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Bottomonium states are key probes for experimental studies of the quark-gluon plasma (QGP) created in
high-energy nuclear collisions. Theoretical models of bottomonium productions in high-energy nuclear
collisions rely on the in-medium interactions between the bottom and antibottom quarks. The latter can be
characterized by the temperature (T) dependent potential, with real (VRðT; rÞ) and imaginary (VIðT; rÞ)
parts, as a function of the spatial separation (r). Recently, the masses and thermal widths of up to 3S and 2P
bottomonium states in QGP were calculated using lattice quantum chromodynamics (LQCD). Starting
from these LQCD results and through a novel application of deep neural network, here, we obtain VRðT; rÞ
and VIðT; rÞ in a model-independent fashion. The temperature dependence of VRðT; rÞ was found to be
very mild between T ≈ 0–334 MeV. For T ¼ 151–334 MeV, VIðT; rÞ shows a rapid increase with T and r,
which is much larger than the perturbation-theory-based expectations.
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I. INTRODUCTION

In-medium modifications of quarkonium states, i.e.,
bound states of a heavy charm or bottom quark and its
antiquark, are sensitive probes of the quark-gluon plasma
(QGP) produced in high-energy nuclear collisions [1–13].
Sequential suppression patterns among the ϒð1SÞ, ϒð2SÞ,
andϒð3SÞ states have been observed in heavy ion collision
experiments [14–17]. Theoretical understanding of these
experimental observations relies on effective field theories
(EFTs), which naturally lead to an open-quantum-system-
based treatment of both open and hidden bottom states in
QGP (for a recent review, see Ref. [12]). Owing to the large
mass (mb) and small relative velocity (v) of the bottom
quark, there exists a hierarchy of scales at high temperature:
mb ≫ mbv ≫ mbv2. Sequentially integrating out the scales
larger than mb and mbv from the QCD Lagrangian, one,
respectively, arrives at the nonrelativistic QCD (NRQCD)
[18] and potential nonrelativistic QCD (pNRQCD) [19]
EFTs. If interactions between the color-singlet and

color-octet states are neglected then the pNRQCD reduces
to a theoretical description of quarkonia solely based on a
potential between the heavy quark and antiquark. A
potential-based description allows studies of quarkonia
by employing Schrödinger-type equations [20–23]. One-
loop hard thermal loop (HTL) perturbative QCD calcu-
lations [24,25], and later on pNRQCD calculations [26,27],
show that at finite temperatures heavy quark potential
becomes complex with a nonvanishing imaginary part.
However, it is difficult to provide satisfactory descriptions
of bound states arising out of strong interactions solely
using perturbative expansions, and a nonperturbative treat-
ment, such as the lattice quantum chromodynamics
(LQCD), is called for.
A bound state of strong interaction is a nonperturbative

problem, which is difficult to be completely or relevantly
treated in a conventional perturbation theory. Therefore, a
critical step in all EFT-based studies is to relate parameters
of the EFT to the underlying fundamental theory, i.e., a
model-independent determination of the heavy quark
potential starting from nonperturbative QCD. In the static
limit, the heavy quark potential can be extracted from the
spectral functions of the thermal Wilson loop using non-
perturbative LQCD calculations [28–31]. On the other
hand, recent LQCD studies have led to quantification of
the masses, thermal widths, and Bethe–Salpeter amplitudes
(BSA) of up to 3S and 2P bottomonium states in QGP
[32–34]. While the lattice QCD results of Refs. [28–31]
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were obtained based on thermal correlation functions that
provide a well-defined static quark potential in some
specific limits, a priori, there is no obvious reason to
expect that the LQCD results [32–34] on the properties of
in-medium bottomonia admit any consistent in-medium
potential-based description. Even the fact that the vacuum
bottomonia masses below the threshold can be reasonably
well-described by Cornell-type potential is an empirical
observation, and cannot be rigorously proven from
first-principle QCD. In this work we will empirically
investigate whether the LQCD results of Refs. [32–34]
can be consistently described by an in-medium potential,
VRðT; rÞ and VIðT; rÞ. Furthermore, even if it turns out that
LQCD results of Refs. [32–34] can be consistently
described using some VRðT; rÞ and VIðT; rÞ, there is no
theoretical reason for these to agree with the static quark
potential obtained from correlation functions of thermal
Wilson loops [28–31]. Comparisons among these different
in-medium potentials is an interesting study by itself.
As we shall see later, one-loop HTL-motivated func-

tional forms of VRðT; rÞ and VIðT; rÞ are not compatible
with these LQCD results. This observation calls for a
model-independent treatment of the in-medium heavy
quark potential. In this work, we introduce a model-
independent deep-neural-network-based (DNN-based)
method and determine the r and T-dependence of the in-
medium heavy quark potential starting from the LQCD
results [33] for the masses and thermal widths of up to 3S
and 2P bottomonium states at various temperatures. The
underlying idea is as follows: At a fixed T, various
bottomonium states differ in sizes and their wave functions
probe different distances. Knowledge of the masses and
thermal widths of multiple bottomonium states thereby
provide constraints on not only the strength of the real and
imaginary parts of the bottom-antibottom interactions in
QGP but also its r-dependence. Thus, LQCD results for the
masses and thermal widths of multiple bottomonium states
at different temperatures can be used to extract VRðT; rÞ
and VIðT; rÞ and, presently, a DNN is probably the best
tool to achieve this in an unbiased fashion. To this goal, we
develop a new method to optimize the deep neural network
coupled with the Schrödinger equation.
This manuscript is organized as follows. We discuss the

details of vacuum potential determination in Sec. II,
followed by a detailed description of the potential extrac-
tion method in Sec. III. Then, we show our results of
complex-valued heavy flavor potential using DNNs that
depend on both distance and temperature in Sec. IV. Finally
we perform two consistency tests: (i) we compare the DNN
potential to the potentials using two other parametrization
schemes—temperature-independent DNNs and polyno-
mials (Sec. VA); (ii) we compare the eigenstate wave
functions with the corresponding lattice QCD results [34]
of Bethe–Salpeter amplitude (Sec. V B). After the summary
in Sec. VI, we provide Supplemental Materials (Appendix)

to discuss the connection between the imaginary energy
and the width extracted in lattice QCD.

