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Expressions for neutrino oscillations contain a high degree of symmetry, but typical forms for the
oscillation probabilities mask these symmetries of the oscillation parameters. We elucidate the 27 parameter
symmetries of the vacuum parameters and draw connections to the choice of definitions of the parameters
as well as interesting degeneracies. We also show that in the presence of matter an additional set of 27

parameter symmetries of the matter parameters exists. Due to the complexity of the exact expressions for
neutrino oscillations in matter, numerous approximations have been developed; we show that under certain
assumptions approximate expressions have at most 26 additional parameter symmetries of the matter
parameters. We also include one parameter symmetry related to the large mixing angle (LMA)-dark
degeneracy that holds under the assumption of CPT invariance; this adds one additional factor of 2 to all of
the above cases. Explicit, nontrivial examples are given of how physical observables in neutrino
oscillations, such as the probabilities, CP violation, the position of the solar and atmospheric resonance,
and the effectiveΔm2’s for disappearance probabilities, are invariant under all of the above symmetries. We
investigate which of these parameter symmetries apply to numerous approximate expressions in the
literature and show that a more careful consideration of symmetries improves the precision of
approximations.

DOI: 10.1103/PhysRevD.105.013002

I. INTRODUCTION

The propagation of neutrinos is described by the eigen-
values and eigenvectors of the Hamiltonian. The eigen-
vectors form up into a unitary matrix, which, after
rephasing of the charged leptons and the neutrinos,1 results
in 4 degrees of freedom. There is a considerable number of
options for parametrizing the matrix; see e.g., Ref. [1] for a
recent overview. Even within one parametrization scheme,
there may still be a large number of choices to be made, and
that is the focus of this paper.
The lepton2 mixing matrix [4,5] is usually described [6]

as the product of three rotations: (23), (13), (12), with a

complex phase associated with the (13)-rotation resulting in
four different physical degrees of freedom: θ23, θ13, θ12,
and δ. Distilling the 18 degrees of freedom of a complex
3 × 3 matrix down to four parameters is due to the fact that
the mixing matrix is unitary,3 but any choice of para-
metrization as a sequence of rotations leaves a number of
discrete symmetries of the parameters including the usual
Particle Data Group (PDG) choice. Once the order of
rotations is chosen and the parametrization is made, there
are still many different configurations that result in the
same physics. The parameter symmetries that connect these
different configurations are directly related to the definition
of the range of the parameters; see e.g., Ref. [7]. Typically,
the initial definition made is to restrict the ranges of the
three mixing angles from ½0; 2πÞ down to ½0; π=2Þ—a factor
of 4 reduction for each angle. That implies that each
quadrant of each angle can be related to the other quadrants,
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1Neutrinos can be rephased if they have only Dirac mass terms
or are in the ultrarelativisitic p ≫ m regime; since we are focused
on oscillations, the latter condition always holds.

2Many of the points made here apply to the quark mixing
matrix [2,3] as well; however, there is no connection to the
Majorana phases, and the matter effect is not relevant.

3We assume that any deviations from unitarity due to sterile
neutrino hints or neutrino mass generation are negligible.
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implying 43 ¼ 64 discrete parameter symmetries. This
means that for any given configuration of the mixing
angles there are 63 others that lead to exactly equivalent
physics. There is also one discrete parameter symmetry
which again doubles the number of parameter symmetries
related to the choice of how one defines the mass
eigenstates [8]. This leads to a total of 27 ¼ 128 discrete
parameter symmetries. Reference [7] concentrates on the
allowed range for each parameter, while in this paper, we
concentrate on the nontrivial parameter symmetries of the
physical oscillation observables when written in terms of
mixing angles and a phase. These parameter symmetries
restrict the allowed combinations of such parameters which
we elucidate with important examples. In addition, Ref. [9]
assumed CP conservation and vanishing Δm2

