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The use of light front coordinates allows a fully relativistic description of a hadron’s spatial densities to be
obtained. These densities must be two-dimensional and transverse to a chosen spatial direction. We explore
their relationship to the three-dimensional, nonrelativistic densities, with a focus on densities associated with
the energy-momentum tensor. The two-dimensional nonrelativistic densities can be obtained from the light
front densities through a nonrelativistic limit, and can subsequently be transformed into three-dimensional
nonrelativistic densities through an inverse Abel transform. However, this operation is not invertible, and
moreover the application of the inverseAbel transform to the light front densities does not produce a physically
meaningful result. We additionally find that the Abel transforms of so-called Breit-frame densities generally
differ significantly from the light front densities. Numerical examples are provided to illustrate the various
differences between the light front, Breit frame, and nonrelativistic treatment of densities.
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I. INTRODUCTION

The energy-momentum tensor (EMT) and the associated
gravitational form factors [1] have recently attracted signifi-
cant interest in the hadron physics community. Major open
questions such as the proton mass puzzle [2–8] and proton
spin puzzle [9–13] are directly related to the EMT.Moreover,
the EMT encodes information about the magnitude and
distribution of forces within hadrons [14–17], a topic which
has itself led to a flurry of theoretical studies [15,16],
empirical extractions [18–20], and lattice calculations [21].
The theoretical studies are driven by the promise of

making relevant experiments to determine the various
matrix elements that allow the extraction of the relevant
form factors. As depicted in Fig. 1, the relevant formalism
is most generally expressed through generalized transverse
momentum distributions, which are obtained from bilocal
correlation functionHΓðk; P;ΔÞ by integrating over k−. For
quarks, this correlator is given by [22]
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1
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where Γ stands in for a matrix in the Dirac algebra (e.g., γþ)
and Wðy; xÞ is a Wilson line from x to y. Integration
over k⊥ gives the generalized parton distribution, Mellin
moments of which encode local form factors of interest—
including those appearing in the EMT.
The form factors appearing in matrix elements of the

EMTencode spatial densities via Fourier transforms. When
performing these Fourier transforms, it is important to keep
perspective about the actual, physical meaning of the
densities that are obtained. It has been established
[17,23–26] that the only meaningful way to obtain fully
relativistic densities is through two-dimensional Fourier
transforms at fixed light front time. The three-dimensional
Breit frame density was originally obtained by erroneously
assuming that the hadron can be spatially localized [26,27],
though it has been rehabilitated as a quasidensity through
the Winger phase space formalism [16,28]. However, the
phase space formalism of Refs. [16,28] sets P ¼ 0 to obtain
the Breit frame distributions, while integration over P is
required to obtain physical expectation values from the
Wigner distribution [29]. The Breit frame distributions are
thus formally defined quantities.
TheAbel transformhas recently been proposed as ameans

of connecting the light front and Breit frame formalisms
[30,31]. It is therefore necessary to explore the meaning of
this connection. The Abel transform can be obtained by
integrating one coordinate of a spherically symmetric den-
sity. However, there is nomanifest spherical symmetry on the
light front [32]. Additionally, Refs. [30,31] looked at the case
of spin-half hadrons, but not spin-zero hadrons, where the
proposed connection is shown below not to work.
The purpose here is to explore the actual meaning of 3D

EMT densities and their relationship to the fully relativistic
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2D light front densities. In particular, we show that
physically meaningful 3D densities can be defined only
in a nonrelativistic approximation, either by taking c → ∞
or—in some cases—keeping up to order v2=c2 corrections.
Additionally, we examine the physical meaning and appli-
cability of the Abel transform.
This work is organized as follows. In Sec. II, we discuss

the Abel transform and when it does and does not connect
2D and 3D densities. In Sec. III, we consider the formalism
for relativistic and nonrelativistic densities for both spin-
zero and spin-half particles, deriving results for the relation-
ships between them. Numerical examples, based on using a
simple hadronic model [25,33,34] are used to study the
implications of using the Breit frame and the nonrelativistic
limit in Sec. IV. We conclude and provide a summary
in Sec. V.

II. ABEL TRANSFORMS OF PHYSICAL
DENSITIES

Since the fully relativistic light front densities are two-
dimensional, they can be most directly compared to two-
dimensional rather than three-dimensional nonrelativistic
densities. The 2D nonrelativistic densities are obtained by
integrating out one coordinate of a given three-dimensional

density ρð3DÞ
NR ðrÞ (which may be obtained as a three-dimen-

sional Fourier transform of a form factor):

ρð2DÞ
NR ðb⊥Þ ¼

Z
∞

−∞
dz ρð3DÞ

NR ðrÞ; ð2Þ

where b⊥ ¼ ðx; yÞ are the transverse coordinates. If the 3D
density is spherically symmetric, i.e., ρð3DÞ

NR ðrÞ is a function
of only r ¼ jrj, a change of integration variable allows us to
write

ρð2DÞ
NR ðb⊥Þ¼2

Z
∞

b
dr

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−b2⊥

p ρð3DÞ
NR ðrÞ≡A ½ρð3DÞ

NR ðrÞ�ðb⊥Þ;

ð3Þ

which defines the Abel transform.1 For densities which
depend on individual components of r, one must use
Eq. (2). However, each of the densities we consider can

FIG. 1. Chart depicting the relationships between densities in different formalisms, as well as their relationships to generalized parton
distributions. Here, ρ stands in for any space-dependent density, including mass density, Pþ density, or even pressure density. One-arrow
(purple) lines signify one-way relationships, and two-arrow (green) lines signify invertible relationships. There is no systematic
connection between light front and Breit frame densities.

1The Abel transform has several slightly different definitions in
the literature. Equation (3) agrees with the definition in Ref. [35],
which we use here because of its clear geometrical meaning.
Reference [30] uses a different definition of the Abel transform.
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be written in terms of derivatives of an entirely scalar
density to which Eq. (3) can be applied.
One pertinent property of the Abel transform is that it is

invertible [35]:

ρð3DÞ
NR ðrÞ ¼ −

1

π

Z
∞

r
db⊥

ρð2DÞ
NR ðb⊥Þ
db⊥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2⊥ − r2

p
≡A −1½ρð2DÞ

NR ðb⊥Þ�ðrÞ: ð4Þ

This allows a 3D nonrelativistic density to be reconstructed
from a 2D nonrelativistic density, assuming that we know
the former to be spherically symmetric ahead of time.
The importance of spherical symmetry cannot be

stressed enough. If one begins with an azimuthally sym-
metric 2D density without a guarantee of spherical sym-
metry in three dimensions, applying Eq. (4) may not give
the correct 3D density. Consider, for instance, the following
3D densities:

fðrÞ ¼ a3

ðx2 þ y2 þ z2 þ a2Þ3 ; ð5aÞ

gðrÞ ¼ sa3

ðx2 þ y2 þ s2z2 þ a2Þ3 ; ð5bÞ

where a is some length scale and s is a positive unitless
constant. These both integrate to the same azimuthally
symmetric function:

Z
∞

−∞
dzfðrÞ ¼

Z
∞

−∞
dzgðrÞ ¼ A ½fðrÞ�ðbÞ

≡ FðbÞ ¼ 3a3π

8ða2 þ b2Þ5=2 : ð6Þ

Applying the inverse Abel transform to FðbÞ will return
fðrÞ, even if—in the context of a physical scenario—gðrÞ is
the true 3D density.
This point is especially pertinent since the light front

Galilean subgroup of the Poincaré group does not have an
SO(3) subgroup. Light front dynamics does not admit 3D
spherical symmetry [32], so it is meaningless to try to
construct an exact relativistic 3D density by applying
Eq. (4) to a light front density, as done in Refs. [30,31]
or earlier in Ref. [36]. In fact, there are model calculations
suggesting that the proton is elongated in the x− direction
[37]. Moreover, we shall see below that densities of
transversely polarized hadrons have ϕ dependence, dem-
onstrating that spherical symmetry in ðx⊥; x−Þ does not
hold. At best, the inverse Abel transform of a light front
density can give the 3D density in a nonrelativistic
approximation, as we shall show below.
One helpful property of Eq. (2) that will aid the

exploration to follow is its effect on Fourier transforms.
If a 3D density is defined by

