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Subleading contributions to the decay width of the 7}, tetraquark
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Recently, the LHCb Collaboration announced the discovery of the T, tetraquark. Being merely a few
hundred keV below the D** DO threshold, the T. is expected to have a molecular component, for which
there is a good separation of scales that can be exploited to make reasonably accurate theoretical predictions
about this tetraquark. Independently of its nature, the most important decay channels will be D*D%z°,
D°DOz*, and D* D%. Its closeness to threshold suggests that the mass and particularly the width of the T,
tetraquark depend on the resonance profile. While the standard Breit-Wigner parametrization generates a
T/ that is too broad for current theoretical calculations to reproduce, a three-body unitarized Breit-Wigner
shape reveals instead a decay width (', = 48 & Zf?z keV) consistent with theoretical expectations. Here,
we consider subleading-order contributions to the decay amplitude, which, though having at most a
moderate impact in the width, still indicate potentially significant differences with the experimental width
that can be exploited to disentangle the nature of the T7... Concrete calculations yield I'™© = 49 + 16 keV
and TNO = 5877 keV, though we expect further corrections to the next-to-leading-order (NLO) decay
widths from asymptotic normalization effects. We find that a detailed comparison of the NLO total and
partial decay widths with experiment suggests the existence of a small (but distinguishable from zero)

nonmolecular component of the T7..

DOI: 10.1103/PhysRevD.105.014007

I. INTRODUCTION

The LHCb Collaboration has recently observed [1] a
tetraquark in the D°D°z* mass spectrum. The Breit-
Wigner parameters of this tetraquark, the T, are

Smgw = —273 £ 61 £ 57, keV, (1)
Tgw = 410 4 165 4+ 43718 keV, (2)

where the mass difference is with respect to the D**D°
threshold. Alternatively, if the data are analyzed with a
resonance profile more suitable to the closeness of the T},
to the D** D threshold [2], the parameters of the T/, pole
turn out to be

SMpore = —360 £ 407 keV, (3)

Fpole = 48 £ 277, keV. (4)
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Of course, the question is what the nature of this state is,
where the two contending explanations are a compact
tetraquark or a loosely bound D**D%-D**D system.
Actually, there is a long list of predictions of a cciid state
with /= 1" and I =0, beginning with the pioneering
realization by Zouzou et al. [3] that this tetraquark could be
below the D*D threshold, followed by a large series of
works till nowadays [4—12]. The predictions of / = 0 D*D
and D*D* bound states with J¥ = 17 (for which heavy
quark-spin symmetry predicts identical potentialsl) are in
contrast somewhat more recent, with Manohar and Wise
[16] and Tornqvist [17] considering it unlikely (from pions
alone), but then Ericson and Karl [18] realizing that this
conclusion might change if other meson exchanges are
considered, an observation later confirmed in Ref. [19] for
D*D*, in Ref. [20] for D*D (corresponding to the T'%,.), in
Ref. [21] for D*D and D*D*, in Refs. [22,23] for D*D, etc.
(plus the attention this hypothesis has received [24-28]
after the observation of the T'f.). Here, it is worth noticing

"The situation is completely analogous to the Z,(10610) and
Z,(10650) [13] or to the X(3872) and its hypothetical J*¢ =
2% X(4012) partner [14]. However, for the D*D*, a similar
caveat applies as for the X(4012) [15]: the actual location of the
compact cciid/cc states might make the higher mass partner
disappear.
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that there might be up to three states with the quantum
numbers of the T, (with the molecular ones usually close
to threshold).

In view of the aforementioned theoretical landscape,
there are reasons to believe that the two hypotheses (i.e., the
molecular and tetraquark explanations) are not mutually
exclusive and the T, could be a superposition of both. The
molecular component of the T, has the theoretical advan-
tage of being a shallow bound state, presumably with a
good separation of scales between its long-range and short-
range components. This in turn allows us to use the existent
theoretical toolbox for shallow bound states [29,30], from
which in principle it would be possible to make predictions
accurate enough as to analyze its structure.

In this regard, the decay width of the T, is particularly
important (and indeed it has already received due attention
[31-33]); if the experimental measurements and theoretical
predictions are on par with each other in terms of accuracy,
we will be able to determine whether the T, is purely
molecular or compact, or what the degree of admixture is
between these two explanations. Given small enough
uncertainties, a calculated decay width that is too small
or too large in comparison with the experiment might point
to (or even determine) the existence of physics beyond the
naive molecular explanation, like a tetraquark component
or unobserved states. However, this might prove difficult;
the wave function of a tetraquark close to the D*D
threshold might be indistinguishable from that of two
separate D* and D mesons, as noted in Ref. [8], which
already considered the possibility of a tetraquark lying
between the D*D and DDz thresholds (see also the
discussion in Ref. [34]).

II. DECAY CHANNELS

The T. decay width is expected to be saturated by its
strong and electromagnetic decays, which are in principle
limited to three possibilities: T{ — DTD%° Ti —
D°Dz+, and T, — D*D'%.

However, this is not necessarily the whole story; if the
predicted cciid tetraquark happens to be a different state than
the T, but with a lower mass, which we might call 7% for
concreteness, we will have to add up to two new decay
channels, T, — T"ty (M1 magnetic and E2 quadrupole
transitions) and T, — T’ z°, of which the second requires
isospin breaking (e.g., stemming from the isospin breaking in
the mass of the D**D® and D* D*° channels) and a compact
T’ located close or below the D* DY threshold. This last
condition is more difficult to meet as there are fewer
predictions of a cciid state close to or below the DD
threshold [35-38] (as to allow some phase space for
T} — T':a% than between the D*D and DD thresholds
[5,39-43]. A different variation over this idea—the possibil-
ity of a DD bound state, T, and its potential effect on the T,
decay width—has been recently explored in Ref. [44].

The most straightforward calculation of the T, decay
width into pions involves sandwiching the D* — Dz one-
body decay operators between the initial and final wave
functions [31-33], in which case the total decay width of a
molecular T}, falls short of the Breit-Wigner width [1], but
agrees well with the width from the improved resonance
profile introduced in Ref. [2] (which is in turn consistent
with the well-known fact that the Breit-Wigner paramet-
rization will lead to distortions for two-body states close to
threshold [45,46]). Here, we include a series of subleading-
order effects, including two-body decay operators and
rescattering effects in the final DD pair, which refine the
aforementioned theoretical estimations and might allow us
to eventually disentangle the molecular and nonmolecular
components of the 7.

