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We present a model for the vector and axial form factors of the transitions B̄0 → D�� in good agreement
with the presently available data and based on the present theoretical knowledge, combining (a) the safe
lattice QCD predictions at mQ ¼ ∞ and w ¼ 1; (b) the predictions at general w of a relativistic, covariant
quark model at mQ ¼ ∞, including the well-tested Godfrey and Isgur spectroscopic model and which
agrees with lattice QCD at w ¼ 1; (c) the constraint of Bjorken and Neubert relating semileptonic and class
I nonleptonic decays, which shows that B̄0 → D0ð2300Þþπ− strongly constrains τ1=2ðwÞ to be much
smaller than τ3=2ðwÞ, in agreement with the theoretical expectation; and (d) the general HQET expansion
which constrains the 1=mQ corrections (cf. Leibovich et al. Phys. Rev. Lett. 78, 3995 (1997)., denoted
hereafter as LLSW). An important element in the understanding of data is the large contribution of virtual

Dð�Þ
V to the broad structures seen in SL decays at low Dð�Þπ masses—which makes it difficult to isolate the

broad resonances denoted as D1=2 in the following.

DOI: 10.1103/PhysRevD.105.013004

I. INTRODUCTION

There is insufficient knowledge of both nonleptonic (NL)
and semileptonic (SL) transitions to charmed orbital exci-
tations, generically termed as D��.1 The latter (SL) are
especially interesting: (1) in themselves, for (a) striking
theoretically expected features which contradict the naive
idea of a strong similarity between SL transitions to j ¼ 1=2
and j ¼ 3=2 D��, and (b) for the apparent contradiction
between this expectation and the presently widespread
interpretation of experimental data on broad states, a contra-
diction which we claim to have resolved by the interplay of
the possibly large D�

V background [2]. (2) For some
applications, like the background to B̄ → Dð�Þl−ðτ−Þν̄lðτÞ.
Ultimately, one would like to have a description of the full
system of semileptonic B̄ → D�� form factors, but this
appears to be a hard task.

Indeed, there are no full calculations of the latter from
first principles, as are provided in simpler cases by lattice
QCD. Presently, the latter gives results only at mQ ¼ ∞
and w ¼ 1. The reasons are given below in Sec. II.
On the other hand, the experimental data are scarce: total

branching ratios, some points in the dΓ=dw of certain
transitions, etc. Then, as explained in more detail in Secs. II
and VIII, a more complicated path is to be followed,
combining theoretical inputs and experience, the former
being used in several different ways.
We indeed want to use the very useful general ideas

of the extensive analyzes of [3–5],2 relying on their HQET
analysis, but we take into account the following: (1) quan-
titative dynamical results at mQ ¼ ∞ of lattice QCD
[completed by quark models in the Bakamjian-Thomas
(BT) approach] as well as (2) the very important exper-
imental measurements of B̄0 → D0ð2300Þþπ−, which
strongly constrain the transition to j ¼ 1=2 to be small.
Both of these have been disregarded in the LLSWB
analyses.
Finally, we underline the very important role of the D�

V
background in the SL decays, which we have already
emphasized in [2]. We believe this role has not been fully
taken into account up to now.
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1We generically use the notation D��, as is done in [1], to refer
to the four lightest excited Dmesons whenever it is not necessary
to distinguish between them. Similarly,D��;þ (respectivelyD��;0)
denotes the positive (respectively neutral) states.

2From now on, we refer to this set of analyses as LLSWB.
When comparing such types of analyses with our model, we use
the acronym LLSWBi where the “i” means “inspired,” implying
slight modifications to LLSWB are required for a fair comparison
with our own model, as explained in Appendix D.
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All these elements, taken together, drastically change the
conclusions with respect to the ones of the above-men-
tioned analyses, especially the fact that the Isgur-Wise (IW)
functions (see Sec. II A) are roughly equal at w ¼ 1, as we
explain now.
The LLSW approach [3] provides a framework to para-

metrize 1=mQ corrections in corresponding hadronic form
factors and applies factorization to relate semileptonic and
class I nonleptonic decays. Such analyses [4,5], which take
as input quoted values [6,7] for B̄0 → D��;þl−ν̄l, conclude
that the production of narrow and broad D�� states is
similar. Meanwhile, to reach this conclusion, one has to
discard the measurement of B̄0 → D0ð2300Þþπ−,3 which
implies, as a consequence of factorization, a very small
value for the production of the D0ð2300Þ meson in semi-
leptonic decays, when compared with the rates measured
for narrow states. This might be justified because such a
low value, evaluated for B̄0 → D0ð2300Þþl−ν̄l, appears to
be in contradiction with the rates measured in experiments
for this channel. However, we think that the nonleptonic
data for the D1=2 are much more trustable than the semi-
leptonic ones. Indeed, the identification of the D0ð2300Þ in
the nonleptonic channel is supported by (1) the extraction
of D�

V and (2) the measurement of the phase shift, while no
such work has been done in the semileptonic case (except,
for D�

V, the work reported in [8]). Moreover, from a
theoretical point of view, the smallness of the transitions
to the D1=2 states with respect to the D3=2 ones has initially
been anticipated using quark models and, later, by direct
LQCD evaluations.
We consider this problem again and propose a model,

also based on the LLSW parametrization, which uses all the
measured nonleptonic class I decays in the framework of
factorization. This model agrees with LQCD and relativ-
istic quark model (RQM) expectations. Because, in this
model, production of broad D�� mesons is expected to be
much smaller than the production of narrow states, it is
necessary to add another broad component to be able to
explain the broad mass distributions measured in B̄0 →

Dð�Þπl−ν̄l decays. We find that Dð�Þ
V decays can fill such a

gap. In the following, we detail our model and provide
comparisons with the LLSWBi model in which the broad

Dð�Þπ mass distributions are explained by the contributions
from D�� decays alone, as done in previous analyses where
the measurement from B̄0 → D0ð2300Þþπ− is not used.
Finally, one is led to a solution with a j ¼ 1=2 rate much

smaller than the j ¼ 3=2 one.

II. THEORETICAL INPUTS

We mention “inputs” because one lacks a systematical
theoretical treatment: rather, one uses a mixture of proce-
dures, including the very experimental data which are to be
explained, and fitting.
In addition, several ingredients [(a)–(d), as enumerated

in the abstract] are available.
We can classify them into two categories, as follows.

A. Dynamical results at mQ =∞
In the infinite quark mass limit, hadronic form factors

that describe B̄ → D�� are determined by the two Isgur-
Wise functions: τ3=2ðwÞ and τ1=2ðwÞ. Their values at w ¼ 1

and their w dependence are constrained by two types of
theoretical considerations. The first come from lattice QCD
for w ¼ 1 at NF ¼ 0, 2; at NF ¼ 2 [9]

τ3=2 ¼ 0.526� 0.023; τ1=2 ¼ 0.296� 0.026 ð1Þ

showing a striking difference between them, in contrast to a
naive nonrelativistic (NR) expectation, according to which
these two quantities are equal.
These are trustable results which cannot be disregarded.

In the most recent simulation the lattice spacing is
reasonably small, a ¼ 0.085 fm, and the volume is rea-
sonably large, 243 × 48, although certain systematic errors
are not estimated. Of course, these results should be
improved. One notes that, at NF ¼ 2, the inequality
between j ¼ 1=2 and j ¼ 3=2 values is appreciably rein-
forced with respect to the older NF ¼ 0 ones. The second
ones stem from quark models, which, although purely
phenomenological, have the advantage of providing results
for w ≠ 1 as well.
Of course, there are a very large variety of quark models.

We consider a class of models for current matrix elements
where the calculation is decomposed into two steps: (1) the
determination of the wave functions at rest and (2) a
procedure to derive the state in motion. Then, there are
a variety of spectroscopic models, describing the spectrum
and the wave functions at rest, i.e., internal quark motion;
another variety comes from the way one describes the
hadron motion.
Among the many spectroscopic models, we use an

outstanding one by Godfrey and Isgur (GI) [10]. This
model is unique in that it covers a very large number of
hadronic states, both with light quarks and with heavy
ones. One must underline the fact that most predictions
have been confirmed by later experiments. Although it is a

3In fact, in the first two papers [1] and [3], the NL decays were
not used to constrain the semileptonic ones, and anyway, B̄0 →
D0ð2300Þþπ− has not yet been measured. In [4] and [5], on the
other hand, B̄0 → D0ð2300Þþπ− was known, and in [4], it was
considered to be “puzzling.” Indeed, one can see that the measured
value would clearly contradict, through factorization, their fit to
B̄0 → D0ð2300Þþl−ν̄l, near wmax, by an order of magnitude (see
the comparison of the experimental number and the LLSWBi
value in Table XII), while the agreement is quite good for the fit to
B̄0 → D�þ

2 l−ν̄l. Finally, in [5], B̄0 → D0ð2300Þþπ− data were
explicitly discarded: only B̄ → D3=2π’s are used (see the beginning
of their Sec. IV, p. 9).
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complicated model with many parameters, the latter can be
determined because the model covers of a very extended
spectrum. This model has a relativistic kinetic energy, and
its success confirms the necessity of a relativistic treatment
of quark internal motion inside hadrons, which is already
implied by the fact that excitation energies are of the order
of the reduced mass.
For the description of hadron motion, we use a specific

framework, the one of Bakamjian and Thomas, to describe
states in relativistic motion at mQ ¼ ∞. It has several
advantages:

(i) it uses the standard three-dimensional wave func-
tions at rest provided by spectroscopic models;

(ii) it is relativistic as to hadronic motion, and even
covariant;

(iii) it satisfies the standard set of HQET sum rules, like
Bjorken [11] and curvature [12] sum rules, Uraltsev
sum rules [13], etc.

The last two points are important advantages compared
to the nonrelativistic treatment of quark motion, even if
we were adopting the GI spectroscopic model. Note that
a NR treatment of hadron motion is not satisfactory for the
full range of w since the 3-velocity at wmax is large even
in the “equal velocity frame” which minimizes velocities:
v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðw − 1Þ=2p

≃ 0.4.
Moreover, these differences lead to quite different

quantitative results. In the NR quark models with non-
relativistic treatment of both internal quark velocities and
hadron motion, a general statement4 would be

τ1=2ðwÞ ¼ τ3=2ðwÞ; ð2Þ

in clear contradiction with the above lattice QCD results.
The equality (2) assumes that there is no sizable spin-orbit
force surviving at mQ ¼ ∞, which is not a theorem but
seems reasonable from the spectroscopic model studies and
leads to identical rest-frame wave functions.
In the BT framework, using the well-known spectro-

scopic model of GI [10], one finds very different values for
j ¼ 1=2 and j ¼ 3=2 [15]:

τ3=2ð1Þ ≃ 0.5; τ1=2ð1Þ ≃ 0.25; ð3Þ

in full agreement with QCD. This strikingly large differ-
ence is a general feature of the BT approach, which
provides an intuitive explanation: it is due to the typically
relativistic effect of Wigner rotations of spin, included in

the BT approach, which acts differently on j ¼ 3=2 and
j ¼ 1=2 states in motion and which is completely inde-
pendent of the presence of possible spin-dependent forces
in the potential.
Note that there is an important sum rule by Uraltsev

concerning the difference between j ¼ 3=2 and j ¼ 1=2,
with transitions to all excited states included:

ΣnðjτðnÞ3=2ð1Þj2 − jτðnÞ1=2ð1Þj2Þ ¼ 1=4: ð4Þ

This shows that the sum over n: ΣnjτðnÞ3=2ð1Þj2 is much larger

than the one concerning 1=2 states: ΣnjτðnÞ1=2ð1Þj2. If one
assumes that the transitions to radial excitation are suffi-

ciently small, this would imply that jτð0Þ3=2j > jτð0Þ1=2j, in
agreement with Eq. (3). See the extensive discussions by
Bigi et al. [16]; see also [17] and the work on zero-recoil
sum rules of [18] and [19]. In the latter reference, the point
of view of the authors on this matter is expressed at the end
of Sec. 6.3.2. However, the argument is, of course, not
compelling.
In summary, considering the lattice result (1), one should

estimate that the marked difference between τ3=2ð1Þ and
τ1=2ð1Þ is a firmly established result. It is moreover
supported by the above-mentioned physical argument
provided by the role of Wigner rotations in the quark
model. Finally, as we shall see later, using factorization, the
nonleptonic decays B̄ → D��π tend to the same conclusion
for q2 ≃ 0 or w ≃ 1.35. Combined with the appropriate
kinematical factors and converted into branching ratios, this
leads to the still-more-striking inequality

BðB̄0 → D1=2Þ ≪ BðB̄0 → D3=2Þ ð5Þ

by around 1 order of magnitude, and we claim to provide a
model which both satisfies this strong inequality and fits
the data well.5

The quantitative agreement of the BT prediction with the
lattice QCD one gives encouragement to trust the predicted
shapes at w ≠ 1, another crucial theoretical input.
The full shape is well approximated by a relativistic

quark-model-inspired description [21]:

τ3=2ð1=2ÞðwÞ ¼ τ3=2ð1=2Þð1Þ ×
�

2

wþ 1

�
2σ2

3=2ð1=2Þ
: ð6Þ

Numerically,

σ23=2 ≃ 1.5; σ21=2 ≃ 0.8: ð7Þ

These values are in contrast with what would be given in
a fully NR treatment, namely, a common and much lower

4In Ref. [14], the calculation is done for harmonic oscillator
wave functions, but this does not alter the generality of the
conclusion. Note also that a “relativisation” factor κ has to be
disregarded in their Eq. (44). Possible additional factors ex-
pressed as powers of ðwþ 1Þ=2 encountered in the literature must
also be disregarded since such factors give a 1=2 contribution to
the slope while the dominant NR approximation gives a slope that
goes → ∞ as m2R2 [see Eq. (44) of [14]].

5The strong inequality between the branching ratios is also
clearly seen in Table III of [20].
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value, of order 0.4 (obtained from [14] and skipping the
relativisation factor κ).
Other analyses use instead a linear approximation for the

τ-functions: τiðwÞ ¼ τið1Þ × ð1 − σ2i;linðw − 1ÞÞ. It can be
checked that σ2i;lin ¼ σ2i when w ¼ 1. In practice, the two
descriptions are rather similar because the w variation
range, between 1 and wmax ¼ ðm2

B þm2
D��Þ=ð2mBmD��Þ,

is limited anyway. Meanwhile, significant differences are
expected from the two parametrizations when comparing
semileptonic decays with a light or a heavy lepton, as
evaluated in Table XIII.
Why start from mQ ¼ ∞? The visible difficulty is that

one presently has trustable quantitative statements only for
mQ ¼ ∞. The reasons for this are as follows: (1) for lattice
QCD, it is very difficult to directly treat the finite masses
mb,mc, all the more for transitions to excitations. Thus, one
uses an mQ ¼ ∞ framework. Then, to treat finite w ≠ 1,
one would require infinite momenta, whence one is
restricted to w ¼ 1. (2) Quark models, in general, have
no such limitations. However, the BT framework we want
to use is satisfactory only at mQ ¼ ∞. Indeed, it has been
shown that the finite mass corrections cannot be trusted:
they break covariance as well as certain important sum
rules, in contrast with the mQ ¼ ∞ limit. This defect
remains to be resolved.
The consequence is that these dynamical results must be

complemented by other statements, of a more general
nature, which provide constraints on the physical transi-
tions (of course, at finite mass) or, equivalently, on finite
mass corrections to the above dynamical results. These
questions are considered below.