ρð3DÞ
NR ðrÞ ¼

Z
d3Δ
ð2πÞ3 Fðt ¼ −Δ2Þe−iΔ·r; ð7Þ

then because the z integral of e−iΔzz is 2πδðΔzÞ, one has

ρð2DÞ
NR ðb⊥Þ ¼

Z
d2Δ⊥
ð2πÞ2 Fðt ¼ −Δ2⊥Þe−iΔ⊥·b⊥ : ð8Þ

III. RELATIVISTIC AND NONRELATIVISTIC
DENSITIES OF THE EMT

We shall now consider relativistic and nonrelativistic
densities of the energy-momentum tensor. These densities
are related to form factors, which are defined via matrix
elements of plane wave states. For spin-zero particles, the
standard decomposition is [15]

hp0jTμνð0Þjpi ¼ 2PμPνAðtÞ þ ΔμΔν − Δ2gμν

2
DðtÞ; ð9Þ

while for spin-half particles [15] it is

hp0; λjTμνð0Þjp; λi

¼ ūðp0; λÞ
�
PμPν

M
AðtÞ þ ΔμΔν − Δ2gμν

4M
DðtÞ

þ iPfμσνgρΔρ

2M
JðtÞ

	
uðp; λÞ; ð10Þ

whereP ¼ 1
2
ðpþ p0Þ,Δ ¼ p0 − p, t ¼ Δ2, and curly brack-

ets fg signify symmetrization, e.g., afμbνg ¼ aμbν þ aνbμ.

A. Relativistic light front densities

As discussed in Refs. [23,24,32,38], the only way to
meaningfully define intrinsic relativistic densities is at fixed
light front time, since this allows separation between
barycentric and relative coordinates. Although there is
much emphasis in the literature on the concept of a
probabilistic interpretation (pointing out that the transverse
jþ and Tþþ densities correspond to probability densities), a
probability interpretation is not necessary for the concept of
a “density” to make physical sense. Here, we use the word
“density” to refer to any physical quantity that is distributed
over space, i.e., that can be defined via the expectation
value

hΨjOðxÞjΨi

for some local current OðxÞ and physical state Ψ. The true
significance of light front coordinates, as first pointed out in
Ref. [38] and later reiterated in Refs. [17,23,24], is that they
allow a density defined at fixed light front time and
integrated over x− to be factorized into a center-of-Pþ
piece convoluted with an intrinsic density, and for the latter
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to be isolated and well defined by taking the width of the
barycentric wave function to zero.
For both spin-zero hadrons and longitudinally polarized

spin-half hadrons, the light front momentum (Pþ) density is
found to be [17,23,39]

ρðLFÞPþ ðb⊥Þ ¼ Pþ
Z

d2Δ⊥
ð2πÞ2 AðtÞe

−iΔ⊥·b⊥ ; ð11Þ

and in these same cases, the comoving stress tensor is
[16,17]

SijLFðb⊥Þ ¼
1

4Pþ ðδij∇2⊥ − ∇i⊥∇
j
⊥Þ

Z
d2Δ⊥
ð2πÞ2 DðtÞe−iΔ⊥·b⊥ :

ð12Þ
The comoving stress tensor is a concept introduced in
Ref. [17], and corresponds to what an observer comoving
with the total motion of the hadron sees as the stress tensor.
The full stress tensor depends on P⊥, and accordingly does
not provide a well-defined density in the limit of localized
wave packets. However, the Galilean symmetry allows the
stress tensor to be additively decomposed into a piece that
contains hadron flow and a piece that is invariant under
Galilean boosts, and the latter piece—the comoving stress
tensor—has no P⊥ dependence, and is well defined in the
limit of localized wave packets. See Ref. [17] for a full
explication of the formalism.
It should be emphasized that the stress tensor does not

have a probability interpretation, since it mixes “good” and
“bad” components of the fields, and accordingly contains
contributions from particle pair production and annihilation
[40]. This can be seen especially clearly in the formalism of
generalized parton distributions, where the form factorDðtÞ
comes form the Efremov-Radyushkin-Brodsky-Lepage
region [41], which connects Fock states with different
numbers of particles [42]. The stress tensor is interpreted as
a density, however, in the sense that it is a spatial
distribution of a physical quantity, arising from the expect-
ation value of a local current for a physical state.
The comoving stress tensor can be decomposed into a

isotropic pressure pLFðb⊥Þ and pressure anisotropy (or shear
stress function) sLFðb⊥Þðb⊥Þ:

SijLFðb⊥Þ ¼ δijpðLFÞðb⊥Þ þ
�
bi⊥b

j
⊥

b2⊥
−
1

2
δij

�
sðLFÞðb⊥Þ;

ð13Þ

and has eigenpressures in the tangential directions
[16,30,43]:

pðLFÞ
r ðb⊥Þ ¼ b̂ib̂jS

ij
LFðb⊥Þ ¼ pðLFÞðb⊥Þ þ

1

2
sðLFÞðb⊥Þ;

ð14aÞ

pðLFÞ
t ðb⊥Þ ¼ ϕ̂iϕ̂jS

ij
LFðb⊥Þ ¼ pðLFÞðb⊥Þ −

1

2
sðLFÞðb⊥Þ;

ð14bÞ

where b̂ and ϕ̂ are unit vectors in the radial and tangential
directions.
A useful quantity is the potential D̃ðb⊥Þ, defined by

D̃ðb⊥Þ ¼
1

4Pþ

Z
d2Δ⊥
ð2πÞ2DðtÞe−iΔ⊥·b⊥ : ð15Þ

The comoving stress tensor is related to this potential by

Sijðb⊥Þ ¼ ð∇i∇j − δij∇2ÞD̃ðb⊥Þ: ð16Þ

The radial and tangential pressures have simple expressions
in terms of the potential:

prðb⊥Þ ¼
1

b⊥
dD̃ðb⊥Þ
db⊥

; ð17aÞ

ptðb⊥Þ ¼
d2D̃ðb⊥Þ
db2⊥

: ð17bÞ

1. Transversely polarized hadrons

It is possible to prepare spin-half hadrons in transversely
polarized states, for which the light front densities will no
longer have azimuthal symmetry. A transversely polarized
hadron can be prepared as a superposition of light front
helicity states [44]:

jsT ¼ s⊥i ¼
jλ ¼ þ1i þ eiϕs jλ ¼ −1iffiffiffi

2
p : ð18Þ

In terms of helicity states, matrix elements of transversely
polarized states take the form (with momentum dependence
suppressed to compactify the formula):

hs⊥jÔjs⊥i ¼
1

2
fhþjÔjþi þ h−jÔj−i þ hþjÔj−ieiϕs

þ h−jÔjþie−iϕsg; ð19Þ

which is the average of helicity state densities, plus an
additional ϕ-dependent helicity-flip contribution.
The Pþ density of transversely polarized states is

ρðLFÞPþ;Tðb⊥; s⊥Þ ¼ ρðLFÞPþ ðb⊥Þ þ Pþ sinðϕÞ
2Mc

d
db⊥

Z
d2Δ⊥
ð2πÞ2

× ðAðtÞ − 2JðtÞÞe−iΔ⊥·b⊥ ; ð20Þ

where ρðLFÞPþ ðb⊥Þ is density for helicity states [equal to the
spin-zero Pþ density in Eq. (11)], and ϕ ¼ ϕb − ϕs is the
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angle from the transverse polarization vector to the trans-
verse coordinate. The result in Eq. (20) has previously
been found in Refs. [23,39]. It is worth remarking that the
angular dependence is a strictly relativistic effect because
taking the c → ∞ limit eliminates the ϕ dependence.
The comoving stress tensor also has angular dependence

for transversely polarized states, and in addition has a new
tensorial structure:

SijT ðb⊥; s⊥Þ ¼ δijpTðb⊥;ϕÞ þ
�
b̂ib̂j −

1

2
δij

�

× sTðb⊥;ϕÞ þ ðb̂iϕ̂j þ b̂jϕ̂iÞvTðb⊥Þ; ð21aÞ

pTðb⊥;ϕÞ ¼ pðb⊥Þ þ
sinðϕÞ
2Mc

p0ðb⊥Þ; ð21bÞ

sTðb⊥;ϕÞ ¼ sðb⊥Þ þ
sinðϕÞ
2Mc

s0ðb⊥Þ; ð21cÞ

vTðb⊥;ϕÞ ¼
cosðϕÞ
2Mc

sðb⊥Þ
b⊥

; ð21dÞ

where pðb⊥Þ and sðb⊥Þ are the isotropic pressure and
anisotropy functions in the helicity state case. The
quantities pT , sT , vT cannot be obtained through an
Abel transform.
The new tensor structure associated with vTðb⊥;ϕÞ is

peculiar and does not contribute to either the radial or the
tangential pressure, since it contracts with both b̂ib̂j and
with ϕ̂iϕ̂j to zero. It is more instructive—as discussed in
Ref. [15]—to find the eigenvalues and eigenvectors of the
comoving stress tensor. Since the eigenvectors satisfy