II. SCHRÖDINGER EQUATION AND VACUUM
POTENTIAL

Bottomonium states can be described well by the reduced
two-body time-independent Schrödinger equation, [35]

−
∇2

mb
ψn þ ½VRðT; rÞ þ iVIðT; rÞ�ψn ¼ Enψn: ð1Þ

Here, the heavy quark potential VðT;rÞ¼VRðT;rÞþ
iVIðT;rÞ is complex-valued. Accordingly, the wave func-
tion ψn and the energy eigenvalues En for in-medium
bottomonia are also complex-valued. Further,VIðT¼0;rÞ¼
0, Re½En� ¼ mn − 2mb, and Im½En� ¼ −Γn, where mn and
Γn are the mass and thermal width of the nth bottomonium
state, respectively (see the Appendix for detailed discus-
sions). Vacuum properties of up to 3S and 2P bottomonium
states [36] were found to be reproduced well by the Cornell
potential

VRðT ¼ 0; rÞ ¼ −
α

r
þ σrþ B; ð2Þ

with mb ¼ 6.00 GeV, strong coupling α ¼ 0.406, string
tension σ¼ 0.221GeV2, and bag constantB ¼ −2.53 GeV.
These parameters are determined by fitting the vacuum
masses of the bottomonium states reported in the Particle
Data Group booklet [36] and the wave function, to be
compared with the BSA from lattice QCD calculations [34].
The latter is computed in a consistent way as to evaluate the
mass and width [33]. Due to its r-dependence, the BSAs are
more decisive, compared to the mass spectrum, in determin-
ing the interaction potential. Considering that the lattice
results are for spin-averaged states—e.g., there is no
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FIG. 1. Bottomonia wave functions in vacuum. Symbols in the
upper panel are the Bethe–Salpeter amplitudes from lattice QCD
calculation [34].
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distinction between ηbðnSÞ and ϒðnSÞ—we fit the param-
eters in a potential model by fitting the spin-averaged
bottomonia mass spectrum

maveraged ≡ 1

4
msinglet þ

3

4
mtriplet; ð3Þ

as well as the BSA for 1S, 2S, and 3S states. The global
parameter tuning technique employed herewill be described
later in Sec. III C. We present the bottomonium wave
functions in Fig. 1, and correspondingly the mass in
Table I. One can see the potential model agrees very well
with the experimental results (with the maximum absolute
difference being 14 MeV), as well as with the lattice results
on the wave functions (BSAs).

III. METHODOLOGY: HOW A DNN LEARNS THE
POTENTIAL FROM THE SPECTRUM

We will move on to discuss our model-independent
methodology of the potential reconstruction with DNNs
coupled to a Schrödinger equation (1), which is summa-
rized in the flow chart of Fig. 2. We represent the real and
imaginary potentials by the DNN—a multistep iterative
function composition scheme to approximate mapping
between two functions in a smooth and unbiased manner
[37,38]. We optimize the network parameters by

minimizing the chi-square function, i.e., the uncertainty-
weighted distance,

χ2 ¼
X
T;n

ðmT;n −mLQCD
T;n Þ2

ðδmLQCD
T;n Þ2 þ ðΓT;n − ΓLQCD

T;n Þ2
ðδΓLQCD

T;n Þ2 : ð4Þ

The summation runs over six temperature points,
T ∈ f0; 151; 173; 199; 251; 334g MeV, and five bottomo-
nium states, n ∈ f1S; 2S; 3S; 1P; 2Pg, and the LQCD
values were taken from Ref. [33]. We used gradient descent
with the back-propagation optimization technique, which is
based on the derivatives of the cost function with respect to
the network parameters. This technique requires knowledge
of the explicit functional relationship between the cost
function and the DNN output. However, such a relationship
in our problem is implicit. We overcame this challenge of
gradient evaluation through the perturbative solution
of the Schrödinger equation with respect to a small change
of VðT; rÞ. Moreover, we invoked Bayesian inference for
the uncertainty quantification, whereby the posterior dis-
tribution of the network parameters was evaluated.
To the best of our knowledge, the current method is
developed for the first time here. In the rest of this section,
we provide all the details about this method, including a
general introduction to DNN (Sec. III A), the parameter
optimization algorithm (Secs. III B and III C), uncertainty
estimation using Bayesian Inference (Sec. III D), and a
closure test to justify our methodology and assess its
reliability (Sec. III E).

A. General introduction of deep neural network

According to the universal approximation theorem
[37,38], a DNN can generally provide an unbiased, yet
flexible enough, parametrization to approximate arbitrary

TABLE I. Best fit of the spin-averaged bottomonium mass
spectrum (3).

1S 2S 3S 1P 2P

Experiment (MeV) 9445 10017 10352 9891 10254
Model (MeV) 9449 10003 10356 9893 10258
Difference (MeV) þ4 −14 þ4 þ2 þ4

FIG. 2. Flow chart of the potential reconstruction scheme—using generalized back-propagation to optimize parameters in the deep
neural networks coupled with a Schrödinger equation.
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functional relations. Algorithms based on DNNs have been
deployed to address various physics problems, e.g., deter-
mining the parton distribution function [39,40], recon-
structing the spectral function [41–43], identifying phase
transition [44–47], assisting lattice field theory calculation
[48–51], evaluating centrality for heavy ion collisions [52–
54], estimating parameters under detector effects [55,56],
and speeding up hydrodynamics simulation [57].
To express, approximately, an Rn → Rm function map-

ping between independent variables x ¼ fx1;…; xng and
dependent variables y ¼ fy1;…; ymg, y ¼ yðxÞ, the DNN
constructs a functional form by composing iteratively N
simple building blocks (also called a layer representing a
vector-to-vector function). Each layer performs a linear
transformation on the output from the preceding layer,
followed by an elementwise nonlinear transformation
dictated by the activation function σðlÞðzÞ:

aðlÞi ¼ σðlÞðzðlÞi Þ; zðlÞi ≡ bðlÞi þ
X
j

WðlÞ
ij a

ðl−1Þ
j ; ð5Þ

for i¼1;…;nðlÞ and l ¼ 1;…; N, while að0Þi ≡ xi stands for
the input variables. The final layer gives the model output,
which composes all the successive layers and defines the

approximate function formula, ỹðx;fWðlÞ
ij ;b

ðlÞ
i gÞ¼aðNÞ.

This compositional way of parametrization renders the
DNN a universal function approximator, able to fit any
continuous function to an arbitrary accuracy given enough
hidden units.
In the language of deep learning, N is referred to as the

depth of the network, x the input layer, y the output layer,
aðlÞ the lth layer, and nðlÞ the width of the lth layer. The
intermediate layers with 1 ≤ l < N are called hidden
layers. The activation functions are nonlinear functions
that modulate the function behavior. We list the common
choices of activation functions in Table II. The choice of N,
nðlÞ, and σðlÞ are hyperparameters of the model.

Meanwhile, WðlÞ
ij and bðlÞi are respectively called weights

and biases. They are parameters to be tuned during training
by minimizing the cost function, which characterize the
distance between the approximation formula ỹðxÞ and the
corresponding true function yðxÞ. The process of parameter
optimization is called model training in deep learning.