B. Use of general statements or relations

First, we rely on the validity of the factorization, as does,
in principle, LLSWB. This phenomenon has been firmly
established from the theoretical point of view, within
perturbative QCD, in the heavy quark asymptotic limit
mQ → ∞ (from the successive efforts of Dugan and
Grinstein [22], BBNS [23], and finally, Bauer, Pirjol,
and Stewart [24]), with the high precision NNLO result
of the Siegen group [25], a∞1 ¼ 1.07� 0.022, which is
therefore higher but not far from the naive a1 ¼ 1.
Of course, since QCD factorization only gives an

asymptotic statement, a departure from this limit is quite
expected [the presence of various ð1=mQÞn corrections
extensively discussed in BBNS, mc not very large, etc.),
although this departure cannot be estimated quantitatively.
Moreover, the moderate order of magnitude of the
departure from asymptotic BBNS factorization, ½a1 ¼
1þOð10%Þ� for a number of well-measured decays as
observed from the experimental side, is such that it does not
seem possible to doubt its approximate validity for the
decays which we are presently studying.

Factorization implies Bjorken’s relation [26]6 between
the NL and SL decays at some q2 (for example, m2

π for
decay by pion emission), which is a very strong and useful
constraint for the otherwise ill-known SL differential q2

distributions.
Practically, since we have no theoretical quantitative

estimates of the departure of a1 from the asymptotic BBNS
result, we will apply factorization in the following way. We
fit aeff1 in B̄ → Dð3=2Þ decays and find a value compatible
with those obtained by analyzing B̄ → Dð�Þ transitions (see
Sec. VI). Then, in our final analysis, we impose a constraint
in the fits: a1 eff ¼ 0.93� 0.07. This aeff1 will also be used
for cases where experimental data are lacking or not precise
enough. This procedure is, in principle, valid for class I
decays with emission of a light meson. But we shall extend
it to predict NL processes where a charmed strange meson

is emitted like B → D��Dð�Þ
s ; although in such a case the

asymptotic theorem of BBNS does not apply, one again
obtains a value of aeff1 close to 1 from the measured
processes.
Secondly, let us comment about HQET and 1=mQ

expansion. The constraints from HQET expansion as
performed in [3] and further work, including order
Oð1=mQÞ corrections, are crucial, too, as a necessary
complement to the mQ ¼ ∞ predictions.
For the determination of the Oð1=mQÞ subdominant

functions, one must stress that the constraints do not lead
to quantitative statements on the finite mass corrections;
rather, they yield a parametrization of these finite corrections.
They leave us with a large number of unknown parameters
and functions ofw. Some of these parameters, like Λ̄ (quoted
as set 1 in the following), can be estimated otherwise, as
explained in Sec. II C. One could think of fixing the
remaining unknown parameters (set 2) by fits to the exper-
imental data. But there remains at least a host of unknown
functions of w. For instance, for j ¼ 3=2, one needs, in
principle, the ten functions: τ1ðwÞ; τ2ðwÞ; ηb;cke ðwÞ; ηb;c1;2;3ðwÞ
in LLSW notation,7 which is of course too large a number to
be fitted at present. This number is reduced thanks to the fact
that the ηbi ’s and ηbke are present only in one combination,
ηb¼ηbkeþ6ηb1−2ηb2ðw−1Þþηb3 , but the problem remains.
Many further assumptions must then be added: (1) an

additional but reasonable assumption of rough proportion-
ality of the latter functions to the dominant Isgur-Wise
functions reduces them to numerical parameters, denoted
with “hats,” but one still has a host of unknown numbers.

6Popularized by Neubert [27]. As stressed by Neubert, the
principle of this relation dates back to Bjorken, who applied it to
the case of Λb → pπ decay [see his Eq. (4.5)] and referred also to
the pionic B decays. Neubert applied it to the decays intoD�� and
generalized it to arbitrary values of a1.

7Be careful not to confuse the subindices to τ’s (1,2) with the
previous subindices j ¼ 1=2; 3=2 concerning the dominant Isgur-
Wise functions.
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For D3=2 mesons, present data are sensitive to the values of
η̂1;3 and τ̂1, which we have determined, while some guesses
have to be used to define a possible range of variation for
the other two quantities: η̂2 and τ̂2. For D1=2 mesons, data
are much less accurate, and fits have the same sensitivity to
χ̂1;2 or ζ̂1; one can obtain the value for only one of these
quantities. We arbitrarily choose to fit χ̂1.
However, one would like to find some reasons for that

selection or consistency checks for the physical soundness
of the values of the parameters found in this way.
LLSW [1] proposed an additional expansion in w − 1

(the latter being too small, of magnitude at most
≃0.3 ≃ ϵc ¼ 1=2mc) in the narrow width approximation
(wmax ≃ 1.3, mc ≃ 1.5 GeV). Were this valid, it would
allow us to skip τ1;2 terms as being of higher order and
to be left with the η’s. However, this supposes that the τ1;2
are not large, a point for which there is no guarantee (in
fact, one often retains the reverse, i.e., dropping the η’s in
favor of the τ1;2). In the present analysis we have not used
any expansion in w − 1, and we take the full 1=mQ

expansions of the Lorentz invariant form factors given in
[3]. The validity of this framework requires that unknown
quantities that enter in the expansion are of order Λ̄. This is
what we verify for fitted quantities; therefore, we have
assumed that quantities, not determined by the fit, are also
of that order to evaluate their contribution to systematic
uncertainties.
Inspiration from quark models can help one check the

soundness of fit results, at least qualitatively. As explained
above, one cannot trust the BT approach for finite mass
corrections, and this is the main obstacle to getting physical
results in this quark model approach. Then, one may return
to the NR model of center-of-mass motion, but only to get a
qualitative understanding. An example is the η functions,
which correspond, in naive terms, to the modification of the
wave functions induced by the change of mQ from∞ to its
real value in the Schrödinger equation.
Knowing, theoretically, the “true” (infinite mass)

τ3=2ðw ¼ 1Þ, the magnitude of the corrections at w ¼ 1,

which appear in the combination ηb

2mb
þ ηcke

2mc
(corresponding

to our ϵ̂3=2 below), can be rather well determined with a
stable value in the various fits to the data, and it is found to
be unambiguously negative.
A fully NR calculation of the effect of Okeðv ¼

ð1; 0; 0; 0ÞÞ (naively interpreted as the effect of the change
of the kinetic energy on the wave functions in the rest
frame) suggests a negative ηckeðw ¼ 1Þ corresponding to the
effect on the final state. On the contrary, ηbke should be
positive, but the combination ηb corresponds to the total
effect on the state vectors, includingOmagðv ¼ ð1; 0; 0; 0ÞÞ,
and, naively interpreted, includes the large spin-spin force
present at finite mass. In the GI model, it is found to be
neatly negative by numerical calculation.

Then, it is encouraging to find consistency between the
theoretically expected sign and the finding of the fits. One
could hope to similarly estimate the signs and order of
magnitude of the remaining ηci ’s, but this requires interpret-
ing them separately in the quark model (see Appendix B).
On thewhole, at present, there is no theoretical estimate for

the values of the different parameters that enter in the LLSW
expansion, except, perhaps, a qualitative one of the η’s if we
follow the arguments above (see also Appendix B).

C. Evaluation of HQET parameters

In the framework of HQET, masses of charm and beauty
mesons are used to evaluate values of the parameters
(named set 1 in the following) that enter in some of the
1=mQ corrections [3], the relation being

mH� ¼ mQ þ Λ̄H −
λH1
2mQ

� n∓λH2
2mQ

þ � � � : ð8Þ

The total spin (J�) of the resonance (H�) is expressed in
terms of the total spin (sl) of the light hadronic system as
J� ¼ sl � 1=2, while n� ¼ 2J� þ 1 is the number of spin
states. Values of these different quantities and those of
meson masses, adopted in our analysis, are indicated in
Table I. We do not consider I-spin averaged masses and use
only charged ðcd̄Þ states for charm and neutral states for
beauty ðbd̄Þ.
We use, for Λ̄H, the notations Λ̄, Λ̄3=2, and Λ̄1=2 for the sπl

doublets 1=2−, 3=2þ, and 1=2þ respectively.
Considering only the first order expansion in 1=mQ of

Eq. (8), the ratio (rQ) between charm and beauty quark
masses is equal to

rQ ¼ mc

mb
¼ mB� −mB

mD� −mD
¼ 0.3215� 0.0015: ð9Þ

The difference between the Λ̄H values for the three
doublets can be expressed in terms of the ratio between
heavy quark masses and the values of spin averaged masses
(m̄) [3]. We have obtained

TABLE I. The three doublets of heavy mesons, which have,
respectively, a total spin and parity of their light component sπl
equal to 1=2−, 3=2þ, and 1=2þ. The masses are given in MeV.

Meson JP sπl n� Charm mass Beauty mass

Dþ=B̄0 0− 1=2− n− ¼ 1 1869.65� 0.05 5279.65� 0.12
D�þ=B̄�0 1− 1=2− nþ ¼ 3 2010.26� 0.05 5324.70� 0.21

Dþ
1 =B

0
1

1þ 3=2þ n− ¼ 3 2423.8� 1.1 5726.1� 1.4
D�þ

2 =B�0
2

2þ 3=2þ nþ ¼ 5 2465.4� 1.3 5739.5� 0.7

D0ð2300Þþ 0þ 1=2þ n− ¼ 1 2330� 20 unmeasured
D1ð2430Þþ 1þ 1=2þ nþ ¼ 3 2452� ð?Þ unmeasured
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Λ̄3=2 − Λ̄ ¼ ð396.0� 1.5Þ MeV: ð10Þ

For the 1=2þ doublet the corresponding estimate is more
uncertain because the associated B-meson states are still
unmeasured. From the masses of charm states we esti-
mate Λ̄1=2 − Λ̄ ∼ 366 MeV.
These values for Λ̄3=2 − Λ̄ and Λ̄1=2 − Λ̄ agree with

previous determinations.
To evaluate absolute values for heavy quarkmasses and Λ̄,

one needs a value for λ1. In previous analyses, the value λ1 ¼
−0.2 GeV2 was used; in a recent report from the HFLAV
Collaboration [6], the value λ1 ¼ ð−0.362� 0.067Þ GeV2

was obtained from an analysis of B-meson semileptonic
decays. In Table II a summary is given for the values of the
different parameters entering in the analysis [first line,
with λ1 ¼ −0.362 ðGeVÞ2].

D. Evaluation of parameters entering
in the LLSW parametrization

In the infinite quark mass limit, hadronic form factors
that describe B̄ → D�� are determined by the two Isgur-
Wise functions: τ3=2ðwÞ and τ1=2ðwÞ, respectively, which
have been introduced in Eq. (6). It has been noted [3] that
one can define useful effective functions including finite
mass corrections to replace the IW functions: namely,
particularizing at w ¼ 1, one writes

τeff3=2ð1Þ ¼ τ3=2ð1Þ þ
ηkeð1Þ
2mc

þ ηbð1Þ
2mb

¼ τ3=2ð1Þ × j1þ ϵ̂3=2j;

τeff1=2ð1Þ ¼ τ1=2ð1Þ þ
χkeð1Þ
2mc

þ χbð1Þ
2mb

¼ τ1=2ð1Þ × j1þ ϵ̂1=2j: ð11Þ

In Table III we give the parameters that enter in the
expressions of Lorentz-invariant form factors for the LLSW
parametrization of B̄ → D�� transitions.

III. B̄0 → D�� EXPERIMENTAL RESULTS USED
AS CONSTRAINTS

Input data, in this analysis, are obtained by averaging
branching fraction measurements of nonleptonic class I,
B̄0→D��;þπ−ðK−Þ, and semileptonic decay B̄ → D��l−ν̄l
channels. These last values, obtained separately for charged

and neutral Bmesons, are combined, assuming the equality
of corresponding partial decay widths for charged and
neutral B mesons, and averaged values are expressed in
terms of the B̄0. We have taken into account possible
correlations between the different uncertainties, corrected
intermediate branching fractions [7], and used the hypoth-
eses explained in Sec. III A to evaluate D�� absolute decay
branching fractions. Values obtained in this way are
compared with those used in a previous analysis [4] in
Table IV. The first lines are relative to the production of
narrow (D3=2) states; then, they correspond to broad (D1=2)
states, and the last line reports a ratio between the
production of narrow and broad states. Therefore, apart
from the last constraint, it is possible to investigate the
production of narrow and broad states, independently.
Production of D1=2 mesons in semileptonic decays,

reported in the last two columns of Table IV, is derived
from HFLAV [6], whereas that used in our analysis is
obtained using a different approach, as explained in
Sec. III B. As illustrated from the values given in
Table IV and from the results of the fits quoted
in Tables XIII and XVIII, estimates for D1ð2430Þ are not
accurate, with about 100% uncertainty, after taking into
account the fact that existing measurements are rather
incompatible, with χ2=NDF ¼ 18=2, and if we scale the
uncertainty, obtained on the average value, using the “PDG
recipe” that corresponds to a factor of 3. Such a scaling factor
is not included in the [4] analysis, and the present value from
PDG [∼ð4� 1Þ × 10−3], not quoted in Table IV, is based on
themeasurement fromBABAR alone, not including the other
two results that enter in the HFLAVaverage, and which are
rather different—in particular, the one from Belle, which
does not see a signal and quotes a stringent limit.

TABLE II. Values of HQET parameters used in the evaluation
of 1=mQ corrections (first line). The last line gives the values used
in previous analyses. The various quantities are expressed in GeV,
except for λ1ðGeV2Þ.

λ1 Λ̄ Λ̄3=2 Λ̄1=2 mc mb

−0.362 0.245 0.641 0.611 1.618 5.032
−0.2 0.4 0.8 0.76 1.4 4.8

TABLE III. List of the parameters that enter in the LLSW
formalism. The last two columns indicate how values of these
quantities are obtained in the present analysis. When no in-
formation is available on a parameter, it is set to zero, and a range
of�0.5 GeV ∼�Λ̄ is used to evaluate a plausible contribution to
systematic uncertainties.

Parameters
list Evaluation

Constraints
from theory

Set 1 mb;c; Λ̄, Using HQET See Sec. II C
Λ̄3=2; Λ̄1=2

Set 2 for
D3=2

mesons

τ3=2ð1Þ Fitted 0.53� 0.03
ϵ̂3=2 Fitted
σ23=2 Fitted 1.5� 0.5

η̂1;3; τ̂1 Fitted
η̂2; τ̂2 Set to zero �0.5 GeV

Set 2 for
D1=2

Mesons

τeff1=2ð1Þ Fitted 0.20� 0.06

σ21=2 Fitted σ23=2 − σ21=2 ¼ 0.7� 0.5
χ̂1 Fitted

χ̂2; ζ̂1 Set to zero �0.5 GeV
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In addition, the Belle Collaboration [8] has measured
the semileptonic decay branching fraction B̄0 →
D�þ

2 l−ν̄l in four bins of the variable w¼vD ·vB¼
ðm2

Bþm2
D�

2
−q2Þ=2mBmD�

2
;q2¼m2ðl−ν̄lÞ (see Table V).