SijT ðb⊥; s⊥Þêj� ¼ p�ðb⊥;ϕÞêi�; ð22Þ

where we use � to index the two eigenvectors (and their
associated eigenpressures), it is possible to write the
pressure in any direction as a superposition of the eigen-
pressures. If we write the eigenvectors in terms of an angle
with respect to the transverse spin vector,

ê� ¼ cosðθ�Þs⊥ þ sinðθ�Þs̃⊥; ð23Þ

where s̃⊥ is a unit vector that is 90° counterclockwise from
s⊥, then the eigenvectors of SijT ðb⊥; s⊥Þ are given by the
angles

θþ ¼ ϕþ 1

2
tan−1

�
2vTðb⊥;ϕÞ
sTðb⊥;ϕÞ

�
; ð24aÞ

θ− ¼ ϕþ 1

2
tan−1

�
2vTðb⊥;ϕÞ
sTðb⊥;ϕÞ

�
þ π

2
; ð24bÞ

while the associated eigenpressures are given by

p�ðb⊥;ϕÞ¼pTðb⊥;ϕÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðsTðb⊥;ϕÞÞ2þðvTðb⊥;ϕÞÞ2

r
:

ð24cÞ

In the limit of large b⊥, one has vTðb⊥;ϕÞ ≪ sTðb⊥;ϕÞ, so
the eigenangles become ϕ and ϕþ π

2
very far from the

center of the hadron. This deformation from the radial and
tangential directions can be seen as a relativistic effect that
vanishes in the c → ∞ limit, along with the angular
dependence of the eigenpressures.
The angular dependence in both the Pþ density and the

stress tensor demonstrates a lack of spherical symmetry in the
light front formalism. This is of course not surprising, since
rotations around the x andy axes are dynamical operators that
do not commutewith the light front HamiltonianP− [32,45].
This finding precludes use of the inverse Abel transform to
construct a physically meaningful 3D relativistic density.
Moreover, the inverseAbel transform cannot even be applied
at a formal level, since the transform acts on an azimuthally
symmetric function of a single variable.

B. Breit frame densities

If one tries to define 3D relativistic densities at fixed
instant form time, the density becomes contaminated by
center-of-mass motion of the hadron as a whole [27]. It is
controversial whether localization of the center-of-mass
motion in coordinate space is relativistically possible (see
Refs. [46–48] for attempts, however), and localization in
momentum space produces infinite radii for all densities
[26] owing to the Heisenberg uncertainty principle.
Nonetheless, ostensibly relativistic 3D densities are

ubiquitous throughout the hadron physics literature. The
so-called Breit frame densities are defined by taking a
Fourier transform of e.g., Eq. (9) with respect to the
momentum transfer Δ while setting the center-of-mass
momentum to zero (P ¼ 0). This definition has been
recently formalized in a Wigner phase space approach
[16,28], with P ¼ 0 used to define the Breit frame
distributions in particular. However, as explained for
instance in Ref. [29], the physical expectation values for
functions of space and momentum are obtained from a
Wigner phase space distribution by integrating over both
variables, rather than by setting P ¼ 0. so the Breit
frame distributions within this formalism therefore are
definitions.
It is worth stressing that the Breit frame distributions

have not been derived from the basic definition
of a physical density, i.e., the expected value of a local
current for a physical hadron state. As shown in Ref. [26],
the original derivation in Ref. [49] was erroneous
and neglected a term that would make all radii infinite.
Nonetheless, the erroneous Breit frame densities with
finite radii are ubiquitous enough that they should be
addressed.
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The Breit frame mass density and stress tensor both have
different expressions for spin-zero and spin-half particles.
For the mass density [14,15,50],

ρðj¼0Þ
mass ðrÞ ¼ M

Z
d3Δ
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t

4M2

q

×

�
AðtÞ − t

4M
½AðtÞ þDðtÞ�

	
e−iΔ·r; ð25aÞ

ρðj¼1=2Þ
mass ðrÞ ¼ M

Z
d3Δ
ð2πÞ3

×

�
AðtÞ − t

4M
½AðtÞ þDðtÞ − 2JðtÞ�

	
e−iΔ·r;

ð25bÞ

while for the stress tensor,

Tij
BF;0ðrÞ¼

1

4M
ðδij∇2−∇i∇jÞ

Z
d3Δ
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− t

4M2

q DðtÞe−iΔ·r;

ð26aÞ

Tij
BF;1

2

ðrÞ ¼ 1

4M
ðδij∇2⊥ − ∇i⊥∇

j
⊥Þ

Z
d3Δ
ð2πÞ3DðtÞe−iΔ·r:

ð26bÞ

Using Eq. (8), it is possible to obtain simple formulas for
the two-dimensional reductions of these Breit frame stress
tensors. We find

Tij
BF;0ðb⊥Þ ¼

1

4M
ðδij∇2⊥ − ∇i⊥∇

j
⊥Þ

Z
d2Δ⊥
ð2πÞ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t

4M2

q

×DðtÞe−iΔ⊥·b⊥ : ð27aÞ

Tij
BF;1

2

ðb⊥Þ ¼
1

4M
ðδij∇2⊥ − ∇i⊥∇

j
⊥Þ

Z
d2Δ⊥
ð2πÞ2DðtÞe−iΔ⊥·b⊥ ;

ð27bÞ

where the use of b⊥ instead of r is used to signify that these
are 2D functions.
Comparing Eqs. (12) and (27b), one can see that

PþSijLFðb⊥Þ ¼ MTij
BF;1

2

ðb⊥Þ, i.e., that the 2D Breit frame

and light front comoving stress tensors have identical forms
(up to a constant) for spin-half particles specifically. This is
essentially the central finding of Ref. [30]. The Abel
transform connects 2D Breit frame densities to 3D Breit
frame densities, and it just so happens that the Breit frame
and light front comoving stress tensors have similar
integrands specifically for spin-half particles. Because of
this, Abel transforms formally work out to relate the 3D

Breit frame and 2D light front pressures for spin-half
particles. It should be recalled however that the light front
does not have 3D spherical symmetry and that the Breit
frame densities are not physically meaningful densities.
Thus this formal coincidence does not have any deep
physical meaning, and does not lend credence to the Breit
frame pressure.
By contrast, one can easily observe that PþSijLFðb⊥Þ ≠

MTij
BF;0ðb⊥Þ, so the findings of Ref. [30] do not apply to

spin-zero particles. 3D Breit frame pressures in spin-zero
hadrons are not related to 2D light front pressures by Abel
transforms. In light of the caveats we have stressed so far,
this is not surprising, but it does help stress that the findings
of Ref. [30] originate from a coincidence rather than a deep
connection between the light front and Breit frame.

