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In this article, we study the ground-state mass of full-heavy tetraquarks ccc̄c̄ and bbb̄b̄ with solving
the nonrelativistic four-body systems. The flux-tube configurations, the tetraquark four-body potential
butterfly, and the dimeson potential flip-flop of SU(3) lattice quantum chromodynamics have been applied
to describe the tetraquark interaction. Our numerical analysis indicates that the disconnected and connected
static potentials can predict the mass of tetraquark very close to experimental data.
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I. INTRODUCTION

Gell-Mann and Zweig had schematized the multiquark
states with four or more quarks to interpret the observed
spectrum of mesons and baryons products such as qqq̄ q̄
and qqqqq̄ [1,2]. In a short time, enormous works have
been done to explain the structure of four-quark states
containing at least one light quark [3,4]. The full-heavy
tetraquark states have not been investigated until that;
the very large energy states have been detected in the
experiments of pair production of ϒð1sÞ [5]. The CMS
Collaboration observed pair production of ϒð1SÞ mesons
in proton-proton collisions at

ffiffiffi
s

p ¼ 8 TeV with a global
significance of 3.6σ and a mass 18.4� 0.1ðstatÞ �
0.2ðsystÞ GeV [5,6]. After that, the LHCb Collaboration
studied the ϒð1SÞμþμ− invariant-mass distribution to seek
a possible bbb̄b̄ exotic meson but they did not see
any significant excess in the range 17.5–20.0 GeV [7].
Another interesting structure is the full charm tetraquark.
The existence of these particles has been confirmed by
experimental searches of the LHCb observation of the
tetraquark containing only the charm quarks [8]. The LHCb
Collaboration declared a narrow structure, matching the
line shape of resonance and a broad structure next to
the di − J=Ψ mass threshold with the data in the range of
6.2–7.2 GeV [8], which called X(6900) with the structure
ccc̄ c̄. The existence and stability of such states have been
considered by applying several models with different
interactions [9–16].

Creutz applied the latticeQCDsimulationswith theWilson
loop to describe the interquark potential between a quark and
an antiquark [17] after that a large amount of effort has been
devoted in lattice QCD to study themultiquark force [17–21].
These potentials are successful to calculate the energy and the
mass of tetraquark systems contained purely heavy quarks
[22–24]. The experimental discoveries ofmultiquark hadrons
reveal new aspects of the interquark force such as the quark
confinement force, the color-magnetic interaction and the
diquark correlation [25]. According to these, the proper
Hamiltonian for the quark-model calculation of multiquarks
has been suggested to investigate the interquark force in the
multiquark system directly based on QCD [26,27].
A number of phenomenological models have been put

forward to explain multiquark stability. A type-II diquark-
antidiquark model, proposed by L. Maian et al. based on the
new Ansatz on spin-spin couplings, in which the cq (c the
charm and q a light quark) interaction inside the diquark
dominates over all other possible pairings [28]. In this model,
diquarks are similar to compact bosonic building blocks,
which supposed that the size of the entire tetraquark is
consistently larger than the size of these blocks; therefore,
the spin-spin interactions between different diquarks are
neglected. The color configuration for the diquark-
antidiquark pair is similar to one of the quark-antiquark
systems with a bound state of two pointlike color sources
[28]. The dynamical diquark method was introduced to
explain the nature of the exotic XYZ states based on a color
flux-tub configuration where the separated diquark-
antidiquark pair is connected by the shortest tube configu-
rations (energetically), [29–32]. The flux tube has different
configurations, which we will discuss in the next section,
but none of these structures can be suitable to describe the
dynamical diquark model especially as the system remains
in a state of rapid change until the moment it decays [30]. In
this physical picture, each diquark is only in the color-triplet
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combination [33]. In 2020, Lebed et al. investigated the
basic spectroscopy of cc̄cc̄ tetraquark states in this model
[33]. The full mass spectrum of all tetraquark states was
predicted, using lattice-calculated confining two-body
potential computed with the Born-Oppenheimer (BO)
approximation, which includes spin and isospin-dependent
operators with the spin-orbit and tensor coupling operators,
such a way that the spin-spin couplings dominated between
quarks (antiquarks), not between quark and antiquark [33].
The flux-tube picture as an analytical model for the