III. POWER COUNTING

Effective field theories (EFTs) are expansions in terms of
the ratio Q/M, with Q and M characteristic soft and hard
scales of the system at hand. If the T}, is molecular, its
natural momentum scale Q is given by the wave number of
its D** D°-D**D* components, i.e., 23-26 and 57-59 MeV,
respectively, depending on whether we use émgy Or 61,01}
see Egs. (1) and (3). The ratio of these two scales with respect
to the pion mass is about 0.18 and 0.42, from which it would
be perfectly possible to consider the pion mass as a heavy
scale M ~ m,, in a first approximation. If we consider the
strong decay products of the T, the maximum momentum
and energy of the final pion are about 40 and 6 MeV, which
are again small in comparison with the pion mass. The
situation is less clear with the momentum of the final DD
pair, which can reach 100 MeV; however, one pion exchange
does not happen in this system, with the longest range piece
of the DD potential being the two-pion exchange football
diagram, with a range of 2m . From this, the ratio of scales
for the final DD system is 0.37. At this point, it is worth
noticing that a pion exchanged between a D*D and a DD*
initial and final state is almost on mass shell and will in
principle follow naive dimensional analysis (NDA) as its
power counting (also referred to as Weinberg’s counting
[47,48], which was originally formulated for the two-
nucleon system but can be applied to other non-relativistic
two-hadron systems as well). This conclusion changes,
though, once we consider the relatively large momentum
scale at which pions become nonperturbative in the two-
charmed meson system [49]. In summary, an effective field
theory description in which the pion mass is considered a
hard scale is expected to have a convergence parameter in the
range Q/M ~ 0.2-0.4.

With this, if we consider the strong decays of the T/ and
the diagrams in Fig. 1, their counting will be as follows:
(a) The one-body decay diagram is order Q~2, and being

the lowest-order one, it is leading order (LO),
(b) In the Weinberg counting, the seagull diagram is Q°,
but in the decay of the T¥., the Weinberg-Tomozawa
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FIG. 1. Lowest-order operators involved in the 7.. — DDn
decay: the one-body decay operator is of order Q~2, while the
seagull and contact two-body currents are naively of order Q° and
Q' but get promoted to Q' and Q°, respectively.

term is proportional to m,, which we count as a hard
scale. Thus, this diagram is promoted to Q7! and is
next-to-leading order (NLO),

(c) The contact-range two-body operator is naively Q',
but if the T}, is a bound state and if we apply the
arguments of Ref. [50] for the counting of two-body
operators, it will be promoted to Q° and will be next-
to-next-to-leading order (N’LO).

Indeed, following the logic in Ref. [50], if we apply
renormalization group invariance to the contact-range
two-body operator, we obtain

d
dR,

(¥(DD)|OF|¥(TL)) o

d - #CQB(RC) o
dRc |:€1 : q R - 07

(5)
c
where |¥(T{,.)) and |¥(DD)) are the initial and final
two-meson wave functions, R, is a cutoff radius, C,p
is the contact-range coupling, €, is the polarization
of the T, tetraquark, and ¢ is the momentum of
the pion. The R:! factor in front of C,5(R,) comes
from the tetraquark wave function, which scales as
(rl'¥(T{.)) < 1/r at short distances. This factor also
implies that in the infrared limit (RZ' ~ Q), the C,p
coupling is proportional to 1/Q and thus enhanced by
one order with respect to NDA.
It is worth noticing that the appearance of the contact-range
two-body operator sets the limit of predictability of the
EFT: at N2LO, this contact can be calibrated to reproduce
the T/, decay width into pions, which means that the decay
width becomes the input of the theory (instead of its output,
which is what we want). For comparison purposes, this
counting has a few similarities with X-EFT [an effective

field theory tailor-made for the X(3872)][51] and a very
significant difference in what regards the counting of pion
exchanges [which we count at least as N’LO, as will be
explained later; see the discussion below Eq. (32)]. We find
it also interesting to comment on Ref. [44], which proposes
an EFT description of the T, decays when there is a bound
state in the final DD state; if this were to be the case, the
final DD wave function will behave in exactly the same
way as the initial T}, one, i.e., (r|[¥(DD))  1/r, which
will result in a 1/Q? enhancement of the contact-range two-
body operator, which will then enter at NLO. In this case,
EFT will only be able to predict the T, decay at LO
(instead of NLO as we propose here).

Even if the NLO limitation and the potentially slow
convergence parameter look disappointing, they are indeed
more than enough for the current situation; the relative
uncertainty in the experimental decay width is 0.43 for the
standard Breit-Wigner parametrization and 0.25 for the
unitarized Breit-Wigner. This naively indicates that either a
LO or NLO calculation will be enough to match it, but at
which order this exactly happens is not completely obvious
a priori; EFT arguments allow for the existence of
numerical factors of O(1), which might subvert the original
power counting expectations. If we ignore these numerical
factors and consider the expansion parameter to lie between
0.18-0.42, we find that the uncertainty in the LO and NLO
decay widths will be

AFLO NLO
—o ~0.18-0.42 and —g5 ~0.03-0.18, (6)

FLO FN

which indicates that a NLO calculation is necessary to be
fully competitive with experiment, particularly if we want
to match the accuracy of Ref. [2]. As we will see,
calculations of the decay width will turn out to be
compatible with the average estimations of the EFT
convergence. Thus, it happens that all the pieces fit together
to put the current limit at NLO, as it is simply not possible
to achieve a better accuracy at N’LO where the decay width
is no longer a prediction.