C. Nonrelativistic densities

In a nonrelativistic (NR) quantum mechanical theory,
just as in relativistic quantum field theory, the density
associated with a local operator ÔðxÞ and a physical state
jΨi is given by

ρNRðrÞ ¼ hΨjÔðrÞjΨiNR: ð28Þ

The meaning of the term NR is that the system obeys
Galilean invariance, in which the dependence on relative
and center-of mass variables can be separated. The center-
of-mass position of the physical state jΨi generally has a
finite spatial extent. This state can be localized by allowing
the total momentum to have infinite extent. This localiza-
tion can be achieved, for example, by using a Gaussian
representation [26] so that

Ψðp; sÞ ¼ ð2πÞ3=4ð2σÞ3=2e−σ2p2

; ð29Þ

in which p refers to the total momentum of the system, and
then taking the σ → 0 limit at the end of the calculation.
The spatial dependence of ρNRðrÞ thus defined will encode
only internal structure of the hadron. It is possible to show
(using similar derivations to those in Refs. [17,26]) that the
density can be written as

ρNRðrÞ ¼ lim
σ→0

ð2πÞ3=2ð2σÞ3
Z

d3P
ð2πÞ3

Z
d3Δ
ð2πÞ3

× e−2σ
2P2hp0; sjÔð0Þjp; siNRe−σ2

2
Δ2

e−iΔ·r ð30Þ

in which P ¼ 1
2
ðpþ p0Þ and Δ ¼ p0 − p. The limit σ → 0

is to be taken after the P integral has been done. Integrals in
which the matrix element contains factors P2, P4, etc. will
diverge, which limits the densities that can be considered;
for instance, we cannot calculate a kinetic energy density
for a completely spatially localized system.
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1. Nonrelativistic reduction

The matrix element hp0; sjÔð0Þjp; siNR appearing in
Eq. (30) is a nonrelativistic matrix element.2 In practice,
one knows how to express the relativistic counterpart
hp0; sjÔð0Þjp; sirel in terms of local form factors. It should
be possible to obtain the former from the latter by restoring
factors of c where appropriate and taking the c → ∞ limit.
Before doing so, we also must bear in mind that the
momentum kets are normalized differently in the relativ-
istic and nonrelativistic cases; the conventional (instant
form) normalization for momentum kets is

hp0; s0jp; siNR ¼ ð2πÞ3δð3Þðp0 − pÞδss0 ; ð31aÞ

hp0; s0jp; sirel ¼ ð2πÞ3ð2EpÞδð3Þðp0 − pÞδss0 : ð31bÞ

Thus, the fully nonrelativistic (FNR) limit is given by

hp0; sjÔð0Þjp; siNR ¼ lim
c→∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep2Ep0

p hp0; sjÔð0Þjp; sirel:

ð32Þ

Of course, one can take Ep=c2 → M in the FNR limit, but
in some cases it may be instructive to know what the
leading relativistic corrections look like. These can be
found by expanding the right-hand side of Eq. (32) as a

power series in jpj=ðMcÞ, and dropping terms beyond a
certain order instead of taking the c → ∞ limit.
When taking the nonrelativistic limit, consistency

demands that this limit be applied to the whole of the
right-hand side of Eq. (32). For instance, in the case of the
electric charge density of a spin-zero hadron, one has

hp0; sjj0ð0Þjp; siNR ¼ lim
c→∞

�ðEp þ Ep0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep2Ep0

p FðtÞ
	

¼ lim
c→∞

FðtÞ≡ FNRðtNR ¼ −Δ2Þ: ð33Þ

In the nonrelativistic limit, the zeroth component of the
four-momentum transfer Δμ is Oð1=cÞ and is thus
neglected, and the argument of the nonrelativistic form
factor becomes tNR ≡ −Δ2. Since the dynamics that govern
the structure of hadrons are manifestly relativistic, the form
factor FðtÞ will change in the nonrelativistic limit, as seen
for instance in Ref. [25]. Consistent application of the
nonrelativistic limit thus means that the form factors
appearing in nonrelativistic 3D densities and fully relativ-
istic light front densities should be different functions. We
shall subscript the latter using NR.

2. Nonrelativistic mass density

In the nonrelativistic formalism, matrix elements of T00

provide the mass density. For spin-zero and spin-half
particles, respectively, we have

hp0; sjT00ð0Þjp; siðj¼0Þ
NR ≈Mc2

�

1þ P2

2M2c2
þ Δ2

8M2c2

�
ANRðtÞ þ

Δ2

4M2c2
DNRðtÞ þOð1=c4Þ

	
; ð34aÞ

hp0; sjT00ð0Þjp; siðj¼1=2Þ
NR ≈Mc2

�

1þ P2

2M2c2
þ Δ2

4M2c2
−
iðΔ × PÞ · s

4M2c2

�
ANRðtÞ

þ Δ2

4M2c2
DNRðtÞ þ



−

Δ2

2M2c2
þ iðΔ × PÞ · s

M2c2

�
JNRðtÞ þOð1=c4Þ

	
; ð34bÞ

where the NR subscripts on the form factors indicate that they should be expanded in powers of 1=c as well, and where here
we use jsj ¼ 1 for simplicity. Because of the P2 terms, these cannot be used to define densities for an arbitrarily localized
hadron at order 1=c2, though the c → ∞ limit does not have this issue. However, if this matrix element is placed into
Eq. (30) without taking the σ → 0 limit, one obtains results in the form

ρenergyðr; σÞ ¼
ρmassðr; σÞ

M

�
Mc2 þ hP2iσ

2M

	
þOð1=c2Þ; ð35aÞ

where

hP2iσ ¼
Z

d3P
ð2πÞ3 P

2jψðP; s; σÞj2 ¼ 3

σ2
; ð35bÞ

ρðj¼0Þ
mass ðr; σÞ ¼ M

Z
d3Δ
ð2πÞ3

�
ANRðtÞ þ

Δ2

8M2c2
½ANRðtÞ þ 2DNRðtÞ�

	
e−iΔ·re−

σ2

2
Δ2 þOð1=c4Þ; ð35cÞ

2Since matrix elements are invariant under unitary transformations, unlike state kets or operators, it is more suitable to apply
nonrelativistic reduction to matrix elements as a whole rather than to their individual components.
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ρðj¼1=2Þ
mass ðr; σÞ ¼ M

Z
d3Δ
ð2πÞ3

�
ANRðtÞ þ

Δ2

4Mc2
½ANRðtÞ þDNRðtÞ − 2JNRðtÞ�

	
e−iΔ·re−

σ2

2
Δ2 þOð1=c4Þ: ð35dÞ

This has exactly the expected form of a mass density plus a
(nonrelativistic) kinetic energy density. Although we can-
not take the σ → 0 limit for the full (massþ kinetic) energy
density at this order in 1=c2, we can actually take this limit
for the mass density by itself. This suggests that we can
obtain a meaningful leading-order relativistic correction to
the mass density. This suggestion must however be
tempered by the realization that the separation of energy
into mass and kinetic energy requires the ability to bring the
system to rest, which is explicitly precluded by taking the
σ → 0 limit.
It is worthwhile to observe that the NRþ LO mass

density for spin-half particles, as given in Eq. (35d), is
identical in form to the Breit frame mass density given in
Eq. (25b) (and previously found in Ref. [15] for instance).
A caveat worth mentioning is that consistency of the
nonrelativistic reduction requires expanding the form
factors themselves in powers of 1=c, while the Breit frame
density uses the exact relativistic form factors. Moreover,
such a coincidence does not occur for spin-zero particles.
The procedure outlined here cannot be used at arbitrarily

high orders in 1=c, and it is therefore not possible to define
a fully relativistic 3D mass density through series of
relativistic corrections. The dependence of Ep and Ep0

on ðP · ΔÞ prevents factorizing the density integrand into a
P-dependent factor and Δ-dependent factor.
For both spin-zero and spin-half particles, the fully

nonrelativistic (c → ∞) limit gives the same form for the
mass density:

ρðFNRÞmass ðrÞ ¼ M
Z

d3Δ
ð2πÞ3 ANRðtÞe−iΔ·r: ð36Þ

This is spherically symmetric, and comparison to Eqs. (8)
and (11) shows that this is related to the nonrelativistic limit
of the fully relativistic Pþ density:

ρðFNRÞmass ðrÞ ¼ lim
c→∞

M
Pþ A ½ρðLFÞPþ ðb⊥Þ�ðrÞ: ð37Þ

We thus see that the inverse Abel transform of the Pþ
density does have a physical meaning, if it is accompanied
by the c → ∞ limit: it gives the fully nonrelativistic 3D
mass density. Since the c → ∞ limit is not invertible, this
relation is not invertible either.