multiquark system supported by lattice QCD has been
considered for the structure and the reaction of hadrons
[20,21,34–38]. The evaluated tetraquark potentials in
Refs. [20,21] have been constructed the Wilson loops for
investigating the interaction between quarks in the four-quark
system directly from QCD by using SU(3) lattice QCD at the
quenched level and studied the hypothetical flux-tube pic-
tures for the multiquark system. They [i.e., Refs. [20,21]]
used three flux-tube configurations according to four quarks’
locations. All quarks and antiquarks are connected with the
single flux-tube in the connected flux-tube system while in
the “dimeson” states, there are two disconnected flux tubes
[21]. The investigating of the properties of tetraquark using
these three types of four-quark potentials and the transition
between the connected and disconnected four quark states
are physically important for analyzing the tetraquark decay
process into two mesons and the reaction mechanism
between two mesons. In this paper, we have calculated
masses of full-heavy tetraquarks ccc̄c̄ and bbb̄b̄ using three
types of connected and two-meson four-quark potentials.
This paper is organized as follows. Section II gives a

brief review on the color flux-tube model. The calculation
method is described in Sec. III. The numerical results for
both the spin-independent and spin-dependent potential are
presented in Sec. IV. Section V is devoted for summary and
concluding remarks.

II. THE COLOR FLUX-TUBE MODEL

The short-distance one gluon exchange (OGE) Coulomb
force as a quantity of perturbative QCD and the long-
distance confinement force as a typical contribution of
nonperturbative can be developed to an alternative color
flux tube based on the lattice QCD picture with the Wilson
loops [19–21]. The tetraquark SU(3) Wilson loop is defined
in a four quarks gauge, at time t ¼ 0 which annihilated at a
later time t. The potential of the system has been extracted
from the behavior of the Wilson loop at the large time
region [20]. The multibody color flux-tube dynamical
mechanism has been used to describe multiquark states
from this phenomenological point of view [39,40].
The minimum energy of a system of two quarks and two

antiquarks is recorded when the two quarks and the two
antiquarks are linked by the minimal value of the total flux
tube length. Therefore, the flux tube is formed to achieve a
minimum of the total flux-tube length of the system for the

low-lying state [21]. The theoretical form of the tetraquark
potential according to the four quarks location has three
candidates for the flux-tube configuration. One for the four-
quark state of two quarks and two antiquarks ðqqq̄q̄Þ that
flux-tube system connect all quarks and antiquarks with
the single flux tube as shown in the (a) panel of Fig. 1, so-
called “butterfly” configuration. Two others for the tetra-
quark states of two mesons ðqq̄qq̄Þ with two disconnected
flux tubes as shown in the (b) panel of Fig. 1, the “flip-flop”
configurations. The theoretical form of the tetraquark
potential for each configuration is written as below.
The OGE plus the double-Y-shaped flux-tube configu-

rations have been suggested for the theoretical form of the
tetraquark ðqqq̄q̄Þ potential. All the quarks and antiquarks
are in the same plane and link to each other with the flux
tubes that the angles between them must be 120° [20]. The
tetraquark potential for the butterfly is written as

VButterfly
2q2q̄ ¼ −A4q

�
1

2

�
1

r13
þ 1

r14
þ 1

r23
þ 1

r24

�

þ
�

1

r12
þ 1

r34

��
þ σ4qLmin ð1Þ

with A4q the Coulomb coefficient, σ4q the string tension
extracted from the quark-antiquark potential, and rij ¼
jrj − rij with ri, which denotes the location of ith particle.
Lmin is the minimal value of the total flux-tube length in the
(a) panel of Fig. 1. The minimal length for the tetraquark
system accrues when the flux tubes from each of the quarks
and the antiquarks meet at two Steiner points. [A Steiner
point is the junctions of two flux tubes ðs1; s2Þ.] [41]. Lmin
can be expressed as

Lmin ¼ r1s1 þ r2s1 þ r3s2 þ r4s2 þ rs1s2 : ð2Þ
A disconnected flux-tube configuration, the (b) panel of

Fig. 1 is acceptable when the nearest quark and antiquark
pair is spatially close. Thus, the system can be regarded as a
“dimeson state” rather than a connected four quark state.
The flip-flop configuration is summarized in the form,

