bγ5 [46,49–53]:3As we will discuss shortly, and in greater detail in Sec. III, we

will replace Γ → W, a more general expression which includes
additional couplings with scalar, pseudoscalar and axial vector
fields; we will split the latter into real and imaginary pieces.

4We will assume these to be massless and nf ¼ 3 for our
discussion.
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WI½A;B� ¼−
1

2
Trc

Z
∞

0

dT
T

Z
Dx
Z
AP

Dψ

×exp

�
−
Z

T

0

dτ

�
1

4
_x2þ1

2
ψμ _ψ

μþ ig_xμAμ− igψμψνFμν−2iψ5 _xμψμψνBνþ iψ5∂μBμþðD−2ÞB2

	�
; ð11Þ

where D is the number of spacetime dimensions and ψ5 is the Grassmann counterpart of the γ5 matrix in the worldline
framework. The structure of the B-dependent terms, as we will briefly review in Sec. III, comes from exponentiating the
phase of the Dirac determinant in the QCD effective action [50–52].
Since Jμ5 couples to B

μ, its expectation value is obtained by taking the functional derivative ofWI½A;B� with respect to B
and then setting the latter equal to zero:

hP0; SjJκ5jP; Si ¼
Z

d4y
∂WI½A; B�
∂BκðyÞ

����
Bκ¼0

eily ≡ Γκ
5½l�; ð12Þ

which gives,

Γκ
5½l� ¼

i
2
Trc

Z
∞

0

dT
T

Z
Dx
Z
AP

Dψ

Z
T

0

dτlψ5ðilκþ2ψκ
l _xl ·ψ lÞeilxl exp

�
−
Z

T

0

dτ

�
1

4
_x2þ1

2
ψμ _ψ

μþ ig_xμAμ− igψμψνFμν

	�
;

ð13Þ
where τl is the proper time coordinate of the B-field insertion into the worldline, and l is the incoming momentum. We use
the shorthand notation xl ≡ xðτlÞ, ψ l ≡ ψðτlÞ.
Expanding the phase in Eq. (13) to second order in the coupling constant,

Γκ
5½l� ¼ −

ig2

2
Trc

Z
∞

0

dT
T

Z
Dx
Z
AP

Dψ

Z
T

0

dτl ψ5ðilκ þ 2ψκ
l _xl · ψ lÞeilxl

Z
T

0

dτ2

Z
T

0

dτ4

× ð_xα2Aαðx2Þ − 2ψλ
2ψ

α
2∂λAαðx2ÞÞð_xβ4Aβðx4Þ − 2ψη

4ψ
β
4∂ηAβðx4ÞÞ exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ

	�
; ð14Þ

we can rewrite this equation as

Γκ
5½l� ¼

Z
d4k2
ð2πÞ4

Z
d4k4
ð2πÞ4 Γ

καβ
5 ½l; k2; k4�TrcAαðk2ÞAβðk4Þ; ð15Þ

where the VVA vertex function shown in Fig. 1 can be expressed as

Γκαβ
5 ½l; k2; k4�≡ −

ig2

2

Z
∞

0

dT
T

Z
Dx
Z
AP

Dψ

Z
T

0

dτl ψ5ðilκ þ 2ψκ
l _xl · ψ lÞeilxl

×
Z

T

0

dτ2

Z
T

0

dτ4ð_xα2 þ 2iψα
2ψ

λ
2k2λÞeik2x2ð_xβ4 þ 2iψβ

4ψ
η
4k4ηÞeik4x4 exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ

	�
: ð16Þ

This three-point function Γκαβ
5 ½l; k2; k4� has a ψ5 in the argument of the Grassmannian functional integral which changes

the boundary condition from being antiperiodic (AP) to being periodic (P). As a result, the Grassmann variables in the
functional integral acquire a zero mode, which can be separated out from the nonzero modes in the action, and in the
measure, as

ψμðτÞ ¼ ψμ
0 þ ξμðτÞ;

Z
P
Dψ ¼

Z
d4ψ0

Z
P
Dξ;

Z
T

0

dτ ξðτÞ ¼ 0: ð17Þ

Separating out the zero mode thus, we obtain

Γκαβ
5 ½l;k2;k4�≡−

ig2

2

Z
∞

0

dT
T

Z
Dx
Z

d4ψ0

Z
P
Dξ

Z
T

0

dτlðilκþ2ψκ
l _xl ·ψ lÞeilxl

×
Z

T

0

dτ2

Z
T

0

dτ4ð_xα2þ2iψα
2ψ

λ
2k2λÞeik2x2ð_xβ4þ2iψβ

4ψ
η
4k4ηÞeik4x4 exp

�
−
Z

T

0

dτ

�
1

4
_x2þ1

2
ψμ _ψ

μ

	�����
ψ¼ψ0þξ

:

ð18Þ
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The evaluation of the functional integrals over x and ξ, as
well as the integral over zero mode ψ0, is straightforward
and discussed at length in [1,54]. We obtain,

Γκαβ
5 ½l;k2;k4�

¼ 1

2π2
kκ2þkκ4

ðk2þk4Þ2
ϵασβλk2σk4λð2πÞ4δ4ðlþk2þk4Þ; ð19Þ

which agrees with the result given in Ref. [46].
Substituting the VVA vertex function back into Eq. (15),

we obtain,

Γκ
5½l� ¼

1

4π2
lκ

l2

Z
d4k2
ð2πÞ4

Z
d4k4
ð2πÞ4

× TrcFαβðk2ÞF̃αβðk4Þð2πÞ4δ4ðlþ k2 þ k4Þ; ð20Þ

the operator structure of which, up to kinematic factors, is
identical to the expressions that lead the principal result of
Paper I [given here in Eq. (10)].
A common interpretation of the first moment Σ is that of

a local operator because the corresponding integral over xB
can be written as the local operator J5μ, which is often
interpreted as being qualitatively distinct from the operator
in Eq. (10). However, as also emphasized previously in [2],
the presence of the infrared pole ensures that J5μ receives an
intrinsically nonlocal contribution; indeed, as we shall see,
J5μ can be expressed in terms of the QCD topological
susceptibility, which is manifestly nonlocal. Further cor-
roboration follows from our result that the anomaly
dominates both in Bjorken and Regge asymptotics.
While the operator product expansion may be employed
in the former limit, it cannot be presumed to hold in the
latter. One must therefore interpret the rhs of Eq. (10) as a
smearing of the topological charge density Ω. The treat-
ment of Ω as an intrinsic low energy degree of freedom, on
par with the Goldstone modes of chiral symmetry breaking,
is discussed extensively in [3–5,15] and will be addressed
in the following sections.

III. WZW η̄ TERM FROM THE IMAGINARY PART
OF THE WORLDLINE EFFECTIVE ACTION

From Eq. (10), we see that the triangle anomaly gen-
erates a contribution, proportional to the topological charge

density, that diverges in the forward limit. This is of course
untenable and there must be other nonperturbative con-
tributions that cancel this power law divergence. As
observed previously in the literature [2–5], this cancellation
can be understood as arising (in the chiral limit and at large
Nc) from the exchange of a “primordial” ninth Goldstone
boson η̄ arising from the spontaneous symmetry breaking
of the flavor group ULð3Þ ×URð3Þ to the vector
group UVð3Þ.
There is of course no η̄ Goldstone pole just as there is no

anomaly pole in the QCD spectrum; the appearance of
both, and their cancellation, are features of a particular limit
of the theory that do not survive when one fully accounts
for its rich nonperturbative dynamics. The important point
to note however is that the same physics that ensures the
former by generating a massive η0 meson (the famous
“UAð1Þ problem”) is also what ensures the latter.5 In other
words, the dynamical interplay between the physics of the
anomaly, and that of the isosinglet pseudoscalar UAð1Þ
sector of QCD resolves both problems simultaneously: the
lifting of the η̄ pole by topological mass generation of the η0
and the cancellation of the anomaly pole. This will be
shown explicitly in Sec. IV.
Before we get there, we will first show how such

contributions arise in the worldline formalism. In particular,
we will derive the Wess-Zumino-Witten (WZW) term that
couples the pseudoscalar isosinglet η̄ field to the topologi-
cal charge density. The presence of this term is crucial for
our discussion in Sec. IV.
The interplay of perturbative and nonperturbative

dynamics is captured in the worldline formalism by para-
metrizing the low frequency modes of the Dirac operator in
terms of scalar, pseudoscalar, and axial vector fields.6

Restricting ourselves to the isosinglet pseudoscalar sector
of interest, the QCD fermion action can be written as7

Sfermion½Ψ̄;Φ;Π; A; B;Ψ�

¼
Z

d4xΨ̄I½i=∂ −Φþ iγ5Πþ =Aþ γ5=B�IJΨJ: ð21Þ

FIG. 1. The triangle graph representing the vector-vector-axial
vector (VVA) coupling of the chiral anomaly.

5TheUAð1Þ problem is resolved by the nontrivial susceptibility
of the QCD vacuum; as noted, an attractive mechanism that
generates this susceptibility is provided by instanton mediated
interactions [16,17].

6For a nice discussion of the underpinnings of this approach,
see [55]. Note further that we have implicitly in mind the
separation of the gauge field configurations in Aμ into high
energy gluon modes and low energy nonperturbative modes
which could be glueball or instanton configurations. In this light,
the topological charge density Ω must be viewed as an intrinsi-
cally nonperturbative degree of freedom.

7We will follow here, for convenience, the conventions and
notations of [52,56] since some of the key results in these papers
are central to this work. For another discussion, with similar
features, we refer the reader to [50,51,57]; both approaches are
reviewed in [46].
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Here Φ, Π, A and B denote respectively scalar, pseu-
doscalar, vector and axial vector fields, whose couplings
to the higher frequency fermion fields Ψ̄, Ψ, are
absorbed into the field definitions. The superscripts I
and J denote the internal quantum numbers of the

fermion multiplet as well as those of the matrix valued
“source” fields.
Since the worldline effective action corresponds to com-

puting a quark loop in an arbitrary number of background
fields, the corresponding perturbative expression is simply

W½Φ;Π; A; B� ¼
X∞
n¼1

1

n

Z
d4k1
ð2πÞ4 � � �

d4kn
ð2πÞ4 δ

ð4Þðk1 þ � � � þ knÞ
Z

d4q
ð2πÞ4

=qþ im
q2 þm2

× ðiΦ̃1 þ γ5Π̃1 þ =̃A1 þ γ5=̃B1Þ
=q − =k1 − � � �=kn þ im

ðq − k1 − � � � knÞ2 þm2
� � � ðiΦ̃n þ γ5Π̃n þ =̃An þ γ5=̃BnÞ: ð22Þ

Even numbers of insertions of scalar, pseudoscalar and
axial vector fields contribute to the real part ofW while odd
numbers contribute to the imaginary part. The map between
the worldline and Feynman diagram computations of these
was discussed previously in [51,56]; for DIS specifically, it
was discussed in [54].
The (Euclidean) fermion effective action in the presence

of these sources can in general be written as

−W½A;B;Φ;Π� ¼ LnDet½D�; ð23Þ

with the Dirac operator,

D ¼ =p − iΦðxÞ − γ5Π − =A − γ5=B: ð24Þ

This effective action can split into real and imaginary parts,
with [52],

WR ¼ −
1

2
LnðD†DÞ; WI ¼

1

2
ArgDetðD2Þ: ð25Þ

Since the anomaly is sensitive to the imaginary part of the
effective action, we will focus on the latter alone in the rest
of this paper.8

An important observation in [52] is that substituting
Eq. (24) into Eq. (25) leads to terms linear in the
Grassmann variables which are physically unappealing;
the solution (which does not alter the effective action), is to
double the degrees of freedom in both the real and
imaginary parts of the effective action as

WR ¼ −
1

2
LnDetðθÞ with θ ¼

�
0 D

D† 0

	
; ð26Þ

and

WI ¼ −
1

2
ArgDetðθ̃Þ with θ̃ ¼

�
0 D

D 0

	
; ð27Þ

In this “doubling” framework, one also likewise replaces
the 4 × 4 gamma matrices with the 8 × 8 matrices,

Γμ ¼
�

0 γμ

γμ 0

	
; Γ5¼

�
0 γ5

γ5 0

	
; Γ6¼

�
0 iI

−iI 0

	
;

ð28Þ

where I is the 4 × 4 unit matrix and the six Hermitian
Γ-matrices satisfy fΓA;ΓBg ¼ 2δABI8×8.
In this representation, d’Hoker and Gagné, derived a

remarkable expression for the argument of the Dirac
determinant [56]:

WI ¼ −
i
32

Z
1

−1
dα
Z

∞

0

dTN
Z
PBC

DxDψ tr χω̄ð0Þ

× exp

�
−
Z

T

0

dτLðαÞðτÞ
�
; ð29Þ

which has a structure very similar to that of the real part,
albeit with some key differences we shall enumerate.9

Firstly, Dψ ¼ DψμDψ5 and PBC denotes periodic boun-
dary conditions for both coordinate and Grassmann vari-
ables. This qualitatively differs from WR, where the
Grassmann integrals have antiperiodic boundary condi-
tions. Other differences to the real part of the effective
action are,

(i) the integration over α, which explicitly breaks global
chiral invariance for jαj < 1,

(ii) the proper time measure dT → dT=T in the real part,
(iii) and not least, the factor χω̄ð0Þ, which is a direct

consequence of the anomaly.
This last term is given by

8The derivation of the real part of the effective action in the
presence of sources is discussed at length in [52,56].