The power of the DNN comes from its advanced
parameter training method, called gradient descent via
back-propagation. It updates the parameters according to
the gradient of the cost function:

Δθ≡ θ½kþ1� − θ½k� ∼ −∇θJðθÞ; ð6Þ

where θ is the abbreviation of all the parameters, i.e.,

θ≡ fWðlÞ
ij ; b

ðlÞ
i g, and the superscript [k] stands for the kth

training step. While different optimization schemes take
different exact relations between Δθ and ∇θJ, there is a
common feature—noting that ∇θJ ¼ 0 when the cost
function reaches its minimum, the training iterations
eventually stop when closing to such a point. In this work,
we adopt the Adam optimization method [58], an accel-
eration method based on gradient descent.
In the most typical case for regression problems, the cost

function is defined as the summation of the mean-square-
error and a regularizer, where the latter is introduced to
avoid overfitting manifested with unreasonably large values
of parameters:

JðθÞ ¼ 1

2

X
x∈data set

jỹðθ;xÞ − yðxÞj2 þ λ

2
θ · θ; ð7Þ

and

∂J
∂θi ¼

X
x∈data set

ðỹðθ;xÞ − yðxÞÞ · ∂ỹðθ;xÞ∂θi þ λθi; ð8Þ

where ð·Þ is the inner product of all dimensions of y.
The calculation of ∇θJ can be computationally very

expensive in general, or even undoable, for arbitrary
parametrized functions. However, computing ∇θJ is
straightforward and efficient for the DNN via the back-
propagation algorithm, thanks to its simple functional
building block (5). This is one of the major advantages
of DNNs. We denote that

uðlÞi ¼ σ0ðlÞðzðlÞi Þ; zðlÞi ≡ bðlÞi þ
X
j

WðlÞ
ij a

ðl−1Þ
j ; ð9Þ

with σ0ðzÞ≡ dσðzÞ
dz to be the derivative of the activation

function with respect to its argument. From Eq. (5) one can
obtain the derivatives, for any input data point x, as

∂aðlÞi
∂bðlÞi

¼ uðlÞi ; ð10Þ

∂aðlÞi
∂WðlÞ

i;j

¼ aðl−1Þj uðlÞi ; ð11Þ

∂aðlÞi
∂aðl−1Þj

¼ WðlÞ
i;ju

ðlÞ
i : ð12Þ

TABLE II. Common choices of activation functions.

Name Description σðzÞ
linear Linear z,
tanh Hyperbolic tangent tanhðzÞ,
relu Rectified linear units maxð0; zÞ,
elu Exponential linear units

�
expðzÞ − 1 z < 0;
z z ≥ 0:
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Then, the derivative at each layer can be calculated using
the back-propagation iterations:

∂yk
∂bðlÞi

¼ ∂yk
∂aðlÞi

uðlÞi ; ð13Þ

∂yk
∂WðlÞ

i;j

¼ aðl−1Þj
∂yk
∂bðlÞi

; ð14Þ

∂yk
∂aðl−1Þi

¼
X
j

WðlÞ
j;i

∂yk
∂bðlÞj

; ð15Þ

where the iteration begins by ∂yk=∂aðNþ1Þ
i ¼ δi;k. With

these, one can obtain the ∇θJ and then update the
parameters accordingly.
Model Setup—In practice, we employed two four-

layered networks to represent VRðT; rÞ and VIðT; rÞ.
Each network contains a two-dimensional (2D) input
layer, að0Þ ¼ fT; rg, and a one-dimensional output layer,
að4Þ ¼ VR=I . The intermediate hidden layers að1Þ;…; að3Þ

were chosen to consist of f32; 16; 32g and f16; 16; 16g
neurons for the networks corresponding to VRðT; rÞ and
VIðT; rÞ, respectively. We adopted the elu activation
function, i.e., σðzÞ ¼ expðxÞ − 1 for z < 0 and σðzÞ ¼ z
for z ≥ 0, for all the hidden layers, and a linear identity
function, i.e., σðzÞ ¼ z, in the output layer. With VRðT; rÞ
and VIðT; rÞ as inputs, represented by the DNNs described
above, we solved Eq. (1) to obtain the masses and thermal
widths. We take the regularizers to be λR ¼ 10−3 and
λI ¼ 10−2. By dividing or multiplying λ by a factor of two,
we have tested that the results are insensitive to the choice
of λ.

B. Back-propagation for DNNs coupled with
Schrödinger equations

In this work, however, we employ the DNNs to approxi-
mate the functional relation between ðT; rÞ, as the input
layer, and ðVR; VIÞ, as the output layer, without knowing
the “true” values of VR and VI to train the parameters.
Instead, we further invoke the Schrödinger equation solver
to convert the DNN-constructed potentials, VRðT; rÞ and
VIðT; rÞ, into the corresponding mass and width of differ-
ent bound states, considering their availability from lattice
QCD. The cost function is set to be

JðθÞ ¼ 1

2
χ2ðθÞ þ λ

2
θ · θ ð16Þ

to train the parameters of the DNNs, where the chi-square
function χ2 is the uncertainty-weighted summation of the
squared difference between mass and width from the
Schrödinger equation, mT;i and ΓT;i, and those from lattice

QCD, mLQCD
T;i and ΓLQCD

T;i . In the most generic form, χ2 can
be expressed as

χ2 ¼
X
T;i;j

ðRðTÞ
ij ΔmT;iΔmT;j þ IðTÞij ΔΓT;iΔΓT;j

þ 2MðTÞ
ij ΔmT;iΔΓT;jÞ; ð17Þ

where ΔmT;i ≡mT;i −mLQCD
T;i is the difference between

the potential model and the lattice result for the mass
of the ith state at temperature T, and likewise for the
width ΔΓT;i ≡ ΓT;i − ΓLQCD

T;i . Rij, Iij, and Mij are the
symmetric covariance matrices. In this work, we neglect

the correlation between different quantities, hence RðTÞ
ij ¼

ðδmLQCD
T;i Þ−2 · δij, IðTÞij ¼ ðδΓLQCD

T;i Þ−2 · δij, and MðTÞ
ij ¼ 0.

