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Deep inelastic scattering (DIS) samples a part of the wave function of a hadron in the vicinity of the light
cone. Lipatov constructed a spin chain which describes the amplitude of DIS in leading logarithmic
approximation. Kharzeev and Levin proposed the entanglement entropy as an observable in DIS [Phys.
Rev. D 95, 114008 (2017)], and suggested a relation between the entanglement entropy and parton
distributions. Here we represent the DIS process as a local quench in Lipatov’s spin chain and study the
time evolution of the produced entanglement entropy. We show that the resulting entanglement entropy
depends on time logarithmically, SðtÞ ¼ 1=3 lnðt=τÞ with τ ¼ 1=m for 1=m ≤ t ≤ ðmxÞ−1, where m is the
proton mass and x is the Bjorken x. The central charge c of Lipatov’s spin chain is determined here to be
c ¼ 1; using the proposed relation between the entanglement entropy and parton distributions, this
corresponds to the gluon structure function growing at small x as xGðxÞ ∼ 1=x1=3.
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I. INTRODUCTION

Fifty years ago, Balitsky, Fadin, Kuraev, and Lipatov
(BFKL) set out a study of the high-energy behavior of the
hadron scattering amplitude within perturbative QCD.
They identified the terms ðαs ln sÞn (where s is the squared
center-of-mass energy and αs is the strong coupling)
resulting from the gluon ladders exchanged between the
colliding hadrons. Since at high energies ln s is large, even
at weak coupling it was necessary to resum the entire series
of these leading logarithmic terms. The result was that the
total cross section grows as sαBFKL−1, where αBFKL > 1 is the
intercept of the resulting “BFKL pomeron” [1–4].
The growth of the cross section, and the corresponding

increase of the gluon structure function at low Bjorken x,
has been observed in deep inelastic scattering (DIS) at
HERA [5–8], which excited interest in the studies of BFKL
dynamics. In a ground-breaking paper [9], Lipatov dis-
covered that in the leading logarithmic approximation
(LLA), DIS can be effectively described by the XXX spin
chain with zero spin.
At high energy, the scattering amplitudes in QCD are

described by the exchange of gluons between the virtual
quark-antiquark pair (resulting from the splitting of the

virtual photon) and the hadron. The gluons are dressed by
virtual gluon loops, which leads to their “Reggeization.”
See Fig. 1. In the limit of large number of colors Nc (with
fixed g2Nc, where g is the QCD coupling), the Hamiltonian
describing the interactions of Reggeized gluons reduces to
the sum of terms describing the near-neighbor interactions,
as a Hamiltonian of a spin chain. The chain was mapped to
the spin (−1) [10] and to the lattice nonlinear Schrödinger
model [11]. Here we will use the nonlinear Schrödinger
(NLS) equation [12–15] to describe the entanglement
entropy evolution in DIS. In our treatment, we will rely
on the conformal field theory (CFT) description of quantum
lattice NLS.
Ideas of information theory find new applications in

physics. In particular, the quantum information approach to
high-energy interactions was extended in a recent paper
[16], where it was argued that the phases of light cone wave
functions cannot be measured in high-energy collisions—
therefore, the corresponding density matrix has to be
averaged over the phase, with the corresponding Haar
measure. This leads to the emergence of entanglement
entropy describing the corresponding “Haar scrambled”
mixed states. The structure functions measured in DIS can
be interpreted in terms of this entanglement entropy
[17,18]. To develop this description further and to describe
the real-time evolution of the entanglement entropy in DIS,
one needs to identify the physical excitations of the
effective high-energy QCD Hamiltonian. This can be
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conveniently done in the spin chain case, with the help of
the CFT description [19–21]. This motivates our study of
entanglement entropy evolution in a local quench describ-
ing the DIS in the XXX spin chain with negative spin
(which is equivalent to NLS).
The algebraic Bethe ansatz (quantum inverse scattering