9We have set here, and elsewhere, the value of the einbein
E ¼ 2. Further,

N ðTÞ ¼
Z

½Dp� exp
�
−
Z

T

0

dτp2ðτÞ
	
; ð30Þ

is a field-independent normalization factor.
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χω̄ð0Þ

¼ 4

 
−iψ5

0ð∂μBμðx0Þ−2Φðx0ÞΠðx0ÞÞþ 4i
E ψ

μ
0ψ

ν
0ψ

5
0 _x0μBνðx0Þ 2

Eψ
μ
0 _x0μΦðx0Þ

2
Eψ

μ
0 _x0μΦðx0Þ −iψ5

0ð∂μBμðx0Þ−2Φðx0ÞΠðx0ÞÞþ 4i
E ψ

μ
0ψ

ν
0ψ

5
0 _x0μBνðx0Þ

!
:

ð31Þ

Strikingly, the worldline Lagrangian for the imaginary
part of the effective action is nearly identical to that for the
real part except for the chiral symmetry breaking “regu-
lator” α multiplying Φ and Bμ:

LðαÞðτÞ ¼ LðτÞjΦ→αΦ;B→αB; ð32Þ

where the worldline Lagrangian for the real part of the
effective action is

LðτÞ ¼ _x2

2E
þ 1

2
ψ _ψ − i_xμAμ þ

E
2
H2 þ iEψμψ5DμH

þ iE
2
ψμψνF μν: ð33Þ

We have adopted here a two component notation combin-
ing respectively scalar and pseudoscalar source fields, and
likewise for the vector and axial vector fields. These fields
are defined as

Aμ ≡
�
AL
μ 0

0 AR
μ

	
¼
�
Aμ þ Bμ 0

0 Aμ − Bμ

	
: ð34Þ

H≡
�

0 iH

−iH† 0

	
¼
�

0 iΦþ Π
−iΦþ Π 0

	
: ð35Þ

Note that if we turn off the scalar and pseudoscalar
sources (set H ¼ 0), we will recover precisely10 the WI in
Eq. (11) that was employed to compute the triangle graph
and to relate it to the topological charge density Ω.
As noted earlier, in addition to the triangle graph, the

imaginary part of the worldline action contains all other
anomalous contributions allowed by the symmetries of the
theory. This can be appreciated immediately by observing
the similarities between the worldline form of the effective
action in the presence of sources to the Wess-Zumino
action [9]. As is well known, variations of the latter with
respect to these sources generates functional Ward iden-
tities (including anomalous ones) [15].
When we add the scalar and pseudoscalar sources to the

mix, d’Hoker and Gagné [52] showed explicitly that WI

(when expanded out to order OðΠ5Þ) reproduces precisely

the Wess-Zumino-Witten term (WZW) [9,23] governing
π0 → 2γ. One sees in this derivation that it is essential that
the scalar Φ have a nonzero vacuum expectation value
(vev). This is apparent from Eq. (31) which contributes the
odd power of Π in the WZW action. The presence of this
vev can be interpreted as that acquired by the σ-field in the
linear sigma model after the spontaneous breaking of chiral
symmetry.11

We can likewise show that, expanding WI up to order
ΠA2, gives the relation

WI ½ΠA2� ¼ ig22nf
16π2

1

Φ
trc

Z
d4xΠðxÞFμνðxÞF̃μνðxÞ: ð36Þ

The explicit derivation12 is given in Appendix A and is in
agreement13 with the corresponding LWZW term in [59]
which was derived from chiral perturbation theory for the
UVð3Þ nonet.
We define the primordial η̄ isosinglet field as

η̄ ¼ −
ffiffiffiffiffiffiffiffi
2nf

p Π
Φ
Fη̄; ð37Þ

where the relation

h0jJμ5jη̄i ¼ i
ffiffiffiffiffiffiffiffi
2nf

p
lμFη̄ðl2Þ; ð38Þ

defines the η̄ decay constant Fη̄ in the forward limit l2 → 0.
We digress here briefly to note that in the description of

the isosinglet sector of the QCD chiral Lagrangian,14 the
massless η̄ field is understood as the prodigal ninth
Goldstone boson of UVð3Þ that survives the spontaneous
symmetry breaking of the globalURð3Þ ×ULð3Þ symmetry
that generates the chiral condensate. The ground state of the
broken symmetry phase is invariant only under UVð3Þ and
the dynamical fields of the low energy effective theory can

10One must first separate out the zero and nonzero modes, as in
Eq. (17), in the latter.

11As shown by Weinberg [58], in the limit of large vev masses,
one recovers the nonlinear sigma model which provides the
scaffolding for chiral perturbation theory. The computation
by d’Hoker and Gagné of the WZW-π0 term is performed in
this large mass limit.

12Here we have analytically continued the result in Eq. (A30)
to Minkowski space, restored the gauge coupling, and taken into
account the sum over quark flavors.

13To see this, note that Π ¼ ψ=3 in [59].
14See [59] for the relevant discussion.
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be represented by the matrix UðxÞ that transforms under
this group. In the large Nc limit, the η̄ field corresponds to
the phase of the determinant of UðxÞ. This description
is therefore completely consistent with our worldline
construction where we showed that Eq. (36) follows from
the phase of the determinant, as seen in Eq. (25).
In the large Nc limit, this Goldstone description

in terms of the η̄ is exact and the decay constants
of all the nonet pseudo-Goldstone bosons are identical:
Fη̄ ¼ Fπ ≈ 93 MeV. For finite quark masses and finite Nc,
the decay constants mix among each other; their values can
be obtained from Dashen–Gell-Mann-Oakes-Renner rela-
tions and the rates for radiative decays of η, η0 to photons.
Remarkably, the diagonal components corresponding to the
isosinglet decay to η0 constant and the isooctet decay to η
are extracted to be very close to Fπ , about 15% larger. For a
detailed discussion, we refer the reader to [15,60].
The WZWeffective action for the η̄ field is then given by

Sη̄WZW ¼ −i
ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

Z
d4xη̄Ω; ð39Þ

where the “i” indicates its origin in the imaginary part of the
effective action in Eq. (29).
This WZW term that couples the η̄ to the topological

charge density Ω plays a fundamental role in QCD. Firstly,
the mixing of η̄ andΩ ensures that the η̄ is “eaten up” by the
latter, leaving a physical massive η0 meson in the spectrum.
Secondly, this term plays a key role the cancellation of the
anomaly pole, and in generating ΣðQ2Þ, the proton’s
helicity. We will now discuss the relation of these two
fundamental issues, namely, topological mass generation15

and the proton’s helicity.

IV. TOPOLOGICAL SCREENING OF THE
PROTON HELICITY

We noted previously two early bodies of work relevant to
our discussion here that addressed the role of anomaly
cancellation in the proton’s helicity ΣðQ2Þ. Jaffe and
Manohar [2] argued that the infrared pole obtained in
the perturbative computation of the triangle anomaly must
be cancelled by a like contribution in the pseudoscalar
sector but did not discuss this mechanism in detail,
specifically its relation to topological mass generation. In
contrast, the approach of Shore and Veneziano [4,5,15],
developing previous work16 by Veneziano [3], was fully
nonperturbative, extensively employing chiral Ward iden-
tities derived from the Wess-Zumino [9] effective action.
They did not however discuss the cancellation of the
anomaly pole, which is only implicit in their approach.

We will discuss here a diagrammatic treatment that
reconciles these two approaches and in particular, recovers
the key results of Shore and Veneziano’s “topological
screening” description of the proton’s helicity. Since the
triangle graph gives the dominant contribution to g1ðxB;Q2Þ
in both Bjorken and Regge asymptotics, we will for
simplicity focus here on ΣðQ2Þ; wewill take up the question
of the xB dependence of the triangle graph in Sec. V.

A. ΣðQ2Þ and the anomalous
Goldberger-Treiman relation

We begin by examining closely how the cancellation of
the infrared pole in the matrix element of the axial vector
current occurs. Our starting point is the general decom-
position of the off-forward matrix element of the flavor
singlet axial vector current17; we will eventually take the
forward limit. Introducing the spinor uðP; SÞ for the nucleon
target of mass MN with momentum P and spin S, we can
write the matrix element of Jμ5 in terms of the axial and
pseudoscalar form factorsGA andGP defining the coupling
of the current to the target at finite momentum transfer as

hP0;SjJμ5jP;Si¼ ūðP0;SÞ½γμγ5GAðl2Þþ lμγ5GPðl2Þ�uðP;SÞ:
ð40Þ

Here lμ ¼ P0μ − Pμ is the momentum transfer between the
outgoing and incoming nucleon.
Figure 2 shows the contributions to the form factors GA

and GP and we will discuss each of these at length. We first
note that the diagrams in Figs. 2(a) and 2(b) representing
the coupling of the isosinglet axial vector current to the
nucleon target are fully analogous to similar diagrams
representing the couplings of the nonanomalous axial
currents to the nucleon. In contrast, the diagrams in
Figs. 2(c) and 2(d) are generated by the triangle anomaly.
The diagram in Fig. 2(a) represents the direct coupling of

the isosinglet axial vector current to the nucleon target. It is
fundamentally different from other diagrams in Fig. 2 since
it is the only diagram which contributes to the axial form
factor GAðl2Þ:

hP0; SjJμ5jP; SijFig: 2a ¼ GAðl2ÞūðP0; SÞγμγ5uðP; SÞ; ð41Þ

while the diagrams in Figs. 2(b)–(d) contribute to the
pseudoscalar form factor GPðl2Þ. With regard to the latter
diagrams, we first observe that as a consequence of the
dynamical breaking of UAð1Þ, no massless isosinglet
pseudoscalar particle can exist in the physical spectrum.
The requirement that the form factor GPðl2Þ cannot have a
pole at l2 ¼ 0 can be expressed as

15For an elegant discussion of topological mass generation, see
[61,62].

16See also related work in [63–65].

17We thank Elliot Leader for a discussion of off-forward matrix
elements and for bringing [66] to our attention where the
properties of such matrix elements are discussed.
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lim
l→0

½hP0; SjJμ5jP; SijFig: 2b þ hP0; SjJμ5jP; SijFigs: 2cþ2d� ¼ 0:

ð42Þ

This of course implies that in the forward limit the matrix
element in Eq. (40) is solely determined by the contribution
in Fig. 2(a):

hP;SjJμ5jP;Si¼ hP;SjJμ5jP;SijFig:2a¼ 2MNGAð0ÞSμ: ð43Þ

As this expression indicates, ΣðQ2Þ ¼ 2GAð0Þ: the proton’s
helicity is equal to twice its isosinglet axial vector form
factor, which can be extracted from the first moment of g1
in combination with results for the isotriplet (Gð3Þ

A ) and

isooctet (Gð8Þ
A ) axial vector charges extracted respectively

from nucleon and hyperon beta decay. From these
extractions, the COMPASS collaboration determines that
GA ¼ 2ΣðQ2Þ ¼ 0.32� 0.03ðstatÞ � 0.03ðsystÞ at Q2 ¼
3 GeV2 [67] which is compatible with the HERMES
collaboration’s extraction [68] at Q2¼ 5GeV2 of GA¼
2ΣðQ2Þ¼0.330�0.011ðthÞ�0.025ðexpÞ�0.028ðevolÞ.
One could view Eq. (43) as our final result. However

it by itself provides little insight into the numbers quoted,
and in particular, the “spin puzzle” [69] of why it is much
smaller from the so-called OZI expectation [14] that

GAjOZI¼2
ffiffiffi
3

p
Gð8Þ

A ≡2
ffiffiffi
3

p
×ð0.167�0.006Þ¼0.579�0.021.

To understand how it can be computed, and its connection
to the UAð1Þ problem, we need to delve more deeply into
the dynamics underlying the individual contributions in
Fig. 2 and further, into relations that can be deduced18

among these.
Indeed one of the relations, as we will discuss later,

explicitly ensures that Eq. (42) is satisfied. Another relation

that must be satisfied is of course the anomaly equation for
the divergence of the singlet axial current in the chiral limit,

hP0; Sj∂μJ
μ
5jP; Si ¼ hP0; Sj2nfΩjP; Si: ð44Þ

Recall that Ω≡ αs
4π TrðFF̃Þ is the topological charge den-

sity. Since the lhs of Eq. (44) is given by the sum of the
diagrams in Fig. 2, it imposes an important constraint on
the individual dynamical contributions.
Turning now to these, the diagram in Fig. 2(b)

represents the exchange, between the axial current and
the nucleon, of an (h0juūþ dd̄j0i) η0 projection of the
(h0juūþ dd̄þ ss̄j0i) η̄ field we discussed in the previous
section. This is necessary because η̄ contains an ss̄
component that cannot couple directly to the nucleon
and requires “OZI violating” gluon exchanges to propagate
[65]. Nevertheless, the projection of J5μ on the η0 state is
nonzero and one can therefore define, in analogy to
Eq. (38),

h0jJμ5jη0i ¼ i
ffiffiffiffiffiffiffiffi
2ñf

p
lμFη̄ðl2Þ; ð45Þ

where l denotes the four-momentum of the intermediate η0
field. Here ñf ¼ 2, is used to represent the two up and
down flavors.19 In other words, since J5μ is flavor blind, the
only change is the normalization with respect to the number
of flavors.
The contribution of Fig. 2(b) can thus be expressed as

hP0; SjJμ5jP; SijFig: 2b ¼ gη0NNūðP0; SÞγ5uðP; SÞ

·
i
l2
· i

ffiffiffiffiffiffiffiffi
2ñf

p
lμFη̄ðl2Þ; ð46Þ

where we have further parametrized the η0-nucleon
interaction by the η0NN coupling gη0NN in the effective
Lagrangian,

(a) (b) (c) (d)

FIG. 2. Diagrams representing the coupling of the axial vector current Jμ5 to the nucleon target. See text for details.

18An alternate decomposition of the pseudoscalar contribu-
tions into a sum of terms with one proportional to the gluon
helicity and the other proportional to a dimension six operator has
been proposed in the literature [70]. However as also discussed in
some detail in [2], we believe such a decomposition must be
interpreted with care.

19We do so to avoid carrying factors of 2 and 3 (denoting
nf ¼ 3 in the η̄ case) around in intermediate steps.
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ΔL ¼ igη0NNη0N̄γ5N: ð47Þ

As their structure suggests, the diagrams in Figs. 2(c)
and2(d) are generated by the triangle anomaly and following
our discussion in Sec. II, their contribution can be formally
written in terms of the matrix element of Ω as

hP0; SjJμ5jP; SijFigs: 2cþ2d ¼ −i
lμ

l2
hP0; Sj2nfΩjP; Si: ð48Þ

Substituting the divergence of each of Eqs. (41), (46) and
(48) into the lhs of Eq. (44) gives,

iGAðl2ÞūðP0;SÞ=lγ5uðP;SÞ
−igη0NNūðP0;SÞγ5uðP;SÞ

ffiffiffiffiffiffiffiffi
2ñf

p
Fη̄ðl2ÞþhP0;Sj2nfΩjP;Si

¼hP0;Sj2nfΩjP;Si: ð49Þ

Then using equation of motion for the spinor uðP; SÞ, we
can rewrite this equation as

ūðP0; SÞ½2MNGAðl2Þ − gη0NN

ffiffiffiffiffiffiffiffi
2ñf

p
Fη̄ðl2Þ�γ5uðP; SÞ ¼ 0;

