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We study double-spin asymmetries in Drell-Yan processes in which one initial hadron is transversely
polarized and another one is longitudinally polarized. The complete part of the hadronic tensor relevant to
asymmetries is derived. This part consists of twist-2 and twist-3 parton distributions and is gauge invariant.
We construct some observables which can be used to extract these parton distributions from experimental
measurements.
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I. INTRODUCTION

Predictions about high energy scattering of hadrons of
large momentum transfers can be made with QCD factor-
izations. At the leading power of the inverse of large
momentum transfers, cross sections can be predicted with
collinear twist-2 parton distributions convoluted with
perturbative coefficient functions. These parton distribu-
tions contain information about inner structures of hadrons
and are nonperturbative. Currently, the twist-2 parton
distributions are well known and used to make predictions
of various processes.
Beyond the leading power, the contributions to cross

sections are factorized with twist-3 or higher twist parton
distributions. Although they are power suppressed, with the
progress of the experiment it is now possible to measure
them. An example is of single transverse-spin asymmetries,
which have been observed in early experiments in [1,2].
Such asymmetries are factorized with twist-3 parton dis-
tributions as pointed out in [3,4]. The importance for
studying and measuring twist-3 parton distributions is that
they contain information about hadron’s inner structure,
more than twist-2 parton distributions.
In this work, we study with QCD collinear factorization

double-spin asymmetries in Drell-Yan processes, where
one initial hadron is transversely polarized and another is
longitudinally polarized. These double-spin asymmetries at
the leading power can be factorized with collinear twist-3

parton distributions. Measurements of these asymmetries
will help to learn twist-3 parton distributions. The double-
spin asymmetries in Drell-Yan processes have been studied
in [5–7] at leading order of αs. At the order, the transverse
momentum q⊥ of the lepton pair is small, or approximately
zero, and because of that there is no hard parton radiation.
One may expect that the relevant part of the hadronic tensor
is proportional to δ2ðq⊥Þ. This is true for the twist-2 part.
However, at twist-3 the hadronic tensor contains, not only a
part with δ2ðq⊥Þ, but also a part with the derivative of
δ2ðq⊥Þ, as shown in [8,9]. Each part alone is not electro-
magnetic gauge invariant. Only the sum of the two parts is
gauge invariant. In this work, we will derive the complete
part of the hadronic tensor for the double-spin asymmetries.
With our result, more double-spin asymmetries can be
predicted with twist-3 parton distributions.
At the next-to-leading order of αs, the transverse

momentum can be large. The contribution from the
next-to-leading order is the one-loop correction to the
tree-level results of the proposed observables here. It is
noted that the correction can contain collinear divergen-
ces. It is expected that such collinear divergences can be
factorized into various parton distributions, as shown in an
explicit calculation of one-loop correction to single trans-
verse-spin asymmetries at twist-3 of Drell-Yan processes
in [10].
Our work is organized as the following: In Sec. II we

introduce our notations and definitions of collinear twist-3
parton distributions. Relations among these distributions
are discussed. In Sec. III we derive the hadronic tensor for
double-spin asymmetries, where we explain in detail how
the contribution with the derivative of δ2ðq⊥Þ arises. In
Sec. IV we construct observables of double-spin asymme-
tries. Section V is our summary.
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II. NOTATIONS AND PARTON DISTRIBUTIONS

We consider the Drell-Yan processes,

hAðPA; s⊥Þ þ hBðPB; λBÞ → γ�ðqÞ þ X → l−ðk1Þ
þ lþðk2Þ þ X; ð1Þ

where hA;B is a spin-1=2 hadron. To study the process, it is
convenient to use the light-cone coordinate system, in which
a vector aμ is expressed as aμ¼ðaþ;a−;a⃗⊥Þ¼ðða0þ
a3Þ= ffiffiffi

2
p

;ða0−a3Þ= ffiffiffi
2

p
;a1;a2Þ and a2⊥ ¼ ða1Þ2 þ ða2Þ2.

