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We calculate the masses of the vector and axial vector mesons as well as the nucleon and the delta
resonance in the chiral symmetry restored vacuum. This is accomplished by separating the quark operators
appearing in the QCD sum rules for these hadrons into the chiral symmetric and symmetry breaking parts
depending on the contributions of the fermion zero modes. We then extract the vacuum expectation values
of all the separated parts of the quark operators using the QCD sum rule relations for these hadrons with
their vacuum masses and widths. By taking the chiral symmetry breaking parts to be zero while keeping the
symmetric operators to their vacuum values, we obtain the chiral symmetric part of the hadron masses. We
find that the masses of chiral partners, such as the ðρ; a1Þ and ðK�; K1Þ, become degenerate to values
between 500 and 600 MeV in the chiral symmetry restored vacuum, while parity partners ðω; f1Þ that are
chiral partners only in the limit where the disconnected diagrams are neglected remain nondegenerate with
masses (655, 1060) MeV, respectively. The masses of the nucleon and the delta are also found to reduce to
about 500 and 600 MeV, respectively, in the chiral symmetric vacuum. This shows that while chiral
symmetry breaking is responsible for the mass difference between chiral partner, both the meson and
baryon retain a nontrivial fraction of their masses in the chiral symmetry restored vacuum.

DOI: 10.1103/PhysRevD.105.014014

I. INTRODUCTION

Understanding the generation of the masses of hadrons
that are larger than several hundred MeV starting from
the current quark masses of less than 10 MeV is one of the
fundamental problems in QCD [1,2]. It is believed that
spontaneous chiral symmetry breaking [3,4] is partly
responsible for the generation of the masses [5–8].
Experiments have been performed worldwide to observe

the mass shift of hadrons at finite temperature or density
[9–13], as chiral symmetry is expected to be fully and
partially restored in the initial states of the relativistic heavy
ion collision and in the nuclear matter probed by nuclear
target experiment, respectively.
It is clear that chiral symmetry breaking is responsible

for the mass difference between chiral partners [14], so that
if chiral symmetry is restored, the mass difference between
chiral partners should vanish [15,16]. However, how much
of the total hadron mass comes from chiral symmetry
breaking is still to be understood.

Recently, we have shown that the masses of the ρ and a1
mesons, which form chiral partners, become degenerate to
about 550 to 600 MeV in the chiral symmetry restored
vacuum [17]. One can isolate chiral symmetry breaking
effect by separating the quark operators, appearing in the
operator product expansion (OPE) of their correlation
functions, into the chiral symmetric and breaking parts
through their dependencies on the fermion zero mode, which
can be directly related to the chiral order parameter [18]. As
the four- and six-quark operators are separated according to
the contribution of the zero modes, one notes that the chiral
symmetry breaking parts are order parameters of chiral
symmetry breaking while the symmetric parts obtain non-
vanishing values from chiral symmetric nonperturbative
contributions in QCD [17]. Originally, in the in-medium
QCD sum rules for the light vector mesons [7], the four-
quark condensates were assumed to be proportional to the
quark condensate square through the vacuum saturation
hypothesis [19] so that they vanished automatically when
chiral symmetry is restored. However, it was found that the
chiral symmetric part of the four-quark condensate is as large
as the chiral symmetry breaking part and that the magnitude
of the chiral symmetry breaking part follows that obtained
from using the vacuum saturation hypothesis [17]. This also
explains why in the previous QCD sum rules, the four-quark
operators were multiplied by a κ factor larger than 1 after
vacuum saturation hypothesis to correctly obtain the hadron
mass from the sum rule analysis [20,21].
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In this work, we generalize the work on (ρ; a1) [17] to
study the masses of other chiral partners [K�ð892Þ;
K1ð1270Þ] and parity partners [ωð782Þ, f1ð1285Þ] as well
as the nucleon and the delta resonance in the chiral symmetry
restored vacuum. In Sec. II, we lay out the formalism and
the analysis method. In Sec. III, we apply the formalism to
the meson sector. The baryons are analyzed in Sec. IV.
Section V summarizes our work. Finally, in the Appendix,
we provide a detailed explanation of how to separate the
quark operators into the chiral symmetric and breaking parts.
We further provide explicit forms for the chiral symmetric
and breaking quark operators appearing in the meson and
baryon sum rules and show relevant relations based on Fiertz
transformations.

II. SUM RULES ANALYSIS

In this section, we provide an overview of the analysis
method used in this work. We start with the relevant
correlation function between currents with the quantum
numbers of the hadrons to study.

ΠðqÞ ¼ i
Z

d4xeiqxhTfjΓðxÞJΓð0Þgi; ð1Þ

where the subscript Γ specifies the current of interest. We
then study the Borel transformed dispersion relation for the
invariant part of the correlation function.

Π̂ðM2Þ ¼
Z

∞

0

dse−s=M
2

ρðsÞ; ð2Þ

where Π̂ðM2Þ represents the Borel transformed OPE of
the correlator Π, and M stands for the Borel mass. ρðsÞ is
the spectral function for the hadron of interest.

A. Phenomenological side

The phenomenological side is constructed using the
following form of the spectral density function ρðsÞ.

ρðsÞ ¼ ρpoleðsÞ þ ρcontðsÞ;

ρpoleðsÞ ¼ 1

π

fΓ
ffiffiffi
s

p
ðs −m2Þ2 þ sΓ2

;

ρcontðsÞ ¼ 1

π
θðs − s0ÞImΠ̃pertðsÞ; ð3Þ

where mðΓÞ is the Breit-Wigner mass (width) of a hadron
and s0 is the threshold parameter. The threshold parameter is
chosen to make the Borel curve flattest. In Table I, we
summarize the masses and widths of hadrons we study and
the corresponding interpolating currents used. These param-
eters with the spectral density will be used in Eq. (2) to
obtain the values of the four quark operators appearing in the
OPE up to dimension-six operators. In a previous work,
using such a method, we were able to obtain the chiral

symmetry breaking and symmetric operators appearing in
the ρ − a1 sum rules [17]. Here, we will generalize the
method to other hadrons.

B. OPE Side

In the original QCD sum rules for light hadrons, the
OPE were calculated up to dimension-six four-quark
operators. Then the vacuum saturation approximations
were used to estimate the vacuum expectation values for
these four-quark operators. The total OPE were then used
in the Borel transformed sum rules to estimate the mass of
the particle. Unfortunately, factorization assumption is
valid only in the large Nc limit and in fact a multiplicative
κ were often introduce to better reproduce the hadron
mass. On the other hand, if the phenomenological side is
modeled with physical observables, one can use the sum
rule to estimate the values of the four-quark operators. The
four-quark operators can then be separated into chiral
symmetry breaking and symmetric parts depending on the
contribution of the zero modes.
According to the Banks-Casher formula [18,22], the

chiral order parameter is proportional to the density of zero
eigenvalues in the Euclidean formalism.

hq̄qi ¼ lim
x→0

−
1

2
hTr½Sð0; xÞ − iγ5Sð0; xÞiγ5�i;

¼ −πhρðλ ¼ 0Þi: ð4Þ

In a previous work, we showed that the four-quark operator
can also be divided according to the contribution of these
zero modes [16,17]. The chiral symmetry breaking four-
quark operators are proportional to the zero modes while
symmetric operator has no contribution from them. In other
words, while the former can be considered as chiral order
parameters, the latter originates from other vacuum structure
associated with nonzero eigenvalues. Therefore, when the
zero mode contributions are taken away, chiral symmetry
breaking is restored and the breaking operators vanish while
the symmetric operators remain the same.