Computing the parameter gradient is generally compli-
cated if one is not able to find the explicit functional form
between θ and the cost function. In this system, however,
the gradient ∇θχ

2 can be computed explicitly via pertur-
bation treatment on the Schrödinger equation. One can
express the eigenvalue problems, before and after a
perturbation of the potential, respectively, as

�
p̂2

2m
þ VðrÞ

�
jψ ii ¼ Eijψ ii;

�
p̂2

2m
þ VðrÞ þ δVðrÞ

�
jψ 0

ii ¼ ðEi þ δEiÞjψ 0
ii: ð18Þ

Up to the leading order in δV expansion, perturbation
theory yields that

δEi ¼ hψ ijδVðrÞjψ ii ð19Þ

and

jψ 0
ii ¼ jψ ii þ

X
j≠i

hψ jjδVðrÞjψ ii
Ei − Ej

jψ ji: ð20Þ

The former relation is also referred to as the Hellmann–
Feynman theorem. Noting that both Ei and VðrÞ can be
complex, we separate the real and imaginary parts:

δmi ¼ hψ ijδVRðrÞjψ ii;
δΓi ¼ −hψ ijδVIðrÞjψ ii: ð21Þ

In particular, for local perturbations

δVðrÞ ¼ vδðr − rkÞ; ð22Þ

one can obtain

δEi

δv
¼ jψ iðrkÞj2; ð23Þ
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which leads to the functional derivative of complex
eigenvalues with respect to the complex potential,

δmi

δVRðrÞ
¼ −

δΓi

δVIðrÞ
¼ jψ iðrÞj2;

δmi

δVIðrÞ
¼ δΓi

δVRðrÞ
¼ 0: ð24Þ

With such relations, we obtain the gradients of the χ2,

∂χ2
∂θR;n ¼

X
T;i;k

∂χ2
∂mT;i

∂VRðT; rkÞ
∂θR;n jψ iðT; rkÞj2dr;

∂χ2
∂θI;n ¼ −

X
T;i;k

∂χ2
∂ΓT;i

∂VIðT; rkÞ
∂θI;n jψ iðT; rkÞj2dr; ð25Þ

and of the cost function,

∂J
∂θR;n ¼

X
T;i

��X
k

∂VRðT; rkÞ
∂θR;n jψ iðT; rkÞj2dr

�

×
X
j

½RðTÞ
i;j ΔmT;j þMðTÞ

ij ΔΓT;j�
�
þ λθR;n;

∂J
∂θI;n ¼ −

X
T;i

��X
k

∂VIðT; rkÞ
∂θI;n jψ iðT; rkÞj2dr

�

×
X
j

½IðTÞi;j ΔΓT;j þMðTÞ
ij ΔmT;j�

�
þ λθI;n; ð26Þ

where dr is the discrete step size in the distance r.
Eventually, we develop the back-propagation scheme for
the DNNs coupled with a Schrödinger equation.
While a DNN here can be viewed to provide an unbiased

and robust special parametrization for the potentials, one
could in principle take any other arbitrary parametrization
scheme. The above perturbative analyses for the gradient
evaluation could hold for an arbitrary parametrized form of
potentials. Suppose the potentials are functions of param-
eter θ, VR=Iðθ;T; rÞ; then Eq. (26) would remain valid.

C. Fitting quark mass and vacuum potential

The b-quark mass and bottomonia vacuum potential are
determined by fitting both the experimental results on the
bottomonia masses and their Bethe–Salpeter amplitudes
from the lattice calculation [34]. To match the lattice result
of both Bethe–Salpeter amplitudes and the mass spectrum,
one can set the loss function as

J ¼ μ

2

X
i

wiðmi −mexp
i Þ2

þ ν

2

X
i;j

wijðψ iðrjÞ − ψBS
i ðrjÞÞ2; ð27Þ

where local weights wi and wij account for the data
uncertainties, and where μ and ν set the relative weight
between the mass difference and the wave function differ-
ence in the fitting. In practice, we employ a global weighting
with wi ¼ ð10 MeVÞ−2 and wij ¼ ð10 MeVÞ−1, and take
μ ¼ ν ¼ 1. From the perturbation theory we find the
derivative of the loss function with respect to a potential
parameter θn:

∂J
∂θn ¼ μ

X
i

wiðmi −mexp
i Þ

X
k

∂VðrkÞ
∂θn jψ iðrkÞj2dr

þ ν
X
i;j

�
wijðψ iðrjÞ − ψBS

i ðrjÞÞ

×
X
i0≠i

X
k

∂VðrkÞ
∂θn

ψ iðrkÞψ i0 ðrkÞ
mi −mi0

ψ i0 ðrjÞdr
�
: ð28Þ

Similarly, one can analyze the linear response against a
perturbation in mb as

�
p̂2

mb
þ VðrÞ

�
jψ ii ¼ Eijψ ii;

�
p̂2

mb þ δmb
þ VðrÞ

�
jψ 0

ii ¼ ðEi þ δEiÞjψ 0
ii; ð29Þ

which leads to

δEi ¼
δmb

mb

�Z
VðrÞjψ iðrÞj2dr − Ei

�
; ð30Þ

jψ 0
ii ¼ jψ ii þ

δmb

mb

X
j≠i

hψ jjVðrÞjψ ii
Ei − Ej

jψ ji; ð31Þ

and further arrives at the mb-derivative of the loss function,

∂J
∂mb

¼ μ

mb

X
i

�
wiðmi −mexp

i Þ

×

�
4mb −mi þ

X
k

VðrkÞjψ iðrkÞj2dr
��

þ ν

mb

X
i;j

�
wij

X
i0≠i

�P
kVðrkÞψ iðrkÞψ i0 ðrkÞdr

mi −mi0

× ψ i0 ðrjÞðψ iðrjÞ − ψBS
i ðrjÞÞ

��
: ð32Þ

We note that the wave-function-driven potential extraction
method is also discussed in Ref. [59].

D. Uncertainty quantification with Bayesian inference

We invoke the Bayesian inference to estimate the
uncertainties of the DNN reconstructed potentials.
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Bayesian inference is a statistical paradigm that utilizes the
(experimental) data to constrain model parameters using
probability statements. Based on the Bayes’ theorem, the
posterior distribution over the model parameters (condi-
tional on the observed data) is proportional to the product
of the likelihood given the observed data and the prior
distribution of the parameters,

PosteriorðθjdataÞ ∝ LðθjdataÞ × PriorðθÞ: ð33Þ

The likelihood function of the parameters given the
observed data specifies the chance that those data appear
under the model with the taken parameters, which, due to
the central limit theorem, can be expressed in Gaussian
form with the chi-square shown naturally:

LðθjdataÞ ¼ PðdatajθÞ ∝ exp½−χ2ðθÞ=2�: ð34Þ

The prior distribution, in principle, reflects our naive belief
in the model parameters, while in practice we take a
Gaussian prior distribution accounting for the quadratic
regularizers introduced in the cost (16),

PriorðθÞ ∝ exp

�
−
λ

2
θ · θ

�
; ð35Þ

which represents our relative “ignorance” about θ and also
acts as a nonlocal regulator to account for correlated
distributions of the to-be-determined target (potential)
values in the language of Bayesian statistics.
With the above we thus obtain the posterior distribution

over the parameters to be

PosteriorðθjdataÞ ¼ N0 exp

�
−
χ2ðθÞ
2

−
λ

2
θ · θ

�
; ð36Þ

with N0 being a constant normalization factor to ensureR
PosteriorðθÞdNθ ¼ 1. To estimate the uncertainty of