In this system we introduce two light-cone vectors lμ ¼
ð1; 0; 0; 0Þ and nμ ¼ ð0; 1; 0; 0Þ. With the two vectors one
can define themetric gμν⊥ and the totally antisymmetric tensor
ϵμν⊥ in the transverse space,

gμν⊥ ¼ gμν − nμlν − nνlμ; ϵμν⊥ ¼ ϵαβμνlαnβ;

ϵ12⊥ ¼ −ϵ21⊥ ¼ 1: ð2Þ

We take a frame in which the momenta of hadrons are given
by

Pμ
A ≈ ðPþ

A ; 0; 0; 0Þ; Pμ
B ≈ ð0; P−

B; 0; 0Þ: ð3Þ

We consider the case that hA is transversely polarized with
the spin vector sμ⊥ ¼ ð0; 0; s1⊥; s2⊥Þ, and hB is longitudinally
polarized with the helicity λ ¼ �1. The hadronic tensorWμν

for the process is defined as

Wμν ¼
X
X

Z
d4x
ð2πÞ4 e

iq·xhhA; hBjψ̄ð0Þγνψð0Þ

× jXihXjψ̄ðxÞγμψðxÞjhB; hAi; ð4Þ

where q is the momentum of the lepton pair. Its invariant
mass is q2 ¼ Q2.
The hadronic tensor contains all information about the

strong interaction in the process. From the tensor, one can
obtain the differential cross section,

dσ
dQ2dΩ

¼
X
q

ð4παeqÞ2
64π2SQ4

Z
d4qδðq2 −Q2ÞLμνWμν; ð5Þ

where Ω is the solid angle of the lepton in a chosen frame.
A commonly used one is the Collins-Soper frame. Note that
eq is the charge fraction of the quark in unit of e. The sum is
over flavors of quarks. Besides the differential cross section
or angular distribution, one can introduce the so-called
weighted cross section,

dσhF i
dQ2dΩ

¼
X
q

ð4παeqÞ2
64π2SQ4

Z
d4qδðq2 −Q2ÞLμνWμνF ; ð6Þ

i.e., the event distribution is reweighted by a weight factor
F , which can be dependent on lepton momenta and q⊥.
Taking F ¼ 1, one obtains the standard differential cross
section as given in Eq. (5). In this work we will consider
weights which are proportional to q⊥. It is noted that the
transverse momentum q⊥ is integrated in Eqs. (5) and (6).
In the case of Q ≫ ΛQCD, the hadronic tensor can be

factorized in QCD collinear factorization. At the leading
power of the inverse of Q, the tensor can be written as
convolutions of twist-2 parton distributions with perturba-
tive coefficient functions. At this order, the asymmetries
appearing, in the case that only one initial hadron is
transversely polarized, are zero. At the next-to-leading
power, the discussed double-spin asymmetries and single
transverse-spin asymmetries become nonzero. The part of
the hadronic tensor relevant to these asymmetries can be
factorized with twist-3 parton distributions. For our pur-
pose, we discuss below the definitions and relations of
relevant twist-3 parton distributions.
Since we work at the leading order of αs, the relevant

parton distributions involve quark fields. From the quark
density matrix, we can define twist-2 and twist-3 quark
distributions of a hadron with the momentum Pμ ≈
ðPþ; 0; 0; 0Þ as follows [5,11,12]:

Z
dλ
2π

e−iλxP
þhhjðψ̄ðynÞLnðynÞÞβðL†

nð0Þψð0ÞÞαjhi ¼
1

2
½qðxÞγ− þ λΔqðxÞγ5γ− þ h1ðxÞγ5γ · s⊥γ−�αβ

þ 1

2Pþ

�
eðxÞ þ qTðxÞγ5γ · s⊥ þ 1

2
λhLðxÞiσþ−γ5

�
αβ

þ � � � ; ð7Þ

where α and β are Dirac indices. Terms beyond twist-3 are
denoted with � � �. They are irrelevant here. Note that LnðxÞ
is the gauge link defined as