IV. DECAY AMPLITUDES
For the decay of the T}, into DDx, we will consider a
decay amplitude in the form

(DD(p")x°|H|D*D(p)) = A(P', P, q), (7)

where c is the isospin index of the outgoing pion, g is its
momentum, and p (p') is the center-of-mass relative
momentum of the incoming (outgoing) D*D (DD) system.
This amplitude will be sandwiched between the initial and
final state wave functions

(A°) = (DD(R)|A|TE,), (8)
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and then inserted into Fermi’s golden rule to obtain the
decay width

-

PE &G
(27)? 2w)(27)?

k2+ 612

[(T{. - DDrn) = 27:/

x&(w—i— —A)W,

©)

Upp  2mpp

where & is the center-of-mass momentum of the DD pair, ¢
refers to the momentum of the outgoing pion and w =

\V/m2 + ¢* refers to its energy (with m, the pion mass),
upp and mpp are the reduced and total mass of the final

DD pair, and |(A)|? represents the sum over final states
and average over initial states. The amplitude A€ is
represented by the diagrams in Fig. 1, the evaluation of
which yields

) U A 353 q
A, = € - qr.(2x 5<>< >
\/§”|:lql( )

St
|
S
+
|

o mg & (P =P
FilF ), e IR g
”/uﬂ"_(p_p_f)

where p, p’ are the relative momenta of the incoming and
outgoing D*D and DD systems, g and ¢ are the momentum
and the isospin index (in the Cartesian basis) for the
outgoing pion, 7¢ is the isospin operator (a Pauli matrix)
for the pion as applied to vertex i = 1, 2, f, ~ 130 MeV is
the pion weak decay constant, g; is the axial coupling for
the charmed mesons, m, is the pion mass, and y2 = m2 —
(m(D*) —m(D))? is the effective pion mass for the in-
flight pion, which can be on shell and which we simplify to
u, = 0 from now on.”? Besides, in the Weinberg-Tomozawa
vertex, we have made the simplification that the energy of
the incoming and outgoing pion is m, (we notice that
changing it to @, = \/m2 + g*> has a negligibly small
effect). For the initial center-of-mass momentum coordi-
nates, we have also ignored the mass difference between
the D and D* mesons.

We now evaluate the decay operator between the
initial and final states. If we assume wave functions of
the type

(¥DD(K)) = *7|DD) and (FT..) =y(¥)|D'D), (11)

2Actually, u2 < 0, which means that we can interpret the two-
body operator as the rescattering of the outgoing pion with the
second charmed meson (indeed, this is how this operator is
interpreted in X-EFT [52]). By taking the u, = 0 limit, we are
effectively considering that this rescattering happens at zero
energy, which is a good approximation taking into account that
the maximum momentum of the pion is about 35-40 MeV.

the matrix element of the decay amplitude can be explicitly
evaluated as follows,

(A = [ e (R )

g1
V2fn

o - mn’ — =4 7 o
‘I—l(T] XTz)CFIGI 'IZB(kf q) N (12)

where the one- and two-body integrals take the form

-

1 (%.5) = / Py (7)e DT, (13)

N -

= I R
(k. q) :/del//(x)vx [m]e (25 (14)

These expressions can be further simplified by assuming
the T.. to be an S-wave bound state

(AT) = ="

 Vaz

and by expanding the decay amplitude in partial waves

|D*D), (15)

(A(k,§)) = & - GAsp(k, q) + & - kKAps(k, )

+ (D-waves and higher), (16)

where we will ignore contributions in which the final DD

pair has orbital angular momentum L > 2. After a few
manipulations, we arrive at

<AC> =

V2f,

m

T )= - - a
GRS ARI T )

2 in(ka)) | (17)
where the integrals [y, Iy, and I;; are given by
“+00 . . q
lokeq) = Vax [ drratvioten)io (1), (18)
0
1 Foo . JiGgr)
Iy (k,g) = — dru(r kr R 19
atleq) = e [ arutinen T2 09)
1 [ Jikr) . (q >
Iiy(k,g) = — dru(r =r, 20
olkea) === [T aratn 5 ($r). - 20)

with j,(x) the spherical Bessel functions. We notice that in
the theory we are using, the reduced wave function takes
the form u(r) = Age™", for which the Iy, Iy, and I
integrals can be evaluated analytically.
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The scattering of the DD in the final state can be taken
into account by changing the jy(kr) (which comes from
assuming the final DD state is a plane wave) in the integral
1, 00 to

Jo(kr) — cos 6(k)jo(kr) —sin 8(k)yo(kr),  (21)

where §(k) is the S-wave DD phase shift and y,(x) the
spherical Neumann functions. If we assume that scattering
in the final state is weak (as dictated by our counting), we
can simply approximate

cos 5~1 and sin 6~ —agk, (22)
with aq the DD scattering length.” Thus, the only change
we have to do is the substitution

Loo(k, q) = Too(k, q) + (aok)Yoo(k, q). (23)

with Y, defined as

Fulka) = Var [ arratstinio(2r). 24

We notice that the combination of the DD rescattering with
the seagull diagram, which is N’LO, is logarithmically
divergent and requires the inclusion of a contact-range two-
body operator. This represents a nontrivial check of our
initial power counting estimation for this operator.

For the decay of the T, into DDy, we use basically the
same formalism, though in this case there is no two-body
operator; the lowest-order one enters at N>LO. The decay
amplitude takes the form

(DD(p")y|H|D*D(p)) = Ami (P’ P.q).  (25)

with A, given by

A = D) G x DaPo” (7 -5 +3). 26)

where a is the polarization vector of the photon and u(D*)
is the magnetic moment of the relevant D* — Dy transition,
which if written in the isospin basis reads

o) = (P57 (5. @

with p, and y the magnetic moments for D** — D"y and
D*® — D%, though for this decay, one might as well
simply use the particle basis. The calculation of the decay

*Notice that in the sign convention we are using k cots(k) -
—1/aq for k — 0, and a bound (virtual) state entails a positive
(negative) scattering length.

width uses Eq. (9) but with the substitution w — g for
adapting it to the photon case. The matrix elements of A,
are obtained as before, leading to

(Aur) = (w(D))a- (€ x gl (k. q). (28)

which is completely analogous to Eq. (17). The inclusion of
rescattering effects in the final DD state is done again
with Eq. (23).