VðT; rÞ for any given T and r, we allow the variation of
parameters away from their optimal values, and the
probability of accepting such a parameter set, as well as
the corresponding potential, is determined by the posterior
function

PðVθ;T;rÞdV ¼ PosteriorðθjdataÞdNθ: ð37Þ

With a sufficient number of potential samples following the
above distribution, we can estimate the credible interval of
the potential at each of the ðT; rÞ points.
Sampling high-dimensional parameters is tricky by

itself. In a most direct way, one sample M points in the
parameter space according to a flat distribution, denoted as
fθig, so that each of them corresponds to the volume
element dNθi ¼ M−1, and the corresponding potential
represents a point in the histogram with the weighting

wi ¼ PðVθi;T;rÞdVi ¼
PosteriorðθijdataÞ

M
: ð38Þ

However, there are ∼103 parameters θ in a DNN, and a
majority of points in the parameter space correspond to a
vanishing posterior. Thus, computing the likelihood dis-
tribution according to Eq. (38) is computationally
expensive.
In principle, the most efficient way would be to sample

fθig according to PosteriorðθjdataÞ, hence the volume
element dNθi ¼ M−1Posterior−1ðθijdataÞ, and the corre-
sponding potential is of the weighting

wi ¼ PðVθi;T;rÞdVi ¼
1

M
: ð39Þ

Nevertheless, the posterior function is generally unknown
or unable to be represented in a simple way, hence it is not
possible to sample according to the posterior function. A
practical method is importance sampling (see, e.g.,
Ref. [60]), which samples fθig according to a reference
distribution P̃ðθÞ, hence dNθi ¼ M−1P̃−1ðθiÞ, and performs
reweighting on each sample by assigning an extra weight
determined by the ratio of the posterior to the refer-
ence, wi ¼ PosteriorðθiÞ=P̃ðθiÞ=M.
The computational efficiency would be higher when the

reference distribution P̃ðθÞ is close to the Posterior. For
general systems, one usually invokes variational inference
[61] or the Bayesian Neural Network [62] to find P̃ðθÞ. In
the work, however, we are able to make use of the
underlying physics to construct the reference distribution.
According to the first-order perturbation theory, the pos-
terior is a nondiagonal normal distribution around the
optimal parameter set (θopt), and we adopt it to be the
reference distribution

P̃ðθÞ ¼ ð2πÞ−Nθ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½Σ−1�

q

× exp

�
−
Σ−1
ab

2
ðθa − θopta Þðθb − θoptb Þ

�
; ð40Þ

with the inverse covariance matrix given by

Σ−1
ab ≡ ∂2JðθÞ

∂θa∂θb ¼ λδab þ
1

2

∂2χ2ðθÞ
∂θa∂θb ; ð41Þ

where

1

2

∂2χ2ðθÞ
∂θR;a∂θR;b ¼

X
T;i;j

RðTÞ
i;j

∂mT;i

∂θR;a
∂mT;j

∂θR;b ; ð42Þ

which is similar for 1
2

∂2χ2ðθÞ
∂θR;a∂θI;b and

1
2

∂2χ2ðθÞ
∂θI;a∂θI;b.

To sample parameters according to the reference dis-
tribution P̃ðθÞ, one needs to solve the eigenvalues and
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eigenstates of the inverse covariance matrix for the param-
eters Σ−1

ab . There are ∼103 parameters in the DNNs, and
solving the eigenvalues and eigenvectors for Σ−1

ab are

generally expensive. Fortunately, ∂2χ2ðθÞ
∂θa∂θb are large matrices

(of dimension ∼103) constructed by multiplying low
rank [rank ≤ 30 ¼ 6ðtemperaturesÞ × 5ðstatesÞ] matrices.
One can conclude there are, at most, 30 nonvanishing
eigenvalues for such a large matrix. We obtain these
nonvanishing eigenvalues and the corresponding eigenvec-
tors by employing the power method, while the rest
eigenvectors, corresponding to the highly degenerated zero
eigenvalue, are obtained by applying the Gram–Schmidt
orthogonalization procedure. Such a procedure is also
referred to as the principal component analysis (PCA) in
deep learning.
In our method, the aleatoric (statistical) uncertainty is

naturally encoded inside the posterior, since the χ2 is
considered the lattice data error and/or correlations.
Meanwhile the epistemic (systematic) uncertainty is also
manifested. On one hand, our “ignorance” of the network
parameters is reflected in the prior which is consistent with
the regularizer used in the cost, and on the other hand, the
limits of the model—limited energy levels for a quantum
system would only manifest partial information of the
interaction—can also retain our methodology via the
generalized back-propagation through the Schrödinger
equation.

E. Method validation: Closure test
with known potentials

To justify the above described method of potential
reconstruction with DNNs, in this section we perform
closure tests to assess the reliability of the methodology.
We start by assuming a “ground-truth” potential, taking the
known HTL formulae

VRðT;rÞ¼
σ

μD
ð2− ð2þμDrÞe−μDrÞ−α

�
μDþe−μDr

r

�
þB;

ð43Þ

VIðT;rÞ¼−
ffiffiffi
π

p
4

μDTσr3G
2;2
2;4

�
−1
2
;−1

2
1
2
;1
2
;−3

2
;−1

				μ
2
Dr

2

4

�
−αTϕðμDrÞ;

ð44Þ

where the Debye-screening mass, μD, is a function of
temperature, G the Meijer-G function, and

ϕðxÞ ¼ 2

Z
∞

0

zdz
ð1þ z2Þ2

�
1 −

sinðxzÞ
xz

�
: ð45Þ

We note that the imaginary potential is consistent with the
hard thermal loop calculation [24,63]. Adopting such a
potential, we further solve the Schrödinger equations at six

different temperatures, f0; 151; 173; 199; 251; 334g MeV,
to generate a set of pseudodata—the mass and width for 1S,
2S, 3S, 1P, and 2P states. This set of pseudodata is then fed
into the above described method to train the DNN for
potential reconstruction. With the comparison to the
assumed “ground-truth” input potential, one can therefore
assess the reliability and robustness of the method. In
Fig. 3, we compare the DNN reconstructed potential with
the “ground-truth” values systematically. The comparison
is shown for different temperatures (not limited to pseu-
dodata generation temperatures) and distances.
From Fig. 3, it is evident that the DNN reconstructed