ð50Þ

This equation relates GA to gη0NNFη̄ which yields, in the
forward limit l → 0,

GAð0Þ ¼
ffiffiffiffiffiffiffiffi
2ñf

p
2MN

Fη̄gη0NN: ð51Þ

This expression is the generalization of the well-known
Goldberger-Treiman relation to the isosinglet axial vector
current, as first suggested by Veneziano [3] and developed
further by Shore and Veneziano [4,5].
If we substitute Eq. (51) into Eq. (43), we can alter-

natively formulate our result in Eq. (43) as

hP; SjJμ5jP; Si ¼
ffiffiffiffiffiffiffiffi
2ñf

p
Fη̄gη0NNSμ: ð52Þ

Thus the anomalous Goldberger-Treiman relation allows us
to express the matrix element of Jμ5 equivalently in terms of
the vacuum decay constant of the primordial pseudoscalar
η0 field and its coupling thereof to the polarized nucleon.
We obtained Eq. (52) from Eq. (43) due to the relation

between the diagrams in Figs. 2(a) and 2(b) and making
further use of the anomaly relation in Eq. (44). In the
forward limit, we can also employ the constraint in Eq. (42)
relating the diagrams in Fig. 2(b)–(d), to rewrite Eq. (52) in
yet another form. Substituting Eqs. (46) and (48) into
Eq. (42) we obtain

lim
l→0

�
gη0NNūðP0; SÞγ5uðP; SÞ ·

i
l2
· i

ffiffiffiffiffiffiffiffi
2ñf

p
lμFη̄ðl2Þ

− i
lμ

l2
hP0; Sj2nfΩjP; Si

�
¼ 0: ð53Þ

Thus the pole of the triangle anomaly that we computed
perturbatively in Paper I can be understood as being
canceled, as conjectured in [2], by the t-channel exchange
of a massless primordial η0 meson, with the further proviso
that there be no such pole in the physical spectrum.
We will now take into account the fact that the matrix

element of Ω is given by the two diagrams in Figs. 2(c)–(d)
that couple the anomaly to the nucleon. The diagrams in
Figs. 2(c)–(d) can be written formally as20

hP0; SjJμ5jP; SijFig: 2c
¼ −i

lμ

l2
hP0; Sj2nfΩjP; SijFig: 2c

¼ i
lμ

l2
2nf · h0jTΩη0j0i · gη0NNūðP0; SÞγ5uðP; SÞ; ð54Þ

and

hP0; SjJμ5jP; SijFig: 2d
¼ −i

lμ

l2
hP0; Sj2nfΩjP; SijFig: 2d

¼ i
lμ

l2
2nf · h0jTΩΩj0i · gΩNNūðP0; SÞγ5uðP; SÞ: ð55Þ

Here “T” denotes that the vacuum correlators h0jTΩη0j0i
and h0jTΩΩj0i are time-ordered.
Substituting these equations into Eq. (53), we obtain,ffiffiffiffiffiffiffiffi
2ñf

p
Fη̄gη0NN

¼ 2nflim
l→0

½ih0jTΩη0j0igη0NN þ ih0jTΩΩj0igΩNN �: ð56Þ

In Sec. IV B, we will employ the WZW term to derive
general expressions for the correlators in the rhs of Eq. (56).
We will show in particular21 that the correlator h0jTΩΩj0i
(whose Fourier transform is the topological susceptibility)
does not survive in the forward limit due to a shift of the
infrared pole of the η̄ to m2

η0 . Anticipating this result, we
obtain

ffiffiffiffiffiffiffiffi
2ñf

p
Fη̄ ¼ 2nflim

l→0
ih0jTΩη0j0i: ð57Þ

Equation (57) relates the η̄ decay constant to the vacuum
correlator h0jTΩη0j0i in the forward limit. Substituting
Eq. (57) into Eq. (52), we obtain

20Here, and later in the text, the correlators h0jTΩη0j0i and
h0jTΩΩj0i are to be understood as the Fourier transforms of the
corresponding correlators in coordinate space.

21It is useful to compare this result with that in [65]. First, in
that work, our gΩNN is denoted as gη̄NN . Second, in the relevant
discussion of this contribution, a “subtraction term” is introduced
to impose by hand that this contribution be nonzero in order to
recover the anomalous Goldberger-Treiman relation. This is
because [65] did not explicitly consider the contribution shown
in Fig. 2(b), which as we saw, naturally gives the anomalous
Goldberger-Treiman relation.
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hP; SjJμ5jP; Si ¼ 2nflim
l→0

ih0jTΩη0j0igη0NNSμ: ð58Þ

Equations (58), (43) and (52) represent different equivalent
expressions for the matrix element of the axial vector
current in the forward limit. Each of these expressions
provides unique insight into the nonperturbative dynamics
that generates the proton’s helicity.
Equation (58) makes explicit the connection of the

proton’s helicity to the topological charge density of the
QCD vacuum. As we will further show, the rhs of Eq. (58)
is proportional to the slope of the QCD topological
susceptibility at l2 → 0. In the chiral limit, the topological
susceptibility of the QCD vacuum is strictly zero; its slope
is therefore small. Thus the screening of the topological
charge explains why the proton’s helicity is small providing
a natural resolution to the proton spin puzzle. We turn now
to a more detailed discussion of topological screening.

B. Anomaly cancellation and topological screening

We will compute here respectively h0jTΩΩj0i and
h0jTΩη0j0i employing the WZW term in Eq. (39).
Specifically, we will study the effect of the WZW coupling
in the two-point Green functions and demonstrate how it
generates a nonzero m2

η0 . We’ll then show how the pole
cancellation in Eq. (53) gives us the result noted earlier.

1. The WZW-η̄ term and the topological susceptibility

Consider the topological susceptibility corresponding to
the Fourier transform of ih0jTΩΩj0i in Eq. (56):

χðl2Þ ¼ i
Z

d4xeilxh0jTΩðxÞΩð0Þj0i: ð59Þ

To leading order [Fig. 3(a)], this correlator is nothing but
the Fourier transform χYMðl2Þ of the Yang-Mills topologi-
cal susceptibility; as is well known, it is a smooth function
of momentum and does not have a pole [71].

The first correction to Fig. 3(a), shown in Fig. 3(b), is
given by22

h0jTΩΩj0ijFig: 3b ¼ ½−iχYMðl2Þ� ·
�
−i

ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

�
·
i
l2

·

�
−i

ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

�
· ½−iχYMðl2Þ�; ð60Þ

where we take into account the η̄ vacuum propagator
h0jTη̄ η̄ j0i ¼ i

l2 and the coupling between η̄ and Ω as
specified by the WZW action in Eq. (39). Adding the
two contributions, we obtain,

h0jTΩΩj0ijFig: 3aþFig: 3b ¼ −iχYMðl2Þ
�
1 −

1

l2
2nfχYMðl2Þ

F2
η̄

�
:

ð61Þ

Further iterating Fig. 3(b) to all orders, we can express the
resummed result as

χðl2Þ ¼ χYMðl2Þ
1

1þ 1
l2
2nfχYMðl2Þ

F2
η̄

: ð62Þ

Note that since we are interested in the correlator in the
forward limit l → 0, we can rewrite it as

χðl2Þ ¼ l2
1

l2 −m2
η0
χYMðl2Þ; ð63Þ

where we introduced

m2
η0 ≡ −

2nf
F2
η̄

χYMð0Þ: ð64Þ

This last expression is the well-known Witten-Veneziano
formula [6,7] for the mass of the η0 meson.
Taking the forward limit, we find

χð0Þ ¼ 0; ð65Þ

which follows from topological mass generation: the WZW
mixing of the massless η̄ field with the topological charge
density induces a massive η0 field. As we saw in the
previous section, combining this result with Eq. (56)
yielded Eq. (57) relating the η̄ decay constant Fη̄ to the
vacuum correlator h0jTΩη0j0i in the forward limit. We will
now show that the latter is given by the slope of the
topological susceptibility χ0ðl2Þ.

(b)(a)

FIG. 3. Left: The Yang-Mills topological susceptibility
hΩΩiYM; Right: First correction to hΩΩiYM.

22A classic discussion of this 1=Nc expansion in the topo-
logical susceptibility can be found in [6].
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2. The WZW-η̄ term and the correlator h0jTΩη0j0i
The leading order diagram contributing to h0jTΩη0j0i is

shown in Fig. 4(a). Its computation, following our
diagrammatic rules, is straightforward, and gives,23

h0jTΩη0j0ijFig:4a ¼ ½−iχYMðl2Þ� ·
�
−i

ffiffiffiffiffiffiffiffi
2ñf

p
Fη̄

�
·
i
l2
: ð66Þ

To obtain the full correlator from Fig. 4(b), one can simply
replace χYMðl2Þ → χðl2Þ:

h0jTΩη0j0ijFig:4b ¼ −i
1

l2

ffiffiffiffiffiffiffiffi
2ñf

p
Fη̄

χðl2Þ: ð67Þ

We note that this result agrees with the parametrization of
this two-point Green function in [5,15].
Substituting this result into the rhs of Eq. (57), we find

F2
η̄ ¼ lim

l→0

2nf
l2

χðl2Þ: ð68Þ

Expanding the topological susceptibility χðl2Þ in a Taylor
series around l2 ¼ 0 as

χðl2Þ ¼ χð0Þ þ l2χ0ð0Þ þ…; ð69Þ

where χ0ðl2Þ≡ d
dl2 χðl2Þ, and taking into account that

χð0Þ ¼ 0 in the chiral limit, we can substitute the second
term of the expansion into Eq. (68), which yields

F2
η̄ ¼ 2nfχ0ð0Þ: ð70Þ

As a result, using Eq. (52), we obtain,

hP0; SjJμ5jP; Si ¼
ffiffiffi
2

3

r
2nfgη0NN

ffiffiffiffiffiffiffiffiffiffi
χ0ð0Þ

p
Sμ

→ ΣðQ2Þ ¼
ffiffiffi
2

3

r
2nf
MN

gη0NN

ffiffiffiffiffiffiffiffiffiffi
χ0ð0Þ

p
: ð71Þ

This expression for the proton helicity in terms of
square root of the slope of the QCD topological suscep-
tibility was first obtained by Shore and Veneziano [5,15]
from manipulations of the anomalous chiral Ward iden-
tities; we have provided here a complementary and intuitive
derivation.
As mentioned earlier, this nontrivial result provides a

simple explanation for why ΣðQ2Þ is anomalously small;
the forward topological susceptibility χð0Þ in the chiral
limit is strictly zero, and a nonzero contribution to ΣðQ2Þ
can only arise from small deviations from it, as repre-
sented by its slope at l2 ¼ 0, the scale for which is set by
the large value of mη0 . Narison, Shore and Veneziano
[10,11] employed QCD sum rules to evaluate this
expression obtaining results in agreement with the
HERMES [12] and COMPASS [13] data we quoted after
Eq. (43). A very recent update to these sum rule deter-
minations is given in [72]. One can in principle compute
GA in Eq. (43) directly on the lattice by computing the
off-forward matrix element of J5μ; however one has to
ensure that its anomalous Ward identity is satisfied [65].
Alternatively, one can instead determine Σ from Eq. (71)
by computing χ0ð0Þ on the lattice [28]; for a discussion of
the current status of computations of the topological
susceptibility and relevant references, we refer the reader
to [29].

3. η̄ effective action

In Eq. (39), we obtained the form of the η̄Ω WZW
coupling from the imaginary part of the worldline effective
action. Further, from Eqs. (29), (33) and (32), we can
deduce a kinetic term for the η̄ field [46,57],

Skinetic ¼
Z

d4x
1

2
ð∂μη̄Þð∂μη̄Þ: ð72Þ

Indeed, we employed this kinetic term in our diagrammatic
analysis.
There is an additional “θ-term” contribution from the

imaginary part of the worldline effective action which has
the same structure as Eq. (39), and is given by [59]

Sθ ¼
Z

d4xθΩ: ð73Þ

Finally, there is also a term (see [73] and references therein)
representing the free energy of the θ-vacuum given by

(b)(a)

FIG. 4. Left: Leading order contribution to hΩη0i; Right: The
full correlator for hΩη0i replacing χYM → χ, as represented by the
gray blob.

23Our derivation of Eq. (39) was flavor blind so the only
difference in the coupling of Ω to η0 relative to its coupling to η̄ is
to replace nf → ñf .
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Svac ¼
1

2

Z
d4xχYMθ2; ð74Þ

whose second derivative with respect to theta, at θ ¼ 0,
defines the Yang-Mills topological susceptibility.
Putting everything together, we can write the low energy

η̄ effective action as

Sη̄¼
Z

d4x
�
1

2
ð∂μη̄Þð∂μη̄Þþ

�
θ−

ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

η̄

	
ΩþχYM

2
θ2
�
:

ð75Þ
Since there is no kinetic term for θ, it acts as a constraint

and can be eliminated using the equations of motion:

δSη̄
δθ

¼ 0 → θ ¼ −
Ω
χYM

: ð76Þ

Plugging this back into Eq. (75), we get

Sη̄ ¼
Z

d4x

�
1

2
ð∂μη̄Þð∂μη̄Þ −

ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

η̄Ω −
Ω2

2χYM

�
: ð77Þ

This form of the action is identical to that of Shore and
Veneziano [15] (see also [63]) which they argue to be the
simplest effective action consistent with the anomalous
Ward identities of QCD. We will employ its equivalent
representation in Eq. (75) in our discussion in Sec. V.
Defining the η0 field as

η0 ¼ Fη0

Fη̄
η̄; ð78Þ

where Fη0 is the η0 decay constant (see Sec. 3 of [15]) and
introducing a glueball field defined as

G ¼ Ωþ
ffiffiffiffiffiffiffiffi
2nf

p
Fη0

χYMη
0; ð79Þ

one can reexpress the effective action in Eq. (77) as

Sη0 ¼
Z

d4x

�
−
1

2
η0ð∂2 þm2

η0 Þη0 −
G2

2χYM

�
; ð80Þ

where mη0 is the η0 mass given by the Witten-Veneziano
formula in Eq. (64). Thus the mixing between η̄ and Ω in
Eq. (75) generates an effective action describing the
physical massive η0 and a nonpropagating glueball field
G, which decouples from the hadron spectrum. Note further
that as Nc → ∞, one has η0 → η̄, since mη0 → 0. In this
“OZI limit” of QCD, the anomaly vanishes restoringUAð1Þ
and the η̄ is the prodigal ninth Goldstone boson.
Recall from Sec. III that Eqs. (39), (72) and (73) can be

understood as arising from the phase of the Dirac deter-
minant in the QCD effective action, where the relevant low
energy degrees of freedom are parametrized with scalar,

pseudoscalar, vector and axial vector degrees of freedom.
There is of course the path integral over the gauge field
configurations to consider. In ’t Hooft’s [16,17] explanation
of the UAð1Þ problem, classical (Euclidean) instanton
gauge field configurations are the dominant configurations
responsible for the coupling of the topological charge
density to fermion zero modes [55]; hence χYM in
Eq. (74) in this picture is saturated by the dynamics of
such configurations [22]. However as pointed out by
Veneziano [7], that while sufficient, instanton configura-
tions are not required for the solution of theUAð1Þ problem.
Indeed the discussion above did not invoke the instanton
picture at all though it is consistent with it. We will argue in
the next section that while instanton-anti-instanton con-
figurations may dominate at large xB, the physics of gluon
saturation suggests that other classical configurations
increasingly begin to play a role on the short timescales
probed by a DIS probe with decreasing xB.