Vflip−flop
2ðqq̄Þ ¼ −Aqq̄

�
1

r13
þ 1

r24

�
þ σqq̄ðr13 þ r24Þ: ð3Þ

FIG. 1. (a) The connected tetraquark system, which is the
butterfly configuration. (b) The disconnected tetraquark system,
which corresponds to the flip-flop configuration.
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Where the potential for di-meson system the (b) panel of
Fig. 1 is given by exchanging indices 1 ↔ 2. The total
tetraquark potential is defined to represent the minimum
energy of the connected four quarks; it is taken by

V4q ¼ minðVButterfly
2q2q̄ ; Vflip−flop

2ðqq̄Þ Þ: ð4Þ

The transition between the connected and disconnected
four-quark states can be demonstrated by Eq. (4) where
these two potentials are equal.
The lattice QCD simulation parameters such as β, the

lattice size, and the corresponding lattice spacing a with
some related information are estimated so as to reproduce
the string tension σ. In Table I the lattice parameters,
Coulomb coefficient, the string tension σ, and the quark
mass mc and mb have been presented. They have been
obtained by using the fitting analysis on the on axis data of
the quark-antiquark potential in lattice QCD [21,42]. The
extensive studies on the interquark potentials in lattice
QCD have indicated that σ4q ≃ σqq̄ and the OGE results for
the Coulomb coefficient Aqq̄ ≃ 2A4q are fairly compatible
with the hypothetical flux-tube picture [21].
For the four-quark system, the Hamiltonian can be

expressed as follows:

H ¼
X4
i¼1

�
mi þ

pi
2

2mi

�
− Tcm þ V4q; ð5Þ

mi and Pi are, respectively, the mass and momentum of the
ith quark (antiquark). Tcm is the center-of-mass kinetic
energy of the states. The solution of this four-body problem
is very difficult. We partially reduce the difficulty of the
calculation with the some simple assumptions. The quarks
are assumed to be heavy quarks and nonrelativistic. All of
them, quarks and antiquarks, have the same mass.
The model parameters in Table I have been adopted to

calculate the mass of experimentally observed full charm
tetraquark X(6900) and predict the mass of the full heavy
bottom tetraquark.

III. NUMERICAL CALCULATION METHOD

The wave function of tetraquark can be constructed of
the spatial degrees of freedom and the internal degrees of
freedom of spin, color, and flavor. Tetraquarks have been
comprised of two couples of identical fermions; thus, their
wave functions must be antisymmetric for the exchange of

the two quarks and the two antiquarks, and like all physical
states, they are the color singlet. The trial wave function of
the tetraquark can be defined as

Ψq1q2q̄3q̄4
JMJ

¼ Af½½½ϕnlmðρ12Þχsð12Þ�q1q2ΛMΛ

× ½ϕNLMðρ34Þχs0 ð34Þ�q̄3q̄4IMI
�q1q2q̄3q̄4λMλ

× ϕνλμðr12−34Þ�q1q2q̄3q̄4JMJ
× ½ηcð12Þηcð34Þ�CWc

× ½ξfð12Þξfð34Þ�FWf
g: ð6Þ

The factorA is the antisymmetrization operator and ϕ, χ,
η, and ξ, respectively, express space, spin, color, and flavor
states. All the indexes are all possible flavor-spin-color-
spatial intermediate quantum numbers.
To use the planar geometry, it has been supposed all the

quarks are in one plate. Thus, reducing the number of
variables of the four body potentials is useful to simplify
the calculation method. The new relative spatial coordi-
nates can be defined as

ρ12 ¼ r1 − r2 ð7Þ
ρ34 ¼ r3 − r4 ð8Þ

r12;34 ¼
m1r1 þm2r2
m1 þm2

−
m3r3 þm4r4
m3 þm4

ð9Þ

R ¼ m1r1 þm2r2 þm3r3 þm4r4
m1 þm2 þm3 þm4

: ð10Þ

In our model, the interdistance of two quarks with the
interdistance of two antiquarks are same, ρ12 ¼ ρ34 ¼ ρ.
With this simplification, only two dimensions remain in
Eq. (5), r the inner distance between quark and antiquark
and ρ the distance between two quarks and two antiquarks.
The excitations orbital angular momenta associated with
the Jacobi coordinates are lρ and lr. The parity of the
tetraquark system can be expressed in terms of the relative
orbital angular momentum as P ¼ ð−1Þlρþlr . To calculate
the ground state of energies, the system has been consid-
ered in positive parity with lρ ¼ 0 and lr ¼ 0.
Based on the planer geometry of tetraquark in Fig. 2, the

butterfly and flip-flop potentials can simplify as follows:

VButterfly
2q2q̄ ¼ −A4q

�
1

r
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ρ2
p þ 2

ρ

�
þ σ4qðrþ

ffiffiffi
3

p
ρÞ

ð11Þ

TABLE I. The quark mass for each β, the lattice size, and the lattice spacing a with the Coulomb coefficient and
string tension.