V. MOLECULAR T WAVE FUNCTION

If isospin symmetry were to be conserved in the masses,
the wave function of the 7., would be written as

&) = w(Z)|D*D(1)), (29)

depending on whether its isospin is / =0 or 1 (where
molecular models show a clear preference for I = 0).
However, the T/, is located merely a few hundred of
keV below the D** D, which is small in comparison with
the mass difference between the D**D° and DD
thresholds (about 1.4 MeV). For this reason, we instead
consider the T, wave function to be a linear combination
of a low and a high mass channel contributions,

JTee) = wr(D)IL) +wn(3)|H), (30)
with |L) and |H) given by

IL) = |D**D®) and |H)=|D*'D™"). (31)
For determining the wave function, we first consider the
EFT expansion of the D*D interaction

Verr(@) = C+ D@ + Ei( 6 367 G-~
err(q) 1 +Diqg +E|€-qg€e” - q 34
+ Vore(4). (32)

where ¢ is the exchanged momentum between the mesons,
I = 0, 1 indicates isospin, C; and D; represent momentum-
independent and momentum-dependent S-wave inter-
actions, E; is an S-to-D-wave contact interaction, and
Vopg is the one pion exchange (OPE) potential. We will
count Cy as LO, C; and D, as NLO, and E; as N’LO. As
for the OPE potential, it is nominally NLO, but the actual
momentum scale at which central and tensor pion
exchanges become nonperturbative in the D*D/DD*
systems has been estimated to be A > 1 GeV and Ay =
290 MeV in Ref. [49], but this corresponds to g; = 0.6. If
we use the updated value of the axial coupling g; = 0.56,
the tensor scale will become Ay = 330 MeV. The size of
the tensor corrections is thus expected to be y; /Ay ~ 0.08,
which is in between N'7LO and N?°LO for our estimation
of the expansion parameter [(0.2)'7 and (0.4)>° are
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approximately 0.08]. Yet, we warn that this estimation will
require further attention; owing to the effective mass of the
pion being relatively small (4, — 0), the S-to-D wave
tensor force effectively becomes a 1/r potential, which
has a really long range and might generate a D-wave
component of the wave function that is larger than
expected.

As long as pions remain subleading, we have a contact
theory with a wave function of the type

Ag e TLr

w(X) = \/AT;;quT’ (33)
_ ﬁ e’ (34)

l//H(')_C)) - \/4—”¢HT9

with Ay the asymptotic normalization of the wave function,
¢ and ¢y (such that |¢, |> + |¢py|*> = 1) the amplitudes of
the L and H channels, and y; = 26.4 MeV and yy =
58.5 MeV the wave numbers for the central value of 6m1,,c.
It will prove useful to also define ¢b; and ¢y in terms of the
isospin angle 6;:
¢, =cos@; and ¢y =sind;. (35)
At LO, if we assume that the T}, is predominantly an I = 0
state (at least at short distances), we will only have an
isoscalar contact-range interaction, which basically fixes
O = —¢LO = 1/4/2 (modulo corrections from the differ-
ence in the reduced masses of the L and H channels). The
LO asymptotic normalization will be determined by the
normalization of the wave function, i.e.,

AP [ ar (40P () + 8PP ) = 1. GO
with u; (r) = e7t" and uy(r) = e77#", from which
N
— = =4 . 37
AIS“O 2y 2ru ( )

At NLO, we will have corrections from i) the potential in
the I = 1 channel, i.e., Cy, which actually does not change
the form of the wave function at all, and ii) the momentum-
dependent contact-range interaction in the / = O channel,
i.e., Dy, which breaks the relation between Ag and the
normalization of the wave function. Basically, this implies
the correction:

AREO = ALO + 5Aq. (38)
Now, two strategies are possible here: 1) to determine 0Ag
from the isoscalar effective range or ii) to determine them
from external information. The first strategy is the more
usual one in pionless EFT, though besides expanding in

terms of range corrections [53], it is also possible to expand
in terms of the wave function renormalization [54].

The second strategy is equivalent (up to higher-order
corrections) to the first one and might be easier to pull off
simply because Ag (and also 6;) can be determined from
potential models. In fact, provided that the interaction
binding the T, is attractive at most distance scales, we will
have Ag > ALP (the only way in which to obtain Ay < AL°
is with an attractive short-range potential surrounded by a
repulsive barrier), which works in the direction of increas-
ing the decay widths.

Finally, for completeness and as a nontrivial crosscheck
of isospin symmetry, we will explicitly consider changes of
the isospin angle at NLO,

ONLO = 9LO + 50),. (39)
From the expansion of the potential in Eq. (32), we expect
050 ~ OO ~ —45°, modulo negligible corrections from
the difference in the reduced masses of the L and H channel
and the relative effect of the range corrections (the D,
coupling) in these two channels. Yet, considering a non-
trivial 60; might reveal the existence of isospin breaking
contact terms at short distances (though here short distances
actually include two-pion exchange diagrams that might
generate a larger than expected 60;). We will see that the
NLO calculation yields a @N-© compatible with —45° when
compared with the relevant experimental data.

VI. NONMOLECULAR COMPONENT
OF THE T,

Predictions for the T}, tetraquark fall into two categories
depending on whether they are based on its quark or
charmed meson degrees of freedom. We might loosely refer
to them as compact and molecular. This is not necessarily a
clear-cut distinction though, as four-quark explanations can
perfectly generate a noncompact, two-charmed meson
component of the wave function if the mass of the
tetraquark happens to be close to the D*D threshold [8].
For the sake of simplicity, we might consider that the T
wave function can be subdivided into a noncompact and
compact component,

|T/.) = cosOc|D*D) + sin O¢|ccqq), (40)
with the noncompact piece corresponding to the D*D
molecular explanation we have referred to previously,
while the compact piece represents the nonmolecular
components and 6. represents the mixing angle between
these two pieces of the wave function, where 6, =0
corresponds to the usual molecular interpretation of
the TF..

The interesting point is how a compact component will
enter the description of the decay widths. The contribution
of a wave function component to the decay amplitude
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depends on the momentum scales involved. For the
molecular component, we have

(T.(D* D)|A®|DDx)
=g / PRy |F)eik-1/2%
V2fs

91

V2fs

where (y|X) and (y|p) are the r- and p-space molecular
wave functions. By taking into account that in a contact-

range theory (y|p) = /8xy/(p? + y*), we expect that this
matrix element scales as

& - Glwlk—3/2), (41)

9 E ZI' 2r
——€ " — .
V2f, 032

with O ~y;, yu, k, or g the characteristic low-energy
momentum scale for a molecular 7%,. From this, the natural
expectation for the scaling of the decay amplitude of a
compact component would be

(Teo(D*D)|AP|DDr) o

__ 9 - _V2=m
T..(ccqq)|A.|DDx) €1 4—=7, 43
(TeclccaladoD) 208 -Gz (49

with M the characteristic momentum scale for a compact
tetraquark, which we expect to be of the order of the natural
hadronic scale M ~ (0.5-1.0) GeV (and ¢} the coupling
of the compact component to DDn, which we have
assumed to be of roughly the same size as g;). This scaling
argument also applies to the DDy decays.