TABLE I. The mass and width for particles used in Eq. (3). The
last column shows the interpolating current used for each particle.
q stands for the isospin doublet and ημν ¼ qμqν=q2 − gμν.

Particle Mass (MeV) Width (MeV) Interpolating current

ρ 775.26 149.1 q̄τ3γμq
a1 1230 400 ημνq̄τ3γνγ5q
ω 782.65 8.49 q̄γμq
f1 1281.9 22.7 ημνq̄γνγ5q
K� 895.81 47.4 ūγμs
K1 1272 90 ūγμγ5s
N 938 0 ϵabcðuaCγμubÞγ5γμdc
Δ 1232 117 ϵabcðuaCγμubÞuc
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Using our prescription for dividing the four-quark oper-
ators, one can determine the chiral symmetry breaking part
and chiral symmetric part of the four-quark operators appear-
ing as two independent combinations in the sum rules of
chiral partners, such as the ρ; a1, and then use the two sum
rules to determine the two values separately. This allows us to
estimate the mass of vector meson mass by taking the chiral
symmetry breaking operator to zero while keeping the chiral
symmetric four-quark operator to its vacuum value and
studying the sum rule for the common ρ; a1 mass.
The situation is more complicated for the K�; K1 or the

ω; f1 cases. For K�; K1, they form SU(2) chiral partners, so
that the chiral symmetry breaking operator proportional to
both the strange and light quark condensate can be identified
unambiguously. Still, to obtain their mass in the chiral
symmetry restored vacuum, one should use the information
about the chiral symmetry breaking operator obtained in the
ρ; a1 sum rules. The mass at the chiral symmetry restored
vacuum can then be estimated by taking all the chiral
symmetry breaking operators to zero. As for the ω; f1, they
form chiral partners only when contributions from discon-
nected diagrams are neglected. As we will see, combining
the results from the ρ; a1 sum rule, we can estimate the
magnitude of these operators and estimate the contribution
of chiral symmetry breaking effects on the ω; f1 masses. For
the nucleon and delta masses, we will use results from the
meson sum rules on the four quark operators and try to
extract the values for the dimension-eight operators.
A way to parametrize the sum of the chiral symmetry

breaking and symmetric four-quark operator appearing in
each sum rules is by introducing an auxiliary parameter κ
multiplying the vacuum saturation value of the chiral break-
ing operators so that a κ value close to 1 means small
contribution from the chiral symmetric operators.
The input values for the low dimensional OPE terms are

given in Table II. We use the quark condensate value
evaluated from the Gell-Mann-Oakes-Renner (GMOR)
relation,

m2
πf2π ¼ −2mqhūui; ð5Þ

with the values (mπ ¼ 137.5 MeV, fπ ¼ 93 MeV, m̄ud ¼
3.45 × 1.35 MeV). mπ and fπ are the mass and decay
constant of the pion, respectively. mq is the averaged mass
of u and d quarks. We take the values of mq and ms scaled
from 2 to 1 GeV, as reported in the Particle Data Group
[23], implemented here through the factor of 1.35 multi-
plying the quark mass. Also, we take the values of the other
sum rule parameters to be values that are frequently used in
QCD sum rule studies. The other parameters are standard
values taken from [24,25].

C. Borel window

We now discuss how the Borel windows are obtained in
the sum rules. The extracted sum rule is obtained by setting

the phenomenological side Π̂phenðM2Þ equal to the OPE
side Π̂OPEðM2Þ. Each side can be defined as follows:

Π̂phenðM2Þ ¼
Z

∞

0

dse−s=M
2ðρpoleðsÞ þ ρcontðsÞÞ;

Π̂OPEðM2Þ ¼
Xdh
j¼dl

CjhOji
ðM2Þj ; ð6Þ

where Oj and Cj are the operator and the corresponding
Wilson coefficient, respectively, and dlðdhÞ is the lowest
(highest) power of ðM2Þ−1 considered. As we truncate the
OPE, the asymptotic expansion will break down at small
Borel mass region. On the other hand, the approximation of
the continuum approximation and the pole dominance
require the Borel mass to sufficiently small. The constraints
give the acceptable Borel mass range called Borel window.
The details are as follows.
On the phenomenological side, one has to make sure that

the contribution from the pole ρpoleðsÞ dominates over that
from the continuum ρcontðsÞ. The constraint is given by

R
∞
s0
dse−s=M

2

ρcontðsÞR
∞
0 dse−s=M

2

ρpoleðsÞ < xmax; ð7Þ

where xmax is a number smaller than 1 and adjusted for
the sum rule for each hadron. This condition determines
the upper boundary Mmax in the Borel window.
The other comes from requiring the contribution of the

condensate terms to be smaller than that of the perturbative
term. This constraint is obtained by

TABLE II. The upper part shows the OPE
parameters used in the sum rule. Lower part
marked with a star marker (*) shows values
calculated from the sum rules. m2

0 stands for
gshūσμνGμν

a λaui=hūui. All the values here are
obtained with assuming the a1 width to be
400 MeV.

mq 3.45 × 1.35 MeV
ms 93 × 1.35 MeV
hūui ð−0.260 GeVÞ3
hðαs=πÞG2i 0.012 GeV4

αs 0.36
hs̄si=hūui 0.8
m2

0 0.8 GeV2

μ 0.5 GeV
ΛQCD 0.1 GeV

hBsuiB=hBuuiB 0.565(*)
hBuuiB ð0.3053 GeVÞ6(*)
hBsuiB ð0.2776 GeVÞ6(*)
hðq̄γμγ5λaqÞ2idis;S ð0.2826 GeVÞ6(*)
hðq̄γμλaqÞ2idis;S −ð0.3369 GeVÞ6(*)
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Π̂OPE
cond termsðM2Þ
Π̂OPE

pert termðM2Þ < xmin; ð8Þ

where Π̂OPE
cond termsðM2Þ and Π̂OPE

pert termðM2Þ are the sum of the
condensate terms considered and the perturbative term in
OPE side, respectively. This condition restricts the Borel
mass M to be larger than Mmin.
The values of xmax and xmin are chosen to make the

extreme point of the Borel curve stable against changes in
the threshold within the Borel window. The chosen values
for different hadrons are given in Table III, which will also
be used in the sum rule analysis in the chiral symmetry
restored vacuum. With these, the ranges of Borel window
for each hadron can be determined. Once the Borel range is
determined for a given hadron, the same range will be used
to determine the mass in the chiral symmetry restored
vacuum. In the following Borel curves presented in this
work, Borel curves within (outside) the Borel window are
drawn in a solid (dotted) line.