The sum of these fractions is normalized to unity; therefore,
in the following, because we do not have the full error
matrix on these measurements available, we use the first
three results and assume that they are independent.
Values quoted in the third column of Table IVare used in

AppendixC to demonstrate that our code is able to reproduce
thevalues obtained in [4]when using similar input values and
hypotheses. Those given in the last column allow us to
perform a comparison between experimental values retained
in our analysis and those quoted in “official” compilations.

A. Evaluation of absolute D��; + decay
branching fractions

At present, absolute D�� decay branching fractions are
obtained using hypotheses on the contribution of the
various decay channels. For the D1, it is assumed that it
decays only into D�π and Dππ [through D0ð2300Þπ].

The D�
2 is expected to decay only into Dπ and D�π. For

broad states, we consider that the D0ð2300Þ and the
D1ð2430Þ decay only into Dπ and D�π, respectively.
Expected branching fractions are given in Table VI; they
are similar to those used in [4].

B. Estimates for BðB̄0 → D+
1=2l

− ν̄lÞ
Values for D0ð2300Þ and D1ð2430Þ production in B̄

hadron semileptonic decays, quoted in PDG or in HFLAV,
are obtained by fitting expected Dð�Þπ mass distributions on
measured B̄ → Dð�Þπl−ν̄l events. This approach is reliable
for D3=2 mesons which appear as relatively narrow mass
peaks. The determination of broad D1=2 production is more

difficult because one also expects contributions fromDð�Þ
V →

Dð�Þπ, and it is not clear how these components have been
included in the analyses. For these reasons we have adopted
another approach.
To evaluateBðB̄0→Dþ

1=2l
−ν̄lÞweuseBðB̄→Dð�Þπl−ν̄lÞ

exclusive measurements from BABAR [29] and Belle [30],
fromwhichwe subtract the expected contributions fromD3=2

and Dð�Þ
V decays.

TABLE IV. Measured branching fractions used as constraints in the present analysis. In the last two columns we indicate the values
used in a previous analysis and those quoted in PDG [7] or obtained by HFLAV [6]. As compared with our numbers, these values differ
mainly in the estimate of the production of broadD�� states in B-meson semileptonic decays. The analysis [4] also differs by the fact that
nonleptonic measurements of D1=2 states are not included.

Decay channel This analysis Analysis [4] (2016) PDG (2020) or HFLAVc

BðB̄0 → D�þ
2 π−Þ × 104 5.85� 0.42 5.9� 1.3 5.85� 0.43

BðB̄0 → D�þ
2 K−Þ × 105 4.7� 0.8 Not used 5.0� 0.9

BðB̄0 → D�þ
2 l−ν̄lÞ × 103 3.09� 0.32 2.8� 0.4 3.18� 0.26

BðB̄0 → Dþ
1 π

−Þ × 104 7.12� 1.13 7.5� 1.6 6.6� 2.0
BðB̄0 → Dþ

1 l
−ν̄lÞ × 103 6.40� 0.44 6.2� 0.5 6.24� 0.54

BðB̄0 → D0ð2300Þþπ−Þ × 104 1.19� 0.12 Not used 1.14� 0.12
BðB̄0 → D0ð2300Þþl−ν̄lÞ × 103 2.2� 1.2 4.1� 0.7 3.9� 0.7d

BðB̄0 → D1ð2430Þþπ−Þ × 104 0.21� 0.27a Not used Not quoted
BðB̄0 → D1ð2430Þþl−ν̄lÞ × 103 1.4� 1.3 1.9� 0.5 1.8� 1.5d

BðB̄0 → D0ð2300ÞþK−Þ=BðB̄0 → D�þ
2 K−Þb 0.84� 0.36 Not used

aWe have not used the measured value for BðB̄0 → D1ð2430Þþπ−Þ [28] as a constraint in our nominal fit because this is still a
preliminary result; we have instead compared this value to our expectation.

bD��;þ mesons are reconstructed in the D0πþ final state.
cValues from PDG and HFLAV have been modified using results quoted in Table VI.
dValues are from HFLAV [6], and the uncertainty on BðB̄0 → D1ð2430Þþl−ν̄lÞ is multiplied by a factor of 3 to account for the poor

compatibility between the three measurements used to obtain the average value.

TABLE V. Measured fractions of the B̄0 → D�þ
2 l−ν̄l decay

width in several w bins.

w bin Fraction (%)

[1.00, 1.08] 6.0� 2.3
[1.08, 1.16] 30.0� 5.4
[1.16, 1.24] 37.5� 6.2
[1.24, 1.32] 26.5� 6.2

TABLE VI. Expected absolute D�� meson decay branching
fractions.

BðD�
2 → DπÞ 0.61� 0.02

BðDþ
1 → D�0πþÞ 0.45� 0.03

BðDþ
1 → Dþπþπ−Þ 0.15� 0.02

BðD1ð2430Þ → D�πÞ 1
BðD0ð2300Þ → DπÞ 1
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It has to be noted that, at present, in all these evaluations,
contributions from higher mass resonances, which can
decay into Dð�Þπ, are not specifically evaluated and there-
fore are fully or partially included in the rates estimated for
D1=2 mesons, depending on the approach.
The Dð�Þ

V components are normalized in an absolute way
using values for BðB̄0 → Dð�Þþl−ν̄lÞ in which Dð�Þ are on-
mass shell, albeit with rather large uncertainties related to
their mass dependence [2].
In theDπ channel, only theD�

V component contributes. It
is expected to decrease with theDπ mass value. For theD�0

V
channel, there is a natural threshold in the decay to Dþπ−
because mD�0 < mDþ þmπ− . For other charge combina-
tions, the separation between so-called D� and D�

V compo-
nents is arbitrary, and therefore, the absolute value of theD�

V
component depends on the considered threshold. Belle
uses the following mass range mDð�Þπ ∈ ½2.05; 3� GeV=c2
whereas BABAR requires mD0πþ −mD0 > 0.18 GeV=c2.
These cuts are rather similar, being typically 40 MeV=c2

above the nominal D� mass.
To evaluate the uncertainty on these estimates, we

assume that the Dð�Þ
V follows a relativistic Breit-Wigner

mass distribution, modified by a Blatt-Weisskopf damping
term with the parameter rBW ¼ 1.85 ðGeV=cÞ−1, which is
varied in the range ½1.0; 3.0� ðGeV=cÞ−1.

1. BðB̄0 → D0ð2300Þ+l− ν̄lÞ
Averaging experimental measurements one obtains

BðB̄0 → Dπl−ν̄lÞ ¼ ð6.14� 0.53Þ × 10−3. We estimate
the D�

V → Dπ contribution, with mDπ > 2.05 GeV, to be
equal to ð2.0� 0.6Þ × 10−3, in which the uncertainty
corresponds to the variation range used for rBW. The D�

2

contribution is obtained from Tables IV and VI; it amounts
to ð1.90� 0.18Þ × 10−3.
This gives

BðB̄0 → D0ð2300Þþl−ν̄lÞ ¼ ð2.2� 1.2Þ × 10−3 ð12Þ

as reported, after rounding, in Table IV. The uncertainty on
the D�

V estimate is added linearly to the total uncertainty
evaluated for the other sources.

2. BðB̄0 → D1ð2430Þ+l− ν̄lÞ
We use the same approach for the D�π hadronic final

state. Averaging experimental measurements, one obtains
BðB̄0 → D�πl−ν̄lÞ ¼ ð8.39� 0.54Þ × 10−3. We estimate
the D�þ

V contribution, using the coupling gD�D�π ¼ffiffiffiffiffiffiffiffiffiffi
2
mD�
mD

q
gD�Dπ, which corresponds to a fictitious

ΓðD� → D�πÞ ¼ 2ΓðD� → DπÞ, and we have added the
expected (small) contribution from DV → D�π. This gives
ð1.4� 0.6Þ × 10−3. The DV and D�

V contributions are
added incoherently because of helicity conservation and

the vanishing of A − V interferences for the zero helicity
after the angular integration.
Subtracting the Dþ

1 (ð4.32� 0.41Þ × 10−3) and D�þ
2

(ð1.21� 0.14Þ × 10−3) contributions, obtained from
Tables IV and VI, gives

BðB̄0 → D1ð2430Þþl−ν̄lÞ ¼ ð1.4� 1.3Þ × 10−3 ð13Þ

as reported in Table IV. The uncertainty on the Dð�Þ
V

estimate is added linearly.

IV. PARAMETRIZATION OF SEMILEPTONIC
AND NONLEPTONIC DECAY WIDTHS

We indicate here the expressions we use to compute
semileptonic and nonleptonic class I decay branching
fractions and explain how we have taken into account
effects from contributions of virtual states.

A. Semileptonic transitions to real,
discrete charmed states

Differential semileptonic B̄ → DXl−ν̄l decay widths,
with DX ¼ Dð�;��Þ, can be written as [4]

dΓ
dq2

¼ Cjp⃗jq2
�
1 −

m2
l

q2

�
2

×

�
ðH2þ þH2

− þH2
0Þ
�
1þm2

l

q2

�
þ 3m2

l

2q2
H2

t

�
ð14Þ

with C ¼ G2
FjVcbj2η2EW=ð96π3m2

BÞ. Here, p⃗ is the magni-
tude of the three-momentum of the DX in the B rest frame,

jp⃗j ¼ mDX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
DX

− 1
q

; ð15Þ

in which wDX
¼ vB · vDX

is the product of the 4-velocities
of the two mesons.
Note that H�;0;t are helicity form factors which are

expressed in terms of q2 dependent, Lorentz invariant form
factors [FFðq2Þ] and depend on the considered meson DX.
Accurate parametrizations of FFðq2Þ are obtained for D
(we use [31]) and D� mesons (we use [32,33]). For D��
mesons, expressions are taken from [3]. They correspond to
expansions at first order in 1=mc;b and αs. ForD3=2 mesons,
expressions that contain 1=mc;b × αs corrections are also
available and have been included.

B. Semileptonic transitions to virtual charmed states

Let us now consider the physical case where the charmed
state terminates on a two-body continuum like Dð�Þπ. As a
useful intermediate step, one now considers fictitious weak
transitions to intermediate virtual D�� or Dð�Þ, which
represent the weak vertex part of the overall process,
with the charmed leg bearing a momentum squared
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p2 ¼ m2ð¼ m2
Dð�ÞπÞ, different from the nominal squared

mass of the state m2
DX

(of course, in the overall process,
leading, for instance, to a Dπ final state, one has to
introduce a D� propagator relating the weak vertex to
the strong vertex which couples the virtual state to Dπ). If
one considers production of virtualD�� mesons (which will
get a Breit-Wigner distribution for m) or of virtual Dð�Þ

(denoted usually as Dð�Þ
V ) mesons, with m higher than their

nominal mass value mDð�Þ , the invariant form factors at the
weak vertex are expected to also be dependent on
m ≠ mDX

.
However, in the absence of theoretical knowledge of this

dependence, we assume simply

FFðm; q2Þ ¼ FFðmDX
; q2Þ ð16Þ

in the expressions of helicity form factors, while keeping
m ≠ mDX

dependence of the kinetic quantities, such as
momenta, in the additional factors entering in these
expressions. This procedure is illustrated in the following
example of the production of a virtual DV meson of mass
m ≠ mD. There are two invariant form factors noted:
fþ;0ðm; q2Þ. Helicity form factors are expressed as

qH0 ¼ 2mBjp⃗jfþðmD; q2Þ
qHt ¼ ðm2

B −m2Þf0ðmD; q2Þ: ð17Þ

The two other form factors, H�, vanish because of helicity
conservation. In these expressions and in Eq. (14), the
decay momentum is evaluated at the virtual mass m: jp⃗j ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
with w¼ðm2

Bþm2−q2Þ=ð2mmBÞ. Expressions
relating helicity and invariant form factors when a D�
meson is emitted can be found in [33] and in [4] in the case
of D�� mesons. Since these formulas are devised for real,
discrete charmed states, one must modify the factors
affecting the form factors when considering virtual
charmed states.

C. Nonleptonic decays

Thanks to factorization, nonleptonic class I decay widths
ΓðB̄0 → Dþ

XP
−Þ are related to the corresponding differ-

ential semileptonic decay widths, through the HDX
t helicity

form factor:

ΓðB̄0 → Dþ
XP

−Þ

¼ jaDXπ
1;eff j2f2PG2

FjVijj2jVcbj2jp⃗j
16πm2

B
q2ðHDX

t Þ2jwP
: ð18Þ

In this expression, q2 ¼ m2
P, fP is the leptonic decay

constant of the emitted charged meson P, and Vij is the
corresponding CKM matrix element,

wP ¼ m2
B þm2

DX
−m2

P

2mBmDX

: ð19Þ

If the virtual “mass” m of the DX meson does not have the
nominal value mDX

, we will still use values of invariant
form factors evaluated at q2 ¼ m2

P as above while taking
the running mass to compute the other terms that enter in
HDX

t and in p⃗.
We call the factor aDXπ

1;eff “effective” because the non-
leptonic decay width, which enters in Eq. (18), corresponds
to the sum of the class I diagram amplitude and of
subdominant terms which correspond to exchange or
penguin mechanisms, while the remaining factors in the
right-hand side are those provided by the analytic expres-
sion for a pure class I process.
Expressions for B̄0 → D��;þP− partial decay widths,

with P ¼ π− or D−
s , are given in Appendix A.

Corresponding quantities, obtained in the infinite quark
mass limit, for nonleptonic—ΓðB̄0 → D��π−Þ—and for the
differential semileptonic—dΓðB̄0 → D��;þl−ν̄lÞ=dw—can
be found, for example, in [34].

D. Finite width effects

To include effects from the mass distribution of reso-
nances, we express the differential decay width for a
process in which a D�� is reconstructed in a given final
state (i) as [2]

dΓi

ds
¼ 1

π

Γ0ðsÞ
ffiffiffi
s

p
Γi;D��ðsÞ

ðs −m2
D��Þ2 þ sΓ2

D��ðsÞ : ð20Þ

Here, Γ0ðsÞ is the decay width for the process computed in
the hypothesis of a virtual D�� of mass equal to

ffiffiffi
s

p
, and

Γi;D��ðsÞ is the partial decay width for the D��, of mass
ffiffiffi
s

p
,

reconstructed in the i observed channel. Finally, ΓD��ðsÞ is
the total D�� decay width at the mass

ffiffiffi
s

p
.

When the current mass (
ffiffiffi
s

p
) is higher than the threshold

for the i decay channel,

Γi;D��ðsÞ ¼ Γi;D��ðm2
D��Þ

�
pi

p0
i

�
2Lþ1

�
mD��ffiffiffi

s
p

�
2
�
Fi;LðpiÞ
Fi;Lðp0

i Þ
�

2

:

ð21Þ

Here, pi and p0
i are the breakup momenta for the D��

decaying into the i channel at masses equal to
ffiffiffi
s

p
andmD�� ,

respectively, and Fi;LðpiÞ is a Blatt-Weisskopf damping
factor. For decay channels with a threshold above the
resonance mass, p0

i becomes imaginary and Fiðp0
i Þ cannot

be evaluated. Under these conditions we take

Γi;D��ðsÞ ¼ g2i
24π

p2Lþ1
i

s
F2
i ðpiÞ ð22Þ
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in which gi is the coupling of the D�� to the i channel. This
expression is used, in the following, to evaluate contribu-
tions from virtual D or D� mesons to Dð�Þπ final states.
Note that ΓD��ðsÞ is the sum of all partial decay widths

Γi;D��ðsÞ, into channels opened at the mass
ffiffiffi
s

p
.