method) [15,22] can be used for construction of the
eigenfunctions of NLS. Here we will apply this method
to the XXX spin chain with spins s ¼ 0 and −1 describing
high-energy QCD in the LLA. Then we will explain the
relation between the XXX spin chain with negative spin to
the quantum NLS model.
The paper is organized as follows. In Sec. II, we present

the construction of eigenstates of Lipatov’s spin chain by
means of the algebraic Bethe ansatz. In Sec. III, we will
map Lipatov’s spin chain to the quantum lattice NLS model
and study the thermodynamic limit of the system. In Sec. IV,
we discuss the entanglement entropy evolution of Lipatov’s
spin chain after the local quench, and the corresponding
evolution of the local operator entanglement. Sec. V is the
conclusion. Appendix provides an intuitive derivation of
entanglement dynamics based on CFT.

II. LIPATOV’S SPIN CHAIN

The holomorphic multicolor QCD Hamiltonian [9,10]
describes the nearest neighbor interactions of L particles
(Reggeized gluons):

HL ¼
XL
k¼1

Hk;kþ1; ð1Þ

with periodic boundary conditions HL;Lþ1 ¼ HL;1. To give
a specific expression, let us introduce the holomorphic
transverse coordinate zj, and its corresponding momentum
Pj ¼ i∂=∂zj ¼ i∂j. Here i ¼ ffiffiffiffiffiffi

−1
p

is the imaginary unit.
The local Hamiltonians are given by the equivalent
representations

Hj;k ¼ P−1
j lnðzjkÞPj þ P−1

k lnðzjkÞPk þ lnðPjPkÞ þ 2γE

¼ 2 lnðzjkÞ þ ðzjkÞ lnðPjPkÞðzjkÞ−1 þ 2γE; ð2Þ

where zjk ¼ zj − zk, and γE is the Euler constant.We have to
put j ¼ kþ 1 and substitute into (1).
Lipatov used a holomorphic representation of SUð2Þ

Sþk ¼ z2k∂k − 2szk; S−k ¼ −∂k; Szk ¼ zk∂k − s; ð3Þ

with k ¼ 1;…; L. He then mapped DIS to a particular type
of spin chain. The definition of this chain is based on the

existence of a fundamental matrix Rðs;sÞ
jk ðλÞwhich obeys the

Yang-Baxter equation

Rðs;sÞ
jk ðλÞ ¼ fðs; λÞ Γðiλ − 2sÞΓðiλþ 2sþ 1Þ

Γðiλ − JjkÞΓðiλþ Jjk þ 1Þ : ð4Þ

Here fðs; λÞ is a complex valued function (it normalizes the
R matrix), and λ is called the spectral parameter. The
superscript ðs; sÞ means that both the auxiliary space and
the quantum space have spin s. The operator Jjk is defined
in the space V ⊗ V as a solution of the operator equation,

JjkðJjk þ 1Þ ¼ 2S⃗j ⊗ S⃗k þ 2sðsþ 1Þ: ð5Þ

Everything commutes in this equation, so one can use
Vieta’s formula to solve this quadratic equation. The
Hamiltonian of the XXX model with spin s ¼ 0 describes
the interaction of nearest neighbors [see (1)], which can be
written as

Hjk ¼
−1
i

d
dλ

lnRðs¼0Þ
jk ðλÞ

����
λ¼0

; ð6Þ

Hjk ¼ ψð−JjkÞ þ ψðJjk þ 1Þ − 2ψð1Þ: ð7Þ

For simplicity, we apply the notation Hjk ¼ Hj;k. Here
ψðxÞ ¼ d lnΓðxÞ=dx, and ψð1Þ ¼ −γE (γE is the Euler
constant). The operator Jjk is a solution of (5) when s ¼ 0,

JjkðJjk þ 1Þ ¼ −ðzj − zkÞ2∂j∂k; ð8Þ

where we have to put j ¼ kþ 1 to use in (6). This is a
description of DIS in QCD by the s ¼ 0 spin chain.
After a similarity transformation, the spin s ¼ 0 model

can be mapped to the s ¼ −1 model. The latter can be
easily solved by the algebraic Bethe ansatz method. Thus
the high-energy asymptotics in multicolor QCD is exactly
solvable, and it has the same eigenvalues with that of the
XXX spin s ¼ −1 chain.
After finding the family of local integrals of motion and

taking the XXX model of spin s ¼ −1 into consideration,
we can then apply the algebraic Bethe ansatz [23] in a
standard procedure.