potentials (dashed lines) are almost identical to the
“ground-truth” potentials (solid lines) over the physically
relevant range in r. Slight deviation and a relatively large
uncertainty band at r ¼ 0.05 fm are related to the facts that
there the wave functions are small and the energy eigen-
values are insensitive to the potential values at this small
range. In particular, note that although the DNN is trained
by fitting only the energy eigenvalues (pseudodata) gen-
erated at the aforementioned discretized temperature
points, the DNN reconstructed potentials show smooth
behavior along with temperatures and agree nicely with the
“ground-truth” potential values in the interpolation region.
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FIG. 3. Closure test on applying deep neural networks to
reconstruct potential functions. The upper panels show the
r-dependence at different temperature points, while the lower
panels show the T-dependence at different distances. The left
(right) panels plot the real (imaginary) potential. The solid lines
represent the “ground-truth” formulae [(43)–(44)], while the
dashed lines with the uncertainty band are the potential recon-
structed by the DNN given only the mass and width for the first
five bottomonia states. The gray shaded area in the lower panels
indicates the extrapolation region.
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Not surprisingly, the DNN potential starts to diverge from
the “ground-truth” values in the extrapolation region
(T > 334 MeV), which is also captured by the increasing
uncertainty band from the Bayesian analysis, as indicated
by the gray shaded area in the lower panels of Fig. 3.

IV. HEAVY QUARK POTENTIAL FROM DNN

With the computation framework established and tested,
we move on to discuss the extraction of heavy quark
potential from LQCD results. We begin with pointing out
the inadequacy of the weak-coupling-motivated functional
form of the potential to consistently describe the LQCD
results for bottomonia masses and thermal widths [33]. For
this purpose, we chose the functional form proposed in
Ref. [64]. This incorporates one-loop HTL-based func-
tional forms of VI and of color-electric screening, in
addition to a vacuum potential satisfying Gauss’s law
[see Eqs. (43) and (44)]. Taking this functional form for
the potential, we fix α, σ, and B by their vacuum values,
and tune μD at different temperatures to fit the finite-
temperature bottomonia masses and widths. We find the
most optimal values to be μD ¼ 0.01, 0.19, 0.17, 0.32,
0.37 GeV for T ¼ 151, 173, 199, 251, and 334 MeV,
respectively, with the corresponding χ2-per-data being
f13.5; 159; 111; 154; 244g=5. As shown by the open
symbols in Fig. 4 (left and middle), the one-loop HTL-
motivated functional form of VI and color-electric screen-
ing in VR fail to simultaneously reproduce the LQCD

results for the mass shifts and the thermal widths of
bottomonium. This failure might be due to the missing
contributions from the color-magnetic scale, which is
normally beyond the scope of a conventional perturbation
theory [65].
The failure of the only known analytic form to describe

the LQCD results necessitates a model-independent extrac-
tion of VðT; rÞ using an adequate unbiased parametrization.
To achieve this, we devised the above outlined method by
coupling a Schrödinger equation with DNNs. Using this
setup, we optimized the DNNs’ parameters and achieved
good agreement with the LQCD results [33]. The optimized
fitting for the mass shifts and thermal widths are shown by
the solid symbols in Fig. 4 (left and middle), with the
corresponding χ2-per-data point to be 16.5=30. The T- and
r-dependence of the real (top) and imaginary (bottom)
are shown in Fig. 4 (right). We see signs that with
increasing temperature VRðT; rÞ becomes flatter at large
r, as expected from the color screening effect. However, the
temperature dependence of VRðT; rÞ is very mild between
T ≈ 151–334 MeV, and closely approximates its vacuum
counterpart. In the same temperature range, VIðT; rÞ show
significant monotonic increase both with temperature and
distance. In the succeeding section, we also performed
similar analyses using temperature-independent DNNs and
polynomials in r to represent the functional form of the
potential. We obtained consistent results with our original
implementation. While the r-dependence could be retrieved
by simpler parametrizations, the T-dependence is nontrivial
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FIG. 4. Left and middle: In-medium mass shifts with respect to the vacuum mass (left) and the thermal widths (middle) of different
bottomonium states obtained from fits to LQCD results of Ref. [33] (lines and shaded bands) using weak-coupling-motivated functional
forms [64] (open symbols) and DNN-based optimization (solid symbols). The points are shifted horizontally for better visualization.
ϒð1SÞ, χb0ð1PÞ,ϒð2SÞ, χb0ð2PÞ, andϒð3SÞ states are represented by red circles, orange pluses, green squares, blue crosses, and purple
diamonds, respectively. Right: The DNN reconstructed real (top) and imaginary (bottom) parts of the heavy quark potential at
temperatures T ¼ 0 (black), 151 (purple), 173 (blue), 199 (green), 251 (orange), and 334 (red) MeV. The uncertainty bands represent the
68%ð1σÞ confident region.
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to be captured in an unbiased manner. Using a DNN
to represent the potentially nonlinear temperature and
distance dependence, we reconstructed the potential with
reliable uncertainty for the temperatures in the region
T ∈ ½0; 334� MeV. These results are shown in Fig. 5.

V. CONSISTENCY TESTS

A. Temperature-independent parametrizations
with DNNs or polynomials

In order to examine the consistency of potentials
obtained in Sec. IV from aspects of parametrizations, we
performed two independent tests with two different para-
metrization schemes both being temperature-independent:
(a) the DNNs with only distance r to be the input argument
and (b) polynomial parametrization, of the real and
imaginary potentials. The flow chart of such model training
is similar to what has been discussed in Sec. III and shown
in Fig. 2. The only modification one needs to apply is to
replace the ðT; rÞ → VR=IðT; rÞ DNNs (the left upper
corner of Fig. 2) by the ðrÞ → VR=IðrÞ DNNs for the
parametrization scheme (a), while for scheme (b) one must
replace it by the polynomial parametrization as follows:

VRðrÞ ¼
X3
i¼−1

cR;iri; VIðrÞ ¼ −
X3
i¼1

cI;iri: ð46Þ

For the polynomial parametrization, we have taken into
account a physical conjecture that VIðrÞ vanishes when
r → 0. Also, we applied our prior belief that higher-
order coefficients shall not be large, hence we employed
the regularizer Jreg ¼

P
i λiðc2R;iþc2I;iÞ, with λi≤1¼ 0, λ2 ¼

1000=GeV6, and λ3 ¼ 5000=GeV8. In the T-independent

DNNs, we used simpler network structures, i.e., 1 × 16 ×
16 × 1 for the real potential, and 1 × 4 × 4 × 1 for the
imaginary part, with regularizer λR ¼ 0.1 for the former
while λI ¼ 0.001 is used for the latter, which are consistent
with the complexity of the corresponding network structure
as well. Similar to the preceding section, we used elu
(linear) activation functions for the hidden(output)
layers in the DNNs. We have also applied the limr→0VI ¼ 0

conjecture by letting VIðrÞ ¼ rVDNN
I ðrÞ. Noting that lattice

QCD simulation [33] provides independent sets of botto-
monia mass and width at different temperatures, we
perform the Bayesian analysis at each temperature point
separately, and extract the optimal parameter set together
with the corresponding likelihood functions. Again, the
prior distribution is defined according to the regularizer. In
Fig. 6, we compare the complex potentials obtained in such
three schemes, and find nice agreement between them.
The polynomial parametrization scheme has in total

eight coefficients. Hence, it is possible to list the optimal

FIG. 5. Real (blue) and imaginary (red) parts of interaction
potentials versus temperature T and quark-antiquark distance r,
extracted via DNNs.