In nonleptonic decays, the expression in Eq. (20) is
multiplied by another damping factor [denoted usually as
ðFB;iðp0

iÞ=FB;iðp0;0
i ÞÞ2] to account for strong interaction

effects due to the hadron emitted with the D��. Here, p0
i is

the momentum of the B decay products, evaluated in the B
rest frame.8

V. CONSTRAINTS USED IN OUR ANALYSIS

The measurements used in our analysis are listed in
Table IV, second column.
There are three theoretical constraints (see Table III):
(1) The validity of the factorization is checked, using

D3=2 events (see Sec. VI); then, it is used as a
constraint in the final fits with aD

��π
1;eff ¼ 0.93� 0.07

for all D�� states.
(2) At w ¼ 1 we use the constraint τ3=2ð1Þ ¼ 0.53�

0.03 as expected from LQCD [9]. Because τ3=2 is
defined in the infinite quarkmass limit, it is necessary
to introduce mass corrections and one parameter
characterizing them, ϵ̂3=2, [see Eq. (12)], which is a
useful combination of the basic ones introduced by
LLSW. Note that ϵ̂3=2 is fitted, as well as part of the
other parameters. The data on D1=2 mesons are less
accurate, and it is not possible to fit ϵ̂1=2.

(3) At w ≠ 1, LQCD does not provide any information
on the variation with respect to w of the two IW
functions for which we use quark models, namely,
the BT calculations explained in the second section.
Unfortunately, quark models cannot provide errors.
Therefore, to use them in a fit, we have considered a
rather large range of values of the slopes around the
predicted one.

A. Comparison with the analysis of [5]

To validate our code, we check that, using the same input
data (given in the third column of Table IV) and the same
hypotheses, we reproduce the results published in [5] (see
Appendix C).

VI. PRODUCTION OF D3=2 MESONS:
A CHECK OF FACTORIZATION

In a first step, the analysis is restricted to the production
of D3=2 mesons to quantify the importance of 1=mQ
corrections and to check the applicability of the

factorization property. We require that τ3=2ð1Þ ¼ 0.53�
0.03 and fit the ϵ̂3=2 correction. This is essentially equiv-

alent to directly fitting τeff3=2. No constraint is used on a
D3=2π
1;eff

and σ23=2.
Data are first analyzed without any 1=mQ correction. The

fit probability is below 10−13. This is mainly due to the fact
that, in the infinite quark mass limit, theory predicts a
production higher for the D�

2 as compared to the D1

whereas it is measured to be 2 times lower.
Adding set 1 of 1=mQ corrections improves the situation,

but the fit probability is still below 10−4.
Therefore, it is necessary to fit additional parameters

which control the other 1=mQ corrections. Successively
fitting one among all other parameters, we end up with the
results given in Table VII. All fit probabilities are higher
than 10%.
It can be noted that, depending on the choice of the

additional fitted parameter, values of the slope (σ23=2) and
of the correction (ϵ̂3=2) to the normalization of the IW
function fluctuate. This comes from the fact that fitted
individual parameters are also changing the w dependence
of form factors, and there are not enough measurements of
the differential decay branching fractions versus w to
constrain these variations. Thus, fitted values for the IW
slope can be highly correlated with the value fitted for some
of the additional parameters. In the following we therefore
use the constraint expected from QM: σ23=2 ¼ 1.5� 0.5;
thus, the w dependence of the IW function verifies expect-
ations from theory, while we have no constraints on the
precise values of all parameters entering in 1=mQ correc-
tions. One has to check, a posteriori, that such quantities are
not too large so that the model we are using remains valid.
Results obtained for all possible fitted pairs of param-

eters are given in Table VIII. The fitted correction ϵ̂3=2 is
now rather independent on the choice of the fitted pair.

The value of a
D3=2π
1;eff , fitted in each model (see Tables VII

and VIII), varies between 0.81 and 1.06 with uncertainties
between 0.05 and 0.11. This is compatible with estimates of
aDπ
1;eff ¼ 0.880� 0.024 and aD

�π
1;eff ¼ 0.981� 0.025 that we

obtain by analyzing corresponding decay channels. These
values differ somewhat from the one given by BBNS, but
this is not unexpected since we are far from the asymptotic
situation considered by those authors.
Therefore, in our final results we add, as a constraint, that

aD
��π

1;eff ¼ 0.93� 0.07, obtained from the measurements
when either a D or a D� is produced. This constraint is
important, when evaluating systematic uncertainties, to
avoid effects of a variation of a given parameter inducing
a large variation on a1 and therefore corresponding to
effects that are outside the fact that the present analysis is
done in the framework of factorization. This constraint is
softer than the one used for this same property in previous
analyses of these channels.

8In some analyses, p0 is evaluated in the resonance rest frame.
We consider that our choice is more physical. Effects of changing
the convention to compute p0 are given in Table XIII.
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A. Fitted model parameters for D3=2 production

As observed in Tables VII and VIII, the χ2 obtained
when fitting present data is mainly sensitive to the
parameters η̂1, η̂3, and τ̂1. There are enough measurements
and constraints to determine these quantities with some
accuracy. Values of the two other parameters, τ̂2 and η̂2,
cannot be determined from present data. We have evaluated
effects from this indetermination by changing the values of
these two quantities by �0.5 GeV and by redoing the fit of
the other parameters. The variation range we consider is
obtained by noting that these quantities can have, at most,
values similar to Λ̄ so that the model remains valid.

B. Summary on D3=2 production

In summary, production of D3=2 in nonleptonic class I
B-meson decays is compatible with factorization.
The analysis can be done using the value expected

from LQCD for τ3=2ð1Þ ¼ 0.53� 0.03, but this differs
from the τeff3=2ð1Þ introduced in Eq. (11) by the quantity
ϵ̂3=2 ¼ −0.2� 0.1, whose value has been fitted. We have
verified, in Appendix B, that the minus sign of this
correction agrees with theory. Combining these values
we obtain

τeff3=2ð1Þ ¼ 0.42� 0.06; ð23Þ

in agreement with previous analyses.

To have reasonable agreement between data and expect-
ations, we find that it is necessary to fit at least one among
the five parameters that control 1=mQ corrections. In this
case there remain four parameters that are unknown, and it
is difficult to obtain model uncertainties. Hopefully, present
measurements and constraints from theory will allow us to
evaluate values of the three most important parameters that
control the model. In this way we estimate that we have
better control of systematic uncertainties that come from
estimates of the values of quantities that are not fitted on
data. We obtain

η̂1ðGeVÞ ¼ −0.32� 0.13� 0.03

η̂3ðGeVÞ ¼ −0.77� 0.28� 0.21

τ̂1ðGeVÞ ¼ 0.36� 0.35� 0.35; ð24Þ

in which the second uncertainty corresponds to the largest
variations induced by changing the values of τ̂2 and η̂2 by
�0.5 GeV. We consider that this model uncertainty has to
be added linearly to the one coming from the fit because we
cannot favor any value for τ̂2 and η̂2, within their consid-
ered variation range.
One cannot directly compare values obtained for η̂1;3 and

τ̂1 with previous determinations in which one or at most
two of these parameters have been fitted on data. It can be
noted that fitted values do not preclude the assumed validity
of the 1=mQ expansion because these quantities are of order
Λ̄. In Table IX we compare expected values for the ratios

TABLE VII. Results obtained using the constraint from theory on τ3=2ð1Þ. Set 1 1=mQ corrections are used, and
one additional parameter from set 2 is fitted, in addition to ϵ̂3=2.

X param. a
D3=2π
1;eff σ23=2 ϵ̂3=2 X (GeV) χ2=NDF

η̂1 0.90� 0.05 −0.4� 0.7 −0.50� 0.09 −0.40� 0.11 3.4=4
η̂3 0.82� 0.05 −2.1� 0.7 −0.77� 0.07 3.2� 1.1 7.0=4
τ̂1 0.81� 0.07 1.0� 0.7 −0.34� 0.12 0.75� 0.24 6.4=4
τ̂2 0.89� 0.06 2.1� 0.5 −0.19� 0.11 2.9� 0.8 2.5=4
η̂2 0.86� 0.06 1.2� 0.6 −0.30� 0.11 −1.63� 0.44 3.8=4

TABLE VIII. Results obtained using the two constraints from theory on τ3=2ð1Þ and σ23=2. Set 1 1=mQ corrections
are used, and two additional parameters from set 2 are fitted, in addition to ϵ̂3=2.

X − Y param. a
D3=2π
1;eff σ23=2 ϵ̂3=2 X (GeV) Y (GeV) χ2=NDF

η̂1 − η̂3 1.06� 0.08 1.45� 0.45 −0.19� 0.11 −0.45� 0.08 −0.78� 0.25 1.4=4
η̂1 − τ̂1 0.83� 0.11 1.34� 0.57 −0.28� 0.10 0.05� 0.26 0.68� 0.73 6.7=4
η̂1 − τ̂2 0.88� 0.06 1.55� 0.50 −0.27� 0.09 −0.07� 0.10 2.34� 1.24 2.7=4
η̂1 − η̂2 0.86� 0.06 1.55� 0.50 −0.24� 0.10 0.09� 0.17 −2.1� 1.1 3.7=4

η̂3 − τ̂1 0.82� 0.05 1.75� 0.50 −0.18� 0.12 −0.52� 0.33 1.04� 0.31 4.6=4
η̂3 − τ̂2 0.86� 0.05 1.66� 0.50 −0.27� 0.11 0.10� 0.23 2.9� 0.9 3.0=4
η̂3 − η̂2 0.89� 0.05 1.67� 0.48 −0.19� 0.11 −0.30� 0.26 −2.0� 0.5 2.8=4

τ̂1 − τ̂2 0.86� 0.06 1.75� 0.46 −0.25� 0.09 0.07� 0.33 2.8� 1.5 3.2=4
τ̂1 − η̂2 0.98� 0.10 1.60� 0.41 −0.20� 0.10 −1.1� 0.7 −3.9� 1.6 1.9=4

τ̂2 − η̂2 0.87� 0.05 1.65� 0.48 −0.25� 0.09 2.1� 2.2 −0.5� 1.1 3.0=4
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RD3=2
¼ BðB̄0 → Dþ

3=2τ
−ν̄τÞ=BðB̄0 → Dþ

3=2l
−ν̄lÞ with pre-

vious determinations.

VII. PRODUCTION OF D1=2 MESONS:
τeff1=2ð1Þ ≪ τeff3=2ð1Þ

Data on B-meson semileptonic decays into D1=2 states
are rather uncertain. In agreement with previous analyses
(see Table XVII in Appendix C), we find that present data
do not allow us to determine the slope σ21=2 of the
corresponding IW function. In addition, the effect of
1=mQ parameters is to modify the observed w dependence
of form factors; therefore, it is important, as explained in
the previous section, to ensure that the variation of the IW
function remains physical. Following relativistic quark
model expectations, we use σ21=2 ¼ 0.8 with a conventional
error �0.5.
For the same reasons, it is not possible to fit the

parameter ϵ̂1=2.
Using measurements, relative to D1=2 production in

Table IV, apart from BðB̄0 → D1ð2430Þþπ−Þ, which is
not published, and factorization with a1 ¼ 1, we have fitted
τeff1=2ð1Þ (see Table X).
Without fitting any additional 1=mQ parameter, we

obtain

τeff1=2ð1Þ ¼ 0.147� 0.025; ð25Þ

with a 24% fit probability. This value is much smaller than
τeff3=2ð1Þ given in Eq. (23), in agreement with the theoretical
expectations and in contradiction with LLSWB.
Let us now take into account the 1=mQ corrections. The

χ̂1;2 and ζ̂1 correction parameters provide enough flexibility
in decay rate expressions to accommodate essentially any
measured values, with an acceptable χ2 probability. It is
therefore needed to use additional constraints from theory.
The LQCD expectation [9] gives τ1=2ð1Þ ¼

0.296� 0.026. We have no predicted value for the quantity
ϵ̂1=2, which corresponds to 1=mQ corrections on τ1=2ð1Þ. If
we assume that ϵ̂1=2 ¼ ϵ̂3=2, we expect τeff1=2ð1Þ ¼
0.24� 0.02, which is higher than the measurement in
Eq. (25). This can be due to either the fact that ϵ̂1=2 differs
from ϵ̂3=2 or that other 1=mQ corrections, not considered for
the evaluation in Eq. (25), can have some effect. For these
reasons, in the following, we use as a constraint the value

τeff1=2ð1Þ ¼ 0.20� 0.06, where the uncertainty is large
enough to cover the two previous estimates.
Using these two constraints [on τeff1=2ð1Þ and σ21=2] and

fitting one additional parameter, we obtain the values given
in Table X.
Fit probabilities are close to 30%, and values for the

different parameters are reasonable, of the order of Λ̄.
However, comparing with D3=2 production, one cannot
identify a parameter to which the analysis is most sensitive,
and we are not able to fit more than one of these quantities,
with reasonable accuracy, using present data. In the
following we adjust χ̂1 and evaluate model systematic
uncertainties, changing χ̂2 and ζ̂1 by �0.5 GeV.

VIII. PRODUCTION OF D3=2 AND D1=2 MESONS:
COMBINED ANALYSIS AND SYSTEMATIC

UNCERTAINTIES

We include in the analysis the data given in
Table IV, excluding the unpublished measurement of
BðB̄0 → D1ð2430Þþπ−Þ. Constraints from theory on the
parameters of the IW functions and the list of fitted
quantities are given in Table III, Sec. II D.
The analysis is done by taking into account the validity

of factorization, for all D��-meson production, and using
aD

��π
1;eff ¼ 0.93� 0.07; see Sec. VI.
The ratio χ2=NDF ¼ 6.3=7 corresponds to a fit prob-

ability of 51%.
Values of fitted parameters, given in Table XI, are almost

identical to those obtained when considering separate
productions of D3=2 and D1=2 mesons (see Secs. VI B
and VII).
Fitted quantities allow us to obtain values for different

branching fractions of a B̄0 meson decaying into D��l−ν̄l,
with a light or τ lepton, as well as for nonleptonic decays.

We have also considered B̄0 → D��;þDð�Þ;−
s decays, in the

framework of factorization.
To evaluate systematic uncertainties, values of unfitted

parameters are changed to �0.5 GeV, and the largest
variation on a fitted or derived quantity, which depends
on fitted values, is used as the systematic model uncer-
tainty. For some of these quantities, mainly related to the
production of D1=2 mesons, these variations are asymmet-
ric, when compared to the value obtained with the reference

TABLE IX. Comparison between expected values for RD3=2
.