D. Analysis

To eliminate the f dependence in ρpoleðsÞ shown in
Eq. (3), we conduct an analysis using the ratio between the
extracted sum rule and its derivative with respect to−1=M2.
Namely,

d
dð−1=M2Þ Π̂

phenðM2Þ
Π̂phenðM2Þ ¼

R
∞
0 ds se−s=M

2

ρðsÞR∞
0 ds e−s=M

2

ρðsÞ : ð9Þ

Apart from the Borel massM dependence, Eq. (9) depends
on the hadron mass m, the decay width Γ and the threshold
parameter s0. Meanwhile, its corresponding OPE side

d
dð−1=M2Þ Π̂

OPEðM2Þ
Π̂OPEðM2Þ ¼ −

Pdh
j¼dl

jCjhOji=ðM2Þj−1Pdh
j¼dl

CjhOji=ðM2Þj ð10Þ

depends on the auxiliary parameter κ for its dimension-six
operator term. As explained previously, the mass and decay
width values in Table I are used. Equating Eq. (9) to (10),
we obtain the Borel curve for κ. We then take its value at the
extremum point. Since the κ value at the extremum point
varies with s0 value, we take the value that reproduce the
flattest and stable mass Borel curve. In summary, the Borel
sum rule we will use throughout the paper is given by

R
∞
0 ds se−s=M

2

ρðsÞR
∞
0 ds e−s=M

2

ρðsÞ ¼ −
Pdh

j¼dl
jCjhOji=ðM2Þj−1Pdh

j¼dl
CjhOji=ðM2Þj : ð11Þ

Once the κ value is determined, the chiral symmetry
breaking and symmetric quark operators can be evaluated
by combing the sum rules of chiral partners. By taking
chiral symmetric contribution only, one can get the mass
sum rule in chiral symmetry restored vacuum. By taking the
s0 value that produce the flattest and stable mass Borel
curve, the mass can be extracted. more details are discussed
in the following subsections for different hadrons.
We assume that in the symmetry restored phase, the decay

widths for baryon the delta, ω and f1 remain the same, while
for the chiral partners K�-K1 and ρ-a1, they become that
of the corresponding vector mesons. Our previous work [17]
shows that changing the width in the chiral symmetric
vacuum affects the symmetric mass mρ−a1

sym insignificantly, at
most 20MeV. This amount is less than 10% of the total mass
decrease. Furthermore, since the widths of other hadrons we
considered are smaller than that of ρ, the effects coming from
using different widths are also expected to be small.

III. MESON

While both (ρ, a1) and (K1,K�) are chiral partners, (ω, f1)
are not because of the contributions from the disconnected
diagrams. These contributions are not zero as ωðf1Þ and
ρða1Þ have different widths suggesting that the differences in
the OPE coming from the disconnected four-quark contri-
butions, which vanishes in the vacuum saturation hypothesis,
are not zero. Let us first summarize the four-quark con-
densate appearing in the ρ; a1 sum rules.

A. ρ and a1
The sum rules are obtained by using the interpolating

currents given in Table I and studying the polarization
Π ¼ Πμ

μ=ð−3q2Þ. The dimension-six four-quark operators
from the OPE sides contributing as −παsM=Q6 are,
respectively, given as follows [24]:

Mρ ¼ 2hðq̄γμγ5λaτ3qÞ2i

þ 4

9

�
ðq̄γμλaqÞ

� X
q¼u;d;s

q̄ γμλaq

��
;

Ma1 ¼ 2hðq̄γμλaτ3qÞ2i

þ 4

9

�
ðq̄γμλaqÞ

� X
q¼u;d;s

q̄ γμλaq

��
; ð12Þ

where q denotes the isospin doublet unless stated otherwise.
As mentioned in the previous section, these can be divided
into the chiral symmetric and breaking operators; details are
given in the Appendix. Introducing the auxiliary parameters
κρ and κa1 for each, the results are obtained as follows:

TABLE III. Values for xmax and xmin defined in Eqs. (7) and (8).

ρ a1 ω f1 K� K1 N Δ

xmin 0.15 0.15 0.15 0.15 0.15 0.15 0.2 0.28
xmax 0.7 0.7 0.7 0.7 0.7 0.7 0.75 0.96
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κρ
448

81
hūui2 ¼ 28

9
hBuuiB þ hSρ−a1iS;

−κa1
704

81
hūui2 ¼ −

44

9
hBuuiB þ hSρ−a1iS; ð13Þ

where

hBuuiB ¼ 1

2
ðhðūγμγ5λadÞðd̄γμγ5λauÞi

− hðūγμλadÞðd̄γμλauÞiÞB;

hSρ−a1iS ¼
11

9
ðhðq̄γμγ5λaτ3qÞ2i þ hðq̄γμλaτ3qÞ2iÞS

þ 4

9
ðhðq̄γμλaqÞ2i − hðq̄γμλaτ3qÞ2iÞS

þ 4

9
hðq̄γμλaqÞðs̄γμλasÞiS: ð14Þ

It is important to note that the second quark operator
appearing in the right-hand side of both the ρ and a1
dimension-six operators given in Eq. (12) has contributions
from the chiral symmetry breaking effect because the zero
modes contribute in the connected quark diagrams of this
operator as discussed in the Appendix.
Since the symmetric part is identical while the breaking

operator Buu contribute with different coefficients, one can
identify the breaking and symmetric part uniquely by
optimizing both sum rules with physical quantities. By
taking the breaking part of the operator to be zero while
keeping the symmetric operator to its vacuum value, one
can obtain the sum rules in the chiral symmetry restored
vacuum. The results for the matrix elements and the masses
in the chiral symmetry restored vacuum are given in
Table IV. The results for ρ − a1 in Table IV are obtained
with the a1 width of 400 MeV. Since there are still large
uncertainty in the a1 width Γa1 , we take a larger value. For
Γa1 ¼ 250ð600Þ MeV, one finds that mρ−a1

sym decreases
(increases) by about 27.5 MeV.
To estimate the contribution of the chiral symmetry

breaking effect to the hadron mass, we obtain the Borel
curve for the mass using Eq. (11). We then take the ratio
between m0 − m̄sym and m0, where m0 is the mass in the
usual vacuum and m̄sym that in the chiral symmetry restored
vacuum. The Borel curve for this ratio shows the contri-
bution of chiral symmetry breaking effect to the hadron
mass. As can be seen in Fig. 1, the ratios are around 0.3 and
0.55 for the ρ and a1 mesons, respectively.

B. ω and f 1
The only difference between the OPE sides of ρða1Þ and

ωðf1Þ is the disconnected piece [26].

ΠOPE
ω − ΠOPE

ρ ¼ −
2παs
Q6

hðq̄γμγ5λaqÞ2idis;S;

ΠOPE
f1

− ΠOPE
a1 ¼ −

2παs
Q6

hðq̄γμλaqÞidis;S; ð15Þ

where the two-point correlators ΠOPE
ω and ΠOPE

f1
come from

the interpolating currents Jωμ and Jf1μ in Table I. These
disconnected operators are chiral symmetric and are mainly
responsible for the differences in their masses and widths.
As the chiral symmetry operators do not depend on chiral
symmetry breaking effects, the masses of ω and f1 will be
nondegenerate in the chiral symmetry restored vacuum.
With the auxiliary parameter κ, Eq. (15), apart from
(−παs=Q6), can be rewritten as follows:

TABLE IV. The κs are evaluated using sum rules with the
physical values given in Table I and the threshold parameter s0 in
the brackets. S=B indicates the fractional contribution of the
chiral symmetric part S to the contribution of the chiral symmetry
breaking part B for each hadron. m̄sym is the hadronic mass in the
chiral symmetry restored vacuum. The uncertainties of the
masses are due to the ranges of the width of a1 meson, which
we take from 250 to 600 MeV, for the negative and positive
uncertainty values, respectively. Except for the last column, the
central values are evaluated with the a1 width of 400 MeV.