LnðxÞ ¼ P exp

�
−igs

Z
0

−∞
dλn · Gðλnþ xÞ

�
: ð8Þ

In Eq. (7) λ is the helicity of the hadron. The transverse spin
is given by the vector sμ⊥. In the above, qðxÞ or ΔqðxÞ is the
unpolarized or longitudinally polarized quark distribution,
respectively. Note that h1ðxÞ is the transversity distribution.
These distributions are of twist-2. The remaining three
distributions are of twist-3.
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Besides the twist-3 quark distributions given in the above, there are other twist-3 parton distributions, which can be
defined by sandwiching the operator of the gluon field strength tensor, covariant derivative, or derivative in the quark
density matrix in Eq. (7). We introduce three types of twist-3 matrix elements as in the following:

Mμ
Fαβðx1; x2Þ ¼ gs

Z
dλ1dλ2
2π

e−iλ1x1P
þ−iλ2ðx2−x1ÞPþhhjψ̄βðλ1nÞGþμðλ2nÞψαð0Þjhi;

Mμ
Dαβðx1; x2Þ ¼ Pþ

Z
dλ1dλ2
2π

e−iλ1x1P
þ−iλ2ðx2−x1ÞPþhhjψ̄βðλ1nÞDμ

⊥ðλ2nÞψαð0Þjhi;

Mμ
∂αβðxÞ ¼

Z
dλ
2π

e−iλxP
þhhjψ̄βðλnÞ∂μ

⊥ψαð0Þjhi; ð9Þ

where DμðxÞ is the covariant derivative DμðxÞ ¼ ∂μ þ igsGμðxÞ. In the above, we have suppressed gauge links built with
that in Eq. (8) between operators. The three types of twist-3 matrix elements are not independent. One can derive the
relation among them as follows:

Mμ
Dðx1;x2Þ¼

1

x2−x1−iε
Mμ

Fðx1;x2Þþ2πδðx1−x2ÞMμ
∂ðx1Þ: ð10Þ

This relation is for matrix elements defined with the past-pointing gauge link in Eq. (8). In the case of future-pointing gauge
links the relation becomes slightly different. We will come back to the difference later.
The introduced twist-3 matrix elements are parametrized with twist-3 parton distributions. With respect to symmetries,

the parametrization is

Mμ
Fðx1; x2Þ ¼

1

2
½TFðx1; x2Þs̃μ⊥ þ TΔðx1; x2Þisμ⊥γ5�γ− þ 1

4
½λT̃Δðx1; x2Þiγ5γμ⊥ þ T̃Fðx1; x2Þiγμ⊥�γ−;

Mμ
Dðx1; x2Þ ¼

1

2
½DFðx1; x2Þs̃μ⊥ þDΔðx1; x2Þisμ⊥γ5�γ− þ 1

4
½λD̃Δðx1; x2Þiγ5γμ⊥ þ D̃Fðx1; x2Þiγμ⊥�γ−;

Mμ
∂ðxÞ ¼

1

2
½−iγ5γ−sμ⊥q∂ðxÞ − iγ−s̃μq0∂ðxÞ� þ

1

4
½−iλγ5γμ⊥γ−h∂ðxÞ þ γμ⊥γ−e∂ðxÞ�; ð11Þ

where s̃μ⊥ is given by s̃μ⊥ ¼ ϵμν⊥ s⊥ν. From Hermiticity and symmetries of parity and time reversal, one can find the properties
of twist-3 parton distributions in Mμ

D;F,

TFðx1; x2Þ ¼ TFðx2; x1Þ; TΔðx1; x2Þ ¼ −TΔðx2; x1Þ; T̃Fðx1; x2Þ ¼ T̃Fðx2; x1Þ;
T̃Δðx1; x2Þ ¼ −T̃Δðx2; x1Þ DFðx1; x2Þ ¼ −DFðx2; x1Þ; DΔðx1; x2Þ ¼ DΔðx2; x1Þ;
D̃Fðx1; x2Þ ¼ −D̃Fðx2; x1Þ; D̃Δðx1; x2Þ ¼ D̃Δðx2; x1Þ: ð12Þ