β [21] Lattice size [21] a(fm) [21] σqq̄ðGeVÞ2 [21] Aqq̄ [21] mcðGeVÞ mbðGeVÞ S.N

6.0 163 × 32 0.10 0.09 0.27 1.70 4.61 I
5.8 163 × 32 0.14 0.18 0.27 1.88 4.79 II
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Vflip−flop
2ðqq̄Þ ¼ −Aqq̄

2

r
þ σqq̄ð2rÞ: ð12Þ

The total tetraquark potential in this two-dimensional
system has been defined in Eq. (4). Finally, the Schrodinger
equation corresponding to two relative motions ρ and r has
been defined as

�X4
i¼1

mi −
ℏ
2m

ð∇2
ρ þ∇2

rÞ − Tcm þ Vflip−flop
2ðqq̄Þ ðr; ρÞ

�
Ψðr; ρÞ

¼ EΨðr; ρÞ: ð13Þ

This equation is somewhat complicated to get a reliable
result; thus, a high-precision numerical method is required.
The Gaussian expansion method (GEM) [43] has been used
to study this four-quark system. The GEM was proposed to
a variety of few-body systems and has been powerful to
solve three and four-body problems. In this method, the
spatial wave function has been expanded in terms of a set of
Gaussian basis functions,

ΨG
lmðRÞ ¼

Xnmax

n¼1

cnlNnlRle−νnR
2

YlmðRÞ ð14Þ

Nnl ¼
�

2lþ2ð2νnÞðlþ
3
2
Þ

ffiffiffi
π

p ð2lþ 1Þ!!
�1

2 ð15Þ

νn ¼
1

R2
n
a ¼

�
Rnmax

R1

� 1
nmax−1

: ð16Þ

There are three parameters fnmax; R1; Rnmax
g that we

have calculated the numerical result with nmax ¼ 10, R1 ¼
0.1fm and Rnmax

¼ 3.0. The spin wave functions base on
total spin of the tetraquark Stot ¼ 0, 1, 2 in the (qqÞðq̄q̄)
configuration, are in the six below states,

χs¼0ð12; 34Þ ¼
� jχs¼0ð12Þχs¼0ð34Þi
jχs¼1ð12Þχs¼1ð34Þi

ð17Þ

χs¼1ð12; 34Þ ¼
� jχs¼0ð12Þχs¼1ð34Þi
jχs¼1ð12Þχs¼0ð34Þi

ð18Þ

χs¼2ð12; 34Þ ¼ jχs¼1ð12Þχs¼1ð34Þi: ð19Þ

The color representation for the tetraquark is only one
single, and also the configuration of diquark and dianti-
quark are antisymmetric ½q1q2�3̄c and ½q̄1q̄2�3c and sym-
metric ½q1q2�6c and ½q̄1q̄2�6̄c [39]. Therefore, the allowed
color tetraquark ½qq�½q̄ q̄� state is in the two representations
½3�c ⊗ ½3̄�c and ½6�c ⊗ ½6̄�c.

IV. NUMERICAL RESULTS AND ANALYSIS

A. Spin-independent potential

We consider solving the two-dimensional Schrodinger
equation, which is now equivalent to a matrix eigenvalue
equation of dimension nrnρ × nrnρ, using the Rayleigh-
Ritz variational method,

hΨG
lm;njH −MjΨG

lm;n0 i ¼ 0: ð20Þ

Here, M is the mass of tetraquark, which has been
calculated by applying the parameters of Table I. The
visualization of the ground state energy for the flip-flop
potential with ignoring the OGE part is presented in Fig. 3.
Adding the OGE part changes the visualization, which is
depicted in Fig. 4. As one can see, the matrix elements of
the ground state without the OGE part are positive with a
big peak at the first element, which is caused by the
arrangement of Gaussian size parameters. After adding
the OGE part to the calculation, the elements of the matrix
started to be negative, which means the contribution of the
OGE part leads to the achievement of the bound state
energy points, which are visible with small pits in Fig. 4.
These points help to produce the eigenvalues that reported

FIG. 2. A planar configuration of the tetraquark system.