3. Nonrelativistic stress tensor

The Tij components of the EMT give the stress tensor. It
is worth stressing that Tij does not only encode pressure
and shear forces, but also contains contributions from the

motion of the system. For instance, taking the FNR limit for
a spin-zero system gives

hp0; sjTijð0Þjp; siðj¼0Þ
NR

¼ PiPj

M
ANRðtÞ þ

�
ΔiΔj − δijΔ2

4M

�
DNRðtÞ þOð1=c2Þ:

ð38Þ

As it is, the stress tensor cannot be used with Eq. (30)
unless the σ → 0 limit is avoided, because the factor PiPj

multiplying AðtÞwill produce a σ−2 divergence when i ¼ j.
However, we can define a density at nonzero σ,

Tij
NRðr; σÞ ¼ ρðNRÞmass ðr; σÞhvivjiσ þ SijNRðr; σÞ; ð39aÞ

in the FNR, where

hvivjiσ ¼
Z

d3P
ð2πÞ3

PiPj

M2
jψðP; s; σÞj2 ¼ δij

M2σ2
; ð39bÞ

SijNRðr; σÞ ¼
Z

d3Δ
ð2πÞ3

�
ΔiΔj − δijΔ2

4M

�
DNRðtÞe−iΔ·re−σ2

2
Δ2

:

ð39cÞ

This has the form expected of the classical nonrelativistic
stress tensor, with a piece encoding movement of the
system and a piece expressing the comoving stress tensor
Sij. This is identical to the decomposition used to isolate
SijLF in the light front case in Ref. [17] and above. The
comoving stress tensor is invariant under Galilean boosts,
and thus can be interpreted as the stress tensor as seen by a
comoving observer—a physical interpretation that is jus-
tified by having taken the fully nonrelativistic limit.
The comoving stress tensor is well defined in the σ → 0

limit:

SijNRðrÞ ¼
1

4M
ðδij∇2 − ∇i∇jÞ

Z
d3Δ
ð2πÞ3DNRðtÞe−iΔ·r: ð40Þ

It is straightforward to show that SijNRðrÞ also has this form
for spin-half systems.
The leading relativistic corrections introduce factors of

P2 and ðP · ΔÞ2 into the quantity Sij itself. These preclude
using the Oð1=c2Þ corrections to define a density via
Eq. (30). These factors are related to a breakdown of
Galilean symmetry once relativistic effects are introduced.
Sij is no longer invariant under boosts once relativistic
corrections are introduced, so it no longer has a clear
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interpretation as being the comoving stress tensor, either.
Whether it is possible to introduce relativistic corrections in
a consistent way to the comoving stress tensor within the
formalism we employ is unclear, so we proceed to employ
only the nonrelativistic limit in this work.
As explained in Refs. [15,16], this comoving stress

tensor can be decomposed into an isotropic pressure
pðrÞ and a pressure anisotropy sðrÞ:

SijNRðrÞ ¼ δijpðNRÞðrÞ þ
�
rirj

r2
−
1

3
δij

�
sðNRÞðrÞ: ð41Þ

By contracting this with unit vectors, it is possible to obtain
directional pressures, e.g., radial and tangential pressures
[15,16]:

pðNRÞ
r ðrÞ ¼ r̂ir̂jS

ij
NRðrÞ ¼ pðNRÞðrÞ þ 2

3
sðNRÞðrÞ; ð42aÞ

pðNRÞ
t ðrÞ ¼ ϕ̂iϕ̂jS

ij
NRðrÞ ¼ pðNRÞðrÞ − 1

3
sðNRÞðrÞ: ð42bÞ

By integrating out the z coordinate, one can obtain the
2D nonrelativistic stress tensor:

SijNRðb⊥Þ ¼
1

4M
ðδij∇2⊥ − ∇i⊥∇

j
⊥Þ

Z
d2Δ⊥
ð2πÞ2DNRðtÞe−iΔ⊥·b⊥ ;

ð43Þ
where dependence on b⊥ instead of r signifies that this is a
2D function. This can be compared to the light front
comoving stress tensor in Eq. (12), giving

SijNRðb⊥Þ ¼ lim
c→∞

Pþ

M
SijLFðb⊥Þ: ð44Þ

By comparing the 3D nonrelativistic eigenpressures in
Eq. (42) to the 2D light front eigenpressures in Eq. (14),
it is possible also to show that

pðNRÞ
t ðrÞ ¼ lim

c→∞

Pþ

M
A −1½pðLFÞ

t ðb⊥Þ�ðrÞ; ð45aÞ

pðNRÞ
r ðrÞ ¼ lim

c→∞

2Pþ

M
A −1½pðLFÞ

r ðb⊥Þ�ðrÞ: ð45bÞ

These are compatible with the spin-half results of
Ref. [30], although our result applies to spin-zero particles
as well. Just as with the Pþ density, we find that the inverse
Abel transform has a physical meaning when accompanied
by the c → ∞ limit: it produces the 3D densities in the fully
nonrelativistic limit.

4. Nonrelativistic form factors

The connection between the 3D nonrelativistic densities
and the 2D light front densities, as given in Eqs. (37) and
(45) are not invertible. This is so because the c → ∞ limit
cannot be undone. However, if the c → ∞ limit had no
effect on the form factors—i.e., if ANRðtÞ ¼ AðtÞ and
DNRðtÞ ¼ DðtÞ—then these relationships would actually
be invertible. However, this is not the case, and we illustrate
these points in the next section using a simple model.

IV. MODEL CALCULATIONS

We will now illustrate the findings of this work with
pedagogical model calculations, specifically using a gen-
eralization [25] of the ϕ3 model first used by Weinberg [33]
and later by by Gunion et al. [34]. We use the interaction
Lagrangian,

L I½Ψ;ϕ; ξ� ¼ gΨðxÞϕðxÞξðxÞ; ð46Þ

where all of the three different fields are spin-zero bosons.
The Ψ particle of mass M represents the bound state of the
two different constituents ϕ and ξ, of masses m1 and m2

respectively.
The pointlike coupling of this model is very simple,

which is a pedagogic advantage, but short distance effects
are emphasized [25] as the light-front wave function has a
logarithmic divergence for small values of the transverse
separation b⊥ between the quarks. Furthermore, the asymp-
totic behavior of the electromagnetic form factor

is FðtÞ ∼ log2ð−tÞ
ð−tÞ .

The electromagnetic current of the three-scalar model is
given by

hp0jjμð0Þjpi ¼ 2PμFðtÞ ¼ ig2e1

Z
d4k
ð2πÞ4

2kμ

½ðk − PÞ2 −m2
2�½ðkþ Δ=2Þ2 −m2

1�½ðk − Δ=2Þ2 −m2
1�

þ ig2e2

Z
d4k
ð2πÞ4

2kμ

½ðk − PÞ2 −m2
1�½ðkþ Δ=2Þ2 −m2

2�½ðk − Δ=2Þ2 −m2
2�
; ð47Þ

where P ¼ 1
2
ðpþ p0Þ and Δ ¼ p0 − p. This is a sum of contributions from the constituents with masses m1 and m2. It is

important to emphasize here that the operator jμ depends only on the fields ϕðxÞ and ξðxÞ, so there are not any direct
contributions from the ΨðxÞ field. This is not the case for the EMT Tμν: contributions from −gμνL I are present in this
current. However, theΨðxÞ field does not contribute to either Tþþ or to Tij when i ≠ j, by virtue of these components of the
metric vanishing. The þþ component of the gravitational current is given by
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hp0jTþþð0Þjpi ¼ 2ðPþÞ2AðtÞ ¼ ig2
Z

d4k
ð2πÞ4

2ðkþÞ2
½ðk − PÞ2 −m2

2�½ðkþ Δ=2Þ2 −m2
1�½ðk − Δ=2Þ2 −m2

1�

þ ig2
Z

d4k
ð2πÞ4

2ðkþÞ2
½ðk − PÞ2 −m2

1�½ðkþ Δ=2Þ2 −m2
2�½ðk − Δ=2Þ2 −m2

2�
; ð48Þ

and to isolate DðtÞ we look at the 12 component:

hp0jT12ð0Þjpi ¼ 1

2
Δ1Δ2DðtÞ ¼ ig2

Z
d4k
ð2πÞ4

ðk1 − Δ1=2Þðk2 þ Δ2=2Þ þ ðk2 − Δ2=2Þðk1 þ Δ1=2Þ
½ðk − PÞ2 −m2

2�½ðkþ Δ=2Þ2 −m2
1�½ðk − Δ=2Þ2 −m2

1�

þ ig2
Z

d4k
ð2πÞ4

ðk1 − Δ1=2Þðk2 þ Δ2=2Þ þ ðk2 − Δ2=2Þðk1 þ Δ1=2Þ
½ðk − PÞ2 −m2

1�½ðkþ Δ=2Þ2 −m2
2�½ðk − Δ=2Þ2 −m2

2�
: ð49Þ

In particular, we shall consider examples with masses
appropriate for a spin-less deuteron and a scalar pion. In
that case, we take m1 ¼ m2 ¼ m. To simplify the notation,
we additionally take e1 þ e2 ¼ 1.
The integrals above can be evaluated using Feynman

parameters. It is useful to start by considering the forward
limit Δμ ¼ 0. Then,

Fð0Þ ¼ g2

16π2

Z
1

0

dx
ð1 − xÞx
M2ðxÞ ; ð50Þ

with

M2ðxÞ≡m2 − xð1 − xÞM2: ð51Þ

The coupling constant g is chosen to yield Fð0Þ ¼ 1. An
important consistency check that