Particle κð ffiffiffiffiffi
s0

p ðGeVÞÞ S=B m̄sym(MeV)

ρ 2.60(1.17) 0.760
572.5� 27.5a1 0.76(1.55) −0.485

ω 3.20(1.15) 1.165 655� 15
f1 1.85(1.58) 0.253 1060� 30

K� 2.097(1.33) 2.831
545 ∓ 5

K1 0.39(1.56) −0.227

0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

0.2

0.4

0.6

0.8

1

FIG. 1. Borel curves that show the fraction of chiral symmetry
breaking effects to the hadron masses.
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ðκω − κρÞ
448

81
hūui2 ¼ 2hðq̄γμγ5λaqÞ2idis;S;

−ðκf1 − κa1Þ
704

81
hūui2 ¼ 2hðq̄γμλaqÞidis;S: ð16Þ

The κ values can be obtained from the values for the four-
quark operators, which are calculated by substituting the
phenomenological side given in Eq. (3) into (2) and studying
the sum rule for each current. κρ and κa1 given in Table IVare
obtained in the sum rule calculation presented in [17]. Here
the values for κρ and κa1 are slightly different from those
given in [17] as we use updated values for the quark
condensate and mass. Substituting the spectral density with
physical parameters for ω and f1 into the sum rules, we
obtain the corresponding κ values as given in Table IV.
Figure 2 shows the κ values for ω and f1 meson. We take the
κ value at the extremum point of the Borel curve. One can
also use the Borel curve for the masses and try to extract the
value for the four-quark operators that best reproduces the ω
and f1 mass with their given width. As can be seen in the
open circle and square plot in Fig. 3 the extracted value for
the four-quark operators gives the most stable Borel curve
for the mass of ω and f1 mass, respectively. Using the values
of κ, the values for the disconnected contribution of the four-
quark condensates are given as follows:

hðq̄γμγ5λaqÞ2idis;S ¼ 1.65hðūuÞi2;
hðq̄γμλaqÞ2idis;S ¼ −4.73hðūuÞi2: ð17Þ

The disconnected contributions vanish in the vacuum satu-
ration hypothesis. Our result in Eq. (17) shows that while
such assumptions are approximately valid in some channels,
they are largely violated in some other channels. Assuming
that the disconnected diagrams are mediated by gluon fields,

one notes hðq̄γμγ5λaqÞ2idis;S=hðq̄γμλaqÞ2idis;S ∼ ðαsÞ2 sug-
gesting that estimated values in Eq. (17) are consistent with
the αs counting.
The magnitude of dimension-six part forωðf1Þ consists of

the disconnected piece and the dimension-six part of ρða1Þ.
Now, using the identification discussed in the Appendix, one
notes that the disconnected four-quark operators appearing
in Eq. (15) are chiral symmetric operators. Therefore, the
mass of the ω and f1 mesons in the chiral symmetry restored
vacuum can be obtained by taking the chiral symmetry
breaking operators, which appear in the ρ and a1 channels, to
zero. Then, as can be seen in Fig. 3 through the Borel curve,
one finds that, when the symmetry is restored, the ω mass
becomes 650 MeV, similar to the ρ − a1 mass, while the f1
mass is 1060 MeV.

C. K1 and K�

Unlike the ω; f1 pair, K� and K1 form chiral partners, as
is evident when analyzing the operators as given in the
Appendix. Hence, when the chiral symmetry gets restored,
the masses become degenerate. As represented in [15], the
dimension-six operators, after omitting the common factor
− 2παs

Q6 in the OPE, are given as follows:

MK� ¼ hðūγμγ5λasÞðs̄γμγ5λauÞi

þ 1

9

�
ðs̄γμλasþ ūγμλauÞ

� X
q¼u;d;s

q̄ γμλaq

��
;

MK1
¼ hðūγμλasÞðs̄γμλauÞi

þ 1

9

�
ðs̄γμλasþ ūγμλauÞ

� X
q¼u;d;s

q̄ γμλaq

��
: ð18Þ

0 0.5 1 1.5 2 2.5 3 3.5 4

M2(GeV2)

0
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1

1.5
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2.5

3
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4

 f1

FIG. 2. Borel curves for four-quark operator parameter κ for ω
(circle) and f1 (square). The optimal κ is taken to be the value at
the extremum.
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FIG. 3. The Borel curves for ω (open circle) and f1 (square)
masses are with each κ value in Table IV. The Borel curve with
cross (diamond) markers describes the ωðf1Þ mass in the chiral
symmetry restored vacuum.
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One can divide these operators according to chiral sym-
metric and breaking parts, shown by the subscripts S and B,
respectively.

MK� ¼ hBsuiB −
1

9
hBuuiB þ hSKiS;

MK1
¼ −hBsuiB −

1

9
hBuuiB þ hSKiS; ð19Þ

where

hBsuiB¼
1

2
hðūγμγ5λasÞðs̄γμγ5λauÞ−ðūγμλasÞðs̄γμλauÞiB;

hBuuiB¼
1

2
hðūγμγ5λadÞðd̄γμγ5λauÞ−ðūγμλadÞðd̄γμλauÞiB;

hSKiS¼
1

2
hðs̄γμγ5λauÞðūγμγ5λasÞþðs̄γμλauÞðūγμλasÞiS

þ 1

18
hðūγμγ5λadÞðd̄γμγ5λauÞþðūγμλadÞðd̄γμλauÞiS

þ1

9

�
hðs̄γμλasÞð

X
q¼uds

q̄γμλaqÞiS

þhðūγμλauÞðd̄γμλadÞiSþhðūγμλauÞðs̄γμλasÞiS
þhðūγμλauÞ2−ðūγμλadÞðd̄γμλauÞiS

�
; ð20Þ

and SK is the symmetric dimension-six operators for K� and
K1. Using the sum rules for the K� and K1 mesons one can
obtain the Borel curves and thus determine the magnitudes
of the four-quark operators appearing in these sum rules
separately. We parametrize the magnitude of the obtained
matrix elements by identifying them to κK� and κK1

times the
vacuum saturation values, respectively. Equation (19) can be
rewritten as follows:

MK� ¼ κK�

�
16

9
hūuihs̄si − 16

81
ðhūui2 þ hs̄si2Þ

�
;

¼ hBsuiB −
1

9
hBuuiB þ hSKiS;

MK1
¼ κK1

�
−
16

9
hūuihs̄si − 16

81
ðhūui2 þ hs̄si2Þ

�
;

¼ −hBsuiB −
1

9
hBuuiB þ hSKiS: ð21Þ

Thus, the Borel curves for the four-quark operators become
those for the κs. It should be noted that one can first
determine hBsuiB from the difference between the K� − K1

sum rules. As can be seen from Table V, the value of hBsuiB
thus determined is slightly smaller than hBuui determined
from the ρ-a1 sum rules, which is what is expected also
from the vacuum saturation hypothesis as the strange quark

condensate is expected to be slightly smaller than that of
light quark condensate. Using these values, one can further
determine the values for hSKiS. Figure 4 shows the Borel
curve for the κ values for the pair. As in the previous section,
the values are taken at the extremum point and also the
threshold parameter (

ffiffiffi
s

p Þ values are taken to make the mass
Borel curve flattest and stable. One can use the obtained
values for the four-quark operators and obtain the sum rule
for the masses. As presented in Fig. 5, the Borel curves for
the masses of the K� (open circle) and K1 (square) with the
corresponding κ value are stable and reproduce the physical
masses.
The chiral symmetric degenerate mass can be extracted

by taking the symmetry breaking operator to be zero and
keeping the magnitude of the symmetric operator hSKi.
Although the hBuui value used to solve Eq. (19) depends
on the a1 width, the extracted massmK�−K1

sym barely changes
as one changes its value. One finds that mK�−K1

sym is
545 MeV, slightly smaller than that of ρ − a1. For
Γa1 ¼ 250ð600Þ MeV, one finds that mK�−K1

sym increases
(decreases) by about 5 MeV.