V. AXIONLIKE ACTION AT SMALL xB: GLUON
SATURATION AND SPHALERON TRANSITIONS

The triangle graph, as noted previously here, and in
detail in Paper I, dominates the box diagram contributing to
g1ðxB;Q2Þ in both Bjorken and Regge asymptotics. The
dynamics underlying the xB dependence is therefore con-
tained in the diagrams shown in Fig. 2, whose interplay we
discussed on general grounds in the previous section. We
will now consider these in greater detail and point to novel
features that emerge at small xB.
A subtle point which will govern our analysis must be

noted at the outset. As we observed in Eq. (43), it is
sufficient to compute the xB-dependent generalization of
the coupling of the axial charge to the nucleon, as shown in
Fig. 2(a). Alternately, one could employ the anomalous
Goldberger-Treiman we derived in Eq. (51) and compute
instead the xB-dependent generalization of Fig. 2(b),
specifically that of the product Fη0gη0NN .
The dynamics underlying Figs. 2(a) and (b) is illustrated

in Fig. 5. Figure 2(a) corresponds to a direct axial coupling
at a given xB to a valence quark in Fig. 5. Though Fig. 2(b)
is formally represented as a Feynman diagram in Fig. 5, its
physics (due to its sensitivity to the off-forward pole) is
governed primarily by low frequency modes of the fermion
determinant and is fundamentally nonperturbative. Spin
diffusion along the t-channel24 can be viewed as being
mediated by Reggeon exchange (corresponding to the η0)

24One may ask whether spin diffusion can occur instead due to
spin precession in a background field. In Eq. (7), these con-
tributions to g1 would correspond to terms linear in F12. However
as discussed at length in Appendix C, for operators sensitive to
the anomaly, terms that are naively subleading (relative to this
linear term) in an eikonal expansion cannot be ignored due to the
off-forward pole in the t-channel. This leads to Fig. 2(b) being
sensitive to the anomaly, as seen clearly in Eq. (53).
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in the isosinglet sector. At large xB, g1 can be computed
using lattice QCD methods [24–29,74]. However at small
xB, particularly in Regge asymptotics, lattice computations
are challenging due to the difficulties posed by (i) comput-
ing higher moments of local operators, (ii) boosting the
proton to high energies on the lattice [75].
While one might consider this situation challenging for

small xB computations, the “anomaly diagram” in Fig. 2(c)
provides a crucial assist as we will describe shortly. First,
note that we showed explicitly [in the discussion culminat-
ing in Eq. (65)] that the other possible anomaly diagram
Fig. 2(d) is zero in the chiral limit. Because of the anomaly
contribution in Fig. 2(c), we showed in Eq. (58) that the
matrix element for J5μ can be expressed in terms of the
matrix element of the topological charge density, or
equivalently, in terms of χ0ð0Þ, as shown in Eq. (71).
The latter expression is manifestly finite in the limit l → 0.
We can further explore the structure of Eq. (58) by

rewriting the vacuum correlator as a functional integral over
A and η̄ fields as

hP;SjJμ5jP;Si¼ 2nfi
Z

d4y
Z

Dη̄W̃P;S½η̄�
Z

½DA�Ωð0Þη0ðyÞ

×exp

�
iSYMþ i

Z
d4x

�
1

2
ð∂μη̄Þð∂μη̄Þ

−
ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

η̄Ω
�	

Sμ; ð81Þ

where we generalized gη0NN in Eq. (58) by introducing the
weight functional W̃P;S½η̄�; it represents the nonperturbative
distribution of η̄ determined (with the

ffiffi
2
3

q
normalization)

from the pseudoscalar coupling of the η0 field to the
polarized proton with the normalizationZ

½Dη̄�W̃P;S½η̄� ¼ gη0NN: ð82Þ

Comparing Eq. (81) with the contribution of the triangle
anomaly to the matrix element of the axial vector current
given in Eq. (48), we observe that the regularization of the

infrared pole is equivalent to replacing lμ

l2 in the matrix
element by the above functional integral.
The η̄Ω term in Eq. (81), after expanding out to linear

order in η̄, gives

hη̄ η̄ihΩΩi; ð83Þ

where the first expectation value gives the η̄-propagator i
l2

and the second, the Yang-Mills topological susceptibility
χYMðl2Þ, as seen previously in Eq. (66). Subsequent
expansion to Oðη̄3Þ, and higher odd powers in η̄ then give
Eq. (60), illustrated by the correction to Fig. 3(a) shown in
Fig. 3(b),

hη̄ η̄ihΩΩihη̄ η̄ihΩΩi � � � ; ð84Þ

with the resummation of such contributions to all orders
generating the χðl2Þ in Eq. (62).
An analogous regularization of the infrared pole in the

expression for the structure function g1 in Eq. (10) yields

g1ðxB;Q2Þ ¼
�X

f

e2f

	
nfαs
πMN

i
Z

d4y
Z

1

xB

dx
x

�
1 −

xB
x

	Z
dξ
2π

e−iξx
Z

Dη̄W̃P;S½η̄�
Z

½DA�

×TrcFαβðξnÞF̃αβð0Þη0ðyÞ exp
�
iSYM þ i

Z
d4x

�
1

2
ð∂μη̄Þð∂μη̄Þ −

ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

η̄Ω
�	

: ð85Þ

The last two terms in the exponential, corresponding to the
dynamics of the η̄, are identical to that describing the
coupling of a putative axion particle [76–78] to QCD
matter. The underlying dynamics of the functional integral

representation of Eq. (85) is illustrated in Fig. 6.
This expression is consistent with Eq. (77) if we assume
the latter to be saturated by nonperturbative classical
configurations.

FIG. 5. Diagram illustrating isosinglet quark exchange in the
t-channel. Such Reggeon contributions are allowed at both large
and small xB, though they are suppressed at small xB.
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We will now argue that novel dynamics emerges in
Regge asymptotics that allows one to compute the dynam-
ics inside the blob in Fig. 6 in a weak coupling framework.
This dynamics is due to the phenomenon of gluon
saturation [30,31] at small xB corresponding to the close
packing of gluons in the hadron. At maximal occupancies
ofOð1=αsÞ, the dynamics is controlled by a saturation scale
QSðxBÞ ≫ ΛQCD, which screens color charge beyond this
close packing scale. Since αsðQSÞ ≪ 1 in the Regge limit,
the high occupancy of closely packed glue within a radius
1=QSðxBÞ inside the proton forms a classical lump. Further,
in this limit, its dynamics can be studied systematically in
weak coupling [32–34].
Gluon saturation has been studied extensively within

the framework of the color glass condensate (CGC)
effective field theory [35,36,79,80]. In short, large x
color charges in a hadron or nucleus are treated as static
classical color charges with color charge density ρ coupled
to classical gauge field configurations Acl½ρ� ∼ 1=g, where g
is the gauge coupling. Sources and fields are separated at
the scale x0 ¼ Λþ=Pþ; at small x, logarithmically
enhanced gluon emissions (LLx) αs lnðx0=x00ÞOð1Þ
from the fields can be absorbed into a new source
distribution ρ0 at the scale x00 ¼ Λ0þ, and iterated, satisfying
a Wilsonian renormalization group evolution equation
described by a JIMWLK Hamiltonian [81–85]. The

JIMWLK Hamilitonian describes the energy evolution of
the saturation scale which specifies the nonperturbative
distribution WY0

½ρ� of color sources at the initial rapidity
scale Y0 ¼ lnð1=x0Þ.
A detailed derivation in the worldline formalism of the

expectation value of operators in an unpolarized proton or
nucleus is given in Appendix B. One obtains [see
Eqs. (B25) and (B26)],

hOiunpol: ¼
Z

DρWY ½ρ�
Z

DAO½A�eiSCGC½A;ρ�; ð86Þ

where Y is the rapidity of interest that WY ½ρ� has been
evolved to, and

SCGC½A;ρ�¼−
1

4

Z
d4xFμν

a Fa
μν

þ i
Nc

Z
d2x⊥trc½ρðx⊥ÞlnðU½∞;−∞�ðx⊥ÞÞ�; ð87Þ

with U½∞;−∞�ðx⊥Þ ¼ exp½−ig R∞−∞ dxþA−ðxþ; z⊥Þ�. The
shock wave classical field Aμ

cl:½ρ� corresponding to the
saddle point of this effective action is well known; we will
discuss it further in Sec. V B.
Our interest here is in deriving the spin-dependent

effective action in the Regge limit of xB → 0. From our
general discussion in Appendix B, in addition to the
evolution of the initial density matrix of the polarized
proton in coordinate/momentum phase space, and in color,
we must consider its evolution in spin and flavor. As we
have discussed at length, the evolution of the density matrix
in the flavor isosinglet sector is governed by the imaginary
part of the worldline effective action, specifically the WZW
term in Eq. (39) and the corresponding kinetic term for the
η̄ field in Eq. (72). Combining these with the CGC effective
action (87) we obtain

hOiReggepol: ¼
Z

DρWY ½ρ�
Z

Dη̄W̃P;S½η̄�

×
Z

DAO½A�eiSpCGC½A;ρ;η̄�; ð88Þ

where the spin-polarized CGC effective action is

SpCGC½A; ρ; η̄� ¼ SCGC½A; ρ�

þ
Z

d4x

�
1

2
ð∂μη̄Þð∂μη̄Þ −

ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

η̄Ω
�
:

ð89Þ

In particular, Eq. (85) for g1 in the Regge limit is25

FIG. 6. Diagram illustrating the t-channel propagation of an
isosinglet η0 pseudoscalar field Bjorken and Regge asymptotics.
This η0 field has a nonperturbative distribution that couples to
polarized valence partons with large momentum fractions in the
proton. As it propagates along the t-channel, the η0 couples to the
vacuum topological charge density represented by the correlator
hΩη0i [illustrated in Fig. 4(b)], acquiring a mass in the process
before its coupling to the triangle graph via the anomaly.

25As discussed in Paper I, a consistent treatment in the
worldline formalism would set xB ¼ 0 in the argument of
Eq. (85).
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gRegge1 ðxB;Q2Þ ¼
�X

f

e2f

	
nfαs
πMN

i
Z

d4y
Z

1

xB

dx
x

Z
dξ
2π

e−iξx
Z

DρWY ½ρ�
Z

Dη̄W̃P;S½η̄�
Z

½DA�

×TrcFαβðξnÞF̃αβð0Þη0ðyÞ exp
�
iSCGC þ i

Z
d4x

�
1

2
ð∂μη̄Þð∂μη̄Þ −

ffiffiffiffiffiffiffiffi
2nf

p
Fη̄

η̄Ω
�	

: ð90Þ

This functional integral, describing spin diffusion of Sμ at
small xB, is illustrated in Fig. 7.
The path integral over ρ causes gRegge1 to differ qualita-

tively from the corresponding expression in the Bjorken
limit. In Fig. 7 (left), the coupling of the color sources to
χðl2Þ is illustrated with the “operator” symbol here repre-
senting the ρ insertions; the figure on the right represents
the correlator hΩη̄i inside Fig. 7 (left).
In the absence of the coupling to the η̄ field, the

topological charge density Ω ∝ E ·B in the CGC is zero
[86]; we note though that a finiteΩ is generated in a nuclear
collision [42,86–90]. The interplay of the axionlike coupling
with the CGC was also considered recently for the case of a
physical axion interactingwith the CGC,which bears strong
similarity with our problem of the η̄ interacting with the
CGCgauge fields [90]. It is also analogous to the problem of
an axion or axionlike field propagating in a hot non-Abelian
plasma, which is relevant in a number of cosmological
contexts [39,91]. The axion dynamics considered in [39] and
[90], respectively, are especially relevant because, as wewill
now discuss, they bookend two model approaches to
computing the effective action in Eq. (90) that apply in
different kinematic regimes of interest.

A. Spin diffusion via over-the-barrier topological
transitions

In the first approach, the saddle point in Eq. (81) of the
path integral in over gauge fields, after an analytic

continuation to Euclidean space,26 is given by instanton
classical fields Ainst

μ . satisfying Fμν ¼ �F̃μν. As we noted
previously, without the term in Eq. (87) coupling the gauge
fields to ρ, the effective action in Eq. (81) should be identical
to the effective action in Sec. IV B 3with the instanton fields
saturating the topological charge density [22]. Recall that
this action reproduces the results of Sec. IV.
In this approach, the J · A coupling of the color sources

to the gauge fields, along with the average over the color
density matrix WY ½ρ� can be considered analogous to a
thermal average,27 with the saturation scale QS playing an
analogous role to the temperature.
The computation then follows along the lines28 of [39].

From the equations of motion in Eq. (90), one hasffiffiffiffiffiffiffiffi
2nf

p
Fη0

Ω ¼ −∂μ∂μη0; ð91Þ

The explicit derivation in [39], performed in the real-time
Schwinger-Keldysh formalism, gives after thermal averag-
ing (here corresponding to the averaging of sources),

∂2η0

∂t2 ¼ −γ
∂η0
∂t −m2

η0η
0: ð92Þ

A subtle point, discussed at length in [39], is that the
coupling of the gauge fields to the color charges does not
alter topological mass generation whereby η̄ → η0. Both η̄
and η0 couple identically to Ω, with the only difference
being the strength of the coupling given by the difference in
their respective decay constants.
In particular, note that the only difference in the equations

of motion relative to that derived from Eq. (80) is the term
with the friction coefficient γ. This term reflects the drag on
η0 propagation due to the coupling of the color sources to the
gauge field. In our picture, this is fundamentallywhat causes
the quenching of the coefficient (g1) of the spin four-vector
Sμ reflecting the efficiency of spin diffusion.29

(b)(a)

FIG. 7. Left: Diagram similar to Fig. 2(c) but now including the
coupling to color sources with each ρ insertion denoted by the
“operator” symbol. Right: The correlator hΩη̄i in the diagram on
the left in the background field generated by static classical color
sources ρ at small xB.

26The color sources ρ are static on the relevant timescales.
27The evolution equation for WY ½ρ� satisfies the Kossakowski-

Lindblad form of the density matrix for open quantum systems
[92].

28One must understand E≡ EðρÞ and B≡ BðρÞ in the
Hamiltonian employed in that derivation.

29In high energy DIS, it is more convenient to represent
Eq. (91) in light cone coordinates. Clearly, this choice of
coordinates should not alter our discussion of the physics of
spin diffusion.
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The underlying dynamics is illustrated in Fig. 8. In
‘t Hooft’s picture [16,17], tunneling instanton-anti-
instanton configurations generate the nontrivial Yang-
Mills topological susceptibility which, we have seen, are
responsible for the large η0 mass. The effect of the coupling
to large x sources, and the averaging over WY ½ρ� is to
introduce the saturation momentumQS > ΛQCD, which can
lead to over-the-barrier sphaleron transitions as shown in
Fig. 8. For the finite temperature case, the friction coef-
ficient γ is proportional to the sphaleron transition rate [39]:
γ ¼ 2nfΓsphaleron=F2

η̄T, where
30

Γsphaleron ¼ lim
δt→∞

1

Vδt
hðNCSðtþ δtÞ − NCSðtÞÞ2i; ð93Þ

with NCSðtÞ ¼
R
d3xK0. Here V denotes the three dimen-

sional volume of the system. At finite temperature,
Γsphaleron ¼ κα5sT4, where κ is a nonperturbative constant
[40]. In the CGC, from parametric arguments alone,31

one can deduce that Γsphaleron ∝ Q4
S and γ ∝ 2nf

Q3
S

F2
η̄
.