FIG. 1. FeynmandiagramdescribingDISat smallBjorkenx.The
virtual photon γ� emitted by the scattered lepton (not shown) splits
into a virtual quark-antiquark pair. The Reggeized gluons are
exchangedbetween thevirtualquark-antiquarkpair and thehadron.
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We define the auxiliary monodromy matrix by taking the
ordered product of the fundamental Lax operators

Lðs;sÞ
f;k ðλÞ ¼ Rðs;sÞ

f;k ðλÞ [15,23] along the lattice (with both
its auxiliary space and quantum space being spin s)

TfðλÞ ¼ Lðs;sÞ
f;L ðλÞLðs;sÞ

f;L−1ðλÞ � � �Lðs;sÞ
f;1 ðλÞ: ð9Þ

The fundamental transfer matrix is the trace of the mono-
dromy matrix over the auxiliary space,

τðλÞ ¼ trfTfðλÞ; ½τðλÞ; τðμÞ� ¼ 0; ð10Þ

i.e., these matrices commute with each other for different
values of the spectral parameter.
On the other hand, if we choose the L operator

L
ð1
2
;sÞ

a;k ðλÞ ¼
�
λ1k þ iSzk iS−k

iSþk λ1k − iSzk

�
ð11Þ

and define the transfer matrix

tðλÞ ¼ tra½Lð1
2
;sÞ

a;L ðλÞ � � �Lð1
2
;sÞ

a;1 ðλÞ�

¼ tra

�
AðλÞ BðλÞ
CðλÞ DðλÞ

�

¼ AðλÞ þDðλÞ; ð12Þ

we get

½tðλÞ; tðμÞ� ¼ 0; ½tðλÞ; τðμÞ� ¼ 0: ð13Þ

Both of the two transfer matrices τðλÞ and tðλÞ act on the
full quantum space of the model and commute with each
other for different values of the spectral parameters. One
can get a family of mutually commuting conservation laws
of the model. The fundamental transfer matrix τðλÞ contains
the local integrals of motion, including the Hamiltonian of
the model. In contrast, the operator tðλÞ allows one to
construct their eigenstates by means of the Bethe ansatz.
The explicit forms of integrals of motions are given by

[23]. In particular, both the Hamiltonian of spin s ¼ −1 and
spin s ¼ 0 models can be obtained from the first order
derivative of the transfer matrix τ,

Hðs¼−1Þ
L ¼ −1

i
d
dλ

ln τðs¼−1ÞðλÞ
����
λ¼0

; ð14Þ

Hðs¼0Þ
L ¼ −1

i
d
dλ

ln τðs¼0ÞðλÞ
����
λ¼0

: ð15Þ

Based on the relation between the Lax operators and the
definition in Eq. (12), the one-to-one correspondence
between the XXX models of spin s ¼ −1 and spin s ¼
0 can be described by a similarity transformation (each

local Hamiltonian of spin s ¼ 0 will be converted into a
Hamiltonian with four nearest neighbor interactions):

Hðs¼−1Þ
L ¼ ðz12z23 � � � zL1Þ−1Hðs¼0Þ

L z12z23 � � � zL1: ð16Þ

Thus the Hamiltonians of the two models have the same
eigenvalues.
By using the explicit form of the spin operators (3), one

can find that for s ¼ −1 the equations

Sþk jωki ¼ 0; Szkjωki ¼ −jωki ð17Þ

have the solution jωki ¼ 1=z2k. This allows us to construct
the pseudovacuum state as

jΩi ¼ ðz21z22 � � � z2LÞ−1: ð18Þ

Then the Bethe states for spin s ¼ −1 are given in terms of
operator B from (12),

jφ̂NðfλgÞi ¼ Bðλ1ÞBðλ2Þ � � �BðλNÞðz21z22 � � � z2LÞ−1: ð19Þ

These are the eigenvectors of Lipatov’s spin chain. The
eigenvalue of the transfer matrix τðλÞ as a function of
spectral parameter λ has the following form:

ðλ − iÞL Qðλ − iÞ
QðλÞ þ ðλþ iÞL Qðλþ iÞ

QðλÞ ; ð20Þ

with the function QðλÞ,

QðλÞ ¼
YN
k¼1

ðλ − λkÞ: ð21Þ

The corresponding Bethe equation, determining the
parameters ðλ1;…; λNÞ, is

�
λk þ is
λk − is

�
L
¼

YN
j¼1;j≠k

λk − λj þ i

λk − λj − i
; ð22Þ

with k ¼ 1;…; N. Substitute s ¼ −1, and then we have

�
λk − i
λk þ i

�
L
¼

YN
j¼1;j≠k

λk − λj þ i

λk − λj − i
: ð23Þ

These are periodic boundary conditions. In order to
construct elementary excitations, we have to change to
antiperiodic boundary conditions. We remark that all the
solutions λk of the above Bethe equations are real numbers.
This means that there is no bound state in this system.
The explicit expressions for the eigenvalues of integrals

of motions for arbitrary spin s have been found in algebraic
Bethe ansatz [23], and we use these expressions for s ¼ −1
to get the eigenvalues of the Hamiltonian
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E≡XN
j¼1

−1
i

d
dλj

ln
λj þ i

λj − i
¼

XN
j¼1

2

λ2j þ 1
; ð24Þ

where fλjg obey the Bethe equations (23) for a fixed
number of Reggeized gluons L. Thus, this relation yields
the spectrum of the original holomorphic QCD model with
Hamiltonian HL.

III. QUANTUM LATTICE NONLINEAR
SCHRÖDINGER MODEL

Let us begin with a brief description of the quantum
lattice nonlinear Schrödinger model. The quantum lattice
NLS equation was introduced in [12,13,15]. It is equivalent
to the XXX spin chain with negative spin. Quantum lattice
NLS is a chain of interacting harmonic oscillators. Let Ψ�

j
and Ψk be the canonical creation and annihilation operators
of the harmonic oscillator:

½Ψj;Ψ�
k� ¼ δjk; ð25Þ

and

ϱj ¼
�
1þ κΔ

4
Ψ�

jΨj

�1
2

: ð26Þ

Here δjk is the Kronecker delta function, κ > 0 is the
coupling constant [24] for NLS and Δ > 0 is a step of the
lattice. The operators

Sjx ¼
iffiffiffiffiffiffi
κΔ

p ðΨ�
jϱj þ ϱjΨjÞ; ð27aÞ

Sjy ¼
1ffiffiffiffiffiffi
κΔ

p ðϱjΨj −Ψ�
jϱjÞ; ð27bÞ

Sjz ¼
−2
κΔ

�
1þ κΔ

2
Ψ�

jΨj

�
ð27cÞ

are the generators of an irreducible representation of SUð2Þ
algebra with a negative spin

s ¼ −
2

κΔ
: ð28Þ

In general, this SUð2Þ representation [12,23] is infinite-
dimensional, but for special (negative) values of Δ it can
become finite-dimensional.
Let us focus on the correspondence between Bethe

equations of the two models. The Bethe roots λk of the
quantum lattice NLS model satisfy the following Bethe
equations:

�
1þ iλkΔ=2
1 − iλkΔ=2

�
L
¼

YN
j≠k

λk − λj þ iκ

λk − λj − iκ
: ð29Þ

Comparison of the above modified Bethe equations and
Bethe equations (23) shows the connections between the
two models. When we take coupling constant κ ¼ 1, and
Δ ¼ 2, the Bethe equations become