RD3=2
ð%Þ Our analysis

Reference [4]
(2016)

Reference [5]
(2017)

RD�
2

6.1� 0.5� 0.2 7� 1 7� 1

RD1
9.9� 0.7� 0.1 10� 1 10� 2

TABLE X. Fitted values of one of the parameters entering in
1=mQ corrections. Note that τeff1=2ð1Þ and σ21=2 are constrained as
explained in the text.

X param. τeff1=2ð1Þ σ21=2 X χ2=NDF

no X 0.155�0.025 1.0� 0.5 No value 3.5=3
χ1 0.21� 0.06 0.80� 0.50 −0.27� 0.22 2.6=2
χ2 0.21� 0.06 0.78� 0.50 0.37� 0.27 2.5=2
ζ1 0.22� 0.06 0.76� 0.50 0.75� 0.44 2.3=2
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model (in which the non-fitted parameters are set to zero).
In this case we have symmetrized systematic uncertainties
and corrected central values accordingly. Model uncertain-
ties are added linearly to those from the fit because there is
no reason to prefer a value for unfitted quantities, within
their variation range.
Other sources of systematic uncertainties are considered

as follows:
(i) Effects from uncertainties on HQET parameters (set

1). They are illustrated by using the values adopted
in previous analyses (see Table II).

(ii) Effects of using a linear parametrization for the IW
functions, versus w, in place of the dipole distribu-
tion [Eq. (6)].

(iii) Effect of changing the parametrization of Blatt-
Weisskopf terms in nonleptonic decays when the
momentum of the emitted hadron is computed in the
frame of the resonance in place of the B-meson rest
frame (the former has been used by some exper-
imental collaborations).

These observed variations are only indicative and cannot be
considered as really representative of corresponding sys-
tematic uncertainty values. In most cases, these sources are
less important than uncertainties from the fit or from
the model.
When evaluating a ratio between two derived quantities,

correlations between the different uncertainties are taken
into account.
In the following we detail our expectations and give

comparisons with those obtained in another analysis,
quoted as LLSWBi, which is close to those done in
previous publications [4,5]. Differences relative to our
approach are listed in Appendix D. Numerical values,
obtained in this way, are quoted also in appendixes,
whereas corresponding expected distributions are com-
pared with our results on the different figures that follow.

A. Comparison between our model and the
LLSWBi analysis for D1=2 production

in nonleptonic class I decays

In Table XII we illustrate the differences between our
model and the LLSWBi analysis for class I nonleptonic
decays.
The measured values for BðB̄0 → D0ð2300Þþπ−Þ and

RðD0ð2300Þ; D�
2Þ enter our model through the use of

factorization. Therefore, it is a check of consistency that
the corresponding fitted values are in agreement with the
data, as well as with theory, which indeed predicts that
j ¼ 1=2 transitions should be much smaller than j ¼
3=2 ones.
On the other hand, one can see that predictions of

LLSWBi are in disagreement with the data by more than
4 standard deviations and too large by around 1 order of
magnitude, which leads us to discard the model. Keeping
this in mind, it may nevertheless be useful to apply the same
model to semileptonic decays for the sake of comparison
with our own results, especially since LLSW is used by
experimentalists in the analyses of the background to
decays such as B̄ → D�lν̄l.

IX. D�� MESON PRODUCTION IN B̄0

SEMILEPTONIC DECAYS

Our results on decay branching fractions of B̄0 mesons
into the four D��;þ mesons are explained. In Secs. IX B
and IX C, expected hadronic mass and q2 distributions are
obtained for the D�π and Dπ hadronic final states,
respectively. Spectra are compared with the LLSWBi
analysis, and for ease of comparison, total decay rates,
expected in the two cases, have been scaled (only for
plotting purposes) to the central values measured for the
considered final states. Corresponding uncertainties are
also scaled to agree with those obtained on measurements

TABLE XI. Fitted values of the reference model parameters, for B → D�� Lorentz invariant form factors. The first
line contains parameters that are constrained by theory or from external measurements (aD

��π
1;eff ). Quoted uncertainties

are obtained from the fit.

aD
��π

1;eff τ3=2ð1Þ σ23=2 τeff1=2ð1Þ σ21=2
0.944� 0.062 0.53� 0.03 1.50� 0.50 0.21� 0.06 0.80� 0.70

ϵ̂3=2 η̂1 (GeV) η̂3 (GeV) τ̂1 (GeV) χ̂1 (GeV)
−0.18� 0.11 −0.32� 0.13 −0.77� 0.28 0.36� 0.35 −0.24� 0.26

TABLE XII. Comparison between measured and expected values for nonleptonic B̄0 → D1=2 transitions. Here,
RKðD0ð2300Þ; D�

2Þ is the ratio between the branching fractions BðB̄0 → D0ð2300ÞþK−Þ and BðB̄0 → D�þ
2 K−Þ,

with the two D�� mesons decaying into D0πþ.

Channel Measured Our model LLSWBi model

BðB̄0 → D0ð2300Þþπ−Þ × 104 1.19� 0.12 1.21� 0.12 10.0� 2.5
BðB̄0 → D1ð2430Þþπ−Þ × 104 0.21� 0.27 0.7� 0.7 3.2� 2.8
RKðD0ð2300Þ; D�

2Þ 0.84� 0.36 0.35� 0.04 2.8� 0.7
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for BðB̄0 → Dð�Þ;þπ−l−ν̄lÞ, with light leptons. Additional
uncertainties, from the fit and the model, which appear
when considering decays with a τ lepton or aD−

s meson, are
included.

A. Expected values for BðB̄0 → D��; +
i l− ν̄lÞ

and corresponding q2 distributions

Expected q2 distributions in B̄0 semileptonic decays with
a light or τ lepton are given in Figs. 1–4 for D�þ

2 , Dþ
1 ,

D0ð2300Þþ, and D1ð2430Þþ, respectively. Hatched areas
correspond to uncertainties from the fit. Curves indicated

with dots are the expected systematic uncertainties from the
unmeasured η̂2 and τ̂2 parameters. Those indicated with
triangles are from the unmeasured χ̂2 and ζ̂1 parameters. In
each figure the left plot is for light leptons and the right one
for the τ.
Expected values for semileptonic branching fractions,

with a light and τ lepton, are given in Table XIII.
Those obtained in the LLSWBi analysis are given in
Appendix D 1. To evaluate uncertainties on quoted values,
we have linearly added uncertainties from the fit and from
the model. Values for other possible sources of uncertain-
ties, quoted in Table XIII, are simply indicative and usually
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FIG. 1. Expected q2 distributions for B̄0 → D�þ
2 in semileptonic decays. Hatched areas correspond to uncertainties from the fit; curves

with dots indicate the model uncertainty. Other systematic uncertainties, indicated in Table XIII, are not displayed.
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FIG. 2. Expected q2 distributions for B̄0 → Dþ
1 in semileptonic decays. The same conventions are used as in Fig. 1.
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are not dominant when compared with the others. It can be
noted that ratios of branching fractions with a τ or a light
lepton have a better accuracy because of correlations
between the different uncertainties.

1. D3=2 production

Values for semileptonic branching fractions with a light
lepton and a D3=2 meson are essentially identical to input

measurements. This is because one basically has no
measurement of the q2 dependence of the different decay
rates and because the normalization is fitted through the
τ3=2 and ϵ̂3=2 parameters. Expected uncertainties on the
production of D1 and D�

2, with a τ lepton are of about 20%.
It can be noted that, inD1 production, uncertainties on set 1
(HQET) parameters and on the w expected dependence of
τ3=2 may not be negligible. This is expected because HQET
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FIG. 3. Expected q2 distributions for B̄0 → D0ð2300Þþ in semileptonic decays. Hatched areas correspond to uncertainties from the fit;
curves with dots indicate the model uncertainty expected from τ̂2 and η̂2 parameters, whereas those with triangles correspond to the
uncertainty from χ̂2 and ζ̂1. Other systematic uncertainties, given in Table XIII, are not displayed.
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FIG. 4. Expected q2 distributions for B̄0 → D1ð2430Þþ in semileptonic decays. The same conventions are used as in Fig. 3.
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set 1 corrections change the computed branching fraction
with a D1 by a large factor, as compared with the infinite
quark mass limit prediction.

2. D1=2 production

The value expected for BðB̄0 → D0ð2300Þþl−ν̄lÞ ¼
ð5.1� 2.4Þ × 10−4 is much smaller than the one usually
anticipated from LLSWBi: ð39.1� 7.2Þ × 10−4, as given in
Appendix D 1. This result is a direct consequence of the use
of factorization. Values expected for D1ð2430Þ are similar,
but being affected by larger uncertainties, one cannot draw
any conclusions. Production of D1=2 mesons in B-meson
semileptonic decays is expected to be an order of magni-
tude smaller than the one of narrow states. In the production
of D1=2 mesons, model uncertainties are dominant when
compared with the other considered sources of systematic
uncertainties.
Expected branching fractions for D0ð2300Þ and

D1ð2430Þ production have about 50% and 100% uncer-
tainty, respectively. These relative uncertainties are even
larger when a τ lepton is emitted.

3. Conclusions

In our analysis, the expected low production rates of
broad, relative to narrow, D�� mesons come from theoreti-
cal arguments and are in agreement with the factorization
property. This low value implies that it has to be com-
plemented by another source of events, to explain the
measured broad mass distributions in Dð�Þπ hadronic final
states. We examine, in the following sections, if the

contributions expected from Dð�Þ
V components can fill these

gaps. Such components have been ignored in previous
analyses which consider that D1=2 decays, alone, are
enough to explain measurements.

B. Analysis and predictions for the
B̄0 → D�πl− ν̄l final state

We examine if measured B̄0 → D�πl−ν̄l decays can be

explained using a sum of D�� and Dð�Þ
V components. All

quoted numbers are relative to the sum of D�0πþ and
D�þπ0 final states, and we refer to Sec. III B 2 for input
measurements.
The measured branching fraction into broad components

amounts to

BðB̄0 → D�πjbroadl−ν̄lÞ ¼ ð2.86� 0.69Þ × 10−3: ð26Þ

In the hypothesis that contributions from higher mass
resonances can be neglected, the expected contribution
from D1ð2430Þþ decays, equal to ð0.46� 0.46Þ × 10−3,

has to be complemented by a Dð�Þ
V component equal to

ð2.4� 0.8Þ × 10−3. For rBW values varying between 1 and
3 GeV−1, our estimates for this component are in the range
½2.0; 0.9� × 10−3 (see Sec. III B 2). These values are com-
patible with the needed contribution.
In Fig. 5, expected D�π mass distributions from our

model (solid line) and from the LLSWBi analysis (dashed
line) are compared. To ease the comparison, central values
expected from the two models are scaled to agree with the

measured one. To do so, in our model, only the Dð�Þ
V

component is scaled, while, for other components, the
expected values are used. In LLSWBi, only the D1ð2430Þþ
component is scaled. Scaling factors are obtained for
decays into light leptons, and their values are used for
the other analyzed transitions which involve a τ lepton or a
Ds meson.
Spectra are dominated by the contributions from D3=2

mesons.

TABLE XIII. Our expectations for semileptonic branching fractions with a light or a τ lepton and their ratio for individual D��-meson
states.

Channel Value� fit Model HQET IW linear Blatt-W.

BðB̄0 → D�þ
2 l−ν̄lÞ × 103 3.15� 0.30 0.00 0.00 0.01 0.02

BðB̄0 → D�þ
2 τ−ν̄τÞ × 104 1.90� 0.29 0.05 0.00 0.09 0.03

RD�
2
× 102 6.03� 0.52 0.15 0.02 0.24 0.06

BðB̄0 → Dþ
1 l

−ν̄lÞ × 103 6.40� 0.44 0.00 0.00 0.00 0.00
BðB̄0 → Dþ

1 τ
−ν̄τÞ × 104 6.30� 0.59 0.10 0.30 0.70 0.07

RD1
× 102 9.84� 0.68 0.15 0.47 1.10 0.11

BðB̄0 → D0ð2300Þþl−ν̄lÞ × 104 5.1� 1.2 1.2 −0.2 0.4 −0.1
BðB̄0 → D0ð2300Þþτ−ν̄τÞ × 105 5.0� 1.3 1.7 −0.1 0.6 0.1
RD0ð2300Þ × 102 9.9� 1.5 1.0 0.4 0.4 0.1

BðB̄0 → D1ð2430Þþl−ν̄lÞ × 104 4.6� 3.7 0.9 0.3 −0.5 0.0
BðB̄0 → D1ð2430Þþτ−ν̄τÞ × 105 3.4� 2.7 0.6 0.3 −0.3 0.0
RD1ð2430Þ × 102 7.4� 1.2 1.6 0.1 0.4 0.1

LE YAOUANC, LEROY, and ROUDEAU PHYS. REV. D 105, 013004 (2022)

013004-16



1. Expected differences between our model
and LLSWBi for broad mass components

In the following we compare expected mass (Fig. 6) and
q2 (Fig. 7) distributions, for theD�π broad mass component
in our model and in LLSWBi and after having normalized
expectations to agree with the measured central value for
light leptons. Hatched areas only correspond to the uncer-
tainty quoted in Eq. (26). Therefore, they are mainly
indicative and do not illustrate the uncertainty on the shape

of the distributions which come from the model depend-
ence of the two analyses.
For τ events one expects 1.3 times more events in our

analysis, whereas estimates are equal, by convention, for
light leptons. This comes from the different dependence of

Dð�Þ
V and D1ð2430Þ components versus q2. The Dð�Þ

V
component corresponds to a D�π mass distribution which
can mimic a broad resonance in the absence of an analysis
of the angular distribution.
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FIG. 5. Expected D�π mass distributions for B̄0 → D�π in semileptonic decays. Solid lines correspond to our model, and the dashed

line is for LLSWBi. The line with stars gives the D�� contribution, and the one with squares is for the Dð�Þ
V component. The red line

corresponds to the sum of these two contributions. Only central values of the distributions are displayed.
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FIG. 6. Expected broad D�π mass distributions for B̄0 → D�π in semileptonic decays. The same conventions as in Fig. 5 are used.
Hatched areas include only the experimental uncertainty given in Eq. (26).

MODEL FOR NONLEPTONIC AND SEMILEPTONIC DECAYS BY … PHYS. REV. D 105, 013004 (2022)

013004-17



C. Analysis and predictions for the
B̄0 → Dπl− ν̄l final state

All quoted numbers are relative to the sum of D0πþ

and Dþπ0 final states. Input measurements are given in
Sec. III B 1.
The measured branching fraction into broad components

amounts to

BðB̄0 → Dπjbroadl−ν̄lÞ ¼ ð4.24� 0.56Þ × 10−3: ð27Þ

In the hypothesis that contributions from higher mass
resonances can be neglected, the expected contribution

from D1=2 decays is equal to ð0.51� 0.24Þ × 10−3. To
account for the observed broad mass Dπ distribution, the
D0ð2300Þþ contribution has to be complemented by a D�

V
component equal to ð3.7� 0.6Þ × 10−3. For rBW values
varying between 1 and 3 GeV−1, our estimates are in the
range ½2.6; 1.5� × 10−3. Therefore, taking into account
present uncertainties, this scenario is compatible (margin-
ally) with present measurements.
In Fig. 8, we compare expected Dπ mass distributions

from our model (solid line) analysis and from the LLSWBi
analysis (dashed line). There is a narrow peak from theD�þ

2

meson located on top of a broad mass distribution which is
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FIG. 8. Expected Dπ mass distributions for B̄0 → Dπ in semileptonic decays. Only central values are displayed.
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FIG. 7. Expected q2 distributions for B̄0 → D�π, the broad mass component, in semileptonic decays. The same conventions as in
Fig. 5 are used.
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very different in the two scenarios. As in the D�π channel
analysis, broad mass distributions have been scaled so that
total decay rates agree with measurements in the case of
light leptons.