Parametrically, for t ∼ 1=QS, the interaction time of the
probe with the shock wave, the first term on the rhs will
dominate over the second for when γ2 > m2

η0 , or equiv-

alently, when 2nf
F2
η̄
Q6

S > χYMð0Þ. When the friction term

dominates, η̄ ∝ mη0 expð−γtÞ. From Eq. (91), we then have

hΩη0i ∝ Fη̄χYMð0Þ
�
Q2

S

F2
η̄

	
3

exp

�
−4nfC

Q2
S

F2
η̄

	
; ð94Þ

for t ∼ 1
QS
, with h� � �i denoting the average over the path

integrals in Eq. (90). Here C is a nonperturbative constant
and we have employed Eq. (64), the Witten-Veneziano

formula. Substituting this expression in Eq (90), we
obtain32

gRegge1 ðxB;Q2Þ ∝ Q2
Sm

2
η0

F3
η̄MN

exp

�
−4nfC

Q2
S

F2
η̄

	
; ð95Þ

We have not specified the prefactors of the expression in
this model computation (along the lines of [39]) of the
effective action in Eq. (90) because, unless C is much
smaller thanOð1Þ, they do not affect the takeaway message
that g1 is exponentially quenched with increasing QS,
already for QS of a few hundred MeV.
A detailed derivation of the arguments outlined above

and predictions for polarized DIS measurements at the EIC
[43,44] will be the subject of Paper III [45]. The kinematic
regime where they are valid is where the coupling of color
sources to the gauge fields can be treated as a perturbation
to the instanton-anti-instanton configurations populating
the QCD vacuum. More specifically, one requires small xB
values where the color sources can be approximated as
classical color charge configurations but one still has
QS < mη0 . We will now turn our attention to the strict
Regge regime where xB → 0, giving QS ≫ mη0 .

B. Spin diffusion through topological shock wave
configurations

In Regge asymptotics, the coupling term in Eq. (87) is as
large as the Yang-Mills action, with both being Oð1=g2Þ. It
can no longer be thought of as a perturbation to the
instanton-anti-instanton configurations. The saddle point
solution that minimizes the action in Eq. (87) corresponds
to the CGC shock wave solutions [32,33,93,94]. These
configurations by themselves do not carry any topological
charge. However the presence of the η̄Ω term in Eq. (81)
changes this result qualitatively.
Similarly to the discussion in [90], the equations of

motion are

DμFμν ¼ Jν þ jνax; DμF̃μν ¼ 0; ð96Þ

with

jνax ¼ −∂μη̄F̃μν with Dμj
μ
ax ¼ 0: ð97Þ

In contrast to Sec. VA, we will not consider the back-
reaction on the η̄ fields from Ω, since the shock wave fields

FIG. 8. The vacuum energy of θ-vacua as function of the
Chern-Simons number NCS labeled by positive and negative
integers. The arrows denote instanton/anti-instanton tunneling
configurations and over-the-barrier sphaleron configurations;
both of these effects result in a change of the Chern-Simons
number.

30The Chern-Simons current Kμ ¼ g2

8π2
εμνρσTrðAν∂ρAσ−

2ig
3
AνAρAσÞ, which satisfies ∂μKμ ¼ Ω.
31Interestingly, in numerical simulations of the hot and dense

Glasma [42,86,87] produced in a nuclear collision, one finds that
the sphaleron transition rate scales with the string tension of a
spatial Wilson loop in the Glasma [42].

32In writing this expression we have assumed that the four-
volume corresponding to the η0 field is sensitive only to scales
1=QS over which a sphaleron transition takes place inducing the
drag, but is homogeneous over longer spacetime scales, as
suggested by Eq. (92). Since the sphaleron transition rate is
defined per unit four volume, the two factors effectively cancel.
We have also assumed that the phase does not contribute at
small xB.
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are much shorter-lived on the relevant timescales in Regge
asymptotics.
In the absence of the axion current jμax, the equations of

motion can be solved exactly. For a nucleus moving with
large Pþ → ∞, for the corresponding light cone current
given by Jμ ¼ δμþρðx−; x⊥Þ, one obtains (in Lorenz gauge
∂μA

μ
cl ¼ 0)

Aþ
cl ¼ −

ρ

∇2⊥
; A−

cl ¼ 0; Ai
cl ¼ 0: ð98Þ

These gauge configurations are static in xþ since
DμJμ ¼ 0, where Dμ represents the covariant derivative.
They are also pure gauge configurations satisfying Fij ¼ 0,
with i, j ¼ 1, 2.
Turning on the current jμax induces a gauge field aμcl;

solving the equations of motion for Aμ
cl þ aμcl, is equivalent

to solving the small fluctuation equations,

ðD2gνμ −DνDμ − 2igFνμ
cl Þacl;μ ¼ jνax;cl; ð99Þ

where the covariant derivatives are understood to be those
of the classical fields, and jνax;cl ¼ −∂μη̄F̃

μν
cl . Here F̃μν

cl is
dual field strength in A− ¼ 0 gauge, whose only nonzero
component is

F̃þi;a
cl ¼ ϵijUab∂jA

þ;b
cl ; ð100Þ

expressed in terms of the field strength in Lorenz gauge,
with Aþ;a

cl given in Eq. (98) and Uab is an adjoint matrix
which will be defined below shortly.
Since this equation is linear in acl;μ, it is straightforward

to solve, with

acl;μðxÞ ¼
Z

d4yGμνðx − yÞjνax;clðyÞ; ð101Þ

with

ðD2gμρ −DμDρ − 2igFμρ
cl ÞGρνðx − yÞ ¼ iδμνδð4Þðx − yÞ;

ð102Þ

whereGμνðx − yÞ is the shock wave gluon propagator in the
axial gauge. Its Fourier transform33 can be written as
[34,95,96]

G̃μν;abðp; qÞ ¼ G̃0
μρ;acðpÞT ρσ;cd

g ðp; qÞG̃0
σν;dbðqÞ; ð103Þ

with the free propagator in a− ¼ 0 gauge (nμ ¼ δμþ,
satisfying n · a ¼ a−),

G̃0
μν;abðpÞ ¼

i
p2 þ iϵ

�
−gμν þ

pμnν þ pνnμ
p · n

	
δab; ð104Þ

and the effective vertex

T μν;ab
g ðp; qÞ ¼ −2πδðp− − q−Þð2p−Þsignðp−Þgμν

×
Z

d2z⊥e−iðp−qÞ⊥·z⊥ðUabÞsignðp−Þðz⊥Þ:

ð105Þ

The dependence of the shock wave propagator on the color
sources ρ is contained in the adjoint Wilson line

Uðx⊥Þ ¼ P− exp

�
−ig

Z
dz−

1

∇2⊥
ρaðz−; x⊥ÞTa

	
; ð106Þ

where P− denotes path ordering in x− variable and Ta are
matrices representing the adjoint generators of the SUð3Þ
color algebra.
Following [90], we can write

Ω ¼ αs
2π

ð∂þaai ÞF̃þi;a
cl ; ð107Þ

where the parenthesis denotes the electric field induced by
the η̄ field and the other term is the CGC background

(b)(a)

FIG. 9. Left: the shock wave gauge field configuration Aμ of the MVmodel [32,33] generated by static classical color sources ρ. Right:
the modified shock wave configuration Aμ þ aμ, where aμ is generated by the axionlike current resulting from the WZW η̄Ω coupling.

33We define

G0ðx − yÞ ¼
Z

d4p
ð2πÞ4 e

ip·ðx−yÞG0ðpÞ and

Gðx; yÞ ¼
Z

d4p
ð2πÞ4

d4q
ð2πÞ4 e

ip·xþiq·yG̃ðp; qÞ:
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magnetic field given by Eq. (100). This result for Ω,
illustrated in Fig. 9, is a nontrivial functional of ρ, and
linear in η̄.
Since the only nonzero component the classical dual

field strength tensor is F̃þi ¼ −ϵijF−j, and since our choice
of gauge gives a− ¼ 0, we only obtain the contribution
from ai given by

∂þai ¼ −
Z

d4yð∂þGijÞð∂þη̄ÞF̃þj
cl ðyÞ: ð108Þ

Substituting Eq. (108) into Eq. (107), we now have all the
ingredients to compute hΩi. Thus similarly to Sec. VA, we
can write

hΩη0i ∝ hð∂þη̄Þη̄iη̄hF̃þi
cl ðxÞF̃þj

cl ðyÞiρ; ð109Þ

where the second term on the rhs is the correlator of
transverse magnetic fields. The detailed computation of the
rhs is quite subtle and will be a subject addressed further in
Paper III [45]. However on general grounds, one expects
the correlator of magnetic fields in the CGC to obey

hF̃þi
cl ðxÞF̃þj

cl ðyÞiρ ∝ exp ð−Q2
Sðx − yÞ2Þ ≈ exp

�
−C̄

Q2
S

F2
η̄

	
;

ð110Þ

where C̄ is a constant factor that must be computed and the
typical scale for the propagation of the η̄ field can
reasonably be set to be its decay constant. Hence as in
the case of the model computation in Sec. VA, from
Eqs. (109) and (110), one expects g1ðxB;Q2

SÞ in the Regge
limit to be similarly exponentially suppressed with increas-
ing QS. As noted, a more detailed computation of the path
integral in Eq. (90), and phenomenological consequences
thereof, beyond these simple model estimates, will be
discussed separately in Paper III [45].

VI. SUMMARY AND OUTLOOK

In our previous paper [1], we computed the contribution
of the box diagram to the polarized structure function
g1ðxB;Q2Þ employing the worldline representation of the
fermion determinant in QCD. We demonstrated that the
isosinglet triangle anomaly dominates the structure of
the box diagram in both the Bjorken and Regge asymp-
totics of QCD. Specifically, Sμg1 is proportional to forward
limit lμ → 0 of the off-forward matrix element of the
nonlocal operator lμ

l2 Ω, where Ω is the topological charge
density in a polarized proton with the spin four-vector Sμ.
That this result holds when xB → 0 is remarkable and
strongly suggestive of the fundamental role of the topology
of the QCD vacuum in the proton’s spin.
In this paper, we significantly developed the framework

introduced in [1]. A major focus was to demonstrate how

the off-forward pole of the anomaly cancels in the forward
limit and the consequences thereof. In order to do so, we
reaffirmed that the anomaly arises from the imaginary part
of the worldline effective action, which corresponds to the
phase of the fermion determinant. We then discussed a
generalization of the worldline effective action that takes
into account the coupling of fermion modes to low energy
scalar, pseudoscalar, vector and axial vector degrees of
freedom. Limiting ourselves to isosinglet contributions to
the imaginary part of the worldline effective action, we
showed explicitly (in Appendix A) the existence of a Wess-
Zumino-Witten term that couples the topological charge
density Ω to a massless isosinglet pseudoscalar field η̄.
While this particular WZW contribution is well known in
the chiral perturbation theory literature, our derivation of
this term in the worldline framework is new.
We then demonstrated the fundamental role played by

the WZW term in the cancellation of the anomaly pole in
the off-forward matrix element of the isosinglet axial vector
current J5μ in the polarized proton; in the forward limit, this
matrix element determines the proton’s helicity ΣðQ2Þ. We
first identified the axial vector and pseudoscalar contribu-
tions to this matrix element and derived the anomalous
Goldberger-Treiman relation that connects the two.
Specifically, as first suggested by Veneziano, the axial
vector charge GA representing the direct coupling of J5μ to
the polarized proton can be equated to the product of the
isosinglet coupling to the proton times its decay constant.
Due to the WZW term, this pseudoscalar exchange can

also be mediated through the anomaly, specifically the
QCD topological susceptibility χðl2Þ. The leading contri-
bution to this quantity is the Yang-Mills topological
susceptibility χYMðl2Þ, which is of the order of typical
nonperturbative QCD scales. However, as shown by Witten
and Veneziano, higher order 1=Nc contributions to χYMðl2Þ
from η̄ exchange mediated via the WZW term results in the
topological generation of the η0 mass, resolving the UAð1Þ
problem. The resulting topological screening of the η̄ pole
then ensures that, in the chiral limit, χðl2Þ → 0 when
l2 → 0. We showed explicitly how this topological screen-
ing results in the cancellation of the pole of the anomaly
and recovered the striking result of [4,5] that
ΣðQ2Þ ∝ ffiffiffiffiffiffiffiffiffiffi

χ0ð0Þp
, where χ0ð0Þ is the slope of the QCD

topological susceptibility in the forward limit. In the
topological screening picture, the fact that χð0Þ ¼ 0 in
the chiral limit provides a natural explanation of the “spin
puzzle” of why the measured isosinglet axial charge is
much smaller than its octet counterpart [3,15,69]. In other
words, the underlying physics that resolves the UAð1Þ
problem also resolves the proton’s spin puzzle.
In [1], we showed that g1 in the Regge limit is

represented by the same matrix element that contributes
in Bjorken asymptotics. However the computation of the
matrix element in the two limits is quite different because
the former is strongly influenced by the physics of gluon
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saturation which introduces a large emergent scale QSðxÞ.
Using the insights provided by the worldline effective
action outlined in Appendixes A-C, we constructed an
axionlike effective action for g1 that captures the physics of
gluon saturation and is consistent with anomalous chiral
Ward identities. The underlying dynamics of this action is
controlled by the saturation scale and the Yang-Mills
topological susceptibility χYM, or equivalently, the η0 mass.
In the absence of the coupling to a large number of color
sources (represented by QS), our formulation is compatible
with a picture of spin diffusion mediated by instanton-anti-
instanton configurations, as suggested by ’t Hooft’s explan-
ation of the UAð1Þ problem.
However when classical sources begin to play a role at

small xB, the additional presence of a dynamical momen-
tum scale QS can induce over-the-barrier sphaleronlike
topological transitions (as opposed to the instanton-anti-
instanton tunneling transitions) between different θ-vacua
labeled by integer-valued Chern-Simons numbers. This is
very similar to the temperature induced sphaleron transi-
tions that have been studied previously. In particular, one
can map our axionlike effective action in this case to earlier
work [39] describing the propagation of an axion in a hot
QCD plasma. Similarly to that study, the presence of
classical color sources does not prevent topological mass
generation of the η0; it however experiences a drag force
that strongly impacts spin diffusion.
This picture of spin diffusion is plausible for xB values in

the kinematic window corresponding toΛQCD < QS < mη0 .
However at very small xB when QS ≫ mη0 , our effective
action suggests that it is more likely that static shock wave
CGC configurations dominate over instanton/sphaleronlike
configurations. In this case, the WZW η̄Ω coupling gen-
erates a current that induces a nontrivial topological charge
density in the gluon shock wave. The problem here, with
essential modifications, is similar to recent work [90] on the
interaction of a putative axion with QCD matter in the
presence of classical color sources. The influence of such a
perturbation on the shock wave diminishes rapidly with
increasing QS leading to a rapid quenching of spin
diffusion in the Regge limit.
This first study can be quantified further to provide

concrete predictions for g1 at small xB. It is equally
important is to understand how renormalization works in
our framework analogously to previous work in perturba-
tive QCD [97–101]. While the anomaly equation holds
both for bare and renormalized quantities [102], the
correspondence at small xB between the smearing of the
topological charge density and that of the gluon shock wave
needs to be better understood. Work in this direction is in
progress. Not least, for quantitative precision, we will need
to extend our computation beyond the chiral limit and take
into account the influence of light quark masses. Following
the pioneering work in [59,103,104], there has been
considerable work in the chiral perturbation theory of

the Uð3Þ nonet both on the phenomenology [60] of η0
mixings and decays and on high order precision compu-
tations in this framework [105]. With regard to the
latter, finite temperature computations are especially
relevant [106].
It will also be important to identify other signatures of