Að0Þ ¼ Fð0Þ ð52Þ

is satisfied. We also find that

Dð0Þ ¼ −
g2

8π2

Z
1

0

dxð1 − xÞ 1 − ð1 − xÞ2=3
M2ðxÞ : ð53Þ

Defining the positive binding energy to be B with M ¼
2m − B we find

lim
B→0

Dð0Þ ¼ −
11

3
þ 32

3π

ffiffiffiffiffiffiffi
B
2M

r
−O

�
B
M

�
; ð54aÞ

lim
B→∞

Dð0Þ ¼ −5þ 2

15

�
2M

M þ B

�
2

þO
�
M4

B4

�
: ð54bÞ

An equivalent procedure [25] to the use of Feynman
parameters is to use theDrell-Yan frame, whereΔþ ¼ 0, and
integrate over k− ≡ k0 − k3. This enables one to obtain form
factors in terms of light-front wave functions, and also
simplifies taking the nonrelativistic limit. We also use the
relativemomentum κ ¼ k − xðP − Δ⊥=2Þ. The result is that

FðtÞ ¼ 1

2ð2πÞ3
Z

d2κ
Z

1

0

dx
xð1 − xÞ

× ψ�ðx; κþ ð1 − xÞΔ⊥Þψðx; κÞ; ð55Þ

as found in Ref. [34], with the frame-independent light-front
wave function ψðx; κÞ given by

ψðx; κÞ≡ g



M2 −

κ2 þm2
1

x
−
κ2 þm2

2

1 − x

�−1
; ð56Þ

where κ is the ⊥-component of the transverse relative
momentum, and x is the fractional component of the
longitudinal plus-component of the momentum carried by
the constituent of mass m1.
For equal mass particles we find

AðtÞ ¼ FðtÞ ð57Þ

in this simple model, and identity that is very useful for
deuteronlike kinematics, as we shall see below.
To aid in the calculations that follow, it is efficient to

define a quantity:

Gðα;ΔÞ≡
Z

d2κψ�ðx; κþ αΔ⊥Þψðx; κÞ; ð58Þ

with α as either x or 1 − x, depending on which particle is
probed. Then (for instance)

FðtÞ ¼ 1

16π3

Z
1

0

dx
xð1 − xÞGð1 − x;Δ⊥Þ: ð59Þ

The use of Feynman parameters leads to the result:

Gðα;ΔÞ ¼ 2πg2x2x̄2
Z

1=2

0

dz
1

M2þα2Q2ð1=4− z2Þ

¼ 4πg2x2x̄2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2Q2ð4M2þα2Q2Þ

p
þ2M2−α2t

2M2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2Q2ð4M2þα2Q2Þ

p : ð60Þ

ADAM FREESE and GERALD A. MILLER PHYS. REV. D 105, 014003 (2022)

014003-10



Transverse densities are 2D Fourier transforms of the
relevant form factors, such as

ρFðb⊥Þ ¼
Z

d2Δ⊥
ð2πÞ2 e

−iΔ⊥·b⊥FðtÞ; ð61Þ

so that it is useful to introduce the coordinate-space wave
function:

ψðx;b⊥Þ ¼
Z

d2κ
ð2πÞ2 ψðx; κÞe

iκ·b⊥ : ð62Þ

In this model:

ψðx; b⊥Þ ¼
1

ð2πÞ2
Z

d2κeiκ·bψðx; κÞ ¼ −g
ð2πÞ xx̄K0ðMb⊥Þ;

ð63Þ

where K0ðxÞ is a modified Bessel function of the second
kind, and where x̄≡ 1 − x. In terms of this wave function,
the density corresponding to the electromagnetic form
factor ρF is given by

ρFðb⊥Þ ¼
Z

1

0

dx
ð1 − xÞ2

����ψ
�
x;

b⊥
1 − x

�����
2

: ð64Þ

Similarly, one may show that

1

2
Δ1Δ2DðtÞ ¼

Z
d2κ
ð2πÞ3

Z
1

0

dx
xð1 − xÞ ð2κ1κ2 − Δ1Δ2=2Þ



1

x
ψ�ðx; κþ ð1 − xÞΔ⊥=2Þψðx; κ − ð1 − xÞΔ⊥=2Þ

�
: ð65Þ

Evaluation of the term proportional to κ1κ2 must result in a term proportional to Δ1Δ2. However, it is worthwhile to find an
explicit expression for DðtÞ. This may be done by expressing DðtÞ in terms of the coordinate-space wave function,
ψðx;b⊥Þ. Some algebra leads to the expression

DðtÞ ¼ −4
Z

1

0

dx
xð1 − xÞ2

Z
db⊥b⊥jψ 0ðx; b⊥Þj2

J2ðxjΔ⊥jb⊥Þ
ð−tÞ −

Z
dxð1þ xÞ
xð1 − xÞ

Z
db⊥b⊥jψðx; b⊥Þj2J0ðxjΔ⊥jb⊥Þ; ð66Þ

where ψ 0ðx; b⊥Þ≡ ∂ψðx;bÞ
∂b . The quadrupole nature ofDðtÞ is exhibited by the appearance of the Bessel function of order 2 in

Eq. (66).
The transverse density is obtained in the sameway. For simplicity, we examine the light front version of Polyakov’s stress

potential function D̃ðb⊥Þ defined in Eq. (15). for which we find

4PþD̃ðb⊥Þ ¼
−1
π

Z
dx

xð1 − xÞ


f

�
x;
b⊥
x̄

�
þ 1

2

�
1 − x2

x2x̄

����ψ
�
x;
b⊥
x

�����
2
��

ð67aÞ

with

fðα; bÞ≡
Z

∞

b=α
db0⊥b0⊥

�
1 −

b2

α2b02

�
jψ 0ðα; b0Þj2: ð67bÞ

The above derivation ofDðtÞ exhibits the dependence on the wave function and is thus useful in obtaining the nonrelativistic
limit. One may instead proceed more directly to determineDðtÞ by starting with Eq. (65) and using Feynman parameters to
obtain

DðtÞ ¼ −1
8π3

Z
1

0

dx
1

x2x̄
G̃ðx̄; tÞ ð68Þ

with

G̃ðα; tÞ≡ 2πg2x2x̄2
Z

1

0

dy
ð1 − y2α2Þ

M2 − α2t=4ð1 − y2Þ ¼ 8πg2x2x̄2
jΔ⊥j −

ð4−ðα2−1ÞtÞ tanh−1
�

αjΔ⊥ jffiffiffiffiffiffiffi
4−α2t

p



α
ffiffiffiffiffiffiffiffiffi
4−α2t

p

jΔ⊥j3
: ð69Þ

A. Breit-frame densities and transverse pseudodensities

The three-dimensional Breit-frame densities are given in Sec. III B above. From these, one obtains the 2D Breit frame
densities through an Abel transform. For spin-zero hadrons specifically, one has
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D̃BFðb⊥Þ ¼
Z

∞

−∞
dzD̃BFðrÞ ¼

Z
d2Δ⊥
ð2πÞ2

DðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=ð4M2Þ

p e−iΔ⊥·b⊥ ; ð70Þ

for example. If M → ∞ then D̃BFðb⊥Þ → D̃ðb⊥Þ, with the
latter being the relativistically exact (light front) density.
Since the integral goes over all values of t, however, the
equality does not hold. At best, one could have D̃BFðb⊥Þ ≈
D̃ðb⊥Þ if Dð−t → 4M2Þ ≈ 0. Therefore we refer to
D̃BFðb⊥Þ as a transverse pseudodensity.
The integral appearing in Eq. (70) provides a numerical

challenge because the asymptotic limit is DðtÞ ∼ log2ð−tÞ=
ð−tÞ. This means that an expansion in powers of −t2=4M2

diverges. A valid numerical procedure is obtained by
relating D̃BFðb⊥Þ to the relativistic transverse density
D̃ðb⊥Þ. This is achieved by using Eq. (15) and the relation

Z
d2Δ⊥
ð2π2Þ

eiΔ⊥·sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2=ð4M2Þ

p ¼ 1

π

e−2Ms

s
; ð71Þ

so that

D̃BFðb⊥Þ ¼
M
π

Z
d2sD̃ðjb⊥ − sjÞ e

−2Ms

s
: ð72Þ

This expression is amenable to two-dimensional numerical
integration.