1. Expected differences between our model
and LLSWBi for broad mass components

In the following we compare expected mass (Fig. 9) and
q2 (Fig. 10) distributions for theDπ broad mass component
in our model and LLSWBi and after having normalized
expectations to agree with the measured central value for
light leptons.

Our model and LLSWBi show marked differences. In
particular, for τ events one expects 2 times more candidates
in our model and very different mass and q2 distributions.
Dashed areas correspond to measured uncertainties of the
broad mass component, used for the normalization, as
given in Eq. (27), and they do not include model uncer-
tainties which can also affect the shape of the distributions.

X. PREDICTIONS FOR B̄0 → D��; +D−
s DECAYS

We now turn to a rather different application of factori-
zation: namely, the decay to two charmed mesons.
According to BBNS (see, in particular, their Sec. 3.5.3),

0

0.005

0.01

0.015

0.02

m(Dπ) (GeV)

dB
 / 

dm
 (

G
eV

-1
)

0

0.001

0.002

0.003

0.004

0.005

2 2.2 2.4 2.6 2.8 3 2 2.2 2.4 2.6 2.8 3

m(Dπ) (GeV)

dB
 / 

dm
 (

G
eV

-1
)

FIG. 9. Expected broad Dπ mass distributions for B̄0 → Dπ in semileptonic decays.
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FIG. 10. Expected q2 distributions for B̄0 → Dπ, the broad mass component, in semileptonic decays.
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these decays do not satisfy the conditions for QCD
factorization [the QCD factorization stating that aeff1 ¼
1þOðαsÞ þOð1=mQÞ þ…]. Therefore, they expect that
instead of Oð1=mQÞ, one could have terms of order
Oð1=mQÞ0, allowing a much larger departure from 1.
However, on a purely empirical ground, using NL and

SL measurements, just in the same way as for decays with a
light emitted meson, we observe that factorization still
holds for the transitions B̄ → Dð�ÞD−

s , with the same
a1 eff ¼ 0.93� 0.07, close to 1, as for pionic decays.
Those reactions involve, in fact, penguin contributions.
However, these contributions must be extracted to obtain a
“a1” value that can be compared with the one obtained in
pionic decays. This can be done by using the theoretical
evaluation by Cheng and Yang [35] of the ratios
aDDs
1;eff=a1jth ¼ 0.847 and aD

�Ds
1;eff =a1jth ¼ 1.037. These val-

ues, which correspond to a rather large effect for the DDs
decay channel, are in agreement with the corresponding
ratios we have obtained using present measurements of
the different branching fractions: aDDs

1;eff=a
DK
1 jexp ¼ 0.873�

0.053 and aD
�Ds

1;eff =a
D�K
1 jexp ¼ 1.052� 0.078. Once the cor-

recting factors are applied, one obtains aD
ð�ÞDs

1 values very
close to 0.9. To compare with theory, we have assumed that
a1 is best estimated using B̄0 → Dð�ÞþK− decays because
of the absence of W-exchange amplitudes. In any case this
is a small effect, and similar results are obtained when a
pion is emitted in place of a kaon. Therefore, we are
encouraged to extend our analysis also to transitions to

D��Dð�Þ
s , which can be easily identified and serve as an

additional test of the τ1=2 ≪ τ3=2 inequality, and we give
our expectations below, using the same formulas as for

pionic decays, with still the same a1 eff ¼ aD
ð��ÞDs

1 ¼
0.93� 0.07. Note that, in these evaluations, in the absence
of explicit calculations, penguin contributions are not
included for the D��.

After having described our predictions for decay branch-
ing fractions of B̄0 mesons into the fourD��;þ accompanied
by a D−

s , we also give expectations for the case where one
has hadronic D�π and Dπ final states.
Because the Ds meson and the τ lepton have a similar

mass, we have also evaluated [36] the ratios

Rτ;Ds
D��

i
¼ BðB̄0 → D��;þ

i τ−ν̄τÞ
BðB̄0 → D��;þ

i D−
s Þ

ð28Þ

expecting that, because of correlations between the differ-
ent sources of uncertainties, they are more accurate than
individual measurements of the corresponding decay
rates, as observed already for semileptonic channels (see
Table XIII).
Results can also be used for corresponding charged

B-meson decays, B− → D��;0D−
s , because they are of class

I (once penguin terms are neglected). Branching fractions
simply have to be corrected by the ratio between
charged and neutral B-meson lifetimes, and ratios Rτ;Ds

D��
i

are the same.

A. Predicted values for BðB̄0 → D��; +
i D−

s Þ
Predicted values for B̄0 → D��;þ

i D−
s decay branching

fractions, in our model, are given in Table XIV.
Values obtained in the LLSWBi analysis are given in

Table XIX in Appendix D 2.
Values for D1ð2430Þþ are very uncertain because of the

lack of control of the two parameters that enter in 1=mQ

corrections (χ̂2 and ζ̂1 in the present analysis). These model
uncertainties also affect the ratio Rτ;Ds

D1ð2430Þ. Measurements

of nonleptonic class I B decays withD1ð2430Þ emission are
therefore desirable to improve the present situation.
To evaluate branching fractions when the hadronic final

state, accompanying the D−
s meson, is D�π or Dπ, we have

TABLE XIV. Our expectations for BðB̄0 → D��;þ
i D−

s Þ branching fractions, and their ratio, to corresponding
semileptonic decays with a τ lepton. The first quoted uncertainty corresponds to the error from the fit. The model
uncertainty is evaluated by changing the values of parameters that are fixed to zero by�0.5 GeV. Then, as explained
in the text, we give indicated variations of fitted parameters which correspond to different hypotheses that enter in
the parametrization of fitted expressions.

Channel Value� fit Model HQET IW linear Blatt-W.

BðB̄0 → D�þ
2 D−

s Þ × 104 5.8� 0.8 0.6 0.1 1.7 0.1

Rτ;Ds
D�

2

0.33� 0.06 0.03 0.00 −0.07 0.02

BðB̄0 → Dþ
1 D

−
s Þ × 104 13.1� 3.5 0.9 −0.1 6.4 0.9

Rτ;Ds
D1

0.48� 0.12 0.03 0.03 −0.15 −0.03

BðB̄0 → D0ð2300ÞþD−
s Þ × 104 2.3� 0.4 0.2 0.1 0.2 0.0

Rτ;Ds
D0ð2300Þ

0.22� 0.04 0.05 −0.01 0.08 −0.03

BðB̄0 → D1ð2430ÞþD−
s Þ × 104 1.4� 1.1 0.9 0.1 −0.1 0.0

Rτ;Ds
D1ð2430Þ

0.25� 0.05 þ0.45
−0.10 0.01 0.04 −0.03
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to multiply values given in Table XIV for the production of
the different D��

i meson by the corresponding branching
fractions listed in Table VI. In our model we have also

evaluated the B̄0 → Dð�Þ;þ
V D−

s , Dð�Þ;þ
V → Dð�Þπ expected

contributions.
In practice, it is not possible to compute the expected

mass distributions because of strong phase shifts between
the different hadronic amplitudes, which are unknown. One
can evaluate only the absolute values of these amplitudes.
Therefore, mass distributions, displayed in the following,
are obtained by incoherently adding individual contributing
channels.

B. Analysis of the B̄0 → D�πD −
s final state

All quoted numbers are relative to the sum ofD�0πþ and
D�þπ0 final states. Expected branching fractions for D��
channels, multiplied by BðD�� → D�πÞ, are the following:

BðB̄0 →D�þ
2 D−

s Þ¼ ð2.3�0.3�0.2Þ×10−4

BðB̄0→Dþ
1 D

−
s Þ¼ ð8.8�2.3�0.6Þ×10−4

BðB̄0→D1ð2430ÞþD−
s Þ¼ ð1.4�1.1�0.9Þ×10−4: ð29Þ

To evaluate the D�π mass distribution (Fig. 11), D��

channels are complemented by the Dð�Þ;þ
V contribution of

ð3.0� 1.0Þ × 10−4. This gives a total broad D�π compo-
nent of ð4.4� 3.0Þ × 10−4, which can be compared with
the estimate from LLSWBi: ð8.8� 7.4Þ × 10−4.
It can be noted that the Dð�Þ

V contribution can mimic a
broad resonance, and an analysis of the alignment distri-
bution is necessary to separate the two possibilities.

C. Analysis of the B̄0 → DπD −
s final state

All quoted numbers are relative to the sum of D0πþ and
Dþπ0=γ final states. Expected branching fractions for
channels with a D�� meson, multiplied by BðD��→DπÞ,
are the following:

BðB̄0 → D�þ
2 D−

s Þ ¼ ð3.48� 0.46� 0.33Þ × 10−4

BðB̄0 → D0ð2300ÞþD−
s Þ ¼ ð2.30� 0.43� 0.22Þ × 10−4:

ð30Þ

0

0.005

0.01

0.015

0.02

0.025

2 2.2 2.4 2.6 2.8 3

m(D*π) (GeV)

dB
 / 

dm
 (

G
eV

-1
)

0

0.001

0.002

0.003

0.004

0.005

2 2.2 2.4 2.6 2.8 3

m(D*π) (GeV)

dB
 / 

dm
 (

G
eV

-1
)

FIG. 11. Expected D�π mass distributions from our analysis (solid red curve) and from LLSWBi (dashed blue curve). Left plots
correspond to all expected contributing components, whereas the plots on the right are for broad mass components only.

TABLE XV. Our expectations for BðB̄0 → D��;þ
i D�−

s Þ branch-
ing fractions, and their ratio, to corresponding semileptonic
decays with a τ lepton and nonleptonic D−

s production. The first
quoted uncertainty corresponds to the error from the fit. The
model uncertainty is evaluated by changing the values of the
parameters that are fixed to zero by �0.5 GeV.

Channel Value� fit Model

BðB̄0 → D�þ
2 D�−

s Þ × 103 1.9� 0.4 0.0

Rτ;D�
s

D�
2

0.100� 0.014 0.004

RDs;D�
s

D�
2

0.30� 0.08 0.03

BðB̄0 → Dþ
1 D

�−
s Þ × 103 4.7� 0.9 0.1

Rτ;D�
s

D1

0.134� 0.024 0.0

RDs;D�
s

D1

0.28� 0.10 0.02

BðB̄0 → D0ð2300ÞþD�−
s Þ × 104 2.4� 0.7 1.0

Rτ;D�
s

D0ð2300Þ
0.20� 0.04 0.02

RDs;D�
s

D0ð2300Þ
0.96� 0.26 þ0.44

−0.24

BðB̄0 → D1ð2430ÞþD�−
s Þ × 104 2.2� 2.0 þ0.6

−0.1
Rτ;D�

s
D1ð2430Þ

0.14� 0.02 0.02

RDs;D�
s

D1ð2430Þ
0.52� 0.02 þ0.52

−0.36
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To evaluate the Dπ mass distribution (Fig. 12),
the D�� component is complemented by a D�

V contribution
evaluated to be ð5.5�0.9Þ×10−4. This gives a total broad
Dπ component of ð7.8� 1.5Þ × 10−4, which can be com-
pared with the estimate from the LLSWBi analy-
sis: ð17�8Þ×10−4.

XI. PREDICTIONS FOR B̄0 → D��; +D�−
s DECAYS

Expected results on decay branching fractions of B̄0

mesons into the fourD��;þ
i accompanied by aD�−

s are given
in Table XV, including different ratios that compare these
branching fractions with those expected for B̄0 → D��;þ

i D−
s

and B̄0 → D��;þ
i τ−ν̄τ decays. Expressions for BðB̄0 →

D��;þ
i D�−

s Þ are given in Appendix A. They are obtained
using factorization and considering only class I decay
amplitudes. These expressions are valid for charged or
neutral B-meson decays,

Rτ;D�
s

D��
i

¼ BðB̄0 → D��;þ
i τ−ν̄τÞ

BðB̄0 → D��;þ
i D�−

s Þ ð31Þ

and

RDs;D�
s

D��
i

¼ BðB̄0 → D��;þ
i D−

s Þ
BðB̄0 → D��;þ

i D�−
s Þ : ð32Þ

XII. CONCLUSIONS

We have analyzed B̄ → D�� decays in semileptonic and
nonleptonic class I processes that can be related using
factorization.
We have verified that factorization is satisfied in B̄ →

D3=2 decays and also in class I nonleptonic transitions with

D−
s emission, with a value for a1 similar to those measured

for a D or a D� meson.
Naturally assuming that this factorization is valid also in

B̄ → D1=2 decays, one expects a quite small contribution
from D1=2 relative to D3=2 mesons in semileptonic decays
as is the case in nonleptonic class I processes. This is in
contrast with the results of LLSWBi and in agreement with
LQCD computations of the corresponding IW functions at
maximum transfer [9] and with relativistic QM calcula-
tions [15].
To evaluate branching fractions for the different decay

channels in which a D�� meson is produced, we use the
expressions derived in [3]. They depend on several param-
eters that control 1=mQ corrections. Using present exper-
imental measurements and constraints from theory, we have
determined the most important of these parameters forD3=2

emission. In particular, we find that the 1=mQ correction
ϵ̂3=2 included in the auxiliary τeff3=2 is of the order of
−0.2� 0.1, the minus sign confirming the agreement with
a quark model calculation. The three other quantities we
obtain are of the order of Λ̄, as expected in a 1=mQ

expansion, which is encouraging in view of the roughness
of the method. For D1=2 mesons, estimates of the param-
eters are more uncertain, but this does not change our
conclusion on the smallness of the contribution.
To explain measurements of exclusive Dð�Þπ broad

hadronic final states in B-meson semileptonic decays,

we have evaluated the contribution from Dð�Þ
V components,

in addition to D1=2 decays. These components can be
normalized by using B̄ → Dð�Þl−ν̄l measurements, but the
mass dependence of the Dð�Þπ mass distribution remains
highly undetermined.
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FIG. 12. Expected Dπ mass distributions obtained in our model (red solid line) and in LLSWBi (blue dashed line). Left plots
correspond to all expected contributing components, whereas plots on the right are for broad mass components only.
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We propose a model that accounts for B̄ → Dð�Þπl−ν̄l
measurements by adding Dð�Þ

V and D�� contributions. At
present, we have not considered contributions from higher
mass hadronic states. Results have been compared with the
LLSWBi model in which D1=2 mesons alone explain the
broad mass spectra.
These two models give very different expectations for

the broad Dð�Þπ mass and q2 distributions regarding light
leptons. The Dπ final state, in particular, can provide clear
information on the relative importance of the D�

V and
D0ð2300Þ components. The two models also have very
different expectations for semileptonic decays with a τ

lepton and in class I nonleptonic transitions with Dð�Þ
s

emission.
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APPENDIX A: EXPRESSIONS FOR CLASS I
NONLEPTONIC DECAYS

Expressions for Lorentz invariant form factors are those of
LLSW [3]; therefore, for the IW functions, one has to use the
correspondence τðwÞ ¼ ffiffiffi

3
p

τ3=2ðwÞ and ζðwÞ ¼ 2τ1=2ðwÞ.
In following formulas, Lorentz invariant form factors are
evaluated at wD¼ðm2

B−m2
PðVÞþm2

D��Þ=ð2mBmD��Þ, while
the quantityw, which appears in the rest of the expressions, is
computed at the running mass value of the D�� resonance.
Expressions for the traditional Blatt-Weisskopf damping
factors in B̄ → D��X decays, in which X is a stable particle

and which occur in an angular momentum L ¼ 1, 2, and 3,
are the following:

FB;1ðp0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p

FB;2ðp0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3zþ z2

p

FB;3ðp0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
225þ 45zþ 6z2 þ z3

p ðA1Þ

with z ¼ ðrBWp0Þ2, in which p0 is the decay momentum
evaluated in the B̄ rest frame. For the damping term, we use
rBW ¼ 1.85 ðGeVÞ−1. We define the quantities

BB;LðwÞ ¼
�
FB;Lðp0Þ
FB;Lðp0

0Þ
�

2

ðA2Þ

which are the ratios of the previous functions evaluated at the
running mass of the D�� resonance and at its nominal
mass, mD�� .