From the relation in Eq. (10), we have the following relations between twist-3 parton distributions relevant to our work:

DΔðx1; x2Þ ¼
�
P

1

x2 − x1

�
TΔðx1; x2Þ − 2πδðx1 − x2Þq∂ðx1Þ;

DFðx1; x2Þ ¼
�
P

1

x2 − x1

�
TFðx1; x2Þ; TFðx; xÞ ¼ þ2q0∂ðxÞ;

D̃Δðx1; x2Þ ¼
�
P

1

x2 − x1

�
T̃Δðx1; x2Þ − 2πδðx2 − x1Þh∂ðx1Þ;

D̃Fðx1; x2Þ ¼
�
P

1

x2 − x1

�
T̃Fðx1; x2Þ; T̃Fðx; xÞ ¼ 2e∂ðxÞ; ð13Þ

where P stands for the principal-value prescription. As mentioned, these relations are of parton distributions defined with
the past-pointing gauge link for Drell-Yan processes. For semi-inclusive deeply inelastic scatterings (SIDIS), one should
use future-pointing gauge links to define parton distributions. With parity and time reversal symmetries, one can show
that the twist-2 parton distributions defined with past-pointing gauge links are the same defined with future-pointing
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gauge links. However, this is not the case for twist-3
parton distributions, especially for those defined
with Mμ

∂ because of the transverse derivative acting on
gauge links. Taking q0∂ as an example, with parity and time
reversal symmetries one can show that q0∂ , with the future-
pointing gauge link, is −q0∂ defined with the past-pointing
gauge link. Therefore, the second relation in the
second line of the above equation is for Drell-Yan
processes. For the corresponding relation in SIDIS, the
þ should be changed into −, as noticed in [9]. It is noted

that without parity and time reversal symmetries one
already can show that there is a nonzero difference
between the two parton distributions defined with differ-
ent gauge links, and the difference is proportional to
TFðx; xÞ [13].
From equation of motion some relations between twist-3

parton distributions defined with quark-gluon correlators
and those defined with quark density matrix can be derived
[14–17]. There are the following relations between twist-3
parton distributions relevant to our work:

1

2π

Z
dx1

�
P

1

x2 − x1

�
½TFðx1; x2Þ − TΔðx1; x2Þ� ¼ x2qTðx2Þ − q∂ðx2Þ;

1

2π

Z
dx1

�
P

1

x2 − x1

�
T̃Δðx1; x2Þ ¼ h∂ðx2Þ −

1

2
x2hLðx2Þ: ð14Þ

The process we study is effectively annihilation of quark
and antiquark into a virtual photon. The antiquark distri-
butions can be obtained from definitions of quark distri-
butions through a charge-conjugation transformation of the
operators in the definitions. We obtain the following
relations between antiquark and quark distributions at
twist-2:

q̄ðxÞ¼−qð−xÞ; Δq̄ðxÞ¼Δqð−xÞ; h̄1ðxÞ¼−h1ð−xÞ;
ð15Þ

and the relations at twist-3,

ēðxÞ¼eð−xÞ; h̄LðxÞ¼−hLð−xÞ; q̄TðxÞ¼qTð−xÞ;
ē∂ðxÞ¼e∂ð−xÞ; h̄∂ðxÞ¼h∂ð−xÞ; q̄0∂ðxÞ¼q0∂ð−xÞ;
q̄∂ðxÞ¼−q∂ð−xÞ: ð16Þ

In the above, antiquark distributions are in the left-hand
side of each equation. In our notation all twist-2 parton
distributions are dimensionless. All twist-3 parton distri-
butions have the dimension one in mass.