TABLE V. Values of the four four-quark operators defined in
Eq. (20) evaluated from our sum rule approach (SR) and from
vacuum saturation hypothesis (VS). The error shown in the last
column are the difference between the two divided by VS value.

Operator SR VS Error

hBuuiB ð0.3056 GeVÞ6 ð0.2862 GeVÞ6 0.482
hBsuiB ð0.2779 GeVÞ6 ð0.2758 GeVÞ6 0.038
hðq̄γμγ5λaqÞ2idis;S ð0.2826 GeVÞ6 0 GeV6

hðq̄γμλaqÞ2idis;S −ð0.3369 GeVÞ6 0 GeV6
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FIG. 4. Borel curves for four-quark operators parametrized by κ
in K� (circle) and K1 (square) sum rules. The optimal κ values are
taken from the value at the extremum point.
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D. ρ− a1 versus K� −K1

In the sum rule, the mass difference between the
ðK�; K1Þ pair is coming from both the two-quark and
four-quark condensate whereas that between ðρ; a1Þ is
dominated by the four-quark condensate: the two-quark
condensates mshūui in the ðK�; K1Þ OPE sides are much
larger than the two-quark condensatesmuhūui in the ðρ; a1Þ
OPE sides, due to the different quark masses. Furthermore,
the experimental mass difference between chiral partners
is larger for the ðρ; a1Þ pair. This means that the mass
difference coming from the four-quark condensate is much
smaller for the ðK�; K1Þ case. This leads to a larger S=B
ratio for the open strange meson case. In Table VI, the
column denoted by mB shows the masses when only the
symmetry breaking part of the four-quark condensate is
taken to be zero while leaving the two-condensate intact.
As can be seen in the table, the mass changem0 −mB from
the original value m0 is smaller for the open strange meson
than for the ρ.
Additionally, the mass ofK� is smaller than that of ρ in the

chiral symmetry restored vacuum where both the two-quark
and the chiral symmetry breaking four-quark operators are
taken to be zero. This is because the chiral symmetric

operator in the ðK�; K1Þ sum rules contain a hs̄γμλass̄γμλasi
type of operator, as can be seen in Eq. (20). Because we are
considering chiral symmetry restoration in the SU(2) flavor
sector, we have taken the strange four-quark operator to be
independent of chiral symmetry restoration and included it
in the chiral symmetric four-quark operator. It is certainly
true that when chiral symmetry restoration takes place, the
strange quark condensate will also change. But since we
have to rely on lattice or model calculation to obtain the
exact relation, we leave that discussion for future work.
Because this strange four-quark condensate contributes with
a negative contribution to the chiral symmetric part of the
four quark condensate, as expected from vacuum saturation
for the strange quark, the mass of K�ðK1Þ is observed to be
smaller than the mass of ρða1Þ in the chiral restored vacuum.
Hence, when the strange four-quark operator decreases the
mass of K�ðK1Þ approaches that of ρða1Þ in the chiral
symmetry restored vacuum.

IV. BARYON

We use the currents given in Table I. Since the baryon
currents couple to both parity states, the two-point correlator
between the baryonic interpolating current ηðxÞ can be
written as follows [27]:

ΠðqÞ ¼ i
Z

d4xeiqxhTfηðxÞη̄ð0Þgi0;

¼
X
n

�
−jλnþj2

=qþmnþ
q2 − ðmnþÞ2 þ iϵ

− jλn−j2
=q −mn

−

q2 − ðmn
−Þ2 þ iϵ

�
;

≡ =qΠvðq2Þ þ 1Πsðq2Þ; ð22Þ

where mnþ and mn
− represent the mass of the nth excited

positive and negative parity states, respectively, and λn� their
corresponding overlaps with the currents. As two invariant
functions appear, one can obtain two independent sum rules.
However, if chiral symmetry is restored, Πsðq2Þ goes to zero
as all the operators in the OPE side are chiral order
parameters and the phenomenological side will be propor-
tional to the mass difference between chiral partners.
Therefore we will use the sum rule from Πvðq2Þ, from
which we can extract the mass even in the chiral symmetry
restored phase as the two chiral partners will become
degenerate and strengthen the lowest pole contribution.
Since we do not have independent sum rules for chiral

partners, we cannot determine the values for the chiral
symmetric and breaking quark operators separately as we did
in the meson case. On the other hand, as can be seen in
Table V, the values of the chiral symmetry breaking four-
quark operator extracted from the meson sum rule are very
close to that estimated from the vacuum saturation hypoth-
esis. Therefore, we will assume that the vacuum saturation
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FIG. 5. Borel curves for K1 and K� mass in chiral symmetry
breaking (square and circle) and restored (cross) vacuum.

TABLE VI. m0 indicates the vacuum mass. mB shows the mass
evaluated in the sum rule after taking the chiral symmetry
breaking part of the four-quark operator to be zero.msym indicates
the mass evaluated in the sum rule where all the chiral symmetry
breaking parts of the four-quark as well as the two-quark
operators are taken to be zero.

Particle m0 mB msym

ρ 775.26 MeV 610 MeV 572.5 MeV
K� 895.81 MeV 775 MeV 545 MeV
K1 1272 MeV 1080 MeV 545 MeV
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hypothesis is accurate for evaluating the chiral breaking
operators, as was the case for four-quark operators appearing
in the meson sum rules.
Furthermore, while the OPE was calculated up to dimen-

sion-six four quark operators for the meson case, one needs
to consider the higher dimensional four-quark gluon mixed
operator for the baryons in order to obtain stability of the
sum rules. We extract and parametrize the magnitude of the
dimension-six and dimension-eight operators by κ6 and κ8,
respectively, as was done for the dimension-six operators in
the meson sum rules.
In this case, there is one more independent parameter κ8. In

principle, since the sum rule is a function of Borel mass, we
can determine both parameters by requiring the phenom-
enological side to be closest to the OPE side. Technically, we
realize the procedure as follows. To determine its value, we
first select a κ6 value that ranges from −1 to 4, which is
slightly wider than the range of the κ values determined in the
meson cases. Once κ6 value is chosen, the value of the other
parameters s0 and κ8 can be determined by requiring the
Borel curve for the mass to be flattest and stable. Then we
change the κ6 value and repeat the procedure and compare
the Borel mass curves. The final values of κ6 and κ8 are
determined from choosing the most stable Borel mass curve
among the final Borel mass curves. It should be noted that
although we set the κ6 range, the stable baryonic sum rule for
the mass occurs only for a limited value of κs such that as we
approach the lower and upper limit of the range that we chose
for κ6, the sum rule becomes far from stable. In Table VII, we
summarize the determined κ values and masses of nucleon
and Δ in the chiral symmetry restored vacuum.