the topological screening picture, given the exciting pos-
sibility that g1 at small xB could be sensitive to sphaleron-
like transitions. One possibility discussed previously in the
literature is to measure semi-inclusive hadron production in
DIS, off polarized proton and deuteron targets, in the target
fragmentation region [107,108]. Specifically, it was argued
that first xB moments of so-called “fracture” functions
[109] (of the momentum fraction of the nucleon carried by
the hadron) satisfies the following. (i) It is sensitive to the
ratio of the isosinglet and isotriplet axial charges; this ratio,
a quantitative measure of OZI violation, is proportional to
χ0ð0Þ. (ii) It is independent of the target. Our work suggests
that such an OZI suppression may be strongly sensitive to
xB and in this kinematic regime, may also have a target
dependence due to the differing color charge densities
probed. For a discussion of effects of the anomaly in the
context of quark fragmentation, see [110]. One can also
pursue in parallel similar signatures in polarized proton-
proton collisions.34 These and other such possible phe-
nomenological consequences with be pursued separately.
We now turn to our outlook on the possible implications

of this work for QCD spin studies. The presence of the off-
forward infrared pole of the anomaly in Σ (and, as we have
argued, in g1) suggests (i) that Σ can be expressed as an
intrinsically nonlocal operator, and (ii) Σ has a nontrivial
dependence on infrared physics, in particular that gov-
erning the physics of the η0. Indeed, our final result for Σ is
proportional to the square root of the slope of the
topological susceptibility in the forward limit. Our work
(and preceding work in [3,4]) therefore brings into question
the applicability35 of QCD factorization for quantities such
as g1 that are sensitive to the anomaly [112]. Likewise,
similarly to our concerns regarding the applicability of
collinear kinematics, we discuss at length in Appendix C
why the eikonal expansion, frequently employed in studies
of spin at small xB, is not applicable to observables
sensitive to the anomaly. This is because the latter couples
to zero modes of the Dirac operator [55], the physics of
which is missed when higher order terms in this expansion
are omitted. Not least in importance are the possible
implications of this work for spin sum rules and their
interpretation [113,114].
Looking beyond QCD spin, the possibility of laboratory

measurements of sphaleron transitions is of great interest in

34We thank Werner Vogelsang for a discussion on this point.
35A corollary to this question would be to better understand in

this topological screening framework the role of entanglement
[111] in the proton’s spin.
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phenomena spanning a wide range in energy scales. As is
well known, sphaleron transitions are conjectured to play a
key role in electroweak baryogenesis [38,115,116].
Sphaleronlike topological transitions can also produce a
chiral magnetic effect (CME) [88,117] in heavy-ion colli-
sions. In this case, topological transitions in drive charge
separation in an external magnetic field, signatures of
which can be extracted in the heavy-ion experiments.
While the CME has been ruled out [118] at the highest
energies studied at the Relativistic Heavy Ion Collider
(RHIC), prospects for its measurement exist at lower
energies [119]. Complicating the extraction of a definitive
signal of this effect is the large experimental and theoretical
background [120] in the complex environment of the RHIC
collisions. Our study suggests that polarized DIS measure-
ments at small xB may provide an alternate route to
empirically establish the existence of such topological
transitions in nature.
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APPENDIX A: DETAILED DERIVATION OF THE
WZW ACTION FOR THE η̄

We begin with the expression in Eq. (29):

WI ¼ −
i
32

Z
1

−1
dα
Z

∞

0

dTN
Z
P
DxDψ trχω̄ð0Þ

× exp

�
−
Z

T

0

dτLðαÞðτÞ
�

ðA1Þ

To isolate the WZW term of interest, we will first expand
WI up to order ΠA2 in a presence of the scalar field36 Φ,
assuming that all fields commute with each other. We start
by expanding WI to the linear power in Π and taking the
trace of two component matrices:37

WI ½Π� ¼
EΦ
4

Z
1

−1
dα
Z

∞

0

dTN
Z
P
DxDψ exp

�
−
Z

T

0

dτ

�
_x2

2E
þ 1

2
ψ _ψ − i_xμAμ þ

iE
2
ψμψνFμν

��
exp

�
−T

Eα2Φ2

2

�

× trc

�
ψ5ðτ0ÞΠðx0Þ − ψμðτ0Þ_xμðτ0Þ

Z
T

0

dτ1ψνðτ1Þψ5ðτ1Þ∂νΠðx1Þ
	

ðA2Þ

where we use the shorthand notation xi ≡ xðτiÞ. The first term in this equation corresponds to expansion of the insertion
ω̄ð0Þ in Eq. (A1) to the leading power in Π while the second term is obtained by expansion of the exponential factor.
Now expanding the exponential factor to the order A2 we obtain,

WI ½ΠA2� ¼ −
EΦ
4

Z
1

−1
dα
Z

∞

0

dTN
Z
P
DxDψ exp

�
−
Z

T

0

dτ

�
_x2

2E
þ 1

2
ψ _ψ

��
exp

�
−T

Eα2Φ2

2

�

× trc

�
ψ5ðτ0ÞΠðx0Þ − ψμðτ0Þ_xμðτ0Þ

Z
T

0

dτ1ψνðτ1Þψ5ðτ1Þ∂νΠðx1Þ
	
V2V3 ðA3Þ

where the interaction with the background gluon field is defined by the worldline vertex,

Vi ≡
Z

T

0

dτið_xρðτiÞ þ EψρðτiÞψαðτiÞ∂αÞAρðxiÞ ðA4Þ

To calculate the functional integrals in Eq. (A3), it is convenient to rewrite the background fields in terms of their Fourier
transforms, which gives,38

36This scalar field can be understood, via a Legendre transform, as the functional derivative of the Wess-Zumino effective action [8,9]
with respect to the chiral condensate. We will take this field to be constant for the rest of the discussion.

38In the second term of the equation, we used rotational invariance to replace the integration over τ1 by τ0, and subsequently
substituted τ0 ↔ τ1.

37We will set the einbein E ¼ 2 at the end of the derivation.
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WI ½ΠA2� ¼ −
EΦ
4

Z
1

−1
dα
Z

∞

0

dTN
Z
P
DxDψ exp

�
−
Z

T

0

dτ

�
_x2

2E
þ 1

2
ψ _ψ

��
exp

�
−T

Eα2Φ2

2

�

×
Y

k¼0;2;3

Z
d4pk

ð2πÞ4 trcψ5ðτ0Þ
�
1þ ip0νψ

νðτ0Þ
Z

T

0

dτ1ψμðτ1Þ_xμðτ1Þ
	
Πðp0Þeip0x0 Ṽ2eip2x2 Ṽ3eip3x3 ; ðA5Þ

where

Ṽi ≡
Z

T

0

dτi½_xρðτiÞ þ iEψρðτiÞψαðτiÞpiα�AρðpiÞ ðA6Þ

With this form for Eq. (A5), we can begin to perform the
functional integration over the coordinate and Grassmann
worldlines. Considering first the Grassmanian integrals,
since they satisfy periodic boundary conditions, we first
separate their zero modes as

ψðτÞ ¼ ψ þ ξðτÞ; ðA7Þ

and substitute

Z
P
Dψ exp

�
−
Z

T

0

dτ
1

2
ψ _ψ

�

→
Z

d5ψ
Z
P
Dξ exp

�
−
Z

T

0

dτ
1

2
ξ_ξ

�
ðA8Þ

The integration over the zero modes in Eq. (A5) can be
easily done using the Grassmann identity,

Z
d5ψψμψνψρψσψ5 ¼ ϵμνρσ; ðA9Þ

where the convention we use for the Levi-Civita tensor in
Euclidean space is ϵ1234 ¼ 1.
The remaining integral over ξ can be straightforwardly

calculated (see Refs. [46,52,121] for details) using

Z
P
Dξexp

�
−
Z

T

0

dτ
1

2
ξ_ξ

�
ξμðτ1Þξνðτ2Þ¼−

1

2
gμν _GBðτ1;τ2Þ;

ðA10Þ

where the derivative of the bosonic worldline propagator is

_GBðτ1; τ2Þ ¼ signðτ1 − τ2Þ −
2ðτ1 − τ2Þ

T
: ðA11Þ

Note that before applying Eqs. (A9) and (A10), one should
properly arrange the variables in Eq. (A5), taking into
account the anticommuting property of Grassmann
variables.
After a rather laborious calculation, we obtain,

WI ½ΠA2� ¼ −
E2Φ
4

Z
1

−1
dα
Z

∞

0

dTN
Z
P
Dx exp

�
−
Z

T

0

dτ
_x2

2E

�
exp

�
−T

Eα2Φ2

2

� Y
k¼0;2;3

Z
d4pk

ð2πÞ4
Z

T

0

dτ2

Z
T

0

dτ3

× trc

�
Ep2αp3βϵ

ρασβ − p0ν

Z
T

0

dτ1 _x1μS
μν;σρ
τ1;τ2;τ3ðp2; p3Þ

	
Πðp0Þeip0x0Aρðp2Þeip2x2Aσðp3Þeip3x3 ; ðA12Þ

where

Sμν;σρ
τ1;τ2;τ3ðp2; p3Þ≡ p2α _xσ3ϵ

μραν þ p3β _x
ρ
2ϵ

μσβν þ i
E
2
p2αp3βϵ

μρασgβν _GBðτ3; τ0Þ

− i
E
2
p2αp3βϵ

μραβgσν _GBðτ3; τ0Þ þ i
E
2
p2αp3βϵ

μρσβgαν _GBðτ2; τ0Þ − i
E
2
p2αp3βϵ

μρσνgαβ _GBðτ2; τ3Þ

þ i
E
2
p2αp3βϵ

μρβνgασ _GBðτ2; τ3Þ − i
E
2
p2αp3βϵ

μασβgρν _GBðτ2; τ0Þ þ i
E
2
p2αp3βϵ

μασνgρβ _GBðτ2; τ3Þ

− i
E
2
p2αp3βϵ

μαβνgρσ _GBðτ2; τ3Þ þ i
E
2
p2αp3βϵ

ρασβgμν _GBðτ1; τ0Þ − i
E
2
p2αp3βϵ

ρασνgμβ _GBðτ1; τ3Þ

þ i
E
2
p2αp3βϵ

ραβνgμσ _GBðτ1; τ3Þ − i
E
2
p2αp3βϵ

ρσβνgμα _GBðτ1; τ2Þ þ i
E
2
p2αp3βϵ

ασβνgμρ _GBðτ1; τ2Þ: ðA13Þ
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The integration over the coordinate worldlines can be
performed in a similar way. We begin again by separating
out the zero modes as,

xðτiÞ ¼ ȳþ yðτiÞ; ðA14Þ

and replacing Z
P
Dx →

Z
d4ȳ

Z
P
Dy: ðA15Þ

Performing the change of variables [Eq. (A14)] in
Eq. (A12), the integral over the zero modes ȳ yields the
overall 4-momentum conserving delta-function:Z

d4ȳeip0ȳeip2ȳeip3ȳ ¼ ð2πÞ4δ4ðp0 þ p2 þ p3Þ: ðA16Þ

The remaining integral over yðτÞ can be calculated using
the identity

N
Z
P
Dy exp

�
−
Z

T

0

dτ
_y2

2E

�
Yeip0y0eip2y2eip3y3

¼ 1

ð2πETÞ2 hYe
ip0y0eip2y2eip3y3i; ðA17Þ

where Y is an arbitrary product of factors _yαi [such
as those appearing in Eq. (A12)] and the notation
hYeip0y0eip2y2eip3y3i denotes all possible Wick contractions
between the trajectories y in the product Yeip0y0eip2y2eip3y3 .
The resulting Wick contractions can be calculated using

hyμðτ1Þyνðτ2Þi ¼ −gμνGBðτ1; τ2Þ with

GBðτ1; τ2Þ ¼
E
2
jτ1 − τ2j − E

ðτ1 − τ2Þ2
2T

; ðA18Þ

and

hyμðτ1Þeikyðτ2Þi ¼ ihyμðτ1Þyνðτ2Þikνeikyðτ2Þ: ðA19Þ

After the computations using these Wick contractions, the
expectation value of the remaining exponential factors
should be performed, and give,

heip0y0eip2y2eip3y3i¼ exp½p0 ·p2GBðτ0;τ2Þ
þp0 ·p3GBðτ0;τ3Þþp2 ·p3GBðτ2;τ3Þ�:

As a result of these manipulations, and assuming that the
background gluon fields are on the mass-shell, we obtain
the formula:

WI ½ΠA2� ¼ −
E2Φ
4

Z
1

−1
dα
Z

∞

0

dT
1

ð2πETÞ2 exp
�
−T

Eα2Φ2

2

� Y
k¼0;2;3

Z
d4pk

ð2πÞ4
Z

T

0

dτ2

Z
T

0

dτ3

× trc

�
E þ

Z
T

0

dτ1T τ1;τ2;τ3ðp2; p3Þ
	
ϵρασβp2αAρðp2Þp3βAσðp3ÞΠðp0Þ

× expðp2 · p3½−GBðτ0; τ2Þ −GBðτ0; τ3Þ þ GBðτ2; τ3Þ�Þð2πÞ4δ4ðp0 þ p2 þ p3Þ; ðA20Þ

where

T τ1;τ2;τ3ðp2; p3Þ≡ −
∂2

∂τ1∂τ3 GBðτ1; τ3Þ −
∂2

∂τ1∂τ2GBðτ1; τ2Þ −
Ep2 · p3

2
fð _GBðτ0; τ1Þ þ _GBðτ1; τ3Þ þ _GBðτ3; τ0ÞÞ2

þ ð _GBðτ0; τ1Þ þ _GBðτ1; τ2Þ þ _GBðτ2; τ0ÞÞ2 − ð _GBðτ2; τ1Þ þ _GBðτ1; τ3Þ þ _GBðτ3; τ2ÞÞ2 − _G2
Bðτ3; τ0Þ

− _G2
Bðτ2; τ0Þ þ _G2

Bðτ2; τ3Þ − _GBðτ0; τ1Þ _GBðτ3; τ0Þ − _GBðτ1; τ3Þ _GBðτ3; τ0Þ − _GBðτ0; τ1Þ _GBðτ2; τ0Þ
− _GBðτ2; τ0Þ _GBðτ1; τ2Þ þ _GBðτ3; τ2Þ _GBðτ2; τ1Þ þ _GBðτ1; τ3Þ _GBðτ3; τ2Þg: ðA21Þ

We integrate the terms with second derivatives over proper time variable by parts. Taking into account,

Z
T

0

dτ1 _GBðτ1; τ0Þ ¼
Z

T

0

dτ1 _GBðτ1; 0Þ ¼
Z

T

0

dτ1

�
signðτ1Þ −

2τ1
T

�
¼ 0; ðA22Þ

reparametrizing the proper time variable τ ¼ uT, and using the following relations between the worldline propagators:

_GBðu1; u2Þ þ _GBðu2; u4Þ þ _GBðu4; u1Þ ¼ −GFðu1; u2ÞGFðu2; u4ÞGFðu4; u1Þ;
1 − _G2

Bðui; ujÞ ¼ 4GBðui; ujÞ; ðA23Þ
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we obtain39