FIG. 3. The visualization of ground state energy for the flip-flop
potential with ignoring the OGE part.
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the best value of the tetraquark mass with different static
potentials.
The ccc̄c̄ and bbb̄b̄ masses without a spin-dependent

correction with two sets of parameters (Table I) for different
static potentials have been presented in Table II. In this
table, the calculated masses compared with the experimen-
tal mass of the X(6900) for ccc̄c̄ and the observed mass
for pair production of ϒð1SÞ mesons for bbb̄b̄. As one can
see, the flip-flop potential result in S.N I for ccc̄c̄ is
6.8878 GeV and has a considerable agreement with the
experimental mass of the X(6900). The obtained result for
the butterfly is not significant as the flip-flop one, but this is
a considerable result with just 0.04 GeV different from
experimental data. Our results show that the flip-flop and
butterfly potentials have almost the same results for the
heavier tetraquark. The masses of bbb̄ b̄, which have been
measured with these two potentials in the first set number
(S.N) I presented in Table II, are in good agreement with
the experimental mass of pair ϒð1SÞ mesons.
The radial probability density distributions of the initial

state wave functions for different static potentials using S.N
I have been depicted in Fig. 5. The two-dimensional matrix
eigenvectors of the tetraquark ccc̄c̄ have been used to
generate the wave functions. We can see that curves are
localized in the range 2 to 3 fm with an exponential tail at
large distances. The maximum probability for the butterfly
is located at r ¼ 2.14 fm. The location of maxima for the

flip-flop shift towards higher r values at 2.42 fm. The
butterfly potential is localized sooner and stronger than the
flip-flop potential, its squared wave function is around
22.5% localized larger than the flip-flop one.

B. Spin-dependent corrections

The general form of the total spin-dependent interaction
in QCD between the particles i and j for the four-body
system can be expressed as follows [44]:

HSS ¼
X4
i<j¼1

−
2παsλi:λiσi:σjδðrijÞ

12mimj
: ð21Þ

Here, αs is the quark-gluon coupling constant, and λ and σ
represent the Gell-Mann matrices and Pauli matrices,
respectively. The values of hλi:λii and hσi:σji have been
measured according to the symmetry properties of the
tetraquark wave function [45]. A tetraquark state with total
quantum numbers l ¼ 0 and S ¼ 0, 1, and 2 with positive
parity for two representations ½3̄�c ⊗ ½3�c and ½6�c ⊗ ½6̄�c
has been considered. The spin-dependent correction with
calculating the elements matrix hΨjHssjΨi for three wave
functions with total spin S ¼ 0, 1 and 2 has been added to
the spin-independent matrix. The masses of states ccc̄ c̄

TABLE II. The ground state masses of the fully heavy tetraquarks, unit in GeV.

System M(flip-flop) M(butterfly) Mðflip − flopþ butterflyÞ S.N Mexp

ccc̄ c̄ 6.8878 6.9456 6.8218 I 6.905� 11 [8]
7.559 7.701 7.694 II

bbb̄ b̄ 18.4397 18.4441 18.4404 I 18.4� 0.1� :2 [6]
19.186 19.302 19.295 II

FIG. 4. The visualization of ground state energy for the flip-flop
potential.

FIG. 5. The radial probability density distributions of the initial
state wave functions for different static potentials using S.N I.
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and bbb̄b̄ for two color configurations with the spin-
dependent correction are presented in Table III. It is worth
highlighting that from Table III the color configuration
has a significant role in the effect of spin correction in the
mass of tetraquark. But in our calculation for heaver
tetraquark, this effect has almost vanished. As one can
see in Table III the mass of ccc̄c̄ for different spin quantum
numbers have considerable change while no change has
been measured for the mass of bbb̄b̄. There are no exact
experimental observations for the mass of X(6900) with
different spin quantum numbers; nevertheless, the obtained
masses with JP ¼ 2þ for flip-flop and JP ¼ 1þ for butter-
fly are approximately the same with the mass of X(6900).
In fact, there are many theoretical calculations for