A. Nucleon

We use the sum rule for nucleon constructed from the
Ioffe current, known as the optimal choice [25].
Parametrizing the dimension-six and dimension-eight oper-
ators, respectively, with κN6 and κN8 ,

MN
6 ¼ κN6

2

3
hūui2 ¼ hBN

6 iB þ hSN6 iS;

MN
8 ¼ −κN8

m2
0

6M2
hūui2 ¼ hBN

8 iB þ hSN8 iS; ð23Þ

where the Ms are defined in the Appendix, and BN
n ðSNn Þ is

the dimension-n chiral symmetry breaking (symmetric)
operator and given explicitly in Eqs. (A13) and (A18).
Then, one can write down the Borel-transformed sum rule
as follows:

λ2N exp

�
−
m2

N

M2

�
¼ 1

32π4

�
1þ αs

π

	
53

12
þ γE


�
M6E2L−4=9

þ 1

32π2

�
αs
π
G2

�
M2E0L−4=9

þ κN6
2

3
hūui2L4=9 − κN8

1

6
hūui2 m

2
0

M2
;

ð24Þ

where

L ¼ lnðM=ΛqcdÞ
lnðμ=ΛqcdÞ

;

m2
0 ¼ gshūσμνGμν

a λaui=hūui;

En ¼ 1 − es0=M
2
Xn
j¼0

1

j!

�
s0
M2

�
j
; ð25Þ

and γE is the Euler-Mascheroni constant. We now use
Eq. (11) using the OPE for the nucleon. The κ values are
determined using the procedure discussed in the previous
subsection. To asses the validity of the κ values independ-
ently, we plot the Borel cures for κ8 using Eq. (11) with
determined κN6 ¼ 0.0425 value. The resulting Borel curve is
given in Fig. 6. The figure also shows the Borel curve for κ6
with the best fit κN8 ¼ 0.1546 value. Finally, as shown in
Fig. 7, with the κ values, the Borel curve for nucleon mass
(square) is stable and well reproduces the physical mass.

TABLE VII. The κs are evaluated using sum rules using the
physical values given in Table I and the threshold parameter s0 in
the brackets. S=B indicates the fractional contribution of the
chiral symmetric part to the contribution of the chiral symmetry
breaking part for each hadron. m̄sym is the hadronic mass in the
chiral symmetry restored vacuum.

Particle κ6ð ffiffiffiffiffi
s0

p ðGeVÞÞ κ8 S6=B6 S6=B8 m̄sym(MeV)

N 0.0425(1.235) 0.16 −0.9575 −0.84 525
Δ 0.26(1.56) 0.4 −0.74 −0.6 600
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FIG. 6. Borel curves for nucleon κ6 (triangle and right y axis)
and κ8 (circle and left y axis). The curve for one of the κs is drawn
with the other κ taken to be the extremum value inside the Borel
window. Unit of

ffiffiffiffiffi
s0

p
is in GeV.
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Here, to compensate for the absence of the sum rule for
the chiral partner, we use the vacuum saturation hypothesis
to estimate the value of the chiral symmetry breaking
contribution. Hence, the difference between the total quark
operators and the corresponding chiral symmetry breaking
contribution can be identified as the contributions from the
chiral symmetric operators. Then the symmetric dimension-
six and dimension-eight contributions are given, respectively,
as follows:

hSN6 iS ¼ ðκN6 − 1Þ 2
3
hūui2L4=9;

hSN8 iS ¼ −ðκN8 − 1Þ 1
6
hūui2 m

2
0

M2
; ð26Þ

where hSNn iS is the contribution from the chiral symmetric
part of the dimension-n operators with κ ¼ 1 in the vacuum
saturation hypothesis. The matrix form of the dimension-six
and dimension-eight operators are given in Eq. (A13).
The nucleon mass mN

sym in the chiral symmetric vacuum
can now be estimated by taking the breaking contributions to
be zero while keeping the symmetric operators to their
vacuum value. As can be seen in lower Borel curve in Fig. 7,
the mass of the nucleon and N�ð1535Þ mN

sym converge to
500–550 MeV when the symmetry is totally restored. The
Borel curve with a star marker in Fig. 7 describes the mass,
which is also stable.

B. Δ isobar

As mentioned in Refs. [28,29], the current η for Δþþ
given in Table I is a unique choice at lowest dimension
but couples to both the spin 3=2 and 1=2 states. So to
extract the spin 3=2 state, we concentrate on the gμν tensor
structure, which has no contribution from the spin 1=2
state. Introducing κs as before,

MΔ
8 ¼ κΔ6

4

3
hūui2 ¼ hBΔ

6 iB þ hSΔ6 iS;

MΔ
8 ¼ κΔ8

13

18M2
m2

0hūui2 ¼ hBΔ
8 iB þ hSΔ8 iS; ð27Þ

where the Ms are defined in the Appendix, and BN
n ðSNn Þ is

the dimension-n chiral symmetry breaking (symmetric)
operator and given explicitly in Eqs. (A13) and (A18)
Then, the sum rule can be rewritten as follows:

FΔI
ð0Þ
Δ ðmΔ;ΓΔ;M2Þ

¼ −
1

80π4
M6E2L4=27 þ 5

288π2
M2E0

�
αs
π
G2

�

− κΔ6
4

3
hūui2L28=27 þ κΔ8

13

18M2
m2

0hūui2L16=27; ð28Þ

where

IðnÞΔ ¼
Z

s0

4m2
π

e−s=M
2

ρpoleðmΔ;ΓΔ; sÞsnds: ð29Þ

We first construct the sum rule to estimate the values of the
dimension-six and dimension-eight operators parametrized
by κs as before. As shown in Fig. 8, the Borel curves for κ6
(triangle) and κ8 (open circle) has an extremum value at the
same point. We can again show that the determined values
appropriately reproduces the Δ mass in the Borel sum rule.
Using the κΔ6 ¼ 0.26 and κΔ8 ¼ 0.4 one finds a stable Borel
curve for the mass as given in the lines marked by squares
in Fig. 9.
As in the nucleon case, using the extracted values

dimension-six and dimension-eight quark operators, one
can estimate the values for the corresponding chiral sym-
metric operators appearing in the Δ sum rule.
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FIG. 7. Borel curves for nucleon mass in chiral symmetry
broken (square) and symmetry restored (star) vacuum.
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hSΔ6 iS ¼ −ðκΔ6 − 1Þ 4
3
hūui2L28=27;

hSΔ8 iS ¼ ðκΔ8 − 1Þ 13

18M2
m2

0hūui2L16=27: ð30Þ

By keeping the value of the chiral symmetric operator to be
the same as in the vacuum and taking the breaking
contribution to be zero, one can extract the Δ mass in the
chiral symmetry restored vacuum mΔ

sym from the Borel sum
rule for the mass. One finds that the mass of Δ in the
symmetry restored vacuum is about 600 MeV.

V. SUMMARY

We have studied the masses of hadrons in the chiral
symmetry restored vacuum. This is accomplished through
first dividing the quark operators into chiral symmetry
breaking and symmetric operator depending on the contri-
butions from the quark zero modes, which according to the
Casher-Banks formula is responsible for spontaneous chiral
symmetry breaking. We then estimated the values of these
operators separately by studying the sum rules between
chiral partners, which have the same contribution from the
chiral symmetric operators but where the difference is
proportional to chiral symmetry breaking operators. We
have further estimated the contributions of disconnected
quark operators by studying the sum rule for ω and f1
mesons. We find that the magnitude of chiral symmetry
operators are as big as the chiral symmetry breaking
operators. We further find that the value of chiral symmetry
breaking operators are close to the values obtained in the
vacuum saturation hypothesis, which automatically relates
them to the quark condensate. On the other hand the value of
the chiral symmetric operators could be as large as the

breaking operator, which explains the need of effective κ
parameters to modify the values of the four-quark operators
estimated within the vacuum saturation hypothesis to that
necessary to reproduce the meson masses in the QCD sum
rule approach. We then calculated the masses of the hadrons
in the chiral symmetry restored vacuum using the QCD sum
rule approach by taking the chiral symmetry breaking
operators to zero while keeping the values of the other
quark operators to their vacuum values.
We also applied our method to the baryon sector. In this

