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The properties of strangelets at finite temperature are studied within the framework of a baryon
densitydependent quark mass model, where a new quark mass scaling and self-consistent thermodynamic
treatment are adopted. The effects of finite volume and Coulomb energy are taken into account. Our results
show that the temperature T, baryon number A, and perturbation interactions have strong influences on the
properties of strangelets. It is found that the energy per baryon M=A and charge-to-mass ratio fz decrease
with baryon number A, while the mechanically stable radius R and strangeness per baryon fS are
increasing. For a strangelet with a fixed baryon number, we note that as temperature T increases the
quantities M=A, R, and fS are increasing while fz is decreasing. The effects of confinement and
perturbative interactions are investigated as well by readjusting the corresponding parameters.
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I. INTRODUCTION

Since Bodmer studied the possible collapse of finite
nuclei in 1971 [1], the properties of quark matter have
begun to attract much attention, which is particularly the
case after Witten proposed that strange quark matter (SQM)
might be the true ground state of strong interaction in 1984
[2]. Compared with ordinary nuclear matter, the density of
quark matter is much larger so that the Fermi energy of u
and d quarks can easily surpass the rest mass of s quarks.
Then it is energetically favorable to convert u and d quarks
into s quarks and form SQM. Farhi and Jaffe then
investigated the properteis of SQM based on the MIT
bag model and found that the energy per baryon can be
lower than that of 56Fe (930 MeV) in a large parameter
space; i.e., SQM is absolutely stable [3]. If true, both
strange stars and strangelets made of SQM are expected to

be observed in the Universe. Extensive studies on SQM
were then carried out [4–8].
SQM nuggets with baryon number A less than 107 are

called strangelets [9] or slets for short [10]. There are
mainly two methods to produce strangelets, i.e., by nature
or by experiments. For example, it is expected that the
collision of strange stars may eject strangelets, which could
eventually reach Earth [11–16]. During the hadronization
process of the early Universe, strangelets may form
and constitute dark matter [17]. The collision of highly
energetic cosmic rays with Earth’s atmosphere may also
produce strangelets [15]. Additionally, it is possible
that strangelets are produced in heavy ion collision
experiments [18–21].
At present, the MIT bag model has been widely used to

study the properties of strangelets and obtained some
important results. For example, Farhi and Jaffe found that
the strangelets have a small amount of positive charge
under weak equilibrium condition [3]. Greiner and cowork-
ers investigated the possibility to synthesize strangelets via
heavy ion collisions [22,23]. Adopting the MIT bag model,
Madsen considered the finite size effects of strangelets at
vanishing temperatures [24–26], while Mustafa and Ansari
studied the stability of finite-size strangelets at finite
temperatures [27]. The effects of finite temperature on
the stability and thermodynamical properties of strangelets
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were later investigated by Mustafa and Ansari [27] and
Zhang and Su [28]. In addition, taking into account the
contributions of electrostatic effects, Debye screening, and
nonzero surface tensions, Alford et al. had found the
critical value of surface tension to maintain the stability
of strangelets [29]. Recently, Lugones and Grunfeld found
that the surface tension in the MIT bag model would be
below the critical value, favoring the existence of a
strangelet crust [30]. However, such a conclusion could
be significantly modified if vector interactions are consid-
ered, which drastically increase the surface and curvature
tensions [31].
In addition to the MIT bag model, there are various

effective models reflecting QCD characteristics, e.g., per-
turbation models [32], quark-cluster model [33,34], and so
on [4,5,35–42]. The properties of strangelets were thus
investigated with those effective models, e.g., NJL model
[43] and quasiparticle model [44]. The baryon densityde-
pendent quark mass model has also been used to study the
properties of strangelets, and many interesting conclusions
have been drawn at T ¼ 0 [45,46]. In this paper, we apply
the baryon densitydependent quark mass model to study the
properties of strangelets at finite temperature, where the
effects of various quark interactions are examined by
adopting different parameter sets after we consider the
contributions of the Coulomb interaction.
The paper is organized as follows. In Sec. II, we give the

thermodynamic treatment of strangelets at finite temper-
atures in the framework of the baryon densitydependent
quark mass model, where the contributions of the Coulomb
interaction are accounted for. In Sec. III, we consider the
quark mass scaling and gluon mass scaling for SQM at
finite temperatures, where both the confinement interaction
and perturbation interaction are considered in the equiv-
alent mass of quarks. The relationship between gluon mass
and temperature is discussed as well. In Sec. IV, we present
the numerical results on the properties of strangelets at
finite temperature, where the energy per baryon, radius, and
charges of strangelets are discussed. Finally, a summary is
given in Sec. V.