WI ½ΠA2� ¼ −
2Φ
ð4πÞ2

Z
1

−1
dα
Z

∞

0

dT
Y

k¼0;2;3

Z
d4pk

ð2πÞ4
Z

1

0

du2

Z
1

0

du3trcð1 − 2TB2Þ

× ϵρασβp2αAρðp2Þp3βAσðp3ÞΠðp0Þ expð−TðΦ2α2 þ B2ÞÞð2πÞ4δ4ðp0 þ p2 þ p3Þ ðA24Þ

where B2 ≡ p2 · p3ðGBðu0; u2Þ þGBðu0; u3Þ − GBðu2; u3ÞÞ. Note that two terms in this equation corresponds to two terms
in Eq. (A2).
Integration over period of the worldline T is trivial, and gives,

WI ½ΠA2� ¼ −
2Φ
ð4πÞ2 trc

Z
1

−1
dα

Y
k¼0;2;3

Z
d4pk

ð2πÞ4 ϵ
ρασβp2αAρðp2Þp3βAσðp3ÞΠðp0Þ

×
Z

1

0

du2

Z
1

0

du3

�
1

α2Φ2 þ B2
−

2B2

ðα2Φ2 þ B2Þ2
	
ð2πÞ4δ4ðp0 þ p2 þ p3Þ: ðA25Þ

The integration over α can be done using the equations

Z
1

0

dα
1

α2Φ2 þ B2
¼ 1

Φ2

Φ
B
arctan

�
Φ
B

	
; ðA26Þ

and

Z
1

0

dα
α2Φ2

ðα2Φ2 þ B2Þ2 ¼
1

2Φ2

�
−

1

1þ B2=Φ2
þΦ

B
arctan

�
Φ
B

		
: ðA27Þ

We see that while both terms in Eq. (A2) contain a singularity corresponding to B → 0 their sum is finite:

WI ½ΠA2� ¼ 1

4π2
1

Φ
trc
Y

k¼0;2;3

Z
d4pk

ð2πÞ4 ϵ
ρασβp2αAρðp2Þp3βAσðp3ÞΠðp0Þ

×
Z

1

0

du2

Z
1

0

du3
1

1þ B2=Φ2
ð2πÞ4δ4ðp0 þ p2 þ p3Þ: ðA28Þ

Keeping only the leading term of expansion in powers of Φ, which is dominant in the limit Φ → ∞, we get

WI ½ΠA2� ¼ 1

4π2
1

Φ
trc
Y

k¼0;2;3

Z
d4pk

ð2πÞ4 ϵ
ρασβp2αAρðp2Þp3βAσðp3ÞΠðp0Þð2πÞ4δ4ðp0 þ p2 þ p3Þ: ðA29Þ

Substituting the Fourier transformation of the back-
ground field we can rewrite this equation as

WI ½ΠA2� ¼ −
1

8π2
1

Φ
trc

Z
d4xΠðxÞFμνðxÞF̃μνðxÞ: ðA30Þ

where, as previously for the triangle, we replaced the
derivatives of the gluon fields by field strength tensors.

APPENDIX B: WORLDLINE DERIVATION OF
THE CGC EFFECTIVE ACTION

The expectation value of an arbitrary operator O in the
proton can be represented as the trace

hOi ¼ TrfORg; ðB1Þ

of the operator convoluted with the density matrixR of the
target hadron, with the Schwinger-Keldysh path integral
[122,123] defined as

39For convenience, we have followed convention to fix the
einbein E ¼ 2.
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Z ¼ TrðRÞ ¼ TrðU0;−∞Rinit:U−∞;0Þ

¼
Z

dA1dA2

Z
dΨ1dΨ2hA1;Ψ1jRinitjA2;Ψ2i

×
Z

A2

A1

DA
Z

Ψ2

Ψ1

DΨDΨ̄eiSC : ðB2Þ

The density matrix is obtained from the real-time evolution
from t ¼ −∞ of the initial density matrix Rinit. on the
Schwinger-Keldysh double time contour C with U t;t0 ¼
expð−iHðt−t0ÞÞ, where H is the QCD Hamiltonian. This
can be expressed as the path integral on the rhs, where SC is
the QCD action on the double time contour, and A1, Ψ1

(A2,Ψ2), are respectively the gauge and fermion fields
defined on the upper (lower) part of the contour.
Note that hA1;Ψ1jRinit:jA2;Ψ2i denotes matrix elements

of the initial density matrix of noninteracting quarks and
gluons at t → −∞, with Rinit: ¼ RYM ⊗ Rvalence, where
RYM ¼ j0ih0j is the Yang-Mills vacuum andRvalence is the
three valence quark state with the proton’s quantum
numbers. We can rewrite Eq. (B2) as

Z ¼
Z

dA1dA2hA1jρ̂YMjA2i
Z

A2

A1

DAZf½A� exp fiSYMC g;

ðB3Þ
where

Zf½A�≡
Z

dΨ1dΨ2hΨ1jRvalencejΨ2i

×
Z

Ψ2

Ψ1

DΨDΨ̄ exp fiSqCg; ðB4Þ

with the Dirac action SqC ≡
R
d4zCΨ̄ði=D½A� −mÞΨ and the

Yang-Mills action SYMC ≡ − 1
2

R
d4zCtrcFμνFμν.

We will focus here on the fermionic path integral Zf½A�
in the gauge field background. It was shown explicitly in
Appendix A of [124] how this expression can be mapped to
on to an initial value problem describing the evolution of
the density matrix, expressed in terms of the worldline
bosonic and Grassmannian variables, on the corresponding
Schwinger-Keldysh contour. We will here, and in the
following sub-sections, not repeat the derivation in [124]
(see also [125]) but only employ salient features relevant to
our discussion.
We consider first the density matrix of a single valence

quark beforegeneralizing to that for the hadron.At asymptotic
negative infinity, its initial density matrix can be expressed as
the direct product of the densitymatrices corresponding to the
quark worldline’s color, its (bosonic) coordinate/momentum
and its (fermion) spin degrees of freedom:

Rq init: ¼ Rc
q init: ⊗ Rb

q init: ⊗ Rs
q init:: ðB5Þ

At high energies, it is appropriate to consider the motion
of the quark along the light cone direction, which has the
initial coordinate space representation,

Rb
q init: ¼

Z
d4zmax

Z
d4zmineiP

þðz−max−z−minÞ

× e−iP⊥ðz⊥max−z⊥minÞjzminÞðzmaxj: ðB6Þ

Here Pþ; P⊥ are light cone momenta of the quark and we
have neglected P− ∼ 1=Pþ assuming Pþ=Mp ≫ 1 (Mp

being the proton mass), for problems of interest. The
coordinates zmax and zmin, as we will soon see, are the
boundaries of the quark’s worldline. Further, the spin
density matrix can be expressed as [54,125,126]

Rs
init: ¼

1

4
ð1þ λψ5Þð1þ 2ψþψ−Þ: ðB7Þ

In terms of this initial density matrix, the worldline path
integral representation of the density matrix Rq½A� can
therefore be expressed as [124],

Rq½A� ¼TrcRc
qinit: ⊗

Z
d4zmax

Z
d4zmineiP

þðz−max−z−minÞ

×e−iP⊥ðz⊥max−z⊥minÞ

×
Z

∞

0

dT
Z

zmax

zmin

Dz
Z

Dψ
1

4
ð1þλψ5Þð1þ2ψþψ−Þ

×exp

�
−
Z

T

0

dτ

�
1

4
_z2þ1

2
ψ _ψþ igA_z− igψFψ

	�
;

ðB8Þ

where the color trace is over that of the initial quark density
matrix convoluted with the color matrix of the exponent in
the fundamental representation.
Note that Aμ here is the small x gauge field (and Fμν the

corresponding field strength) that dresses the quark world-
line in the course of its real-time evolution. This is
illustrated in Fig. 10(a). For a hadron with Pþ → ∞, the
interaction of this gauge field with the projectile is nearly
instantaneous as illustrated in Fig. 10(b), with z−1 and z−2 are
initial and final points delineating the width ∼1=Pþ. We
will now discuss below this shockwave structure of gauge
fields in the Regge limit.
As a warmup to the polarized case of interest, we will

first use the spin averaged worldline quark density matrix to
motivate the construction of the small x effective action for
unpolarized hadrons.40 The interaction of small x gauge
fields with the quark worldline in the Regge limit is
characterized by a strict ordering of the longitudinal
momentum components on the light cone. In general, if
the large x source is characterized by the momentum scale
P ¼ ðPþ; P−; P⊥Þ and the small x emission by the scale

40This EFT was also derived previously from Wong’s equa-
tions for quarks [127], obtained as the saddle point approximation
to the one-loop worldline QCD effective action—see [125] and
references therein.
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k ¼ ðkþ; k−; k⊥Þ, the ordering between the longitudinal
components is

Pþ ≫ kþ; P− ≪ k−: ðB9Þ

The Feynman x for the emitted gluon field is x¼kþ=Pþ→
0; hence, k2 ≃ −k2⊥. Since Pþ and k− are large, the
virtuality of the quark in the course of emission
is ðPþ kÞ2 ≃ 2Pþk−.
For a target propagating very close to the light

cone, the A− component dominates in the emission
of the accompanying small x gauge fields when we
choose the axial Aþ ¼ 0 gauge. The interaction term
Aμ _zμ in the worldline action in Eq. (B8), can therefore
be simplified to

Aμ _zμ ≃ A− _zþ; ðB10Þ

since in the eikonal approximation _z⊥ ∼ 0 and A⊥ is also
suppressed relative to A−. Likewise, the spin precession
term ψνψνFμν in the worldline action simplifies to

ψμψνFμν ≃ 2ψþψ iF−i: ðB11Þ
Consequently, we can rewrite the worldline evolution of

the initial density matrix in Eq. (B8) as

Rq½A� ¼ trcRc
q init:

Z
d4zmax

Z
d4zmineiP

þðz−max−z−minÞe−iP⊥ðz⊥max−z⊥minÞ
Z

∞

0

dT
Z

zmax

zmin

Dz

×
Z

Dψ
1

4
ð1þ λψ5Þð1þ 2ψþψ−Þ exp

�
−
Z

T

0

dτ

�
1

4
_z2 þ 1

2
ψ _ψ þ ig_zþA− − 2igψþψ iF−i

	�
ðB12Þ

One can further simplify Eq. (B12) by taking into account the fact that computing the functional integral over Grassmann
variables will yield zero for the interaction term ψþψ iF−i. In the leading eikonal approximation, for spin averaged
observables, we obtain

Rq½A� ¼ trcRc
q init:

Z
d4zmax

Z
d4zmineiP

þðz−max−z−minÞe−iP⊥ðz⊥max−z⊥minÞ

×
Z

∞

0

dT
Z

zmax

zmin

Dz
Z

Dψ exp

�
−
Z

T

0

dτ

�
1

4
_z2 þ 1

2
ψ _ψ þ igA− _zþ

	�
: ðB13Þ

Thus in this approximation, one can deduce from the
exponential factor in Eq. (B13) that the interaction of the
quarkwith the background field,without the spin-dependent
terms, is equivalent to that of a scalar particle. Spin effects
will come in starting at subeikonal order from the transverse

field strengths Fij. However as we will soon discuss in
Appendix C, for spin observables sensitive to the anomaly,
such an eikonal approximation breaks down.
Returning to the unpolarized case, in Fig. 11, since

kþ ≪ Pþ, and

FIG. 10. Left: Evolution of the initial density matrix ρinit in the worldline representation. Right: The shock-wave approximation for the
small-x emission.

FIG. 11. The small-x emission of the target in the second order
of the perturbative expansion.
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ðz−max − z−minÞ ∼ ðz−2 − z−1 Þ ∼
1

Pþ → 0; ðB14Þ

we can neglect the dependence of the background gauge
field on z−: Aμ ≡ Aμðzþ; z⊥Þ. Further, since

ðzþmax − zþminÞ ∼
1

P− → ∞; ðB15Þ

and taking into account the momentum ordering in
Eq. (B9),

ðzþ2 − zþ1 Þ ∼
1

k−
≪ ðzþmax − zþminÞ; ðB16Þ

where zþ1 and zþ2 are initial and final points of the emission
of the gauge field, as illustrated in Fig. 10(b), we can
simplify the phase factor in Eq. (B13) to

exp

�
−ig

Z
T

0

dτA− _zþ
�
¼ exp

�
−ig

Z
zþ
2

zþ
1

dzþA−ðzþ;z⊥Þ
�

≃ exp

�
−ig

Z
∞

−∞
dxþA−ðxþ;z⊥Þ

�
:

ðB17Þ

This is the lightlike “Wilson line” representing the color
rotation of the quark in the background field.
Substituting Eq. (B17) into Eq. (B13), splitting the

functional integral over coordinates into two segments
corresponding to before and after the instantaneous emis-
sion of the gauge field at point z, and after some algebra,41

we obtain,

Rq½A� ¼ trcRc
qinit:

Z
d4zmax

Z
d4zmineiP

þðz−max−z−minÞ

×e−iP⊥ðz⊥max−z⊥minÞ
Z

dz−
Z

d2z⊥

×
Z

∞

0

dT2

Z
zmax

z
Dz_zþ exp

�
−
Z

T2

0

dτ
1

4
_z2
�

×exp

�
−ig

Z
∞

−∞
dxþA−ðxþ;z⊥Þ

�Z
∞

0

dT1

Z
z

zmin

Dz

×exp

�
−
Z

T1

0

dτ
1

4
_z2
�

ðB18Þ

The structure of Eq. (B18) is clear: the worldline prop-
agates without the emission from zmin to z, emits the small x
background field at a point z and subsequently freely
propagates from point z to zmax.

The functional integrals in Eq. (B18) can be performed
straightforwardly using the techniques discussed at length
in [54]. We obtain,42

Z
∞

0

dT
Z

z1

z2

Dz exp

�
−
Z

T

0

dτ
1

4
_z2
�

¼
Z

d4p
ð2πÞ4 e

−ipðz1−z2Þ 1

p2
¼ ðz1j

1

p2
jz2Þ; ðB21Þ

Similarly,

Z
∞

0

dT
Z

z1

z2

Dz_zþ2 exp

�
−
Z

T

0

dτ
1

4
_z2
�
¼ −iðz1j

2pþ

p2
jz2Þ

ðB22Þ

Substituting Eqs. (B21) and (B22) into Eq. (B18),
integrating over longitudinal coordinates, and analytically
continuing into the Minkowski space, we get

Rq½A� ¼ trc

Z
d2z⊥max

Z
d2z⊥min

Z
d2z⊥e−iP⊥ðz⊥max−z⊥minÞ

×Rc
q init:ðz⊥maxj

1

p2⊥
jz⊥Þ

× exp

�
−ig

Z
∞

−∞
dxþA−ðxþ; z⊥Þ

�

× ðz⊥j
1

p2⊥
jz⊥minÞ2Pþ

Z
dx−; ðB23Þ

where the integral
R
dx− represents momentum conserva-

tion of Pþ.
From Eq. (B23), we see that in the high energy limit, the

only effect of the background field is to color rotate the
initial density matrix by an infinite lightlike Wilson line.
We can rewrite it more compactly as

41We employed here the identity
R
T
0 dτ _xþsignð_xþÞδðxþÞ ¼ 1.