ð−1ÞL
�
λk − i
λk þ i

�
L
¼

YN
j≠k

λk − λj þ i

λk − λj − i
: ð30Þ

This means that the quantum lattice NLS model describes a
more general XXX spin chain model with negative spin
s ¼ −2=κΔ, and holomorphic QCD is the special case with
spin s ¼ −1, Δ ¼ 2 and coupling constant κ ¼ 1.
Based on Bethe equations (23) and (30) for the hol-

omorphic QCD model (XXX with spin s ¼ −1, also the
quantum lattice NLS model), we have the logarithmic form
Bethe equations. We define each number n (integer or
half-integer) as a vacancy. Among them, some vacancies
corresponding to Bethe roots are called particles. Other free
vacancies are called holes. The number of vacancies is the
sum of the number of particles and holes.
Differentiate the logarithmic Bethe equation with respect

to λ, change the sum (in Bethe equations) to an integral, and
one has the linear integral equation for the number (density)
of vacancies ρtðλÞ,

2πρtðλÞ ¼
Z þ∞

−∞
Kðλ; μÞρpðμÞdμþ KðλÞ; ð31Þ

with

Kðλ; μÞ ¼ 2

1þ ðλ − μÞ2 ; KðλÞ ¼ Kðλ; 0Þ: ð32Þ

Here ρtðλÞ is the sum of the numbers of particles ρpðλÞ and
holes ρhðλÞ. Their proofs follow from [11,15,25].
All λj are different [15] (Pauli principle in the momen-

tum space). In the thermodynamic limit, the values of λj
condense and form a Fermi sphere. Considering the grand
canonical ensemble Eh ¼ E − h (h is chemical potential)
for small h → 0þ, then all the vacancies inside the interval
ð−∞;−q� ∪ ½q;∞Þ (called particles) are occupied by all the
Bethe roots λj [the density of holes ρhðλÞ ¼ 0]. One can get
a linear integral equation for ρpðλÞ,

2πρpðλÞ ¼
�Z

−q

−∞
þ
Z

∞

q

�
Kðλ; μÞρpðμÞdμþ KðλÞ: ð33Þ

We define the dressed energy of elementary excitation
εðλÞ as the solution of the linear integral equation

ε0ðλÞ≡ 2

λ2 þ 1
− h

¼ εðλÞ − 1

2π

�Z
−q

−∞
þ
Z

∞

q

�
Kðλ; μÞεðμÞdμ; ð34Þ
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with condition

εðqÞ ¼ εð−qÞ ¼ 0: ð35Þ

In the correspondence between the structure functions
and the entanglement entropy, the small x behavior of the
structure function is determined by the central charge of the
effective CFT describing high-energy QCD [17]. It is thus
important for us to evaluate the central charge of Lipatov’s
spin chain.
The calculation of the central charge goes through the

evaluation of finite size corrections. It can be calculated by
means of the Bethe ansatz and CFT. The comparison gives
the central charge. The finite size correction to the ground
state energy in continuous NLS was evaluated by means of
the Bethe ansatz in Chapter 1 Sec. I. 9 of the book [15].
For the current model, one can calculate the finite size

correction to the ground state energy in the same way. The
ground state energy can be written as a summation with
respect to the Bethe roots,

E
L
¼ 1

L

X
j

ε0ðλjÞ: ð36Þ

Using the Euler-Maclaurin formula for approximating
sums by integrals, one finally obtains

E ¼ L

�Z
−q

−∞
þ
Z

∞

q

�
ε0ðλÞρðλÞdλ −

π

6L
vF þ h:o:c: ð37Þ

Here vF is the Fermi velocity, and h.o.c. means higher order
corrections.
For unitary CFT, the central charge c is the coefficient of

the 1=L term in the expansion of the ground state energy for
L → ∞,

E ¼ Lε − c
πvF
6L

þ h:o:c: ð38Þ

See formula (0.1) in the Introduction of Chapter XVIII of
the book [15]. For lattice NLS and more general cases,
these can be obtained by the specification of Eq. (19) of the
paper [26] (one has to put M ¼ 1).
Comparison of (37) with CFT (38) shows that the central

charge of the corresponding Virasoro algebra is equal to
one, c ¼ 1.