II. SELF-CONSISTENT THERMODYNAMIC
TREATMENT

The most complex and controversial issue in baryon
densitydependent quark mass models is thermodynamic
self-consistency, where various thermodynamic treatments
were developed based on different considerations
[5,47–49]. In this paper, we start from the free energy
density F and obtain the other thermodynamic quantities
through self-consistent thermodynamic treatment, i.e.,
taking F as the characteristic thermodynamic function.
The free energy density is expressed in the same form as the
free particle system, but the mass is replaced by the
equivalent one which depends on temperature and density.
The free energy density is given by

F ¼ FðT; V; fnig; fmigÞ
¼ Ω0ðT; V; fμ�i g; fmigÞ þ

X
i¼u;d;s

μ�i ni; ð1Þ

where T is the temperature, ni the particle number density,
mi the mass, and μ�i the effective chemical potential of
particle type i. Note that Ω0 corresponds to the thermo-
dynamic potential density of a system composed of non-
interacting particles, which should be viewed as an
intermediate variable instead of the real one. The corre-
sponding differential equation is then obtained with

dF ¼ ∂Ω0

∂T dT þ ∂Ω0

∂V dV

þ
X
i

�∂Ω0

∂μ�i dμ
�
i þ μ�i dni þ nidμ�i

�

þ
X
i

∂Ω0

∂mi

�X
j

∂mi

∂nj dnj þ
∂mi

∂T dT

�

¼
�∂Ω0

∂T þ
X
i

∂Ω0

∂mi

∂mi

∂T
�
dT þ ∂Ω0

∂V dV

þ
X
i

�
μ�i þ

X
j

∂Ω0

∂mj

∂mj

∂ni
�
dni: ð2Þ

Comparing with the basic thermodynamic differential
relation

dF ¼ −SdT þ
�
−P − F þ

X
i

μini

�
dV
V

þ
X
i

μidni; ð3Þ

we can then obtain entropy density S, pressure P, and
chemical potential μi with

S ¼ −
∂Ω0

∂T −
X
i

∂mi

∂T
∂Ω0

∂mi
; ð4Þ

P ¼ −F þ
X
i

μini − V
∂Ω0

∂V ; ð5Þ

μi ¼ μ�i þ
X
j

∂Ω0

∂mj

∂mj

∂ni : ð6Þ

The particle number densities ni ¼ nþi − n−i and the energy
density E are then fixed by

n�i ¼ −
∂Ω�

0

∂μ�i ; ð7Þ

E ¼ F þ TS ¼ Ω0 þ
X
i

μ�i ni þ TS: ð8Þ

Because the defined strangelet baryon number A is less
than 107, its radius is usually smaller than the Compton
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wavelength of the electron, so that electrons are not
confined within the strangelets. Then, we can neglect
electrons, and the corresponding chemical potential is
exactly zero if we minimize the mass of a strangelet.
This property has two implications, i.e., the relaxation of
the local charge neutrality condition and the contributions
of the Coulomb interaction in the weak-equilibrium con-
dition for strangelets. Considering the contribution of
volume charge, the interaction energy between volume
charge and surface charge, and the contribution of surface
charge, we can obtain the Coulomb energy as follows:

ĒC ¼ 3αCQ̄v
2

5R
þ eϕvðRÞQ̄s þ

eϕsðRÞQ̄s

2

¼ αC
2R

�
Q̄2 þ 1

5
Q̄v

2

�
; ð9Þ

where eϕvðRÞ ¼ αCQ̄v=R; eϕsðRÞ ¼ αCQ̄s=R. ĒC is the
total energy of the Coulomb, and αC ≈ 1=137 represents the
fine structure constant. Then, we have