B. Nonrelativistic limit

The conventional lore is that the electromagnetic form
factor is the three-dimensional Fourier transform (3DFT) of
the charge density. This idea emerges only by taking the
fully nonrelativistic limit.
We briefly review [25] how the 3DFT emerges. Our

starting point is the wave function Eq. (56) and the form
factor Eq. (55). Recall that the quantity x ¼ kþ=Pþ. In the
nonrelativistic limit the energy k0 ¼ m1 and kþ ¼ m1 þ κ3,
where κ3 is the third component of the relative longitudinal
momentum. Further we define the positive binding energy
B so that

M ≡m1 þm2 − B: ð73Þ

Then [51,52]

x ¼ m1 þ κ3

M
; 1 − x ¼ M −m1 − κ3

M
¼ m2 − B − κ3

M
:

ð74Þ

To obtain the nonrelativistic wave function we express the
denominator appearing in Eq. (56) in terms of κ3. This
gives

M2 −
κ2 þm2

1

x
−
κ2 þm2

2

1 − x
≈ 2M

�
−B −

κ2

2μ

�
; ð75Þ

where

κ2 ≡ κ2 þ κ23; κ ¼ κþ κ3ẑ; μ≡ m1m2

m1 þm2

: ð76Þ

In deriving Eq. (75), we have dropped terms of order
ðv=cÞ3 ¼ ðk=mÞ3 and higher, and terms of order B=M and
higher. The result is that Eq. (75) is recognizable as 2M
times the inverse of the nonrelativistic propagator.
The next step is to determine the coordinate form of the

nonrelativistic wave function ψNRðrÞ (where r is canoni-
cally conjugate to κ) and to show that the nonrelativistic
form factor is a three-dimensional Fourier transform of
jψNRðrÞj2. First use the nonrelativistic approximation
Eq. (75) in Eq. (56) to find

ψNRðκÞ ¼
−μg

Mðκ2 þ λ2Þ ; λ2 ≡ 2μB: ð77Þ

The coordinate-space wave function ψNRðrÞ is given by

ψNRðrÞ ¼
1

ð2πÞ3=2
Z

d3κeiκ·rψNRðκÞ ¼ −
μg
2M

ffiffiffi
π

2

r
e−λr

r
:

ð78Þ

The expression Eq. (78) is seen as the standard result
obtained for the bound state of a two-particle system
interacting via an attractive delta function potential. It is
also the effective range approximation [53], now known as
the leading-order term in effective field theory [54].
The wave functions Eqs. (77) and (78) enable us to

examine the conditions needed for the approximations
Eq. (74) to be valid. For Eq. (74) to work, we need
κ2 ≪ m2

1;2. The wave functions include all corrections to
masses of order κ2=m2

1;2, and therefore no further correc-
tions of order κ=m1;2 or B=m1;2 should be included. Thus in
evaluating the form factor we should use

dx →
dκ3

M
; ð79aÞ

xð1 − xÞ → μ

M
; ð79bÞ

ð1 − xÞΔ →
m2

M
Δ: ð79cÞ
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The nonrelativistic electromagnetic form factor FNRðtÞ is
obtained by using Eq. (77) in the expression for the form
factor Eq. (55), and taking the nonrelativistic limit as
defined above. The result is

FNRðtÞ ¼
1

2ð2πÞ3μ
Z

d3rjψNRðrÞj2e−iΔ·r
m2
M : ð80Þ

This conforms to the commonplace expectation that the
form factor is a three-dimensional Fourier transform of the

density. One may extract the density jψNRðb⊥Þj2 by taking
the Fourier transform of the form factor:

Z
d3ΔFNRðtÞeiΔ·R ¼ 1

2μ

����ψNR

�
M
m2

R

�����
2

: ð81Þ

Similarly, the nonrelativistic gravitational form factor is
given by

ANRðtÞ ¼
1

2ð2πÞ3μ
Z

d3rjψNRðrÞj2½m1e
−iΔ·r m2

m1þm2 þm2e
iΔ·r m1

m1þm2 �: ð82Þ

The principle difference between the relativistic and nonrelativistic computations of form factors occurs e.g., in Eq. (79c):
the variable factor (1 − x) is replaced by a constant.
We may evaluate the integrals immediately to find

FNRðtÞ ¼
tan−1 jΔ⊥jm2

2ðm1þm2Þλ
jΔ⊥jm2

2ðm1þm2Þλ
; ð83aÞ

ANRðtÞ ¼
2λ

jΔ⊥j


m1

m2

tan−1
� jΔ⊥jm2

2ðm1 þm2Þλ
�
þm2

m1

tan−1
� jΔ⊥jm1

2ðm1 þm2Þλ
��

; ð83bÞ

where the coupling constants and other constants enter in such a manner as to make FNRð0Þ ¼ 1. Note that if m1 ¼ m2 one
has ANRðtÞ ¼ FNRðtÞ, as noted previously of the fully relativistic case.
It is easiest to get DNR using momentum space techniques First choose g such that FNRð0Þ ¼ 1, which leads to

g2 ¼ 16πM2λ

μ
: ð84Þ

Then take the nonrelativistic limit of Eq. (65), defining α≡m=M. We obtain

Δ1Δ2DNRðtÞ ¼ Δ1Δ2

1

2π3μ

Z
d3κð2κ1κ2 − Δ1Δ2=2Þψ�

NRðκþ αΔ=2ÞψNRðκ − αΔ=2Þ ð85aÞ

¼ 8λ=π2
Z

d3κð2α2z2Δ1Δ2 − Δ1Δ2=2Þ
Z

1=2

−1=2
dz

1

ðκ2 þ λ2 þ α2Δ2ð1=4 − z2ÞÞ2 ð85bÞ

DNRðtÞ ¼ −8λ
Z

1=2

0

dz
ð1 − 4α2z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − tð1=4 − z2Þ

p ð85cÞ

¼ 8λ

0
B@λ

t
−
ð4λ2 − ðα2 − 2ÞtÞ csc−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λ2

α2t

q 

2αjΔj3

1
CA: ð85dÞ

The value at zero momentum transfer is of interest, and it can be obtained immediately from Eq. (85c) to be

DNRð0Þ ¼ −4
�
1 −

m2

3M2

�
¼ −4

�
1 −

1

12

�
1þ B

M

�
2
�
: ð86Þ
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For weak binding (with m ≈M=2), we find DNRð0Þ ¼
−11=3, which agrees with the fully relativistic result in this
limit. For strong binding (B ≈M), we findDNRð0Þ¼−8=3.
For very strong binding with B=M > 2

ffiffiffi
3

p
− 1 ≈ 2.5, we

find DNRð0Þ > 0, in violation of Polyakov’s negativity
condition. This suggests that the nonrelativistic model is
invalid for such large binding energies.
To evaluate the nonrelativistic transverse stress potential

D̃NRðb⊥Þ, we use the identity
Z

d2Δ⊥
ð2πÞ2 e

iΔ⊥·b⊥ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − tð1=4 − z2Þ

p

¼ 1

2πb⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4 − z2Þ

p e

−b⊥λffiffiffiffiffiffiffiffi
1=4−z2

p
; ð87Þ

giving us (with α ¼ 1=2)

4PþD̃NRðb⊥Þ¼−
8λ

2πb⊥

Z
1=2

0

dz
1−z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4−z2

p e

−b⊥λffiffiffiffiffiffiffiffi
1=4−z2

p
: ð88Þ

C. Selected examples

We examine two specific examples, with weak and
strong binding respectively. The former is appropriate
for deuteronlike kinematics and the latter for pionlike
kinematics, especially the kinematics in the light front
model of Ref. [55].