IV. TIME DEPENDENCE OF THE
ENTANGLEMENT ENTROPY

A. Entanglement entropy

The entanglement entropy characterizes the lack of
complete information about a subsystem (quantum fluc-
tuation) when the total system is a known pure state.
Suppose that the system is in the pure state and consists of
subsystems A and B; its state can be represented as

jΨABi ¼
X
j;k

αj;kjψA;ji ⊗ jψB;ki; ð39Þ

with the bipartition of Hilbert space HAB ¼ HA ⊗ HB and
jψAðBÞi ∈ HAðBÞ. The pure state can be diagonalized in the
subspace, given by

jΨABi ¼
X
j

α̃jjψA;ji ⊗ jψB;ji; ð40Þ

known as the Schmidt decomposition [27]. The above
decomposition naturally gives the density matrix of sub-
system

ρAðBÞ ¼ trBðAÞρAB ¼
X
j

pjjψAðBÞ;jihψAðBÞ;jj; ð41Þ

with pj ¼ jα̃jj2. Therefore the subsystems A and B are
characterized by the same probabilistic distribution pj,
which is the signature of correlation. Then we consider the
entanglement entropy, defined by

SAðBÞ ¼ −
X
j

pj lnpj; ð42Þ

which is the ignorance due to the correlation between
subsystems A and B (we choose to use the natural log,
corresponding to measuring information in “nats”). In the
basis-independent manner, the entanglement entropy has
the form

SA ¼ −trρA ln ρA: ð43Þ

Note that SA ¼ SB, which demonstrates the correlation
nature of the entanglement entropy. If the density matrix ρA
is given by the identity matrix, then the von Neumann
entropy reaches the maximal value

SA ¼ ln dA; ð44Þ

with dA as the dimension of Hilbert space HA. Subsystems
A and B are maximally entangled if SA ¼ ln dA.
Quantum mutual information directly quantifies the

amount of correlation between A and B, given by

IðA;BÞ ¼ SA þ SB − SAB: ð45Þ

In the case of a pure state, we have IðA;BÞ ¼ 2SA.
Therefore the von Neumann entropy of a subsystem is
equal to the half of mutual information between the two
subsystems.

B. Evolution of entanglement entropy after quenches

DIS probes a subregion Awhich in the rest frame of the
proton is a tube with radius 1=Q and length 1=ðmxÞ [28],
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where Q is the momentum transfer; m is the proton mass;
and x is the Bjorken scaling variable. The region inacces-
sible to the virtual photon is denoted as B. Since the proton
represents a pure state which is an eigenstate of QCD
Hamiltonian, the DIS probes a part of this state, and the
unmeasured region has to be traced out. Then the entan-
glement entropy naturally arises in DIS [17]. If the entropy
is indeed caused by the entanglement, then the entropy of
rest of the nucleon should equal the entropy of parton
distribution. The data from LHC (in the proton-proton
collision) support the complementarity relation SA ¼ SB
[18,29,30].
The (1þ 1)-dimensional systems described by CFT

possess a universal scaling of entanglement entropy in
the subsystem [19,21,31]. Suppose that l is the length of
region A (l ≪ L). Then its entanglement entropy is