EC ¼ 3ĒC

4πR3
¼ 2

15
πR2αCð5Q2 þQ2

vÞ; ð10Þ

where EC ¼ ĒC=V is the Coulomb energy density, and QV
represents the volume contribution of total charge density
Q, namely, Q ¼ P

i qini, and QV ¼ P
i qini;V . The charge

of each particle is qu ¼ 2
3
, qd ¼ − 1

3
, qs ¼ − 1

3
. The total

energy density of a strangelet is then obtained with

Etotal ¼ Eþ EC; ð11Þ

where E is fixed by Eq. (8) and Ec by Eq. (10).
For the pressure, entropy, and chemical potential, the

contribution of the Coulomb energy can be obtained with
Eqs. (4)–(6), which are expressed in terms of PC, SC, and
μi;C, respectively. According to the basic differential
relation of thermodynamics, they satisfy the following
differential expression:

dEC ¼
�
TSC − PC − EC þ

X
i

μi;Cni

�
dV
V

þ
X
i

μi;Cdni þ TdSC: ð12Þ

Meanwhile, the Coulomb energy density of a strangelet is a
function of the quark number density and volume, i.e.,
EC ¼ ECðV; niÞ. This indicates

dEC ¼
X
i

∂EC

∂ni dni þ
∂EC

∂V dV: ð13Þ

Then, we have

μi;C ¼ ∂EC

∂ni ¼ ∂EC

∂mi

� ∂ni
∂mi

¼ 4

3
πR2αCQqi; ð14Þ

SC ¼ 0; ð15Þ

PC ¼ −EC þ
X
i

μi;Cni − V
∂EC

∂V
¼ 2

9
πR2αCðQ2 −Q2

vÞ −
4

9
πR3αCQ

X
j

qj
∂nj
∂R : ð16Þ

The total pressure, entropy, and chemical potential of a
strangelet then becomes

Ptotal ¼ Pþ PC; ð17Þ

Stotal ¼ Sþ SC; ð18Þ

μi;total ¼ μ�i þ
1

3

∂mi

∂nb
∂Ω0

∂mi
þ μi;C: ð19Þ

III. DENSITY AND/OR TEMPERATURE
DEPENDENT PARTICLE MASSES

The equivalent quark masses are usually parametrized as

mi ¼ mi0 þmI; ð20Þ

where mI accounts for the strong interaction, and mi0 the
current quark mass with mu0 ¼ 5 MeV, md0 ¼ 10 MeV,
and ms0 ¼ 100 MeV.
According to MIT bag model, the quark mass scaling for

baryon densitydependent quark mass model was initially
parametrized as [50–53]

mI ¼
B
3nb

; ð21Þ

where B is the bag constant. Based on the in-medium chiral
condensates and linear confinement condition, a new quark
mass scaling was later derived [54],

mI ¼
D

n1=3b

; ð22Þ

where D corresponds to the confinement parameter and is
connected to the string tension, chiral symmetry restoration
density, and chiral condensate in vacuum. The one-gluon-
exchange interaction can be considered as well by adding a
new term [55], i.e.,

mI ¼
D

n1=3b

− Cn1=3b ; ð23Þ

where C represents the strength of one-gluon-exchange
interaction. By expanding mI as a Laurent series of Fermi
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momentum, the effects of perturbation interactions can be
considered, where a new mass scaling was formulated
as [8]

mI ¼
D

n1=3b

þ Cn1=3b : ð24Þ

Here, C takes positive values and represents the strength of
a first-order perturbation interaction. In order to describe
the deconfinement phase transition, this formula is
extended to the cases of finite temperature [56], i.e.,

mI ¼
D

n1=3b

�
1þ 8T

Λ
e−Λ=T

�
−1

þ Cn1=3b

�
1þ 8T

Λ
e−Λ=T

�
;

ð25Þ

where the constant Λ ¼ 280 MeV.
In addition, we need to know the equivalent mass of

gluons since their contributions cannot be neglected. The
gluon mass has been described according to a fast con-
vergent expression of the QCD coupling base on the recent
lattice data [57]. Borsányi et al. provided 48 values of the
pressure by the lattice simulations, where we use the least
square method to get the most effective fitting result [57].
Here, we define the scaled temperature as x ¼ T=Tc, where
Tc is the critical temperature. For T < Tc, the expression of
gluon’s equivalent mass is

mg

T
¼

X
i

aixi ¼ a0 þ a1xþ a2x2 þ a3x3; ð26Þ

with a0 ¼ 67.018, a1 ¼ −189.089, a2 ¼ 212.666, a3 ¼
−83.605. For T > Tc, the expression of the gluon’s
equivalent mass is

mg

T
¼

X
i

biαi ¼ b0 þ b1αþ b2α2 þ b3α3; ð27Þ

where b0 ¼ 0.218, b1 ¼ 3.734, b2 ¼ −1.160, b3 ¼ 0.274.
The QCD coupling constant α ¼ αs=π ¼ g2=ð4π2Þ
depends on the renormalization scheme and runs according
to the renormalization equation. The expansion equation of
α can be obtained by solving the renormalization group
equation [58], which gives

α ¼ β0
β20 lnðu=ΛÞ þ β1 ln lnðu=ΛÞ : ð28Þ

Here, β0 ¼ 11=2 − Nf=3, β1 ¼ 51=4 − 19Nf=12, u=Λ ¼P
i cix

i ¼ c0 þ c1x, c0 ¼ 1.054, c1 ¼ 0.479.