42We used here the Schwinger notation, namely, jxÞ is an
eigenvector for the coordinate operator x̂μ: x̂μjxÞ ¼ xμjxÞ. The
corresponding canonical conjugate momentum operator is p̂μ:
p̂μjpÞ ¼ pμjpÞ, and the commutator ½p̂μ; x̂ν� ¼ −igμν, giving

ðxjyÞ¼ δ4ðx−yÞ; ðpjqÞ¼ ð2πÞ4δðp−qÞ;Z
d4xjxÞðxj ¼ 1

Z
d4p
ð2πÞ4 jpÞðpj ¼ 1; ðxjpÞ¼ e−ipx ðB19Þ

With Eq. (B19), the last relation in Eq. (B21) can be obtained
easily. Note that for brevity we drop the hats in the notation of
operators. We further defined in Eq. (B23)

ðx2⊥jfðp⊥Þjx1⊥Þ≡
Z

d2p⊥
ð2πÞ2 e

ip⊥ðx2⊥−x1⊥Þfðp⊥Þ; ðB20Þ

where fðp⊥Þ is an arbitrary function of the operator p⊥.
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Rq½A� ¼
Z

d2z⊥trc
�
ρqðz⊥Þexp

�
−ig

Z
∞

−∞
dxþA−ðxþ;z⊥Þ

��
;

ðB24Þ

where the quark color matrix ρqðz⊥Þ ¼ ρaqðz⊥Þta absorbs all
the terms in Eq. (B23) with the exception of theWilson line.
The above is the leading eikonal expression for the quark

density matrix. There is of course a nonperturbative distri-
bution of the distribution of “valence partons” in the hadron
carrying large fractions of its momentum. For a large nucleus
and/or for large parton occupancies in the proton, they can be
represented by a classical distribution of color charges, and
the trace replaced by a path integral over a weighted
distribution of their color charge densities [32,33,128].
Hence in the Regge limit, Eq. (B1) can be expressed as,

hOi ¼
Z

DρW½ρ�
Z

DAO½A�eiS½A;ρ�: ðB25Þ

Here the first path integral representing the initial density
matrix denotes a static statistical distribution of classical
color charges with the nonperturbative weight W½ρ�, whose
kinematics is separated in light cone momenta from that of
the dynamical fields, represented by the second path integral
over the small x gauge fields with the effective action,

S½A; ρ� ¼ −
1

4

Z
d4xFμν

a Fa
μν

þ i
Nc

Z
d2x⊥trc½ρðx⊥Þ lnðU½∞;−∞�ðx⊥ÞÞ�: ðB26Þ

The second term in the effective action represents the eikonal
coupling of large x and small xmodes, with the “exponential
of lnðU½∞;−∞�ðx⊥Þ” corresponding to the phase in Eq. (B24);
this particular representation of the interaction term was first
discussed at length in [127] and its interpretation further
discussed in [129].
For a large nucleus, W½ρ� is given by a Gaussian (MV)

distribution of classical color charges [32,33,128], whose
dimensionful variance introduces the saturation scale QS;
for a large nucleus; in the Regge limit, this scale is much
larger than intrinsically nonperturbative scales in the

nucleus, justifying the application of the systematic weak
coupling techniques of the CGC EFT [35,36]. Our dis-
cussion in this Appendix therefore corresponds to a
rederivation of the small x CGC EFT for an unpolarized
hadron in the worldline formalism.

APPENDIX C: BREAKDOWN OF THE EIKONAL
EXPANSION FOR g1ðxB;Q2Þ

We will discuss here why the high energy eikonal
expansion of operators (in powers of 1=Pþ), a powerful
tool in high energy scattering which enormously simplified
the discussion in Appendix B, breaks down completely for
quantities that are sensitive to the chiral anomaly.A clear case
in point is that of g1ðxB;Q2Þ. Simply put, this breakdown43

occurs because the anomaly couples to zero modes of the
Dirac operator that must be treated in exact kinematics.
The importance of the careful treatment of kinematics to

uncover the anomaly is of course well known44 from the
seminal work of Adler, Bell, Jackiw and Bardeen [134–
137] but to the best of our knowledge has not been
addressed in this high energy context. To illustrate its
importance, we will revisit our derivation in Paper I of the
antisymmetric part of the box diagram and point out where
the subeikonal terms discussed in the literature appear and
why they are insufficient to reproduce the anomaly.
The antisymmetric component of the DIS polarization

tensor can, to one loop accuracy, be expressed as [1]

Γ̃μν
A ½k1; k3� ¼

e2e2f
2

Z
∞

0

dT
T

Trc

Z
Dx
Z

Dψ ½Vμ
1ðk1ÞVν

3ðk3Þ − ðμ ↔ νÞ�

×exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψμ _ψ

μ þ ig_xμAμ − igψμψνFμν

	�
; ðC1Þ

where the vertex

Vμ
i ðkiÞ≡

Z
T

0

dτið_xμi þ 2iψμ
i kj · ψ jÞeiki·xi ; ðC2Þ

FIG. 12. The box diagramΓμναβ
A ½k1; k3; k2; k4� for polarized DIS.

43While our focus here is on eikonal approximations, our discussion also applies to other kinematic approximations such as collinear
kinematics often employed in perturbative QCD.

44See also the nice pedagogical reviews [130–133].
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corresponds to the interaction of a worldline with the external electromagnetic current, and xi≡xðτiÞ, ψ i≡ψðτiÞ.
To recover the general expression for the box diagram in Fig. 12, one expands the third (Wilson line) and fourth (spin

precession) terms of the exponential in the above expression to second order in the gauge fields:

Γ̃μν
A ½k1;k3�¼ ð−igÞ2e

2e2f
2

Z
∞

0

dT
T
Trc

Z
Dx
Z

Dψ exp

�
−
Z

T

0

dτ

�
1

4
_x2þ1

2
ψ · _ψ

	�

×

�
Vμ
1ðk1ÞVν

3ðk3Þ
Z

T

0

dτ2ð_xα2Aαðx2Þþ2ψα
2ψ

λ
2∂λAαðx2ÞÞ

Z
T

0

dτ4ð_xβ4Aβðx4Þþ2ψβ
4ψ

η
4∂ηAβðx4ÞÞ−ðμ↔νÞ

�
: ðC3Þ

Further expressing the gauge fields in terms of their Fourier transforms,

Aαðx2Þ ¼
Z

d4k2
ð2πÞ4 e

ik2·x2Ãαðk2Þ; Aβðx4Þ ¼
Z

d4k4
ð2πÞ4 e

ik4·x4Ãβðk4Þ; ðC4Þ

one obtains,

Γμν
A ½k1; k3� ¼

Z
d4k2
ð2πÞ4

Z
d4k4
ð2πÞ4 Γ

μναβ
A ½k1; k3; k2; k4�TrcðÃαðk2ÞÃβðk4ÞÞ; ðC5Þ

where the expression for the box diagram is

Γμναβ
A ½k1; k3; k2; k4�≡ −

g2e2e2f
2

Z
∞

0

dT
T

Z
Dx
Z

Dψ exp

�
−
Z

T

0

dτ

�
1

4
_x2 þ 1

2
ψ · _ψ

	�

× ½Vμ
1ðk1ÞVν

3ðk3ÞVα
2ðk2ÞVβ

4ðk4Þ − ðμ ↔ νÞ�: ðC6Þ

In this derivation, we have made no approximation with regard to keeping leading or subleading components of the gauge
field or field strength tensor but expanded all terms to quadratic order in the gauge fields.45 For our discussion, this
expansion to quadratic order is fully sufficient. Further expansion to higher orders will not change our results and
conclusions—we will address this point at the end of our discussion.
One can further rewrite Eq. (C6) as

Γμναβ
A ½k1; k3; k2; k4� ¼ −

g2e2e2f
2

Z
∞

0

dT
T

Z
Dx
Z

Dψ exp
�
−
Z

T

0

dτ
�
1

4
_x2 þ 1

2
ψ · _ψ

	�

×
Y4
k¼1

Z
T

0

dτk

�X9
n¼1

Cμναβn;ðτ1;τ2;τ3;τ4Þ½k1; k3; k2; k4� − ðμ ↔ νÞ
�
ei
P

3

i¼1
kixi : ðC7Þ

where the coefficients Cμναβn;ðτ1;τ2;τ3;τ4Þ½k1; k3; k2; k4� are functions of coordinate [xi ≡ xðτiÞ] and Grassmann variables

[ψ i ≡ ψðτiÞ], which depend on the proper time coordinates τi of the interaction of the worldlines with the external
virtual photon and gluon fields.
These coefficients were worked out in full generality in Appendix A of [1]. We showed that the Bjorken

limit (Q2 → ∞ and xB ¼ fixed) and the Regge limit (xB → 0, Q2 ¼ fixed) corresponded to taking τ1 → τ3 and τ2 →
τ4 respectively in the sum of all these contributions. In Appendix C of [1], we showed explicitly for the Bjorken limit that
this gave,

Γμναβ
A ½k1; k3; k2; k4�jQ2→∞ ¼ −2

g2e2e2f
π2

ϵμνηκ ðk1η − k3ηÞð2πÞ4δð4Þ
�X4

i¼1

ki

	 ðkκ2 þ kκ4Þϵαβσλk2σk4λ
ðk2 þ k4Þ2

×
1

2k1 · k2

��
1þ k21

2k1 · k2

	
ln

�
2k1 · k2 þ k21

k21

�
− 1

�
: ðC8Þ

45We have not specified a choice of gauge either; in computations of the anomaly, one often employs the Fock-Schwinger gauge
xμAμ ¼ 0 [138]. With this gauge choice, writing x ¼ x̄þ x0, where x̄; x0 denote zero and nonzero modes respectively, one can write
AμðxÞ ≈ 1

2
x0νFμνðx̄Þ [49].
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We further showed that, up to overall kinematic factors, this
result for the box diagram agreed with the Adler-Bell-
Jackiw (ABJ) result [134,136] for the triangle graph of the

chiral anomaly. In particular, ðkκ
2
þkκ

4
Þ

ðk2þk4Þ2 ≡ lκ

l2, the infrared pole

of the anomaly.
We emphasize that to recover the anomaly in this

derivation it was essential that we not make any approx-
imations to the kinematics of the internal loop variables
besides those imposed by the asymptotic kinematics of the
external probe (Q2, xB). Performing kinematic approxima-
tions of the internal variables (collinear/eikonal) that do not
respect the anomalous functional chiral Ward identity will
miss the fundamental physics of the anomaly with its
accompanying infrared pole.
Though this observation is general, we can illustrate it

further in the context of the small x eikonal expansion we
discussed previously in Appendix B. In the strict eikonal
limit, only the Aþ component of the current contributes,46

and the interaction of the worldline current with the
external gauge field can be expressed as [54],

jA
þ

W ðxiÞ ¼ ð_x−i þ 2ψ−
i ψ

m
i ∂mÞδðx−i ÞṼðx⊥;iÞ; ðC9Þ

with Ṽðx⊥;iÞ≡U½∞;−∞�ðx⊥;iÞ, where

U½x;y�ðx⊥;iÞ ¼ exp

�
−ig

Z
x

y
dx−i A

þðx−i ; x⊥;iÞ
�
: ðC10Þ

For unpolarized DIS, the product of the currents in
Eq. (C9) at τ2 and τ4 gives the well-known “dipole model”
expression

TrcðṼðx⊥ÞṼ†ðy⊥ÞÞ; ðC11Þ

in the polarization tensor. For polarized DIS, the leading
subeikonal contribution corresponds to A⊥ ∼ 1

Pþ ≠ 0, and
finite transverse field strengths F12. The corresponding
worldline current can be written as

jA⊥
W ðxiÞ ¼ _x−i δðx−i ÞṼðx⊥;iÞ þ 2igψ1

iψ
2
i Ṽpol:ðx⊥;iÞ; ðC12Þ

where

Ṽpol:ðx⊥;iÞ ¼ U½∞;x�ðx⊥ÞF12ðxiÞU½x;−∞�ðx⊥Þ: ðC13Þ

This expression for the “polarized Wilson line” (which we
see is very straightforward to obtain in the worldline
formalism) was introduced in the context of polarized
DIS at small x previously in [139] and interpreted as above

in [140]. (See also [141] for a recent discussion of such
Wilson line operators.)
It is now clear that one will obtain contributions of

the type

jA
þ

W ðx2ÞjA⊥
W ðx4Þ → TrcðṼðx⊥ÞṼ†

pol:ðy⊥ÞÞ; ðC14Þ

which give the leading subeikonal “polarized dipole”
contributions to the antisymmetric spin-dependent
part of the polarization tensor. The small x QCD evolution
of such operators has been discussed at length in the
literature [139–150].
However for operators sensitive to the anomaly (such as

g1 and its moments), keeping only the leading contributions
in Eq. (C14) is problematic because it misses, already at
quadratic order in the fields, terms like

ð∂λA1ðx2ÞÞð∂ηA2ðx4ÞÞ; ðC15Þ

that contribute to Eq. (C6) and, as we argued, are essential
to reproduce the anomaly. Formally, these terms are of
order 1=Pþ relative to the leading subeikonal contribution
in Eq. (C14) so one might imagine such an omission to be
appropriate when Pþ → ∞. However this omission misses
the anomaly entirely47 which, as we have argued, is
sensitive to both small xB and large xB. Since the isosinglet
axial vector current J5μ (which satisfies the anomaly
equation) gives the dominant contribution to g1 in both
Bjorken and Regge asymptotics, a fundamental piece of
physics is missed by restricting oneself to subeikonal
contributions alone.
What gives? One way to understand the breakdown of

the eikonal power counting is to note that the contribution
of the sub-subeikonal terms to the infrared divergence
lμ=l2 → 0 can compensate for their relative suppression
with Pþ for any finite Pþ. A deeper reason is that the
contribution of the anomaly results from zero modes that
correspond to a global phase of the Dirac determinant in the
QCD path integral that, as we discussed at length in Sec. III,
are best represented as collective modes; for a compre-
hensive discussion, we refer the reader to [55].
It is important to appreciate that these observations don’t

just apply to the Regge limit but to the Bjorken limit as
well. In the latter case, the temptation would be to argue
that the anomaly contribution is a “twist-four” contribution
which would be suppressed relative to the leading twist
anomaly free expression; this argument is equally falla-
cious because the twist expansion, like the eikonal expan-
sion, does not apply to the zero modes that contribute to the
anomaly.

46To avoid confusion, note that the large A− fields emitted by
the proton with Pþ → ∞ correspond to a large Aþ field for the
currents in the box.

47One may argue that the anomaly is not sensitive to small xB;
this argument is not tenable since it must be recovered for any xB
in the limit Q2 → ∞.
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Finally, we return to the topic of higher order terms in
Eq. (C6). Employing so-called Wess-Zumino consistency
conditions, it can be shown48 that the order OðA3Þ terms

combine with the quadratic terms to give the FF̃ structure
of Eq. (10), where Fμν and F̃μν correspond respectively to
the nonlinear QCD field strength tensor and its dual [137].
Further commentary and references to the extension to the
non-Abelian case of the Abelian Adler-Bardeen theorem
[135] can be found in Section 2.4 of Adler’s historical
review of the topic [133].
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