SA ¼ c
3
ln
l
ϵ
; ð46Þ

with the central charge c and the ultraviolet cutoff ϵ (the
resolution scale). For spin chains, this logarithmic formula
was rigorously proven in [32] (Fredholm determinants and
the Riemann-Hilbert problem were used). Therefore,
Lipatov’s spin chain with central charge 1 predicts the
logarithmic state entanglement. In an effective (1þ 1)-
dimensional model of QCD evolution [33,34], the entan-
glement entropy is found to be SA ¼ δ lnð1=xÞ where the
constant δ thus describes the growth of structure function
xGðxÞ ∼ ð1=xÞδ at small x.
In the target rest frame, the cutoff ϵ ¼ 1=m is given by

the proton’s Compton wavelength and l ¼ 1=ðmxÞ is the
longitudinal distance probed in DIS. The correspondence
between the central charge of the CFT and the intercept of
the gluon structure function is thus δ ¼ c=3 [17]. The
experimental data indicate δ ≈ 0.3 (see e.g., [35–37]),
which supports the CFT description of Lipatov’s spin
chain with the central charge c ¼ 1 determined above.
The DIS process can be understood as a local quench on

the ground state of the proton. The quench causes a local
excitation, which propagates in time, and at time ≃1=ðmxÞ
saturates. It is likely that entanglement causes an effective
thermalization of the system (thermalization through entan-
glement) [38]. Entanglement thermalization in the proton-
proton scattering has been discussed in [39]. Here we argue
that the evolution of entanglement in DIS can be described
by the local quench of Lipatov’s spin chain or the
corresponding CFT with central charge c ¼ 1.
Calabrese and Cardy have studied the entanglement

evolution after a local quench, based on the CFT method
[40]. The initial state of the evolution corresponds to the
ground states of regions A and B separately. Therefore
the translation invariance is broken. There is a defect on the
boundary of A and B (local excitation), and the entangle-
ment entropy increases logarithmically:

SAðtÞ ¼
c
3
ln
t
τ
; ð47Þ

with the characteristic time τ. This formula can also be
derived by comparison of the theory of classical shock
waves with the CFT; see Appendix. The quasiparticle
excitations are emitted only from the defect point, and
therefore the entanglement entropy undergoes a logarith-
mic increase. A linear increase would require a global
quench (sudden change of the entire Hamiltonian) [41].
The characteristic time τ is determined by the boundary

condition between A and B. It is independent of the central
charge and is beyond the CFT description. In the case of
DIS, in the target rest frame it is given by the proton’s
Compton wavelength τ ¼ 1=m. The time evolution of
entanglement entropy is thus given by

SAðtÞ ¼
c
3
lnmt; ð48Þ

which agrees with the CFT description of Lipatov’s spin
chain. After the critical time tc ¼ 1=ðmxÞ, the entangle-
ment saturates, and the region A probed by DIS becomes
maximally entangled with the remaining part of the proton
(which is not probed by the virtual photon).

C. Evolution of operator entanglement entropy

Entanglement evolution after a local quench characterizes
the spreading of entanglement from a local region. In a
complementary Heisenberg picture, the operators evolve as
OðtÞ ¼ eiHtOe−iHt. Consider the operator space H0

L ¼
EndðHLÞwith theHilbert-Schmidt inner product hOjjOki ¼
trðO†

jOkÞ, OjðkÞ ∈ EndðHLÞ. Similar to the state entangle-
ment, the space can be divided into two regions A and B.
Then the operator has the Schmidt decomposition

OffiffiffiffiffiffiffiffiffiffiffiffiffihOjOip ¼
X
j

ffiffiffiffiffi
χj

p
OA;j ⊗ OB;j; ð49Þ

with the eigenvalues χj and the orthonormal bases
hOAðBÞ;jjOAðBÞ;ki ¼ δjk. Similar to the state entanglement
entropy defined in Eq. (41), the operator space entanglement
entropy (OSEE) is defined as

SðOÞ ¼ −
X
j

χj ln χj: ð50Þ

The evolution of OSEE in terms of local operators also
characterizes the entanglement spreading in the system.
OSEE was first introduced in [42]. Then it was reintroduced
in [43,44] to study the simulation of quantum dynamics. It is
suggested that the OSEE grows at most logarithmically in
integrable systems, while chaotic systems have linear
increases.
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Numerical studies (based on the density matrix renorm-
alization group) have shown that the XXX spin chains
with positive spin (s ¼ 1=2 and s ¼ 1) have a logarithmic
increase of OSEE (for local operators) [45–47]. However,
the prefactor in front of the logarithm is different from the
state entanglement evolution. In terms of the local projec-
tion O ¼ 1=2 − Szk, numerical results show that