III. THE DOUBLE-SPIN DEPENDENT PART OF
THE HADRONIC TENSOR AND DOUBLE-SPIN

ASYMMETRIES

At the leading order of αs, the contributions to Wμν are
from diagrams given by Fig. 1. In these diagrams the upper
and lower bubble represent jetlike Green functions related
to the longitudinally polarized hadron hB in the initial state,
and transversely polarized hA, respectively. The middle part
in the diagrams consist of explicit Feynman diagrams of
parton scattering. In this work we use the Feynman gauge.
Since the jet functions are jetlike, there are power counting
for momenta of partons from hA or hB, respectively. For
example, in Fig. 1(a) the momenta kA and kB scale like

kμA ∼Qð1; λ2; λ; λÞ; kμB ∼Qðλ2; 1; λ; λÞ; ð17Þ

and momenta of gluons scale similarly. The gluon field
vectors also scale like the pattern of their momentum as in
Eq. (17) in the gauge we work.
In collinear factorization one needs to expand the

contributions from Fig. 1 in power of λ. We first consider
diagrams in Fig. 1(a). The contribution can be written in the
form

(b)(a) (c)

FIG. 1. Tree-level diagrams for Wμν of Drell-Yan processes. The black dots represent the insertion of the electromagnetic current.
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WμνðPA; PB; qÞj1a ¼
Z

d4kAd4kBΓjiðPA; kAÞHμν
ij;lkðkA; kB; qÞΓ̄klðPB; kBÞ; ð18Þ

where ΓA;B are quark density matrices represented by the lower and upper bubble, respectively. They are given by

ΓjiðPA; kAÞ ¼
Z

d4ξ
ð2πÞ4 e

−iξ·kAhhAðPAÞj½q̄ðξÞ�i½qð0Þ�jjhAðPAÞi;

Γ̄ijðPB; kBÞ ¼
Z

d4ξ
ð2πÞ4 e

−iξ·kBhhBðPBÞj½qðξÞ�i½q̄ð0Þ�jjhBðPBÞi; ð19Þ

where ij stand for Dirac and color indices. Note that Hμν
ij;klðkA; kB; qÞ is the middle part of Fig. 1(a) which is given by

Hμν
ij;lkðkA; kB; qÞ ¼ δ4ðkA þ kB − qÞ½γμ�lj½γν�ik: ð20Þ

To find the contributions, we expand H in λ,

Hμν
ij;lkðkA; kB; qÞ ¼ δ4ðk̂A þ k̂B − qÞ½γμ�lj½γν�ik − ðkA þ kBÞρ⊥

∂δ4ðk̂A þ k̂B − qÞ
∂qρ⊥ ½γμ�lj½γν�ik þOðλ2Þ; ð21Þ

with

k̂μA ¼ ðkþA ; 0; 0; 0Þ; k̂μB ¼ ð0; k−B; 0; 0Þ: ð22Þ

The terms of Oðλ2Þ will give contributions beyond twist-3 and can safely be neglected. With the expansion Wμν from
Fig. 1(a) becomes

WμνðPA; PB; qÞj1a ¼
Z

dkþAdk
−
B½γμ�lj½γν�ik

Z
dξ−

2π
e−iξ

−kþA

Z
dξþ

2π
e−iξ

þk−B

�
δ4ðk̂A þ k̂B − qÞ

hhAðPAÞj½q̄ðξ−nÞ�i½qð0Þ�jjhAðPAÞihhBðPBÞj½qðξþlÞ�k½q̄ð0Þ�ljhBðPBÞi

þ i
∂δ4ðk̂A þ k̂B − qÞ

∂qρ⊥ ½hhAðPAÞj½∂⊥ρq̄ðξ−nÞ�i½qð0Þ�jjhAðPAÞi

hhBðPBÞj½qðξþlÞ�k½q̄ð0Þ�ljhBðPBÞi þ hhAðPAÞj½q̄ðξ−nÞ�i½qð0Þ�jjhAðPAÞi

hhBðPBÞj½∂⊥ρqðξþlÞ�k½q̄ð0Þ�ljhBðPBÞi�
�
þ � � � ; ð23Þ

where � � � stands for terms beyond twist-3. Using the parametrizations of matrix elements discussed in the last section, we
obtain the following:

Wμνj1a ¼
1

2Nc
λ

�∂δ2ðq⊥Þ
∂qρ⊥ ½h̄∂ðyÞh1ðxÞðgρμ⊥ sν⊥ þ gρν⊥ sμ⊥ − gμν⊥ sρ⊥Þ − 2Δq̄ðyÞq∂ðxÞsρ⊥gμν⊥ �

þ δ2ðq⊥Þ
1

PA · PB
½−2Δq̄ðyÞqTðxÞðPμ

Bs
ν⊥ þ Pν

Bs
μ
⊥Þ þ h̄LðyÞh1ðxÞðPμ

As
ν⊥ þ Pν

As
μ
⊥Þ�

�
; ð24Þ

where λ is the helicity of hB, and sμ⊥ is the transverse spin vector of hA. qþ, and q− are given by

qþ ¼ xPþ
A ; q− ¼ yP−

B: ð25Þ

Here, and in the below, we always use the notation that parton distributions with the variable x or y are of hA or of hB,
respectively. It is noted that the above results are not exactly only from Fig. 1(a) because of that the parton distributions
contain gauge links. To find the contributions of gauge links, we need to consider diagrams of one gluon exchange as
Figs. 1(b) and 1(c) and diagrams with exchanges of more gluons. We will call the gluons with the polarization index − orþ
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as G− or Gþ gluons, respectively. With the power counting
discussed around Eq. (17), one easily finds that the leading
contributions from the exchange of any number of
G− gluons with the upper bubble or Gþ gluons with the
lower bubble are at the same leading power of λ as that of
Fig. 1(a). The summation of these contributions can be
done with Ward identity in a standard way. The summation
gives the contributions of gauge links in the parton
distributions.
Figures 1(b) and 1(c) give the so-called three-parton

contributions, where the exchanged gluon can be trans-
versely polarized. In Fig. 1(b) the twist-3 contribution
involves twist-2 quark distribution h1 of hA and twist-3
parton distributions of hB. The calculation is straightfor-
ward. It is found that the contribution from the transversely
polarized gluon andG− gluon can be summed into the form
which involves the field strength tensor operator G−μ. We
obtain the contribution of Fig. 1(b) and its complex
conjugates as follows:

Wμνj1bþc:c: ¼
λB

2πNc
δ2ðq⊥Þ

1

xPA · PB
ðPμ

Bs
ν⊥ þ Pν

Bs
μ
⊥Þh1ðxÞ

×
Z

dy1
y − y1

T̃Δð−y;−y1Þ: ð26Þ

Similarly, we obtain the contribution from Fig. 1(c) and its
complex conjugates as follows:

Wμνj1cþc:c:¼−
λB

2πNc
δ2ðq⊥Þ

1

yPA ·PB
ðPμ

As
ν⊥þPν

As
μ
⊥ÞΔq̄ðyÞ

×
Z

dx1
x−x1

ðTΔðx1;xÞ−TFðx1;xÞÞ: ð27Þ

Again, these contributions, in fact, contain contributions of
diagrams with exchanges of more than one Gþ or G−

gluon. These contributions can be summed into the form of
gauge links in parton distributions as discussed after
Eq. (25). It is interesting to note that the involved integrals
of twist-3 parton distributions in the above can be expressed
with two-parton distributions by using the relation in
Eq. (14) and the relations between quark and antiquark
distributions in Eqs. (15) and (16).
The results in Eqs. (24), (26), and (27) are the contri-

butions for the partonic process, in which an initial quark or
antiquark comes from hA or hB, respectively. The complete
hadronic tensor is the sum of the contributions in Eqs. (24),
(26), and (27) and the contributions from the charge-
conjugated partonic process. The sum is