1. B̄0 → D��; +P− decays

We write the following expressions for a generic pseu-
doscalar meson denoted as “P.” Note that aDX;P

1;eff is an
effective parameter describing the deviation from strict
factorization, which also includes possible contributions
from exchange, annihilation, or penguin amplitudes; Vq1q2
is the relevant light-quark CKM matrix element and fP the
annihilation constant. These parameters are to be adapted to
the case under consideration.
The damping factor BB;2ðwÞ is used for B̄ → D3=2

decays, which occur in a D-wave; as usual, no damping
is considered for the decays into D1=2 states, which are
S-wave. Each expression is followed by its mQ ¼ ∞ limit
(between parentheses). This is valid also in the case of a
final vector meson,

ΓB̄0→D�þ
2
P− ¼ jaD�

2
;P

1;eff j2jVcbV�
q1q2 j2

G2
F

24π
f2PmBm2

D�
2
jkA1

þ kA2
ð1 − rwÞ þ kA3

ðw − rÞj2ðw2 − 1Þ5=2BB;2ðwÞ
�
jaD�

2
;P

1;eff j2jVcbV�
q1q2 j2

G2
F

24π
f2PmBm2

D�
2
τðwÞ2ð1 − rÞ2ð1þ wÞ2ðw2 − 1Þ3=2

�
; ðA3Þ

ΓB̄0→Dþ
1
P− ¼ jaD1;P

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2PmBm2

D1
jfV1

þ fV2
ð1 − rwÞ þ fV3

ðw − rÞj2ðw2 − 1Þ3=2BB;2ðwÞ
�
jaD1;P

1;eff j2jVcbV�
q1q2 j2

G2
F

24π
f2PmBm2

D1
τ2ð1 − rÞ2ð1þ wÞ2ðw2 − 1Þ3=2

�
; ðA4Þ

ΓB̄0→D0ð2300ÞþP− ¼ jaD�
0
;P

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2PmBm2

D�
0
jgþð1 − rÞð1þ wÞ þ g−ð1þ rÞð1 − wÞj2ðw2 − 1Þ1=2

�
jaD�

0
;P

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2PmBm2

D�
0
ζ2ð1þ rÞ2ð1 − wÞ2ðw2 − 1Þ1=2

�
; ðA5Þ
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ΓB̄0→D�þ
1
P− ¼ jaD�

1
;P

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2PmBm2

D�
1
ðw2 − 1Þ3=2jgV1 þ gV2ð1 − rwÞ þ gV3ðw − rÞj2

�
jaD�

1
;P

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2PmBm2

D�
1
ð1 − rÞ2ζ2ðw2 − 1Þ3=2

�
: ðA6Þ

2. B̄0 → D��; +V − decays

These expressions are obtained by a direct calculation. Several partial waves contribute in each decay channel, and the
appropriate Blatt and Weisskopf damping factor has to be used for each contribution. It can be identified from the power of
the momentum dependence,

ΓB̄0→D�þ
2
V− ¼ jaD2;V

1;eff j2jVcbV�
q1q2 j2

G2
F

48π
f2V

m2
Vm

2
D�

2

mB
ðw2−1Þ3=2

�
3jkV j2ðw2−1ÞBB;2ðwÞ

þ jkA1
j2
�
5BB;1ðwÞþ2

m2
B

m2
V
ðw2−1ÞBB;2ðwÞ

�
þ2jkA2

þ1

r
kA3

j2ðw2−1Þ2
m2

D�
2

m2
V
BB;3ðwÞ

þ4Re

�
k�A1

�
kA2

þ1

r
kA3

��
ðw2−1Þðw− rÞmBmD�

2

m2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BB;1ðwÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BB;3ðwÞ

q �

�
jaD2;V

1;eff j2jVcbV�
q1q2 j2

G2
F

48π
f2V

m2
Vm

2
D�

2

mB
τ2
�
5ð1þwÞ2þðw2−1Þ

�
3þ4

mBmD

m2
V

ð1þwÞ
��

ðw2−1Þ3=2
�
; ðA7Þ

ΓB̄0→Dþ
1
V− ¼jaD1;V

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2V

m2
Vm

2
D1

mB
ðw2−1Þ1=2

�
3jfV1

j2þðw2−1Þ
�
jfV1

j2m
2
B

m2
V
þ2jfAj2

�
BB;1ðwÞ

þðw2−1ÞBB;2ðwÞ
�				fV2

þ1

r
fV3

				
2m2

D1

m2
V
ðw2−1Þþ2Re

�
f�V1

�
fV2

þ1

r
fV3

��
ðw−rÞmBmD1

m2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BB;1ðwÞ=BB;2ðwÞ

q ��

�
jaD1;V

1;eff j2jVcbV�
q1q2 j2

G2
F

96π
f2V

m2
Vm

2
D1

mB
τ2
�
2ð1þwÞ2þðw2−1Þ

�
3þm2

B

m2
V
ð2rð1þwÞþ3ð1þrÞ2Þ

��
ðw2−1Þ3=2

�
;

ðA8Þ

ΓB̄0→D0ð2300ÞþV− ¼ jaD�
0
;V

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2V

m4
D�

0

mB
ðw2 − 1Þ3=2jgþ

�
1þ 1

r

�
þ g−

�
1 −

1

r

�				
2

BB;1ðwÞ
�
jaD�

0
;V

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2Vm

4
D�

0
=mBζ

2ð1 − 1=rÞ2ðw2 − 1Þ3=2
�
; ðA9Þ

ΓB̄0→D�þ
1
V− ¼jaD

�þ
1
;V

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2V

m2
Vm

2
D�þ

1

mB
ðw2−1Þ1=2

�
3jgV1

j2þðw2−1Þ
�
jgV1

j2m
2
B

m2
V
þ2jgAj2

�
BB;1ðwÞ

þðw2−1ÞBB;2ðwÞ
�				gV2

þ1

r
gV3

				
2m2

D1

m2
V
ðw2−1Þþ2Re

�
g�V1

�
gV2

þ1

r
gV3

��
ðw−rÞ

mBmD�þ
1

m2
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BB;1ðwÞ=BB;2ðwÞ

q ��
�
jaD�

1
;V

1;eff j2jVcbV�
q1q2 j2

G2
F

16π
f2VmBm2

D�
1
ζ2ð3ðmV=mBÞ2ðw−1Þ=ðwþ1Þþ2ðð1−rÞ2þrð1−wÞÞÞðw2−1Þ3=2

�
:

ðA10Þ

APPENDIX B: CALCULATIONS OF ηbðcÞke AND ηb

WITH NR TREATMENT OF THE C.M. MOTION

(1) According to the standard analysis, the Oð1=mQÞ
corrections to form factors fall into two main categories,
due to modifications of:

(i) the state vectors;
(ii) the current operators.

Here we are concerned with the first category,
and the η or χ parameters precisely characterize the
corrections to the form factors due to this modification
of state vectors, when the current operator is kept to the
infinite mass limit.
More precisely, we want to consider ηbðcÞke , which

parametrizes the effect of the kinetic operator Oke on,
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respectively, the initial ground state and on the j ¼ 3=2
final state, with specification to w ¼ 1.
(2) In terms of the quark model, the modification of

vector states at w ¼ 1 is identified with that of the rest-
frame wave functions of the mesons, and the aim is then to
evaluate the effect of this modification on form factors, i.e.,
on matrix elements of currents when the current operator is
kept to its infinite mass limit.
As concerns ηbðcÞke , one can give an intuitive interpretation

by assuming that they are generated by the addition of the
heavy quark kinetic energy in the Schrödinger equation

p2=2mq → p2=2mq þ p2=2mQ

with mq, mQ being, respectively, the light and heavy quark
masses. But this amounts simply to replacing mq by the
reduced mass μ ¼ mqmQ

mqþmQ
:

p2=2mq → p2=2μ:

This fact implies that the wave equation is the same as in
the heavy quark limit, except for the change of mass. In the
case of the powerlike potential rα, this allows us to use
the scale invariance to deduce the wave functions from the
heavy mass limit ones ϕ∞, as

ðp2=2mq þ brαÞϕ∞ðr⃗Þ ¼ Enϕ
∞ðr⃗Þ:

Performing the substitution r⃗ → λr⃗, one has

�
p2

2mqλ
ð2þαÞ þ brα

�
ϕ∞ðλr⃗Þ ¼ En

λα
ϕ∞ðλr⃗Þ:

Therefore, if one chooses λ ¼ ðμ=mqÞð1=ð2þαÞÞ ¼
ð1þ ðmq=mQÞÞð−1=ð2þαÞÞ, one sees that ϕ∞ðλr⃗Þ is the
solution of the finite mass equation. The normalized wave
function is

λ3=2ϕ∞ðλr⃗Þ:

Now, the NR (in fact, the familiar dipolar expression)
for τ is

τðw ¼ 1Þ ¼ mðϕ∞
f jzjϕ∞

i Þ:

Note that j ¼ 1=2 and j ¼ 3=2 are degenerate at
mQ ¼ ∞ in the NR approach (no Wigner rotation) if
one disregards any spin-orbit force. In fact, all the spin-
dependent forces are relativistic effects in the sense that
they are Oðv2=c2Þ with respect to internal velocities.
Therefore, even at finite mQ, if one considers the fully
NR approach, there are no spin-independent forces. This is
what is done in the following paragraphs, where we mean
only to evaluate kinetic energy corrections to B and Dð��Þ.

On the other hand, for ηb, which combines all the types
of η relative to the B, one has to consider the spin-
dependent forces since they contain the magnetic contri-
butions generating the η’s (1,2,3). This is done below,
where we use the GI model which contains all the relevant
forces. An important contribution is obviously the one of
spin-spin force, although it is 1=mQ. It lifts the degeneracy
with the B�.
We now define

τb;cðw ¼ 1Þ ¼ mðϕc
fjzjϕb

i Þ;

with the substitution by the finite mass wave functions,
whence the corrections are represented by9

τb;cðw ¼ 1Þ − τðw ¼ 1Þ ðB1Þ

or, assuming the proportionality to the τ and defining
reduced corrections as η̂,

τb;cðw ¼ 1Þ=τðw ¼ 1Þ ¼ 1þ η̂bke
2mb

þ η̂cke
2mc

þ � � �

¼ λ3=2b λ3=2c

R
d3r⃗zϕ∞

1 ðλcr⃗Þϕ∞
0 ðλbr⃗ÞR

d3r⃗zϕ∞
1 ðr⃗Þϕ∞

0 ðr⃗Þ
ðB2Þ

where 0,1 denote the orbital angular momentum L. If one
passes to radial wave functions by means of an angular
integration,

τb;cðw ¼ 1Þ=τðw ¼ 1Þ ¼ λ3=2b λ3=2c

R
r3drϕ∞

1 ðλcrÞϕ∞
0 ðλbrÞR

r3drϕ∞
1 ðrÞϕ∞

0 ðrÞ
:

If one makes mb ¼ mc ¼ mQ, one finds

τb;cðw ¼ 1Þ=τðw ¼ 1Þ ¼ 1þ η̂bke
2mQ

þ η̂cke
2mQ

þ � � � ðB3Þ

¼ 1=λQ ¼ 1þmq=mQ

2þ α
þ � � � ðB4Þ

η̂bke þ η̂cke ¼
2mq

2þ α
: ðB5Þ

To go further and separate η̂bke and η̂cke, one needs explicit
wave functions, which is possible for α ¼ 2 (harmonic
oscillator) or −1 (Coulomb).
Harmonic oscillator (α ¼ 2): ϕ∞

0 ðrÞ ∝ eð−r2=ð2R2ÞÞ,
ϕ∞
1 ðrÞ ∝ re−r

2=ð2R2Þ,

9One must note the difference of the definitions of the
Isgur-Wise functions in LLSW. This difference disappears in
corrections with a hat since they represent the quotient by the
Isgur-Wise functions themselves.
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τ∞;cðw ¼ 1Þ=τðw ¼ 1Þ ¼
�

2λc
λ2c þ 1

�
5=2

ðB6Þ

whence η̂cke ¼ 0, and η̂bke ¼ ð2mqÞ=ð2þ 2Þ ¼ mq=2.
Coulomb (α ¼ −1) :ϕ∞

0 ðrÞ ∝ eð−r=r0Þ, ϕ∞
1 ðrÞ ∝ r

eð−r=2r0Þ,

τ∞;cðw ¼ 1Þ=τðw ¼ 1Þ ¼
�
3λ1=2c

λ2c þ 2

�5

ðB7Þ

whence η̂cke¼−10=6mq, and η̂bke¼ð2mqÞ=ð2−1Þþ10=6mq¼
11=3mq.
(3) Numerical calculation for a linear þ Coulomb

potential
Of course, the physical potential is rather of linear þ

Coulomb type. The result is expected to be between
the HO and the Coulomb one. But one has no analytical
solution. Therefore, we perform a numerical calculation,
using the particular wave functions of Ref. [37], with a
potential close to linear þ Coulomb, and find, with mQ

respectively infinite or equal to 5 GeV masses (light mass:
mq ¼ 0.45 GeV),10

τmb¼5;mc¼∞ðw ¼ 1Þ=τðw ¼ 1Þ ¼ 1þ η̂bke
2mb

¼ 1.053; ðB8Þ

τmb¼∞;mc¼5ðw¼1Þ=τðw¼1Þ¼1þ η̂cke
2mc

¼0.9898; ðB9Þ

τmb¼5;mc¼5ðw ¼ 1Þ=τðw ¼ 1Þ ¼ 1þ η̂bke þ η̂cke
2mQ

¼ 1.045; ðB10Þ

whence, approximately, η̂bke ≃ 0.5 GeV, η̂cke ≃ −0.1 GeV,
which is indeed intermediate between the results from HO
and Coulomb potentials. In fact, η̂bke þ η̂cke ≃ 0.5 GeV
corresponds roughly to what is expected from α ¼ 0
(Eq. (B5), i.e., mq, and it is indeed well known that such
a power potential α ≃ 0 or a log one roughly approximate
the linear þ Coulomb one (e.g., Martin potentials).
The conclusion up to now is that η̂cke < 0. In addition,

η̂bke > 0, but what must be estimated is η̂b, a common
combination appearing in all the form factors, and which
can therefore be interpreted as the effect of the full
Lagrangian contribution; i.e., intuitively, one needs to
include spin-dependent forces, which are not present in
the potentials that have been considered up to now.
(4) Numerical calculation of η̂b for the GI model.