measuring the mass of fully-heavy tetraquark states which
predict similar or different mass spectrums for JP ¼ 0þ,
1þ, and 2þ corresponding to their method [46,47]. The full
mass spectrum of all tetraquark states was predicted in
Ref. [33]; a state or states within the 2S multiplet were
suggested as the best interpretation for identifying Xð6900Þ
[33]. The masses of the ground state of tetraquark ccc̄c̄ for
different JP quantum numbers have been compared with

the other nonrelativistic quarkmodels inTable IV.Our results
are compatible with the other approaches; however, they are
larger than the average of the other works. It has proved that
four-body interaction models are completely suitable to
apply for studying the tetraquark properties as well as the
other models. In Table V, we have compared the JP ¼ 0þ,
1þ, and 2þ ground state masses of tetraquark bbb̄b̄ with the
works that reported results on bbb̄b̄ using different theo-
retical techniques. It would be noted that in many works
authors used calculationmethods [11,39,40,45] and physical
pictures [10,16,32,48] which are so close to our method but
the potentials we have applied to describe the connection
between four quarks are different. We believe that the main
reason for the slight difference between our results and other
works is the difference in potentials.

V. CONCLUSION

Masses of fully-heavy tetraquark for different flux-tube
configurations, the connected butterfly, and the discon-
nected flip-flop configuration have been computed with
solving the nonrelativistic four-body systems. The mea-
sured mass of ccc̄c̄ with the flip-flop potential is

TABLE III. The mass spectra of the ground state ccc̄c̄ and bbb̄b̄ for different static potentials, unit in GeV.

System Color JP Mðflip − flopÞ MðbutterflyÞ Mðflip − flopþ butterflyÞ
ccc̄ c̄ ½3̄�c ⊗ ½3�c 0þ 6.8500 6.8742 6.8217

1þ 6.8704 6.9133 6.8218
2þ 6.9127 6.9899 6.8218

½6�c ⊗ ½6̄�c 0þ 6.9285 7.0174 6.8218
1þ 6.9660 6.8992 6.8217
2þ 6.8783 6.9281 6.8218

bbb̄ b̄ ½3̄�c ⊗ ½3�c 0þ 18.43971 18.44416 18.44045
1þ 18.43971 18.44417 18.44045
2þ 18.43972 18.44417 18.44045

½6�c ⊗ ½6̄�c 0þ 18.43972 18.44417 18.44045
1þ 18.43971 18.44417 18.44045
2þ 18.43971 18.44416 18.44045

TABLE IV. The ground state masses of ccc̄c̄ in various models, unit in GeV.

JP M(flip-flop) M(butterfly) M[49] M[11] M[39] M[50] M[51]

0þ 6.8500 6.8742 6.82� 0.18 7.016 6.491 6.477 6.437
1þ 6.8704 6.9133 6.51� 0.15 6.899 6.580 6.528 6.437
2þ 6.9127 6.9899 6.51� 0.15 6.956 6.607 6.573 6.437

TABLE V. The ground state masses of bbb̄b̄ in various models, unit in GeV.

JP M(flip-flop) M(butterfly) M[49] M[52] M[11] M[53] M[48]

0þ 18.43972 18.44417 18.45� 0.15 18.840 20.155 19.322 19.199
1þ 18.43972 18.44417 18.33� 0.17 18.840 20.212 19.329 19.276
2þ 18.43972 18.44417 18.32� 0.17 18.850 20.243 19.341 19.289
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6.8878 GeV, which is so close to the experimental mass of
X(6900), while for butterfly configuration prediction is
about 6.9456 Gev that is about 0.046 GeV above the
experimental data. After adding spin-dependent correction
in color configuration ½3�c ⊗ ½3̄�c with a total spin 2, the
flip-flop potential has reported the best result for the mass
of ccc̄ c̄; it is 6.9127 GeV. The mass of bbb̄ b̄ measured
with the flip-flop is about 18.440 GeV with S.N I, which is
in good agreement with the experimental mass of pairϒð1SÞ
mesons. There was a perceived no significant change for
the masses of the bbb̄ b̄ tetraquark with the different
spin quantum numbers after adding the spin-dependent

correction. Altogether, both potentials provide good results
for the mass of tetraquarks. However, the results have shown
that disconnected configuration is a little more suitable
structure for the heavy tetraquark. The comparison between
our results and the works which used the two-body potential
proves that the four-body potentials are also reliable for
studying the properties of tetraquark.
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