case, since the chiral partners contribute in the same sum
rule, we estimated the values of the dimension-six and
dimension-eight quark operators that contain both the
chiral symmetric and breaking operators. We then used
the vacuum saturation hypothesis to estimate the values of
the chiral symmetry breaking operators from which we
were able to estimate the values for the chiral symmetric
operators for both the dimension-six and dimension-eight
operators. Again, taking the chiral symmetry breaking
operators to zero, we find that the values of the chiral
symmetric nucleon and delta masses to be around 500 and
600 MeV, respectively.
We therefore conclude while chiral symmetry breaking is

responsible for the mass difference between chiral partners,
a large fraction of the common masses have other non-
perturbative origins. We further emphasize that our findings
show that the vacuum saturation hypothesis that relates
quark operators to quark condensate only works for the
chiral symmetry breaking operators, which are chiral order
parameters as are the quark condensate.
We have shown that masses of all hadron studied in this

work tend to decrease and the masses of chiral partners
become degenerate when the chiral symmetry is restored.
Thus the result explicitly demonstrates that the spontaneous
breaking of chiral symmetry responsible for the mass
splitting of chiral partners is also partly responsible for
common hadronic mass of the chiral partners. Despite their
strangeness, K1 and K� have a similar mass as that of ρ and
a1 in the chiral symmetry restored vacuum. Meanwhile, the
mass difference between ω and f1 is found to remain large
even when chiral symmetry is restored. Both the nucleon and
the Δ mass will reduce to about 500 and 600 MeV,
respectively, in the chiral symmetry restored vacuum.

ACKNOWLEDGMENTS

This work was supported by Samsung Science and
Technology Foundation under ProjectNo. SSTF-BA1901-04.

APPENDIX

1. Four-quark operators

In general, a four-quark operator can be written as
follows:
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FIG. 9. Borel curves for Δ mass in the chiral symmetry broken
(square) and symmetry restored (diamond and star) vacuum the
curves with star markers is the expected Δ mass. Unit of
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hðq̄ΓaqÞðq̄ΓbqÞi ¼ hTr½SΓa�Tr½SΓb�i − hTr½SΓaSΓb��i;
ðA1Þ

where Γ are combinations of gamma, color, and flavor
matrices, and S is the quark propagator. The first term in
Eq. (A1) is referred to as the disconnected contribution
while the second as the connected.
First, it is easy to check if the disconnected term is

chiral symmetric or breaking operator. This is accom-
plished by making use of the first line in Eq. (4) and using
the following:

Tr½SΓa� ¼
1

2

�
Tr½ðSþ iγ5Siγ5ÞΓa� þ Tr½ðS − iγ5Siγ5ÞΓa�

�
:

ðA2Þ

The first term is chiral symmetric and the second breaking
term. In terms of the Dirac zero modes, only the second
term is proportional to the them. However, one of them is

zero depending on Γa. For example, if Γa ¼ γμ, the
breaking term is zero so that the total disconnect con-
tribution is chiral symmetric. The term is automatically
zero if Γa includes a flavor matrix.
Second, as for the connected contribution, one can

decompose the matrix into chiral symmetric and breaking
part. If Γa does not include a flavor matrix, then one can
subtract and add a similar matrix with the flavor matrix
inserted so as to isolate the connected contribution.

hðq̄ΓaqÞðq̄ΓbqÞi
¼

�
hðq̄ΓaqÞðq̄ΓbqÞi − hðq̄ΓaτiqÞðq̄ΓbτiqÞi

�

þ hðq̄ΓaτiqÞðq̄ΓbτiqÞi; ðA3Þ

where the first line contains only disconnected contribu-
tion while the second line only connected. Therefore, one
is left with determining the chiral property of the con-
nected diagrams. This is accomplished by the following
separation.

hðq̄ΓaτiqÞðq̄ΓbτiqÞi ¼
1

2

�
hðq̄ΓaτiqÞðq̄ΓbqÞi − hðq̄Γaτiiγ5qÞðq̄iγ5ΓbτiqÞi

�
þ 1

2

�
hðq̄ΓaτiqÞðq̄ΓbqÞi

þ hðq̄Γaτiiγ5qÞðq̄iγ5ΓbτiqÞi
�
;

¼ 1

2

�
hTr½SΓaτiðS − iγ5Siγ5ÞΓbτi�iÞ þ

1

2
ðhTr½SΓaτiðSþ iγ5Siγ5ÞΓbτi�i

�
;

¼ hðq̄ΓaτiqÞðq̄ΓbτiqÞiB þ hðq̄ΓaτiqÞðq̄ΓbτiqÞiS; ðA4Þ

where the subscript B and S represent the chiral symmetry
breaking and symmetric parts, respectively.

2. Fierz transformation

Every four-quark operator that appears in baryonic OPE
sides has the following form [30].

hO6i ¼
2

3
hðq̄1Γoq2Þðq̄3Γpq4Þi

−
1

2
hðq̄1Γoλaq2Þðq̄3Γpλ

aq4Þi; ðA5Þ

where Γα and λa are a Dirac matrix and a Gell-Mann matrix,
respectively. Using the Fierz completeness relation for the
color SU(3),

1ij1kl ¼
1

3
1il1kj þ

X8
A¼1

1

2
λAilλ

A
kj; ðA6Þ

the Gell-Mann matrices in the operator can be eliminated:

hðq̄1Γoλaq2Þ ðq̄3 Γpλ
aq4Þi

¼ −
2

3
hðq̄1Γoq2Þðq̄3ΓpqÞi

−
1

8
Tr½ΓoΓrΓpΓs�hðq̄1Γrq4Þðq̄3Γsq2Þi; ðA7Þ

where the Dirac and Gell-Mann matrices are normalized as
Tr½ΓrΓs� ¼ 4δsr and Tr½λaλb� ¼ 2δab, respectively. Applying
the transformation reduces the number of four-quark
operators in the baryonic OPE sides by half. When it
comes to the pure-flavored four-quark operators, the trans-
formation can be represented linearly:
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0
BBBBBBBB@

hðūλauÞ2i
hðūγ5λauÞ2i
hðūγμλauÞ2i
hðūγ5γμλauÞ2i
hðūσμνλauÞ2i

1
CCCCCCCCA

¼

0
BBBBBBBB@

−7=6 −1=2 −1=2 1=2 −1=4
−1=2 −7=6 1=2 −1=2 −1=4
−2 2 1=3 1 0

2 −2 1 1=3 0

−6 −6 0 0 1=3

1
CCCCCCCCA

0
BBBBBBBB@

hðūuÞ2i
hðūγ5uÞ2i
hðūγμuÞ2i
hðūγ5γμuÞ2i
hðūσμνuÞ2i

1
CCCCCCCCA
: ðA8Þ

3. Separation of breaking and symmetric operators

Using the prescription discussed in Appendix A 1, one
can categorize all the quark operators appearing in the
nucleon sum rule as follows. With the following identity,

hðūΓ1dÞðd̄Γ1uÞi ¼ hðūΓ1uÞðūΓ1uÞi − hðūΓ1uÞðd̄Γ1dÞi;
ðA9Þ

there are 5ðDirac structureÞ × 2ðpure or mixed flavorÞ
types of four-quark condensates in the baryonic OPE
sides. These four-quark condensates also can be divided
into chiral symmetry breaking and symmetric condensates
according to the contribution of the zero modes. The
operators denoted with subscript S (h…iS) and B (h…iB)
denote chiral symmetric and breaking operators,
respectively:

1. hðūuÞðūuÞi ¼ hðūuÞðūuÞ − ðūdÞðd̄uÞiB
þ hðūdÞðd̄uÞi;

¼ hðūuÞðd̄dÞiB
þ 1

2
hðūdÞðd̄uÞ þ ðūγ5dÞðd̄γ5uÞiB

þ 1

2
hðūdÞðd̄uÞ − ðūγ5dÞðd̄γ5uÞiS: ðA10Þ

Since the pure flavored condensates contain connected
and disconnected pieces, we first divide the condensate
into the two. Then, the connected piece is separated into
the breaking and symmetric condensates. In the same way,
the other remaining operators can be rewritten as the
following:

2. hðūγ5uÞðūγ5uÞi ¼ hðūγ5uÞðd̄γ5dÞiB þ 1

2
hðūdÞðd̄uÞ þ ðūγ5dÞðd̄γ5uÞiB −

1

2
hðūdÞðd̄uÞ − hūγ5diðd̄γ5uÞiS;

3. hðūγμuÞðūγμuÞi ¼ hðūγμuÞðd̄γμdÞiS þ
1

2
hðūγμdÞðd̄γμuÞ þ ðūγ5γμdÞðd̄γ5γμuÞiS

þ 1

2
hðūγμdÞðd̄γμuÞ − ðūγ5γμdÞðd̄γ5γμuÞiB;

4. hðūγ5γμuÞðūγ5γμuÞi ¼ hðūγ5γμuÞðd̄γ5γμdÞiS þ
1

2
hðūγμdÞðd̄γμuÞ þ ðūγ5γμdÞðd̄γ5γμuÞiS

−
1

2
hðūγμdÞðd̄γμuÞ − ðūγ5γμdÞðd̄γ5γμuÞiB;

5. hðūσμνuÞðūσμνuÞi ¼ hðūσμνuÞðd̄σμνdÞiB þ hðūσμνdÞðd̄σμνuÞiB: ðA11Þ

For mixed flavor operators, only disconnected contributions exist so that the chiral symmetry properties can be
determined as discussed in Appendix A 1. Note that since the color matrices λa have no impact on the separation rules, the
same formula as given in Eq. (A11) applies when the quark antiquark pair contains a Gell-Mann matrix with the index
contracted with that in the other pair.

4. Baryon quark operators

In this subsection, we summarize the quark operators separated into chiral symmetric and breaking parts in the Baryon
sum rules. The dimension-six four-quark operators appearing in the baryonic OPE sides are given, explicitly, as

MN
6 ¼ hBN

6 iB þ hSN6 iS;
MΔ

6 ¼ hBΔ
6 iB þ hSΔ6 iS; ðA12Þ
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where

hBN
6 iB ¼ −hðūuÞðd̄dÞiB þ hðūγ5uÞðd̄γ5dÞiB −

1

2
hðūγμdÞðd̄γμuÞ − ðūγμγ5dÞðd̄γμγ5uÞiB;

hSN6 iS ¼ −3hðūγμuÞðd̄γμdÞiS − hðūγμγ5dÞðd̄γμγ5uÞiS þ 2hðūγμdÞðd̄γμuÞ þ ðūγμγ5dÞðd̄γμγ5uÞiS;
hBΔ

6 iB ¼ −2hðūuÞðd̄dÞiB þ 2hðūγ5uÞðd̄γ5dÞiB − hðūγμdÞðd̄γμuÞ − ðūγμγ5dÞðd̄γμγ5uÞiB;
hSΔ6 iS ¼ −2hðūdÞðd̄uÞ − ðūγ5dÞðd̄γ5uÞiS − hðūγμuÞðd̄γμdÞiS þ hðūγμγ5uÞðd̄γμγ5dÞiS; ðA13Þ

M6
N and M6

Δ are the dimension-six terms that appear in OPE side of nucleon and Δ, respectively. For simplicity, the
anomalous dimensional correction factors are omitted.
For notational convenience, the followings are introduced.

Dfhðq̄1Γaq2Þðq̄3Γbq4Þig≡ 1

2
ðhðq̄1ΓaD2q2Þðq̄3Γbq4Þi þ hðq̄1Γaq2Þðq̄3ΓbD2q4ÞiÞ;

Gfhðq̄1Γaq2Þðq̄3Γbq4Þig≡ 1

2
ðhðq̄1Γaσ ·Gq2Þðq̄3Γbq4Þi þ hðq̄1Γaq2Þðq̄3Γbσ · Gq4Þi

þ hðq̄1Γaσ ·GAq2Þðq̄3ΓbλAq4Þi þ hðq̄1ΓaλAq2Þðq̄3Γbσ ·GAq4ÞiÞ; ðA14Þ

where

D2 ¼ DμDμ;

Gμν ¼ GA
μνλA;

ðσ ·GÞabij ¼ ðσμνÞijGμν
A ðλAÞab;

σμν ¼
i
2
½γμ; γν�: ðA15Þ

Since gluon field strength tensor and gauge covariant derivative operators do not affect separation rules, the dimension-eight
operators in right-hand side of Eq. (A14) have the same chiral separation property as the dimension-six operator inside the
curly bracket. Namely

Dfhðq̄1Γaq2Þðq̄3Γbq4ÞiB;Sg ¼ 1

2
ðhðq̄1ΓaD2q2Þðq̄3Γbq4ÞiB;S þ hðq̄1Γaq2Þðq̄3ΓbD2q4ÞiB;SÞ;

Gfhðq̄1Γaq2Þðq̄3Γbq4ÞiB;Sg ¼ 1

2
ðhðq̄1Γaσ ·Gq2Þðq̄3Γbq4ÞiB;S þ hðq̄1Γaq2Þðq̄3Γbσ ·Gq4ÞiB;S

þ hðq̄1Γaσ ·GAq2Þðq̄3ΓbλAq4ÞiB;S þ hðq̄1ΓaλAq2Þðq̄3Γbσ · GAq4ÞiB;SÞ: ðA16Þ

The dimension-eight operators appearing in nucleon and Δ OPE side are given, respectively, as

MN
8 ¼ hBN

8 iB þ hSN8 iS;
MΔ

8 ¼ hBΔ
8 iB þ hSΔ8 iS; ðA17Þ

where
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hBN
8 iB ¼ −

1

M2
DfBN

6 g þ
1

6M2
GfhðūuÞðd̄dÞiBg þ

1

12M2
GfhðūdÞðd̄uÞ þ ðūγ5dÞðd̄γ5uÞiBg;

hSN8 iS ¼ −
1

M2
DfSN6 g þ

1

12M2
GfhðūdÞðd̄uÞ − ðūγ5dÞðd̄γ5uÞiSg;

hBΔ
8 iB ¼ −

1

M2
DfBΔ

6 g þ
1

18M2
GfhðūuÞðd̄dÞiBg þ

1

36M2
GfhðūdÞðd̄uÞ þ ðūγ5dÞðd̄γ5uÞiBg;

hSΔ8 iS ¼ −
1

M2
DfSΔ6 g þ

1

36M2
GfhðūdÞðd̄uÞ − ðūγ5dÞðd̄γ5uÞiSg: ðA18Þ

For simplicity, the anomalous dimensional correction factors are omitted.
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