FIG. 6. Real (top) and imaginary (bottom) interaction potentials
versus quark distance r extracted by T-dependent DNNs (also
known as DNN(2D), solid line with filled uncertainty bands),
T-independent DNNs (also known as DNN(1D), dash-dotted line
with vertical hashed uncertainty bands) and polynomial para-
metrizations (dashed line with horizontal hashed uncertainty
bands). Different colors respectively represent temperatures T ¼
151 (purple), 173 (blue), 199 (green), 251 (orange), and 334 (red)
MeV which are also ordered from bottom to top. For better
visualization, the curves are shifted vertically. The error bands
represent the 68% (1σ) confidence interval.
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values of the polynomial coefficients at different temper-
atures, as well as their marginal likelihood distribution, for
better visualizing the fitting quality and the correlation
between different parameters. We list the optimal coeffi-
cient set in Table III, and show the marginal likelihood

distribution for T ¼ 151 MeV in Fig. 7. One can see the
strong correlation between “neighboring” coefficients.
In addition, we note that while the Schrödinger equation

is solved within the range r ∈ ½0; 2� fm, the potentials can
be well-constrained only within the range r ≤ 1 fm. Such a
limitation can be well understood: the wave functions of
such bound states concentrate in the r ≤ 1 fm region.
According to the Hellmann–Feynman theorem, the mass
spectrum is not sensitive to the potential in the 1 < r ≤
2 fm region, and it can hardly constrain the potential for
that region.
To conclude, we emphasize that although the polynomial

parametrization provides a relatively simple picture of the
distance dependence of potential, it has difficulties describ-
ing the temperature dependence without enough priors.
Thus, one needs to generically employ an unbiased but
robust parametrization scheme to obtain the 2D potential
depending on both distance and temperature, for which
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TABLE III. Optimal values of the polynomial coefficients at
different temperatures.

T (MeV) 151 173 199 251 334

cR;−1 −0.41 −0.41 −0.41 −0.40 −0.39
cR;0 (GeV) −2.53 −2.53 −2.53 −2.54 −2.55
cR;1 (GeV2) 0.22 0.22 0.22 0.21 0.20
103 × cR;2 (GeV3) 0.84 0.47 −0.31 −2.26 −0.14
104 × cR;3 (GeV4) 0.82 0.43 −0.24 −2.82 1.38
10 × cI;1 (GeV2) 0.20 0.31 0.34 0.65 1.46
102 × cI;2 (GeV3) 0.34 0.58 0.68 1.08 0.76
103 × cI;3 (GeV4) 0.40 0.96 0.98 1.28 1.00
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DNNs provide the proper parametrization with moreover
the well-developed optimization approach in practice.

B. Comparing the wave functions with the
Bethe–Salpeter amplitude at finite temperature

In this subsection, we compare the finite-temperature
wave functions with the corresponding BSAs from the
lattice QCD calculation [34], which is obtained consistently
with the masses and widths [33]. With such complementary
information, the comparison serves as an independent test
of the finite-temperature potential. We compare the real part
of wave functions at different temperatures in Fig. 8 (left).
We observe mild temperature dependence of the BSAs,
while the wave functions are obviously different at higher
temperature. We note that the real part of the interaction
potentials show weak dependence on temperature, and the
change of wave function is dominated by the imaginary
potential.
As noted in Ref. [34], due to their nontrivial Euclidean

time dependence, the BSAs at T > 0 fail to capture
the thermal broadening of the states, and rather resemble
the vacuum wave functions. Consequently, we solve the
“pseudo” wave functions, denoted as ϕ, according to the
real potential in Fig. 5,

−
∇2

mb
ϕn þ VRðT; rÞϕn ¼ Ẽnϕn; ð47Þ

and compare them with the BSA in Fig. 8 (right), and find
excellent agreement, especially regarding the large-r tail at

different temperatures. Such comparisons serve as an
independent test of the real part of the interaction potential
at finite temperature. In particular, the tail behavior of the
wave functions is sensitive to the flatness of the potential at
r≳ 0.5 fm. The excellent agreement shown in Fig. 8
(right), especially for the 3S state at all temperatures,
confirms the weak screening effect observed in the real
part of the potential.
It would be interesting to check the role of the complex

wave functions. In the main content, we solve the complex
wave functions according to the complex potential and
obtain the mass and width from the complex energy
eigenvalue. An alternative method is to treat the imaginary
potential as a perturbation, and extract the wave function
(ϕn) according to the real part of the potential, as in
Eq. (47). As has been discussed above, ϕn’s are equivalent
to the BSAs in the lattice calculations, and we refer to it as
the BSAs. Then, we compute the thermal width as the
Bethe-Salpeter expectation of the imaginary potential,

ΓBS ≡ −
Z

jϕBSðrÞj2VIðrÞr2dr: ð48Þ

In Fig. 9, we compare the ΓBS, from the perturbative
treatment, with the complete thermal width from the lattice
result. We find that at lower temperatures, at which Γ are
small, the perturbation results agree well with the complete
ones, whereas, at high temperature, e.g., 334 MeV, ΓBS are
slightly, but systematically, higher than the lattice results.
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VI. CONCLUSION AND DISCUSSION