From the previous estimation in Eq. (69) the decay
amplitude of a compact component of the T, wave
function is expected to be suppressed by a factor of
(Q/M)*? with respect to the LO contribution. Were
M - to be of the order of the hard scale in the EFT we are
using here, i.e., M ~ (1 —2)m,, the contribution from a
compact component to the decay would enter at N3/2LO. It
turns out that M~ > M, which means that this contribution
enters at a considerably higher order. Thus, at lower orders
in the EFT expansion, the effect of a compact tetraquark
component is simply to reduce the total decay width:

F(Tj—c) = COSzQCF(Tj—c (D*D)) (44)

That is, if a molecular prediction overshoots the exper-
imental decay width by a noticeable amount, this might
indicate the existence of a nonmolecular component for the
T7. tetraquark.

It is, however, worth noticing that the explicit separation
of the T, wave function into molecular and nonmolecular
components generates a parameter redundancy problem, as
the observable effects of the compact mixing angle 6. can
be reabsorbed into the EFT’s subleading range corrections,

ie., into Ag. Indeed, at NLO, the decay amplitude is
proportional to these two factors,

[(T.) o« cos?Oc A%, (45)

which means that compactness can be recast into a negative
contribution to the effective range (as this reduces A%; see
Appendix). Thus, the angle 6 should be considered as a
model-dependent quantity, at least in the absence of a
model-independent disentanglement of the dynamics
between the molecular and nonmolecular degrees of free-
dom. Unfortunately, though the inclusion of a compact T,
field is straightforward, this still does not resolve the
parameter redundancy problem (which probably requires
invoking phenomenological models).

VII. COUPLINGS

The width of a molecular 7.. depends on the axial
coupling g; and the magnetic moments y, and y for the
D* to D transitions, which can be extracted from the decay
widths of the charmed mesons. We begin with g;, for which
we use the decays of D*t into D,

Mo = o) = I g g
x "Mtp*+

« g2 mp+
M0 = D' =
z "eD*

0 (47)

where f, = 130 MeV and ¢, the momentum of the emitted
pion. From the D** decay width and branching ratios
provided in the Review of Particle Physics [55], i.e.,
[(D**)=83.44+1.8keV, I'(D°z")/I'=(67.740.5)%, and
I'(D*z°%) /T = (30.7 4 0.5)%, we obtain g; = 0.56 4= 0.01.

For the magnetic moments p, and yu,, we use the D*
decays into Dy,

2
I(D* - Dy) = %@ P (48)

o

with g, the momentum of the outgoing photon. For ., we
use again the D** decay width and its branching ratio into
Dty (e, 1.6 +£0.4%), yielding pu, = 0.46 + 0.06u, .
where the sign is chosen as to coincide with that of
the magnetic moment of the d antiquark within the D**
and with g, = |e|/2my the nuclear magneton. The
determination of u, is more indirect as the D** decay
width is not experimentally known (beyond an upper
bound). However, its branching ratios into D°z° and
D% are well determined [55], and the partial decay width
into D°2° can be calculated from g, [resulting in
[(D* - D2%) =359+ 1.3 keV], which all together
yields T'(D*® — D%) = 19.6 + 1.0 keV. From this, we
obtain py = —(1.72 + 0.05) pp 1 -

014007-7



MAO-JUN YAN and MANUEL PAVON VALDERRAMA

PHYS. REV. D 105, 014007 (2022)

VIII. PARTIAL DECAY WIDTHS

With the previous ingredients, we are ready to calculate
the T.. - DDx and T.. - DDy decay widths. For this,
we have to sandwich the decay operator between the initial
and final states, which, though laborious (we have to take
into account isospin breaking in the L and H channels), is
nonetheless straightforward. We will use the omyq sol-
ution, from which the binding energy of the L (H)
components of a molecular T/, is B; =0.36 +£0.04 MeV
(By = 1.77 £0.04 MeV). In addition, we will assume a
purely molecular T, (i.e., - = 0) unless stated otherwise.

We begin with the tree level amplitudes. For the T, —
DDz decay, the final state contains two identical bosons
and requires symmetrization, which is done by adding the

A(lz q) and A(—l_g, g) amplitudes and then changing the
phase space factor for the final D°D? pair from d*k —

d*k/2 to avoid counting the final DD states twice. We
obtain

TLOUB) (T4 — PODOzt) = 29.61 1 18 eV, (49)
rLOUB)(Tf — D*D72% = 13.7103 103 keV, (50)
rO0B) (T4 - DTD%) =58 +04+02keV, (51)

which basically agrees with Ref. [31] and where we have
taken ¢p; = —¢py = 1/\/5 and Ag = 8.5 MeV'/? (obtained
from the normalization of the wave function). The first
uncertainty corresponds to varying g; for the strong decays
and p, and pu, for the electromagnetic one, while the
second comes from the binding energy. We notice that the
previous amplitudes only take into account a final D°D°
state in the S-wave or a final D* DY state in the S- or P-
wave; adding the contributions from higher L = 2,4, 6, ...
(L =2,3,4,...), partial waves of the D°D® (D* D) final
state will change the partial decay widths to 29.9, 14.1, and
6.4 keV, respectively, i.e., a small 1.3 keV increase in the
total decay width. With the exception of the electromag-
netic decay, the decay widths increase if the binding energy
is reduced (e.g., if we were to use émpgy instead of 6m,qc,
we would obtain 33.7, 14.9, and 5.5 keV for the partial
decay widths). The combined LO decay width is

IO(T4) = 49.11] 2 T4 22 keV,

=49.113/ keV, (52)
where the uncertainties refer only to the input parameters
(91, Ms/Ho, and 6m), not to the EFT convergence rate
(which we have not discussed yet). It is interesting to notice
that this width is in line with most of the other LO
calculations available: 47 keV in Ref. [31] (which uses
ompgy instead of 6my,e), 53 keV in Ref. [32] (which
calculates the decay width in the isospin limit), 43 keV

(80 keV) for 6myo. (dmpw) in Ref. [33] (which directly
convolutes the width of the charmed mesons to obtain the
T/, width), and 52 keV in Ref. [44] (which also uses
Ompw). A cursory comparison of the previous predictions
suggest a LO error of the order of 10 keV, a figure
compatible with the EFT uncertainties we will later obtain
in Egs. (63) and (64).