We then consider the Godfrey and Isgur spectroscopic
model with all relevant forces and, moreover, a relativistic
kinetic energy. To obtain η̂b, we calculate the variation of τ
with the initial B, respectively at infinite and finite mass.
Finally, we find η̂b ≃ −0.26 GeV. This indicates that the
effect of spin-spin force is large, dominating the kinetic
energy effect.

APPENDIX C: REPEATING THE LLSWB
ANALYSIS OF [4,5]

This comparison is intended to show that, using the same
input data and constraints, we find, using our own code, the
same values for fitted parameters as in [4,5], with the
LLSWB approach.
For this purpose, measurements of B-meson semilep-

tonic decays and B̄0 → Dþ
3=2π

− nonleptonic decays,
reported in the third column of Table IV, are used to
constrain parametrizations of hadronic form factors. In
addition, measurements from Belle [8], which provide,
respectively, four and five values for the production
fractions of D�

2 and D0ð2300Þ mesons, in different bins
of the w variable are used. The w dependence of the
two IW functions is assumed to be linear. The validity of
factorization, with a1 ¼ 1, is assumed to relate semilep-
tonic and nonleptonic decays in which only D3=2 mesons
are emitted.
Therefore, B̄0 → Dþ

1=2π
− nonleptonic decays are not

included in the analysis. Here, D�� mesons are assumed
to be stable (no mass distribution is considered).
We have accordingly modified our analysis, but some

differences remain:
(i) For the fractions measured in different w

bins, we have not used one of the measurements
in each of the two samples because these
quantities are not independent (their sum is equal
to 1).

(ii) The parametrization of the different form factors is
derived from the original article of [3], without using
different approximations.

(iii) In addition to αs corrections, we have also included,
forD3=2 mesons, those at order 1=mQ × αs, provided
in [3].

1. Numerical aspects

Production of D3=2 and D1=2 mesons is evaluated
separately. In addition to the normalization and slope of
the IW functions, the same parameters that determine 1=mQ

corrections, as in [5], are fitted.
Considering D3=2 mesons only, values of the fitted

parameters are compared in Table XVI.
We obtain very similar results. The numbers of degrees

of freedom differ by one unit, in the two analyses, because
we have not used one of the measurements for the w
dependence of D�

2 production in semileptonic decays.

10The numerical calculations can be performed for fictitious
heavy quark masses because we need only the coefficient of the
dependence.
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A similar comparison is done (see Table XVII) by fitting
only data relative to D1=2 mesons, measured in semi-
leptonic decays (in [5] measurements of nonleptonic
transitions are not used). We have also modified our code
to use the zero width formulation of our expressions as
done in [5].
Very similar results are obtained in the two analyses

when considering zero width resonances. In the third line,
obtained using the physical resonance widths, the central
value of the IW function slope is negative, which is
unexpected and inconclusive because the corresponding
uncertainty is large. From all fits, with or without a finite
resonance width, it can be concluded that data are not able
to really measure this slope.

2. Main difficulty of the LLSWB analysis

Values obtained in this way, for τeff1=2ð1Þ and τeff3=2ð1Þ, are
compatible. This comes simply from the fact that the
measurement BðB̄0 → D0ð2300Þþπ−Þ is not included in
the analyses of [4,5]. Meanwhile, expectations from rela-
tivistic quark models and LQCD [9], obtained in the
mb;c → ∞ limit, are very different, with τ1=2ð1Þ ≪ τ3=2ð1Þ.
If one assumes factorization (a1 ¼ 1), the branching

fractions of the NL B̄ → D1=2 class I decays predicted in
LLSWBi are, at present, higher than the measured values
by at least 4 standard deviations (when including the two
channels).
This is illustrated in Sec. VIII A, Table XII, where we

compare expectations from our model and from the
LLSWBi analysis, for nonleptonic class I B̄ → D1=2
decays.
Then, we show that it is possible to fit data in a way

which satisfies factorization for narrow and broad
states and which is compatible with present theoretical
expectations.

APPENDIX D: SUMMARY OF HOW THE
LLSWBi ANALYSIS DIFFERS FROM THE
LLSWB ONE AND FROM OUR MODEL

The LLSWBi analysis uses the same hypotheses as
LLSWB does, but, to make it directly comparable with our
model, we use the same input measurements and the same
constraints from theory, when possible.
LLSWBi differs from our model as follows:
(i) Constraints from factorization are ignored in the

production of D1=2 mesons.
(ii) Possible contributions fromDð�Þ

V decays are ignored.
(iii) Semileptonic branching fractions,BðB̄0→Dþ

1=2l
−ν̄lÞ,

are taken from the last column of Table IV. It can
be noted that the uncertainty taken for BðB̄0 →
D1ð2430Þþl−ν̄lÞ is 3 times larger than the one
assumed in [4,5] to account for the fact that the
corresponding central value is obtained from an
average of incompatible experimental results (the
factor 3 is evaluated using the usual PDG recipe to
scale uncertainties in this situation).

(iv) No constraint is used on τeff1=2.
(v) The measured fractions, in several w bins, attributed

by Belle [8], to the B̄0 → D0ð2300Þþl−ν̄l decay
distribution are used.

Because LLSWBi violates factorization in D0ð2300Þ
production and theoretical expectations for τ1=2ð1Þ, it
cannot be considered as a possible alternative to our
model. We simply mean to illustrate the large
expected differences between our model and previous
analyses that can be confronted with data, when
available.

1. Expected values for BðB̄0 → D��;+
i l− ν̄lÞ

Expected values for semileptonic branching fractions,
with a light or τ lepton, in LLSWBi, are given in

TABLE XVI. Comparison between the values of fitted parameters obtained in [5] and with our own code,
modified to be similar to the previous analysis and using the same input measurements.

Analysis τeff3=2 σ23=2 τ̂1 (GeV) τ̂2 (GeV) χ2=NDF

[5] 0.40� 0.04 1.6� 0.2 −0.5� 0.3 2.9� 1.4 2.4=4
Our code 0.41� 0.06 1.60� 0.25 −0.66� 0.42 5.� 2. 1.8=3

TABLE XVII. Comparison between the values of fitted parameters obtained in [5] and with our own code,
modified to be similar to the previous analysis. In the third line, values are obtained using the physical widths for the
broad D1=2 resonances.

Analysis τeff1=2 σ21=2 ζ̂1 χ2=NDF

[5] 0.35� 0.11 0.2� 1.4 0.6� 0.3 9.1=4
Our code (ΓðD1=2Þ ¼ 0) 0.37� 0.11 0.26� 1.23 0.23� 0.31 7.0=3
Our code (ΓðD1=2Þ ≠ 0) 0.30� 0.18 −1.6� 3.2 0.45� 0.28 6.0=3

MODEL FOR NONLEPTONIC AND SEMILEPTONIC DECAYS BY … PHYS. REV. D 105, 013004 (2022)

013004-27



Table XVIII. As expected, they differ mainly from those
quoted in Table XIII on the production of D1=2 mesons and
are now similar to those obtained for D3=2 mesons. Values
obtained in this approach are essentially identical to the
input values given in Table IV. Therefore, estimates for
D1ð2430Þ are quite inaccurate.

2. Expected values for BðB̄0 → D��;+
i D −

s Þ
Values for B̄0 → D3=2D−

s branching fractions are essen-
tially identical to those obtained in our analysis. On the
contrary, for D1=2 mesons, they differ by about an order of
magnitude, as expected.
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TABLE XVIII. LLSWBi model: expected semileptonic branching fractions with a light or τ lepton, and their ratio,
for the individual D�� mesons. Only model systematic uncertainties are quoted.

Channel e or μ ×103 τ ×104 RD�� (%)

BðB̄0 → D�þ
2 l−ν̄lÞ 3.16� 0.30 1.90� 0.27� .07 6.01� 0.49� 0.19

BðB̄0 → Dþ
1 l

−ν̄lÞ 6.40� 0.44 6.19� 0.56� 0.15 9.67� 0.62� 0.24
×104 ×105 (%)

BðB̄0 → D0ð2300Þþl−ν̄lÞ 39.1� 7.0� 0.2 31.9� 7.9� 2.0 8.2� 1.5� 0.5
BðB̄0 → D1ð2430Þþl−ν̄lÞ 17:� 15:� 2. 12.8� 11.5� 5.0 7.6� 1.0� 2.0

TABLE XIX. LLSWBi model: BðB̄0 → D��;þ
i D−

s Þ branching fractions, and their ratio, to corresponding
semileptonic decays with a τ lepton. Only model systematic uncertainties are quoted.

Channel Value� fit Model

BðB̄0 → D�þ
2 D−

s Þ × 104 5.7� 0.7 0.7

Rτ;Ds
D�

2

0.34� 0.06 0.03

BðB̄0 → Dþ
1 D

−
s Þ × 104 12.3� 3.2 1.3

Rτ;Ds
D1

0.50� 0.12 0.01

BðB̄0 → D0ð2300ÞþD−
s Þ × 104 16.0� 4.1 3.0

Rτ;Ds
D0ð2300Þ

0.20� 0.03 0.04

BðB̄0 → D1ð2430ÞþD−
s Þ × 104 5.3� 4.5 3.2

Rτ;Ds
D1ð2430Þ

0.24� 0.04 þ0.54
−0.12

LE YAOUANC, LEROY, and ROUDEAU PHYS. REV. D 105, 013004 (2022)

013004-28

https://doi.org/10.1103/PhysRevLett.78.3995
https://doi.org/10.1103/PhysRevD.99.073010
https://doi.org/10.1103/PhysRevD.99.073010
https://doi.org/10.1103/PhysRevD.57.308
https://doi.org/10.1103/PhysRevD.95.014022
https://doi.org/10.1103/PhysRevD.95.014022
https://doi.org/10.1103/PhysRevD.97.075011
https://doi.org/10.1103/PhysRevD.97.075011
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.77.091503
https://doi.org/10.1103/PhysRevD.77.091503
https://doi.org/10.1088/1126-6708/2009/06/022
https://doi.org/10.1103/PhysRevD.32.189
https://doi.org/10.1016/0550-3213(92)90231-Y
https://doi.org/10.1016/0550-3213(92)90231-Y
https://doi.org/10.1103/PhysRevD.69.094022
https://doi.org/10.1103/PhysRevD.69.094022
https://doi.org/10.1016/S0370-2693(01)00110-1
https://doi.org/10.1103/PhysRevD.43.819
https://doi.org/10.1103/PhysRevD.56.5668
https://doi.org/10.1140/epjc/s10052-007-0425-1
https://doi.org/10.1103/PhysRevD.87.054007
https://doi.org/10.1103/PhysRevD.87.054007


[18] I. Bigi, M. Shifman, N. G. Uraltsev, and A. Vainshtein,
Phys. Rev. D 52, 196 (1995).

[19] P. Gambino, T. Mannel, and N. G. Uraltsev, J. High Energy
Phys. 10 (2012) 169.

[20] S. Veseli and M. G. Olsson, Phys. Rev. D 54, 886 (1996).
[21] M. Neubert, Phys. Rep. 245, 259 (1994).
[22] M. J. Dugan and B. Grinstein, Phys. Lett. B 255, 583

(1991).
[23] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,

Nucl. Phys. B591, 313 (2000).
[24] C. W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. Lett.

87, 201806 (2001).
[25] T. Huber, S. Kränkl, and X. Q. Li, J. High Energy Phys. 09

(2016) 112.
[26] J. D. Bjorken, Nucl. Phys. B, Proc. Suppl. 11, 325 (1989).
[27] M. Neubert, Phys. Lett. B 418, 173 (1998).
[28] K. Abe et al. (Belle Collaboration), Report No. ICHEP04

11-0710.

[29] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.
100, 151802 (2008).

[30] A. Vossen et al. (Belle Collaboration), Phys. Rev. D 98,
012005 (2018).

[31] J. A. Bailey et al. (MILC Collaboration), Phys. Rev. D 92,
034506 (2015).

[32] I. Caprini, L. Lellouch, and M. Neubert, Nucl. Phys. B530,
153 (1998).

[33] S. Fajfer, J. F. Kamenik, and I. Nisandzic, Phys. Rev. D 85,
094025 (2012).

[34] F. Jugeau, A. Le Yaouanc, L. Oliver, and J.-C. Raynal, Phys.
Rev. D 72, 094010 (2005).

[35] H.-Y. Cheng and K.-C. Yang, Phys. Rev. D 59, 092004
(1999).

[36] This study was initiated following a proposal from G.
Wormser.

[37] B. Chen, K.-W. Wei, X. Liu, and T. Matsuki, Eur. Phys. J. C
77, 154 (2017).

MODEL FOR NONLEPTONIC AND SEMILEPTONIC DECAYS BY … PHYS. REV. D 105, 013004 (2022)

013004-29

https://doi.org/10.1103/PhysRevD.52.196
https://doi.org/10.1007/JHEP10(2012)169
https://doi.org/10.1007/JHEP10(2012)169
https://doi.org/10.1103/PhysRevD.54.886
https://doi.org/10.1016/0370-1573(94)90091-4
https://doi.org/10.1016/0370-2693(91)90271-Q
https://doi.org/10.1016/0370-2693(91)90271-Q
https://doi.org/10.1016/S0550-3213(00)00559-9
https://doi.org/10.1103/PhysRevLett.87.201806
https://doi.org/10.1103/PhysRevLett.87.201806
https://doi.org/10.1007/JHEP09(2016)112
https://doi.org/10.1007/JHEP09(2016)112
https://doi.org/10.1016/0920-5632(89)90019-4
https://doi.org/10.1016/S0370-2693(97)01384-1
https://doi.org/10.1103/PhysRevLett.100.151802
https://doi.org/10.1103/PhysRevLett.100.151802
https://doi.org/10.1103/PhysRevD.98.012005
https://doi.org/10.1103/PhysRevD.98.012005
https://doi.org/10.1103/PhysRevD.92.034506
https://doi.org/10.1103/PhysRevD.92.034506
https://doi.org/10.1016/S0550-3213(98)00350-2
https://doi.org/10.1016/S0550-3213(98)00350-2
https://doi.org/10.1103/PhysRevD.85.094025
https://doi.org/10.1103/PhysRevD.85.094025
https://doi.org/10.1103/PhysRevD.72.094010
https://doi.org/10.1103/PhysRevD.72.094010
https://doi.org/10.1103/PhysRevD.59.092004
https://doi.org/10.1103/PhysRevD.59.092004
https://doi.org/10.1140/epjc/s10052-017-4708-x
https://doi.org/10.1140/epjc/s10052-017-4708-x