SðOðtÞÞ ∝ 2

3
ln t; ð51Þ

in the XXX-1=2 spin chain [47]. Note that different local
operators may have different prefactors. We argue that the
Lipatov’s spin chain (XXX spin chain with s ¼ −1) has a
similar logarithmic increase of OSEE. It is consistent with
the state entanglement evolution after local quench, given
by Eq. (47). Besides, a logarithmic increase is a general
feature of integrable systems. However, the evolution of
OSEE for local operators cannot be described by CFT in
general [48].
Another interesting observation is the OSEE evolution in

the quantum cellular automaton. Cellular automaton has
both discrete space and time. Quantum cellular automaton
has the unitary evolution and is a natural language for
quantum computation. Different rules of cellular automaton
have different names. OESS for the local operator also
grows logarithmically (the same as the XXZ-1=2 spin
chain) in the quantum cellular automaton rule 54 [46,47].
Such a sublinear increase of entanglement entropy suggests
its efficient simulation on quantum computers [49]. A
logarithmic increase of OSEE in Lipatov’s spin chain
suggests that DIS can be efficiently simulated on quantum
computers. We leave these simulations for the future.

V. CONCLUSIONS

In high-energy QCD, the scattering amplitude of DIS in
the LLA has been described by Lipatov in terms of an
integrable spin chain model. We mapped this model to the
quantum lattice NLS model. We then derived the eigen-
functions by means of the algebraic Bethe ansatz. After
evaluation of finite size corrections, we have concluded that
the Virasoro algebra (describing an effective CFT) has the
central charge equal to one, c ¼ 1. Based on the CFT
description, we found that the time evolution of entangle-
ment entropy after local quench is logarithmic

SAðtÞ ¼
1

3
ln
t
τ
; ð52Þ

with τ ¼ 1=m for 1=m ≤ t ≤ ðmxÞ−1, wherem is the proton
mass and x is the Bjorken x. The integrable system also
has the logarithmic evolution of OSEE. This suggests that
the DIS process can be efficiently simulated on quantum
computers.
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APPENDIX: CFT DESCRIPTION OF
ENTANGLEMENT ENTROPY DYNAMICS

Let us consider the entropy of a block of spins (an
interval of an infinite system). At positive temperature,
thermal fluctuations dominate. A theory of classical shock
waves shows that after local quench the entropy is a linear
function of time:

SðtÞ ¼ 2πc
3

Tt; ðA1Þ

where T is the temperature. The coefficient can be found in
[20]; see for example their formula (80). The shock wave
changes the density of the entropy.
Now let us consider entanglement entropy at zero

temperature, which is quantum. The entropy is some
function f of time,

SðtÞ ¼ fðtÞ: ðA2Þ

Conformal mapping shows that for positive T > 0

STðtÞ ¼ f

�
v
πT

sinh
πT
v

ðxþ vtÞ
�
; ðA3Þ

where v is velocity. We can put x ¼ 0 and consider the limit
of large time. The result for the entanglement entropy at
time t is

STðtÞ ¼ fðexp½πTðt − t0Þ�Þ; ðA4Þ

where t0 is an inessential constant. Now we have two
expressions for the entropy for positive temperature

STðtÞ ¼
2πc
3

Tt ¼ fðexp½πTðt − t0Þ�Þ: ðA5Þ

This means that we have found the function, and it is
given by
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fðtÞ ¼ 2c
3
ln tþ const: ðA6Þ

Each end of the block contributes equally, so for the local
quench we get

SðtÞ ¼ c
3
ln tþ const: ðA7Þ

It agrees with the entanglement entropy evolution after
local quench (with one point of defect) calculated in [40].
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