IV. PROPERTIES OF STRANGELETS

To study the properties of strangelets, the finite size
effects need to be considered, which are treated with the

multiple reflection expansion (MRE) method [9,24–26].
The MRE method introduces a modification to the density
of states, which is given by

ρiðp;R;miÞ ¼
dip2

2π2V

�
V þ Sr

p
fS

�
mi

p

�
þ Cr

p2
fC

�
mi

p

��
:

ð29Þ

The index i represents the particle type, while V, Sr, and Cr
are the volume, surface area [9], and curvature term [24–26]
of a strangelet. For a spherical system, V ¼ 4πR3=3,
Sr ¼ 4πR2, Cr ¼ 8πR. The degeneracy factors are dq ¼
3ðcolorsÞ × 2ðspinsÞ ¼ 6 for quarks (q ¼ u, d, s) and dg ¼
8ðcolorsÞ × 2ðspinsÞ ¼ 16 for gluons. The functions fS and
fC are given as follows:

fS

�
mi

p

�
¼ −

1

2
arctan

�
mi

p

�
; ð30Þ

fC

�
mi

p

�
¼ 1

6

�
1 −

3p
2mi

arctan

�
mi

p

��
: ð31Þ

According to the baryon densitydependent quark mass
model, the thermodynamic potential density of free par-
ticles is

Ω0 ¼ Ωþ
0 þΩ−

0 þ Ωg
0: ð32Þ

The contributions of gluons Ωg
0, quarks Ω

þ
0 , and antiquarks

Ω−
0 are given by

Ωg
0 ¼ T

Z
∞

0

ln½1 − e−
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

g

p
=T �ρgdp; ð33Þ

Ω�
0 ¼ −

X
i

Z
∞

0

T ln½1þ e−ð
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

i

p ∓μ�i Þ=T �ρidp: ð34Þ

Based on Eqs. (17)–(19), the specific expressions of each
thermodynamic quantity at finite temperature can then
be obtained. Note that at small radii and momenta the
density of state in Eq. (29) becomes negative and is hence
unphysical. An infrared cutoff [59] is usually introduced to
treat the unphysical contributions in Eqs. (33) and (34),
which is not included here since their contributions
are small.
We know that there are weak interaction processes

d,s ↔ uþ eþ ν̄e and sþ u ↔ uþ d in strangelets.
Because neutrinos can freely enter and exit SQM and
the electron Compton wavelength is much larger than the
size of strangelets with A ≪ 107, the chemical potentials of
neutrinos and electrons are thus zero, which gives

μu;total ¼ μd;total ¼ μs;total; ð35Þ
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with the chemical potential determined by Eq. (19). For a
given baryon number A, the baryon number conservation
needs to be fulfilled, i.e.,

A ¼ 1

3

X
i

Ni ¼
1

3

X
i

niV: ð36Þ

In addition, the pressures of the strangelets must be zero to
maintain mechanical stability, i.e.,

P ¼ 0; ð37Þ

which is equivalent to minimize the total free energy at
fixed Ni as usually adopted in the literature [26,60].
Therefore, we could obtain the energy density, particle

number density, pressure, entropy, and chemical potential
by solving Eqs. (35)–(37). We define the ratios of charge
number to baryon number and strangeness quantum num-
ber to quark number as

fz ¼ Z=A ¼
�
2

3
Nu −

1

3
Nd −

1

3
Ns

�
=A; ð38Þ

fs ¼ S=
X
q

Nq ¼ Ns=3A: ð39Þ

In Fig. 1, we present the energy per baryon as a function
of the baryon number A at T ¼ 0 MeV and T ¼ 20 MeV
for fixed parameters C and D [8]. The solid, dashed, and
dotted curves correspond, respectively, to the temperature
T ¼ 20, 0 MeV, and 56Fe. The blue, red, and black curves
correspond, respectively, to the parameter sets (C,