Next, we consider the rescattering of the DD pair in the
final state, which requires the scattering length of this
system as input. The only phenomenological calculation
of this quantity we are aware of is Ref. [21], which
estimates ao(DD) = —0.4701 fm (and also predicts m =
—3fi‘5 MeV for the T in the isospin symmetric limit, from
which we may assume that the actual DD scattering length
will also fall within the error bars4). If we use the LO values
of Ag, ¢;, and ¢y (which we will from now on, unless
stated otherwise), we obtain

[UBDD) (74— pOPOgt) = 333412419120 1oy (53)
TUBDD) (T4 — D DO7%) = 159108 03 112 eV, (54)
[UB+DD) (74— D¥DOy) =7.54+0.6+ 02707 keV, (55)

where the source of the first two errors is as in the LO
calculation and the third error comes from the propagation
of the uncertainty in a,. We stress that in the counting used
here, the DD interaction is perturbative. Previously, a
nonperturbative final state interaction was considered for
instance in case of the X(3872) as a D*D system and its
decays into DDz [52,58]. For the T, Ref. [44] has
recently considered the case in which the final DD
interaction is able to form a bound state.

Then, we consider the inclusion of the seagull diagram
(but without including the DD rescattering or the changes
in asymptotic normalization), which only affects the DDz
decays, arriving at

r(]B+2B)(T2‘Lc N D0D0ﬂ+) = 3021L1](; 1L11§ keV’ (56)

TUB42B) (T4 DtDPOg0) = 141100 107 keV,  (57)

which implies that the two-body corrections are actually
smaller than the rescattering of the final DD mesons and
where the uncertainties are the same as in the LO
calculation (g, and 6my.). Here, a comparison with the

We mention, though, that calculations of the two-bottom-
meson potential in the lattice indicate that the / =1 BB
configuration is attractive overall [56] (which in our sign
convention will generate ay, < O if the attraction is not strong
enough to generate a bound state), particularly at short distances.
Chiral EFT also predicts an attractive two-pion exchange poten-
tial for / = 1 BB [57]. Finally, from heavy flavor symmetry, we
expect the DD and BB potentials to be similar.
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D*D system—the X(3872)—is in order: Ref. [52], which
previously considered the rescattering and two-body cor-
rections for the X(3872) decays, also arrived to the
conclusion that rescattering effects are much larger than
the contribution from the seagull diagram, where the later
contribution happens to be fairly small.

Finally, including these two subleading-order corrections
together (but using the LO values of the wave function
parameters), we obtain an abridged NLO result for the
decay widths,

NG (T - DODO7t) =34.0£1.27 579 keV,  (58)
NOG)(TH, — DT D2%) = 164758 108 T2 keV,  (59)
NG (TH — DFDY%) =7540.6 402707 keV,  (60)

where the uncertainties are as in the previous DD rescatter-
ing partial widths (g, or u, and pg, 6mpge, and ag). The
combined decay width will then be

INEOU(T ) = 57.9015 £ 0.6 153 137 keV
= 57.9739 keV, (61)

where for the moment the uncertainty only refers to the one
coming from the input parameters of the calculation. If we
are interested in the EFT uncertainty, we can compare the
abridged NLO(*) decay width with the LO one, suggesting

I“NLO(*) _ FLO
‘ ~0.18, (62)

FLO

in line with the naive estimations in Eq. (6) of a convergence
rate within 0.2-0.4. However, this does not take into account
the possible corrections to the asymptotic normalization and
isospin angle, which might worsen the convergence of the
EFT. For exploring what to expect from the corrections to the
asymptotic normalization, we might look at the two nucleon
system. There, the LO wave function in a pionless theory
would yield AL® = /2y, = 0.6806 fm~!/2, which is to be
compared with Ag = 0.8846(9) fm~'/2 [59], yielding
A%/(ALP)? = 1.69. Were this ratio to hold for the T, case,
we would have a 70% increase in the NLO decay width if we

|

were to expand directly in terms of Ag. This is probably not
the case, though; the A%/(AL°)? ratio scales as 1/(1 —yr,)
with y the binding momentum and r, the effective range
(with this simple approximation resulting in 1.68 for the
deuteron). The T7.. is less bound than the deuteron, though,
and naively we expect range corrections in the 7}, to be of
the same order of magnitude as those of the X(3872), which
are considerably smaller than in the deuteron case [51,52]. If
we notice that nontensor OPE almost cancels in the D*D and
D* D systems, the scale of range corrections is probably set
by the tensor scale Ay =330 MeV [check the previous
discussion below Eq. (32)], while in the deuteron, the
range will be given by the pion mass, indicating that the
expected range of the D* D potential is about 0.42 times that
of the two-nucleon case. From this, we could expect
A%/(A%°)? ~ 1.1, which will suggest a convergence param-
eter of

NLO _ 1LO
Uit PO 9 (63)

FLO

If this estimation were to hold, the full uncertainties in the
LO and NLO calculation would be

IO(TE) =49 +3 + 16 keV, (64)
FNLO(*)(T;rC) = 58j§ + 5 keV, (65)

where the first and second errors refer to the input parameters
and the intrinsic EFT uncertainty, respectively. But again,
there might be factors which we have not properly consid-
ered and which might alter the current conclusions, which
should be taken as temporary. As a cross-check, we notice
that most LO calculations available [31-33,44] lie within the
(43-53) keV window and are thus compatible with our LO
result within EFT uncertainties.