1. Deuteronlike kinematics

We first look at an example with weak binding, namely
deuteronlike kinematics with M ¼ 1.875 GeV and
B ¼ 0.001M. Recall that M ¼ 2m − B, with B > 0.
In Fig. 2, we compare the exact relativistic electromag-

netic form factor FðtÞ and exact stress form factor DðtÞ to
their nonrelativistic approximations FNRðtÞ and DNRðtÞ
as functions of −t. The derivation of the exact and

nonrelativistic form factors serves as a rough guide for
the significance of relativistic effects in the system.
The exact and nonrelativistic FðtÞ are close when

−t=M2 < 0.1 (or −t ≈ 0.4 GeV2), but diverge significantly
at moderate and larger −t. Since Dð0Þ is not protected by a
conservation law [unlike Fð0Þ or Að0Þ], it is possible for the
exact and nonrelativistic values to differ. Indeed we find an
exact D-term value of Dð0Þ ¼ −3.74 and a nonrelativistic
value of DNRð0Þ ¼ −3.67, which are fairly close in
magnitude, but non-negligible. The differences between
the exact and nonrelativistic form factors illustrate the
differences discussed in Eq. (33) and related paragraphs.
Next, we compare the densities entailed by the relativ-

istic and nonrelativistic DðtÞ in Fig. 3. In particular, the
direct Fourier transform D̃ðb⊥Þ [as defined in Eq. (15)] and
the radial pressure are both examined. For spin-zero targets,
the Breit frame pseudodensity additionally differs from
both the exact light front result due to the appearance of the
factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=4M2

p
, so it is compared to the exact and

nonrelativistic results in both cases.
In the left panel of Fig. 3, the areas under the exact and

Breit frame curves are the same, since the two-dimensional
integrals of Eqs. (15) and (70) are equal. However, the
factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=4M2

p
in Eq. (70) leads to the suppression

of D̃BFðb⊥Þ at small values of b⊥ and enhancement at
moderate values, both by small amounts. At large values,
the densities become equal, showing the corrections related
to the factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=4M2

p
become negligible at large

distances. However, the nonrelativistic result for D̃ðb⊥Þ is
significantly different from the exact and Breit frame
results, suggesting that relativistic effects may persist in
mechanical densities even at fairly large distances.
This same trend can be seen in the radial pressure, as

depicted in the right panel of Fig. 3. Relativistic effects
propagate to large b⊥, even when they would be expected
to vanish. This occurs because the pressure does not
correspond to a conserved current, and is thus sensitive

FIG. 2. Form factors for a scalar toy model with deuteronlike kinematics. Exact results for (left panel) FðtÞ and (right panel) DðtÞ are
compared to their nonrelativistic approximations.
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to the details of the dynamics of a system (see Refs. [56,57]
for examples of cases where the details of dynamics are
significant). The details of the dynamics affect the overall
mechanical structure of the hadron, and not just local
aspects of the structure at small distances. Note that the log
scale in the right panel of Fig. 3 covers more than 6 orders
of magnitude, so that the apparently small differences are
actually rather large.
For a slightly more detailed perspective, consider the

right-hand side of Eq. (65), which was used in obtaining the
relativistic D̃ðb⊥Þ. The matrix element is weighted by a
factor 1

x compared to the matrix elements for the densities
associated with FðtÞ and AðtÞ. This factor increases the
integrand when x ∼ 0 or x ∼ 1, conditions that are explicitly
discounted by the nonrelativistic limit in which (for equal
mass constituents) we make the replacement 1

x ↦
1
α ≈ 2.

The overall lesson of this case is that, because the
mechanical properties of a hadron are not protected by a
conservation law, they are sensitive to the details of
dynamics, and accordingly nonrelativistic effects can have

a significant effect even at large distances and even for
weakly bound systems.

2. Pionlike kinematics

We now consider the scalar toy model with kinematics
appropriate for a constituent quark model of the pion. We
use a “quark”mass of 210 MeV, which leads to an excellent
description of the pion’s electromagnetic form factor [55].
With M ¼ 140 MeV, this means that B=M ¼ 2, and
according to Eq. (86) we get DNRð0Þ ¼ −1, a result that
immediately demonstrates the importance of relativistic
effects for this model.
In Fig. 4, we present the exact and nonrelativistic form

factors FðtÞ and DðtÞ. As expected, the relativistic effects
are substantial. Even at t ¼ 0, we have Dð0Þ ¼ −4.9 and
DNRð0Þ ¼ −1, about a fifth of the relativistically exact
value. Moreover, the nonrelativistic approximation of DðtÞ
has a zero crossing that is absent in the exact result, as seen
in the right panel of Fig. 4. This is because of the increasing
importance of z values near 1

2
with larger Δ2, which causes

FIG. 4. Form factors for a scalar toy model with pionlike kinematics. Exact results for (left panel) FðtÞ and (right panel) DðtÞ are
compared to their nonrelativistic approximations.

FIG. 3. D-term related densities for a scalar toy model with deuteronlike kinematics. Exact results, Breit frame results, and
nonrelativistic approximations for (left panel) the potential D̃ðb⊥Þ and (right panel) the 2D radial pressure prðb⊥Þ are compared.
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the second term in the integrand of Eq. (85c) to dominate
over the first term.
The density D̃ðb⊥Þ and radial pressure are shown in

Fig. 5. As expected, there are very substantial differ-
ences between the relativistic light front density, Breit
frame pseudodensity, and nonrelativistic approximation.
Remarkably, the Breit frame result is a worse approxi-
mation to the relativistically exact light front density in
this case than the nonrelativistic approximation. This
demonstrates the significance of the extraneous factor
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=ð4M2Þ

p
present in the Breit frame densities,

and strongly forces us to the conclusion that the findings
of Refs. [30,31] cannot be applied outside of the spin-half
case, where those results hold only by accident.

V. SUMMARY AND CONCLUSIONS

In this work, we obtained exact relativistic (light front)
and approximate nonrelativistic expressions for densities in
spin-zero in spin-half hadrons. Focus was placed on the Pþ
and mass densities, as well as the pressures encoded by the
stress tensor as seen from the perspective of an observer
comoving with the hadron. We compared the exact and
nonrelativistic expressions to those obtained in the Breit
frame formalism. We find that, in general, the Breit frame
densities do not have a direct correspondence with the exact
light front densities, even through Abel transforms. This
failure of correspondence occurs in the spin-zero case
because of an extraneous factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=ð4M2Þ

p
present

in the integrand of every spin-zero Breit frame density, and
in both cases because the relativistic light front densities do
not exhibit spherical symmetry. The latter of these facts is
illustrated for spin-half hadrons in particular by the
azimuthal dependence of Pþ densities and pressures of
transversely polarized states, to which the inverse Abel
transform is inapplicable even formally. In general, how-
ever, the light front formalism lacks spherical symmetry,
since there is no SO(3) subgroup of the Poincaré group that
commutes with P− [32].

The significance of both relativistic effects and the
extraneous term 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=ð4M2Þ

p
present in the spin-zero

Breit frame densities is illustrated through a pedagogical
model. Relativistic effects were found to affect the
mechanical structure of a composite system significantly,
even for weakly bound systems and at large distances—in
contrast to the electromagnetic density or mass density,
both of which are protected by conservation laws.
Moreover, for strongly bound systems, we found that the
extraneous factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=ð4M2Þ

p
makes the (Abel trans-

form of the) Breit frame density a poor approximation to
the relativistic light front density.
Taking the inverse Abel transform of a transverse light

front density can, at best, return a partially nonrelativistic
approximation. This approximation is partially nonrela-
tivistic, since a nonrelativistic approximation of the
internal dynamics has not been applied to the form
factors associated with the density, but instead only to
the accompanying Lorentz tensors. In some circumstan-
ces, such as neutron star structure, this approximation
may be warranted (cf. Ref. [36] for an example of this
application), but one should bear in mind that this
operation is an approximation that eliminates effects
due to boosts from the target’s rest frame. For targets
with wave functions localized to a smaller distance than
their reduced Compton wavelength, or targets for which a
finer resolution of internal structure than the Compton
wavelength is desired—such as hadrons—this approxi-
mation cannot be justified.
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FIG. 5. D-term related densities for a scalar toy model with pionlike kinematics. Exact results, Breit frame results, and nonrelativistic
approximations for (left panel) the potential D̃ðb⊥Þ and (right panel) the 2D radial pressure prðb⊥Þ are compared.
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