Wμν ¼ δ2ðq⊥Þλ
NcPA · PB

�
ðPμ

Bs
ν⊥ þ Pν

Bs
μ
⊥Þ
�
−qTðxÞΔq̄ðyÞ þ

1

x
h1ðxÞðh̄∂ðyÞ −

1

2
yh̄LðyÞ

�

þ ðPμ
As

ν⊥ þ Pν
As

μ
⊥Þ
�
−
1

y
ðq∂ðxÞ − xqTðxÞÞΔq̄ðyÞ þ

1

2
h1ðxÞh̄LðyÞ

��

þ ∂δ2ðq⊥Þ
∂qρ⊥

λ

Nc

�
ðgρμ⊥ sν⊥ þ gρν⊥ sμ⊥ − gνμ⊥ sρ⊥Þ

1

2
h1ðxÞh̄∂ðyÞ − sρ⊥g

μν
⊥ q∂ðxÞΔq̄ðyÞ

�
þ ðq ↔ q̄Þ; ð28Þ

where the notation ðq ↔ q̄Þ stands for the contribution of
the charge-conjugated partonic process. It is obtained by
replacing the combination aðxÞb̄ðyÞ of parton distributions
with āðxÞbðyÞ, where aðxÞ or b̄ðyÞ is a parton distribution
of hA or hB, respectively. This result contains δ2ðq⊥Þ and its
derivative. Therefore, one should take the result as a
distribution of q⊥. The Uemð1Þ gauge invariance should
be then understood as

Z
d2q⊥F ðq⊥ÞqμWμν ¼

Z
d2q⊥F ðq⊥ÞqνWμν ¼ 0; ð29Þ

where F ðq⊥Þ is a test function. Our result satisfies this
equation and hence is gauge invariant. Because the had-
ronic tensor at the order of αs is a distribution of q⊥, in
predictions of relevant physical observables, q⊥ is inte-
grated over. With this in mind, the introduced weight
observable in Eq. (6) with F ¼ 1 will be determined by the

part with δ2ðq⊥Þ in Wμν, the observables with F propor-
tional to q⊥ will be determined by the part with the
derivative of δ2ðq⊥Þ in Wμν.
Before ending this section, it is worth discussing the

physical meaning of terms with the derivative of δ2ðq⊥Þ in
the hadronic tensor. At the considered order α0s, the quark
and the antiquark, which annihilate into the virtual photon,
are partons directly from initial hadrons. They have only
intrinsic nonzero but small transverse momenta at order of
ΛQCD. At the leading power of the inverse ofQ or at leading
twist, these momenta are neglected. It results in that the
hadronic tensor at the order is proportional to δ2ðq⊥Þ. At the
next-to-leading power, the effect of the nonzero, but small
transverse momenta, has to be taken into account. This
effect is included, e.g., in the second term inEq. (23), which
gives the contributions toWμν proportional to the derivative
of δ2ðq⊥Þ. It is also noted that beyond the leading order of
αs, the annihilated quark and antiquark can have large
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transverse momenta because of hard gluon radiations. For
our observables in the next section, the effects of hard gluon
radiations are suppressed by αs.

IV. PHYSICAL OBSERVABLES

In this section we consider experimental observables
related to the polarizations of initial hadrons. We consider
the angular distribution of the final lepton in the Collins-
Soper frame [18]. In this frame the momentum k1 of the
lepton is

kμ1 ¼
Q
2
ð1; sin θ cosϕ; sin θ sinϕ; cos θÞ; ð30Þ

where θ is the polar angle between the lepton momentum
and Z axis, which bisects the angle between directions of
the two initial hadrons. Note that ϕ is the azimuthal angle
between k1⊥ and q⊥. It is noted that the transverse spin
vector in the laboratory frame given in Sec. II is not exactly
the same in the Collins-Soper frame. In the considered case
of small q⊥, the difference is at order of q2⊥, which can be
safely ignored. We denote the azimuthal angle between s⊥
and q⊥ as ϕs.
The angular distribution can be derived by introducing

four covariant vectors as coordinate vectors as discussed in
[19]. With our hadronic tensor, the contribution propor-
tional to λjs⊥j is obtained as follows:

dσ
dQ2dΩ

¼ λjs⊥j
X
q

ð4παÞ2e2q
64π2NcQ3

Z
dxdyδðxyS −Q2Þ

× ½xW1 − yW2� sinð2θÞ cosðΔϕslÞ; ð31Þ

where Δϕsl is the difference ϕ − ϕs. Note that W1;2 is
given by the first line and second line of Wμν in Eq. (28),