Of course, the previous NLO partial decay widths are
incomplete; the full NLO calculation requires a modifica-
tion in the asymptotic normalization Ag and the isospin
angle ;, and in principle, it is also possible to consider the
mixing angle between a noncompact and compact T,
component, 6. Luckily, these contributions can be fac-
tored out easily, leading to the following expressions,

NO(TH 5 DODOz+) = cos? O A2 x (2 [0.825(94) — 0.248(17)aq + 0.0188(7)a3]
+ b1 pi[—0.00648(47) + 0.000947(35)ay)). (66)

N (T4 DFDO7%) = cos20,A2 x (3[0.187(22) — 0.0552(39)ag + 0.00412(15)a?]
+ ¢y [—0.164(13) + 0.0729(48)ay — 0.00719(27)a?]
+ ¢%0.0386(23) — 0.00230(11)aq + 0.00347(14)a2)), (67)
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TNO(TH — D*DO%) = cos20:A2 x (¢2[0.0119(30) — 0.0057(14) a + 0.00078(19) a3
+ ¢ [—0.0624(82) + 0.0381(49) ay — 0.000573(73) a3

which return the partial decay widths in keV and require as
input Ag in units of MeV~'/2 and a, in units of fm. The
uncertainties are shown in parentheses and correspond to

+ ¢2,]0.0851(45) — 0.0638(34) aq + 0.0122(6) a3]). (68)
|

N =Ng(DtD) = 171 + 26, (72)

N = Ng(D°D") = 263 + 23. (73)

91> Hy» Mo, and omyp,. summed in quadrature and sym-
metrized (as these errors are almost symmetrical). The term
proportional to ¢ in I'(T$ — D°D°z*) is actually neg-
ligible (a small contribution coming from the seagull
diagram), and we have not written it down. The same
could be argued of a few of the terms we have kept, but in
these cases, the difference is at most of 2 orders of
magnitude, potentially up to about a 1% difference for
lag| = 1 fm. Here, it is worth remembering that these
formulas are only expected to be valid for m,a, < 1,
ie., ay < 1.4 fm (otherwise, a different power counting
in which the interaction of the final DD pair is non-
perturbative should be used). The actual accuracy of these
formulas is limited by the EFT convergence, where for our
estimation of 0.3 for the expansion parameter we should
expect the previous expressions to have a 9% uncertainty.

IX. COMPARISON WITH EXPERIMENT

The theoretical decay widths can be compared with the
experimental analysis to obtain information about the T'/,.. If
we begin with the LO calculation, we quickly realize that the
EFT calculation overshoots the experimental decay width as
extracted from the unitarized Breit-Wigner profile [2]

I’
pole +0.04 +0.06 +0.42
—LO - 0-98—0.22 -0.06 —0.23° (69)

where the first uncertainty comes from I, while the
second and third are derived from the input parameters and
the convergence rate of I'| g, respectively. The previous
result is compatible with 1. If we allow for a nontrivial 6,
this ratio could be related to the molecular content of
the T,

F ole
Pl _ 052 g0, (70)
LO

yielding
106°] = (8.625¢ 136°)". (71)

which is compatible with the absence of a compact
component, i.e., - = 0, within errors.

Other interesting experimental information in Ref. [2] is
the signal yields of the T/, to the D*D® and D°D°
channels:

As the number of events grows, the ratio of these two
numbers is expected to approach the ratio of the decays to
the DTDY and D°DP channels

[(T/, —» D*D°z"/y) N§ (1 L O(J%)) (74)

[(T{. - D°D°z") N

with Ng = N& + N§. Actually, the error from the finite
number of signals can be easily estimated by assuming a
binomial distribution for Nj and N9 and finding the
expected 68% band for the N /N’ g ratio. Putting the pieces
together, we arrive at

I+

o = 065 £0.10 553 155 = 0655575, (75)
where the first two uncertainties come from N ;f and N 2 and
the last one comes from the finite size of N g“ + N g and then
we add them in quadrature. The LO ratio is

0 = 0667005 £ 0.20, (76)

which is compatible with the experimental yields.

At NLO, the I'* /T ratio depends on the isospin angle,
where we find that reproducing the experimental ratio
requires

OO = (—42.4781 T1.7 4 3.8)°, (77)

where the first uncertainty is experimental, the second is the
couplings/ay/dmye, and the third is the NLO uncertainty.
This in turn implies that

A2
T = cos? 9C 5 S — OSIJ_F(())E)IB J_r(())(())g + 0.07, (78)
NLO S(C)

I_‘pole

where the errors are as before and Ag) refers to the
normalization for a contact-range theory with the isospin
angle N0, ie., Eq. (37) but using &NO instead of
0;° = —45°. If we assume that Ag = Ag(c) and the dis-
crepancy comes exclusively from the probability of the
compact component, we will obtain
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020 = (25.753° 153 £ 2.3)°, (79)

with the errors as before and which would imply a 6.
distinguishable from zero at NLO. However, this is con-
tingent on two factors: what would be Ag for the molecular
component (if considered as a separate degree of freedom
from the compact one) and the fact that 6. is not model
independent in the sense that its effects can be recast into a
negative effective range instead (i.e., the compact compo-
nent can be reabsorbed as energy dependence in the
molecular one). In the first case, assuming A%/Aé(c) =

1.1(1.2) will entail a compact mixing angle of 30.7(34.6)°,
larger than the one we have calculated. In the second case,
we set 8- =0 and recast the effects of - #0 into a
negative effective range by means of the formula (check
Appendix)

A% 1
2 1—sin 20, J (80)
Ay 1=3r0(F77945
where r,q is the I = 0 effective range, leading to
O = —1.3193 102 £ 0.1 fm, (81)

which is, as expected, negative and within the confidence
limits (CL) of Ref. [2] [i.e., 0 > r,;, > —11.9(—16.9) fm
within 90(95)% CL, where r,; refers to the effective
range in the L channel; if we assume no interaction in
the isovector channel, we will have r,; =2r,—
1/\/v4 =713, or r,p = —6.4 fm for r,y = —1.3 fm].

Alternatively, had we simply assumed 0; = —45°, the
' /T, ratio would have been

+
1—‘NLO

= 0.70 4 0.03 + 0.06, (82)

z

0——=

0
1—‘NLO

which is still compatible with the experimental yields.
Meanwhile, the nonmolecular ratio would have been

A2
S —=0.83109 100 £0.07, (83)
S(LO)

I ole
P =cos? 0

0,=—%

1—‘NLO

which also happens to be different from 1, again. Assuming
As = Ag(10), this ratio would in turn imply a compact
mixing angle of

NLO _ +13.5 +4.2

100 llg,——s = 241537 55 £2.3)° (84)

or, alternatively, assuming that the ratio comes exclusively
from range corrections, would imply an isoscalar effective

range of

3 Clo,—s = —1.1295 505 £ 0.1 fm, (85)

which is negative. As can be appreciated, all the numbers
obtained for 8; = —45° are indistinguishable within errors
to the ones we obtain from fixing @; to the I', /T’y ratio
derived from the experimental yields.