ffiffiffiffi
D

p
in

MeV): ð−0.1; 160Þ, ð−0.2; 164Þ, and ð−0.3; 168Þ. It can be
seen from Fig. 1 that the strangelets under three sets of
parameters are absolutely stable at zero temperature but not
at T ¼ 20 MeV. The energy per baryon of strangelets
decreases with increasing baryon number A. This is
consistent with the trend of Jensen and Madsen’s results
at T ¼ 0 [61], and the value is slightly larger. It is worth

mentioning that strangelets would emit neutrons when
E=A > mn ≈ 939 MeV [9]. This suggests that strangelets
with large baryon numbers could be absolutely stable at
small temperature, which provides the possibility of
detecting strangelets from the particles emitted by unknown
astrophysical sources where those low temperature and
high baryon numbers are expected.
We can see the dependence of the particle abundances of

the u, d, and s quarks on the baryon number from Fig. 2.
The black, red, and blue curves correspond, respectively,
to the u, d, and s quarks. With the increase of A, the particle
abundances of the u quark is decreasing, while those of d
and s quarks increase. That is because the number of weak
interaction processes d,s ↔ uþ eþ ν̄e and sþ u ↔ uþ
d in the direction of s increase, accompanying the increase
of A. Combining with Fig. 1, we find that the stable
strangelets only occur in the high strangeness, which is
consistent with Zhang and Su’s results [62].
In Fig. 3, we show the dependence of the mechanically

stable radii of strangelets on the baryon number at T ¼ 0
and T ¼ 20 MeV. The solid and dashed curves correspond,
respectively, to the temperature T ¼ 50 and 0 MeV. The
blue, red, and black curves correspond, respectively, to the

FIG. 1. Energy per baryon of β-stable strangelets as a function
of baryon number.

FIG. 2. Particle abundance for β-stable strangelets as a function
of baryon number.

FIG. 3. Mechanically stable radii of β-stable strangelets as
functions of baryon number.
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parameter sets (C,
ffiffiffiffi
D

p
in MeV): ð−0.1; 160Þ, ð−0.2; 164Þ,

and ð−0.3; 168Þ. It can be seen from Fig. 3 that the
mechanically stable radius R increases with baryon number
A while the ratio R=A1=3 decreases. Moreover, the ratio
R=A1=3 decreases slowly and eventually tends to be a
constant as A → ∞, corresponding to a cube root relation
R ¼ r0A1=3 with a constant r0. This is consistent with the
conclusion of previous model studies such as the NJL
model [63].
The dependence of the charge-to-mass ratio fz of the

strangelets on the baryon number is depicted in Fig. 4 at
T ¼ 0 MeV and T ¼ 50 MeV. It can be seen that fz
decreases with baryon number A and tends to zero when
the baryon number A is large. This is consistent with the
prediction of electrically neutral SQM and the result in
Fig. 2. Note that at fz → 0, we do not consider the
contribution of Coulomb interactions. Furthermore, we
notice that the one-gluon-exchange interaction reduces
fz. Note that a possible candidate of a strangelet with
mass A > 1000 and charge 46 was reported from cosmic
ray experiments [64].
We use the ratio of the strange quark number to total

quark number fs ¼ Ns=3A to express the strangeness of

strangelets, which is shown in Fig. 5. It can be seen that fs
is increasing and tends to a stable value when the baryon
number A is large. Furthermore, for strangelets with
small A, we find that the strangeness gets larger for
higher temperatures, while the trend is reversed at large A.
The strangeness of strangelets tends to a constant value at
any temperature. There are some interesting points, which
we explain in combination with Fig. 6.
In Fig. 6, we can see a minimum point of the strangeness

of strangelets for fixed parameters C and D at T ¼ T0. The
solid, dash, dotted, and dashed dotted curves correspond,
respectively, to the parameter sets ðC; ffiffiffiffi

D
p Þ: (0.1, 160),

ð−0.1; 160Þ, ð−0.2; 164Þ, and ð−0.3; 168Þ. It is found that
the one-gluon-exchange interaction increases fs and T0,
while the first-order perturbation interaction reduces fs and
eventually T0 reaches zero.
Next, we study the relationship between the temperature

and energy per baryon in Fig. 7. We choose the parameter
sets ðC; ffiffiffiffi

D
p Þ: (0.1, 160), ð−0.1; 160Þ, ð−0.2; 164Þ, and

ð−0.3; 168Þ. We can see that the higher the temperature is,
the great the energy per baryon is at A ¼ 100 due to the
increment of the thermal energy of quarks and gluons.
Therefore, strangelets will become unstable and are not

FIG. 4. Charge-to-mass ratios fz of β-stable strangelets as
functions of baryon number.