W1¼−qTðxÞΔq̄ðyÞþ
1

x
h1ðxÞ

�
h̄∂ðyÞ−

1

2
yh̄LðyÞ

�
þðq↔ q̄Þ;

W2¼−
1

y
Δq̄ðyÞ½q∂ðxÞ−xqTðxÞ�þ

1

2
h̄LðyÞh1ðxÞþðq↔ q̄Þ:

ð32Þ

This result is in agreement with that in [6]. The differential
cross section given in Eq. (31) is determined by the
nonderivative part ofWμν. To see the effect of the derivative
part, one has to consider the weighted differential cross
section introduced in Eq. (6). It is noted that in [6] the result
of the hadronic tensor with collinear parton distributions is
given where q⊥ is integrated over. After the integration,
only the nonderivative part remains, and the derivative part
gives no contribution to the result. Therefore, with the
result in [6] one cannot make predictions of weighted
differential cross sections with weights involving q⊥. We
introduce two weights,

F 1 ¼
1

Q
q⊥ · s⊥; F 2 ¼

1

Q
q⊥ · s̃⊥: ð33Þ

The corresponding weighted differential cross sections are

dσhF 1i
dQ2dΩ

¼ −λjs⊥j2
X
q

ð4παÞ2e2q
64π2NcQ3

Z
dxdyδðxyS −Q2Þ½D1ð1þ cos2θÞ −D2sin2θ cosð2ΔϕslÞ�;

dσhF 2i
dQ2dΩ

¼ −λjs⊥j2
X
q

ð4παÞ2e2q
64π2NcQ3

Z
dxdyδðxyS −Q2Þ½D2sin2θ sinð2ΔϕslÞ�; ð34Þ

where D1;2 are given by the derivative part of Wμν,

D1 ¼ −Δq̄ðyÞq∂ðxÞ − ΔqðyÞq̄∂ðxÞ;

D2 ¼
1

2
ðh̄∂ðyÞh1ðxÞ þ h∂ðyÞh̄1ðxÞÞ: ð35Þ

From these spin-dependent differential cross sections, one
can define various double-spin asymmetries by taking their
differences between those with λ ¼ �1. It is interesting to
note that only the differential cross section weighted with
F 1 can be measured if the azimuthal angle or the solid
angle is integrated. In this case we have only one observ-
able remaining nonzero,

dσhF 1i
dQ2

¼−λjs⊥j2
X
q

ð4παÞ2e2q
12πNcQ3

Z
dxdyδðxyS−Q2ÞD1:

ð36Þ

With this result, a simple asymmetry can be defined as

AhF 1iLT ¼
dσhF 1i
dxdQ2 ðλ ¼ 1; s⊥Þ − dσhF 1i

dxdQ2 ðλ ¼ −1; s⊥Þ
dσ0

dxdQ2 ðλ ¼ 1; s⊥Þ þ dσ0
dxdQ2 ðλ ¼ −1; s⊥Þ

¼ 1

Q
js⊥j2

P
qe

2
qðq̄∂ðxÞΔqðyÞ þ q∂ðxÞΔq̄ðyÞÞP
qe

2
qðqðxÞq̄ðyÞ þ q̄ðxÞqðyÞÞ ;

ð37Þ
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where σ0 is the unpolarized cross section at the leading
power. In the above y is fixed as Q2=xS. Similar asymme-
tries in angular distributions can also be constructed with
the results here.

V. SUMMARY

We have made an analysis for double-spin asymmetries
in Drell-Yan processes. The asymmetries arise at twist-3
level. The complete part of the hadronic tensor relevant to
these asymmetries is derived. This twist-3 part contains not
only a contribution of δ2ðq⊥Þ as twist-2 parts do, but also a
contribution proportional to the derivative of the δ function.
Only the sum of the two contributions as a distribution of

q⊥ is gauge invariant. Based on our results, observables are
constructed to identify the spin effects. From these observ-
ables one can build double-spin asymmetries, which can be
used for extracting twist-3 parton distributions.
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