X. CONCLUSIONS

The T, represents not only a fascinating discovery but
also a wonderful opportunity for the study of hadron
spectroscopy and decays.

While we do not know for sure its nature yet—the mass of
the T, is in principle compatible with previous predictions
of I = 0,J = 1 cciid compact tetraquarks and D* D shallow
bound states—its closeness to the D**D° threshold indi-
cates that at least part of its wave function will be D*D. This
last component is amenable to relatively straightforward
theoretical treatments, including the calculation of its
expected width, which would be a crucial piece of informa-
tion if we want to eventually know the structure of the T,.

The physical scales involved in the molecular compo-
nents of the 7. indicate a moderate convergence rate for
the calculation of its decay width and a NLO calculation is
required to achieve an accuracy comparable with the 25%
to 40% relative uncertainty in the experimental result
(depending on the resonance profile used). Our preliminary
calculation shows that the inclusion of a seagull pion decay
operator and the rescattering of the final DD pair increase
the total decay width of the T, state from 50 keV in LO to
58 keV in our abridged NLO calculation (i.e., a NLO
calculation with a LO wave function). This is still prelimi-
nary; there are corrections coming from the asymptotic
normalization Ag of a molecular T, state, the particular
isospin mixing 6, between its D**D° and D**D* compo-
nents and the final physical pion rescattering with the
charmed mesons at non-zero energy (not to mention that
the DD system might interact more strongly than we
expect). Ag and #; could be easily estimated from phe-
nomenological models and fed into the NLO calculation,
where we expect a moderate increase from the 58 keV
figure we obtain.

If we compare the NLO results with the total decay
width extracted from the unitarized Breit-Wigner profile
Tpote = 48J_r122 keV), the previously discussed factors (par-
ticularly Ag) point toward an excess decay width for a
purely molecular explanation of the 7J. at NLO. This
excess can be interpreted as the existence of a compact
component, where the ratio of I, and 'y o suggest that
the nonmolecular probability of the T}, wave function is
about 20%. This conclusion should be taken as temporary,
though, as future experimental refinements regarding
the 7). mass and decay widths might alter the present
picture. In addition, the interplay of the compact and
molecular components of the T/ could also be improved.
Nonetheless, we find it worth mentioning that the picture
that emerges from the current EFT description together

014007-11



MAO-JUN YAN and MANUEL PAVON VALDERRAMA

PHYS. REV. D 105, 014007 (2022)

with the experimental analysis of Ref. [2] is compatible
with that of Ref. [8], which underlined the importance of
including both mesonic and quark degrees of freedom for
the binding and description of a tetraquark below the D*D
threshold.
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APPENDIX: RANGE CORRECTIONS TO THE
ASYMPTOTIC NORMALIZATION

Here, we calculate the range corrections to Ag for the
T.. Instead of the usual method of extracting Ag from the
residue of the scattering amplitude, we will consider how
the effective normalization of the wave function changes
when range corrections are included. We will begin with a
single channel system and assume that range corrections
are generated by an energy-dependent contact interaction of
the type

v = D250 (7), (A1)
where D is a coupling and k refers to the center-of-mass
momentum of the two-body system, with k> = 2uE,,, and
E,,, the center-of-mass energy. We regularize this potential
with a delta-shell regulator of the type

D(R,)
471'R2

v = K28(r —R.), (A2)

where D is a coupling and R, is a cutoff. Fixing D(R,.) to
the effective range r, in two-body scattering gives [60]

e g2 O(RY).

D(R) ="

(A3)

Energy-dependent potentials change the asymptotic nor-
malization Ag in a way that is compatible with the
following modified normalization condition [61],

2

o d
1:A druz(r){l—ZMW

with u(r) the reduced wave function of a two-body bound
state. For a contact-range theory, we have u(r) = Age™",
and after a few manipulations, we arrive at

vl s

Ag(c) r
=1--=AZ ., (AS)
A2 2 s

for R, — 0, where Agc) = /2y and Ag are the asymptotic
normalizations in the absence and presence of range
corrections. For a single channel problem, this is equivalent
to the well-known result [54]

Ae — As(o) _ 2y
s 1—]/}"3 1—]/}"6'

The advantage of the energy-dependent potential is that we
can extend the previous result to the two-channel isospin-
breaking case directly. In the {|L), |H)} basis, the isospin
effects can be included by considering that the potential (or
for simplicity the coupling D) is a matrix in said basis,

o

where D is the coupling generating the 7 = 0, 1 effective
range. If we extend the modified normalization condition
of Eq. (A4) to the two-channel case with the u;(r) =
Agcos Ore77t" and uy(r) = Ag sin ;e wave functions,
we arrive at

(A6)

1Dy +1D,
—3Dg +35D;

~3Do +5D;
1Dy +3D,

)@

Afe) | [reo(1=sin20)) o\ (145in20))]
A2 2 2 2 2 S(©)

., (A8)

where r,; refers to the effective range in the isospin channel
[ =0, I and Ag(c) is given by Eq. (37). For a molecular 7' -
that happens to be a pure / = 0, 1 state at short distances

(i.e., 0; = F45°), the range corrections will simplify to
AZ
s Fer 12
Az I=7" 45y (A9)

e., identical to the single channel case. Finally, it is
interesting to connect the previous result with the following
often-used definition of compositeness (check, e.g.,
Ref. [62]),

> g 200 E)

where A refers to the different two-body channels and ¢4
refers to the residue of the T-matrix at the bound state pole
in the diagonal channels (g3 = limg_ g, (E — Ep)Ts4(E),
with E the center-of-mass energy, Ep the binding energy,
and T, the T-matrix in the diagonal channel AA, where the
T-matrix is defined via T3 = Vg + > ¢ VacGoc(E)Tcp)
and Goy = 1/(E — Hy,) is the resolvent operator for
channel A (with H, the free Hamiltonian for that channel).
From the previous definition, we obtain

. (Al0)

E=Ey

comp
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A3
Xcomp = Az
5(C)
for the T., which for a negative effective range gives
Xcomp < 1. For a positive effective range, the previous

(Al1)

result will probably have to be modified in the line of what
is proposed in Ref. [63] for single channel scattering. Be
that as it may, our calculations already suggest a negative
effective range.
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