In this work, we report a surprising empirical finding:
LQCD results [33] for the masses and thermal widths of up to
3S and 2P bottomonium states in QGP admits a consistent
quantummechanical description based on an complex-valued
potential and nonrelativistic Schrödinger equation. By cou-
pling the Schrödinger equation to a DNN, we introduced a
novel method for unbiased extractions of the real and
imaginary parts of the heavy quark potential, and invoked
Bayesian inference to quantify the potential uncertainties in a
nonlocal fashion. With such a model-independent method,
we obtained the empirical VRðT; rÞ and VIðT; rÞ for r≲
1 fm and T ≲ 334 MeV, which can successfully map the
QCD spectrum of the lowest-lying bottomonium states in
QGP to a quantum mechanical system.
The heavy quark potential obtained here renders an

empirical mapping from the masses and thermal widths of
bottomonium states at finite temperature to an effective
quantummechanics framework, based on LQCD calculations
of the bottomonium state using a 2þ 1 flavor dynamical
gauge field background with nearly physical values of up,
down, and strange quark masses. Direct quantitative com-
parison with extant LQCD calculations of static quark
potentials [28–31] is difficult. However, our result for the
heavy quark potential is qualitatively different from those
potentials. Unlike the previous studies, the VR obtained in
this work show very little signs of color-electric Debye
screening for r≲ 1 fm for the entire temperature range
T ∈ ½0; 334� MeV. The VI here is much larger in magnitude
and increases more rapidly, both with T and r, than the one-

loop HTL-motivated extractions. On the other hand, it is
reassuring that the potential obtained here is quantitatively
consistent with the very recent LQCD calculations [66] on the
peak position and the width of the Gaussian-form spectral
function, as functions of the separation r and temperature T.
Agreement—in the sense of the strongly-coupled behavior,
as well as a large magnitude of imaginary potential—is
observed in the comparison with heavy quark potentials
computed in the T-matrix approach [67,68] and phenom-
enologically extracted from bottomonium data [69–72],
despite some difference in the exact value. Meanwhile, it
might be worth noting that large imaginary parts are also seen
in Ref. [31], and are not ruled out by Refs. [29,30], due to the
large errors for their results. It would be very interesting to see
the phenomenological consequences [13] of this heavy quark
potential, model-independently extracted from the nonper-
turbative LQCD calculations.
Further, we carried out detailed comparisons of the real

parts of the wave functions with the BSAs obtained from
LQCD calculations [34]. As noted in Ref. [34], due to their
nontrivial Euclidean-time dependence, the BSAs at T > 0
fail to capture the thermal broadening of the states
and resemble the vacuum wave functions. Our comparisons
seem to support this picture. While the real parts
of the actual wave functions show deviations from the
BSAs at large r, the “pseudo” wave functions obtained
using only VR (with VI ¼ 0) reproduce the BSAs.
Furthermore, we also find that the “pseudo” thermal widths,
ΓBSðTÞ ¼ −

R jψBSðT; rÞj2VIðT; rÞr2dr ≈ ΓðTÞ, suggest
that VIðT; rÞ might be considered as a perturbation on top
of an approximately vacuumlike excitation. Based on our
results, one might speculate that, for phenomenologically
relevant temperatures T ≲ 334 MeV, bottomonia are approx-
imately vacuumlike excitations but of very short lifetimes that
are inversely proportional to their large thermal widths. At
high enough temperatures, we anticipate that this speculative
picture would smoothly turn over to the more conventional
picture based on quarkonia melting due to color-electric
Debye screening [20,21,73] and perturbative Landau damp-
ing [24,25].
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APPENDIX: ABOUT THE IMAGINARY ENERGY
AND WIDTH OF THE SPECTRAL FUNCTION

In this work, we have assumed that the width obtained in
Ref. [33] is the imaginary part of the energy eigenvalue,
Γn ¼ jIm½En�j. Such a relation is not obvious as the lattice
QCD results assume a Gaussian form for the spectral
function. In this appendix,we investigate the relation between
the imaginary part of the energy and the Gaussian width.
Following the procedure in Ref. [74], we start the

correlation as a spatial Dirac-δ function,

C>ð0; rÞ ¼ δð3ÞðrÞ; ðA1Þ

and evolve the forward and backward propagator according
to the Hamiltonian

�
ĤC>ðt; rÞ ¼ i∂tC>ðt; rÞ; t > 0;

Ĥ†C>ðt; rÞ ¼ i∂tC>ðt; rÞ; t < 0.
ðA2Þ

We note that the eigenfunctions of the Hamiltonian, fψng,
form a complete set of the Hilbert space. Hence, we expand
the Dirac-δ function in a series of the wave functions,

cn ≡
Z

d3rC>ð0; rÞψ�
nðrÞ ¼ ψ�

nð0Þ; ðA3Þ

and the time dependence of the correlation function can be
expressed as the super position of different eigenmodes,

C>ðt; rÞ ¼
8<
:

P
n
cne−iEnt × ψnðrÞ; t > 0;

P
n
c�ne−iE

�
nt × ψ�

nðrÞ; t < 0;
ðA4Þ

where
P

n denotes summation over all bound states,
as well as the integral over the scattering continuum when
applicable.
With these, we find that the spectral function

ρðωÞ≡
Z þ∞

−∞
dt eiωtC>ðt; 0Þ ðA5Þ

¼
X
n

−2jψnð0Þj2 Im½En�
ðω − Re½En�Þ2 þ ðIm½En�Þ2

ðA6Þ

takes the Lorentzian form, with the Lorentzian width being
the imaginary energy eigenvalue. To guarantee that the
amplitude jψðtÞi decays rather than explodes, the imagi-
nary energy should always be nonpositive, and

ΓLor
n ¼ −Im½En�: ðA7Þ

On the other hand, in Refs. [32–34] the masses and
widths are extracted under the assumption of a Gaussian
spectral function,

ρðωÞ ∝
X
n

exp

�
−
ðω −MnÞ2

2Γ2
n

�
: ðA8Þ

While the mass can be uniquely defined as the peak
position, there is no obvious way to map the Lorentzian
width with the Gaussian one. In this work, we take
ΓLor
n ¼ ΓGau

n , as they both represent the characteristic
width. From a different point of view, one might otherwise
match them according to the half-maximum of the
spectral function. In the latter case, one would find
ΓLor
n ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

ΓGau
n , hence Im½En� ¼ −1.18ΓGau

n . If taking
the latter mapping, the decay width of the bottomonium
states shall be multiplied by a factor of 1.18, and the
extracted VI shall increase by ∼18%.
In this appendix, we have shown, analytically, that mass

and thermal widths obtained by solving the evolution of
correlators shall be equivalent to those from solving the
energy bound states. One may wonder if such an equiv-
alence would still hold in numerical procedures, especially
given the possible uncertainty of fitting the peaks of the
spectral function. To answer this question, we perform a
numerical verification as follows. We start from the

FIG. 10. Masses and thermal widths of bottomonium states by
solving the bound-state problem of the Schrödinger Hamiltonian
with the complex-valued potential listed in Ref. [64].
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complex-valued potential listed in Ref. [64], solve the
bound-state problem for the Schrödinger Hamiltonian
according to the inverse power method [75], and obtain
the complex-valued energy eigenvalues for various botto-
monium states. Their masses and thermal widths—being
the real and imaginary part of the energy eigenvalues,
respectively—are shown in Fig. 10. We find our results are

consistent with those of [64], which computes the masses
and thermal widths from the correlator evolution as out-
lined in [74]. With both the analytical derivation and
numerical verifications, we conclude that these two pro-
cedures are equivalent in computing the mass and thermal
widths from the Schrödinger Hamiltonian with time-
independent potentials.
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