FIG. 5. Ratio of the strange quark number to total quark baryon
number fs as a function of baryon number.

FIG. 6. Ratio of the strange quark number to total quark baryon
number fs as a function of temperature when A is 100.

FIG. 7. Energy per baryon as a function of temperature when A
is 100.
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likely to exist. In addition, it is found that the one-gluon-
exchange interaction reduces the energy, and the perturba-
tive interaction increases the energy.
In Fig. 8, we note that the mechanically stable radius is a

monotone increasing function of the temperature when A is
100. Furthermore, we notice that there should be an
exponential function relation between R and T. This is
consistent with the result of the energy per baryon in Fig. 7.
We also find that the perturbative interaction increases the
mechanically stable radius while the one-gluon-exchange
interaction decreases the mechanically stable radius at
fixed D.
In Fig. 9, we present the charge to mass ratio as a

function of temperature when A is 100. We see that fz does
not decrease monotonically with temperature, where a
maximum value exists for the charge to mass ratios of
strangelets. Let us say the temperature at this point is Tmax.
At T < Tmax, the higher the temperature is, the larger the
strangeness of strangelets is, while otherwise the opposite
at T > Tmax. Note that the different parameter sets ðC; ffiffiffiffi

D
p Þ

have different maximum points. Furthermore, we see that
the first-order perturbative interaction increases fz and
reduces Tmax, and the one-gluon-exchange interaction

decreases fz and increases Tmax. This is consistent with
the result of fs in Fig. 6.
The dependence of the particle abundances of quarks on

the temperature is depicted in Fig. 10. The black, red, and
blue curves correspond, respectively, to the quarks u, d,
and s. The solid, dashed, dotted, and dashed dotted curves
correspond, respectively, to the parameter sets ðC; ffiffiffiffi

D
p Þ:

(0.1, 160), ð−0.1; 160Þ, ð−0.2; 164Þ, and ð−0.3; 168Þ. With
the increase of temperature, the particle abundances of u
and d quarks are decreasing, while that of the s quark
increases. This is because u and d quarks are converted to s
quarks at high temperature. We also find that the first-order
perturbation interaction increases the particle abundances
of u and d quarks and the one-gluon-exchange interaction
decreases the particle abundances of u and d quarks. At the
same time, the first-order perturbation interaction decreases
the particle abundances of s quarks, and the one-gluon-
exchange interaction increases the particle abundances of s
quarks.
Figure 11 shows the entropy per baryon as a function

of temperature for the different parameter sets ðC; ffiffiffiffi
D

p Þ.
The first-order perturbation interaction improves the
entropy, and the one-gluon-exchange interaction reduces
the entropy. It is an increasing function of temperature

FIG. 8. Mechanically stable radius as a function of temperature
when A is 100.

FIG. 9. The ratio of charge number to the baryon number fz as
a function of temperature when A is 100.

FIG. 10. Particle abundances for β-stable strangelets as func-
tions of temperature when A is 100.

FIG. 11. Entropy per baryon as a function of the temperature
for fixed parameter sets ðC; ffiffiffiffi

D
p Þ when A is 100.
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and approaches zero at vanishing temperature. This is
guaranteed by

lim
T→0

∂mq=∂T ¼ 0: ð40Þ

V. SUMMARY

We have investigated the properties of strangelets at
finite temperature by the baryon densitydependent quark
mass model with a quark mass scaling with confinement
and perturbative interaction. We have analyzed the con-
tribution of Coulomb interaction by a thermodynamic
self-consistent way and obtained the contributions to the
pressure and chemical potential. Based on the baryon
densitydependent quark mass model with self-consistent
thermodynamic treatment, we studied the properties of
strangelets, such as the energy per baryon, mechanically

stable radius, strangeness, charge property, and particle
abundances. It is found that the energy per baryon and fz
decreased and the mechanically stable radius and strange-
ness increased as baryon number A increases. In addition,
the obtained energy per baryon, mechanically stable
radius, and strangeness increased with temperature, and
fz decreased. These coincide with previous observations
for the general behavior of strangelets as we vary the
baryon number and/or temperature [61–63]. For fixed
baryon numbers, the strangeness per baryon fs as a
function of temperature has a local minimum, while that
of charge-to-mass ratio has a local maximum.
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