21 and exam-
ined a subset of the symmetries presented in this work to
determine the allowed ranges of the parameters. In addi-
tion, if one generalizes the mixing matrix to include a phase
on each rotation, there are two additional continuous
degrees of freedom related to rephasing of the neutrino
states or the Majorana phases. In this paper, we show
exactly how all of the parameter symmetries arise.
Going beyond the symmetries of the vacuum parameters

which can all be addressed via a choice of definition of the
mixing angles and mass eigenstates, these parameter
symmetries also naturally extend to the mixing angles
and eigenvalues in matter as well, providing another 27 ¼
128 discrete parameter symmetries. Since both of these sets
of symmetries apply simultaneously in matter, there are in
total 214 ¼ 16, 384 discrete parameter symmetries of the
oscillation probabilities in matter for both neutrinos and
antineutrinos.
The above symmetries all leave the Hamiltonian

unchanged up to rephasing. There is an additional param-
eter symmetry which changes the Hamiltonian but leaves
all physical observables unchanged known as the CPT
parameter symmetry. This is due to the fact that, under the
assumption that CPT is a good symmetry, all of the
oscillation physics is unchanged by the transformation
H → −H�. This symmetry, when combined with some of
the others discussed above, is equivalent to the so-called
LMA-light/LMA-dark symmetry often discussed in the
literature [10–14]. This leads to an additional power of 2 for
the total number of symmetries for each of the vacuum
case, the matter case, and approximate case.
It is well known that the exact solutions to neutrino

oscillations in constant matter density are quite intractable.
To gain insights into the physics of neutrino oscillations in
matter, a large number of approximate expressions have
been developed. We also examine these parameter sym-
metries in the scenario of a perturbative Hamiltonian. The
symmetries of both the vacuum parameters and the new
approximate parameters also apply subject to certain
conditions, one of which restricts the number of parameter
symmetries of the perturbative parameters by 2 to bring the

total number of parameter symmetries for a perturbative
scheme to 213 ¼ 8, 192. Finally, we examine which of these
parameter symmetries are satisfied by various approximate
expressions in the literature.

II. PARAMETER SYMMETRIES

Since the Hamiltonian in the flavor basis uniquely and
exactly determines the neutrino oscillation probabilities,
any parameter symmetry of this Hamiltonian is necessarily
a parameter symmetry of the probabilities. We first focus on
the vacuum case for simplicity and will later show that the
presence of matter, handled either exactly or perturbatively,
behaves in a similar way. We define the Hamiltonian4 in the
usual PDG fashion [6] except with a complex phase on
each rotation,

Hflav ¼
1

2E
U23U13U12M2U†

12U
†
13U

†
23; ð1Þ

where the nontrivial part of the 2 × 2 submatrix of the 3 × 3
complex rotation matrices is defined as5

Uijðθij; δijÞ ¼
�

cij sijeiδij

−sije−iδij cij

�
; ð2Þ

and the mass-squared matrix is M2 ¼ diagðm2
1; m

2
2; m

2
3Þ.

That is, we describe the mixing matrix with three rotation
angles θij and three associated complex phases δij. To
understand the parameter symmetries, it is useful to work
with this slightly more general mixing matrix with three
distinct complex phases, one for each rotation; however,
ultimately oscillation probabilities only depend on the sum
of these three complex phases.

A. Discrete parameter symmetries

We now list the various parameter symmetries of
the Hamiltonian. First, there are 128 discrete parameter
symmetries of the vacuum Hamiltonian up to rephasing.
To describe these, we introduce the parameters mij and nij,
each of which are ∈ Z2 (that is, f0; 1g). A sign flip
of a cosine term is given by the mij parameters,
cij → ð−1Þmijcij, and a sign flip of a sine term is given
by the nij parameters, sij → ð−1Þnijsij. This allows us to
write down “angle reflection” (nij) and “angle shift and
reflection” (mij) parameter symmetries as follows:

(i) ði; jÞ ¼ ð2; 3Þ or (1,2):

cij → ð−1Þmijcij; sij → ð−1Þnijsij
so long as δij → δij þ ðmij þ nijÞπ: ð3Þ

4We only focus on the flavor basis in this paper.
5We use the usual sij ¼ sin θij, cij ¼ cos θij, Δm2

ij ¼ m2
i −m2

j
convention.
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(ii) ði; jÞ ¼ ð1; 3Þ:

c13 → ð−1Þm13c13; s13 → ð−1Þn13s13
so long as δ13 → δ13 þ n13π: ð4Þ

In each case, if one of the angles is changed via the mij or
nij parameters, then the corresponding δij must accumulate
a factor of π with the exception of changes to c13. That is,
the six mij and nij are all independent and can each be
either 0 or 1, leading to 26 ¼ 64 combinations.
The remaining discrete parameter symmetry is the 1-2

interchange [15] for which all of the following simulta-
neously happen:

(i) ði; jÞ ¼ ð1; 2Þ:

c12 → s12 and s12 → c12

so long as δ12 → δ12 þ π and m2
1 ↔ m2

2: ð5Þ

The final part of the interchange is equivalent to Δm2
21 →

Δm2
12 ¼ −Δm2

21 and Δm2
31 ↔ Δm2

32. Note that the 1-2
interchange can be done simultaneously with the shift and
reflection described above.6 The parameter symmetry
related to this interchange provides one more factor of
2, leading to 128 total parameter symmetries.
After performing any combination of these parameter

symmetries including the 1-2 interchange, the Hamiltonian
is exactly the same up to a possible overall phase matrix,

Hflav → diagðð−1Þm13þm23 ;1;1ÞHflavdiagðð−1Þm13þm23 ;1;1Þ;
ð6Þ

see Appendix A for an explicit derivation of this. This (−1)
phase coming from m13 and/or m23 terms can then be
absorbed into the definition of jνei, and nothing has
changed. The presence of m13 and m23 and not m12 is
due to the fact that the sign from sending c12 → −c12 can
go through the middle of the Hamiltonian and commutes
with theM2 matrix, while this is not true for them13 orm23

parameter symmetries. The nij parameter symmetries
operate on the rotation matrix level and thus do not affect
the total Hamiltonian.
The various interchanges can be thought of equally in

terms of sines and cosines (e.g., s → −s) or in terms of
angles (e.g., θ → −θ). For convenience, we include the
relationship between these in a table:

Sines=cosines Angles

s → −s, c → c θ → −θ
s → s, c → −c θ → π − θ
s → −s, c → −c θ → π þ θ

c → s, s → c θ → π=2 − θ
c → −s, s → c θ → π=2þ θ
c → s, s → −c θ → −π=2þ θ
c → −s, s → −c θ → −π=2 − θ

B. Continuous parameter symmetries

In addition to the above discrete parameter symmetries,
there are two continuous degrees of freedom as well,
dubbed the “delta shuffle.”7 We define the three rotations
and complex phases by8

U23ðθ23; δ23ÞU13ðθ13;−δ13ÞU12ðθ12; δ12Þ: ð7Þ
In fact, in the context of neutrino oscillations, these three
phases are related by

δ23 þ δ13 þ δ12 ¼ δ mod 2π; ð8Þ
where δ is a new fixed parameter and is equal to the usual
single complex phase. That is, there are two additional
degrees of freedom which, it turns out, are equivalent to the
Majorana phases; see Sec. IV. For example, the three
following scenarios, each with a single complex phase,
are all equivalent:

U23ðθ23; δÞU13ðθ13; 0ÞU12ðθ12; 0Þ; ð9Þ
U23ðθ23; 0ÞU13ðθ13;−δÞU12ðθ12; 0Þ; ð10Þ
U23ðθ23; 0ÞU13ðθ13; 0ÞU12ðθ12; δÞ: ð11Þ

See Appendix B for the explicit rephasing expression
relating Eq. (7) to Eqs. (9)–(11). This can also be expressed
from the point of view of rephasing the flavor states as well
as the mass eigenstates,

DfU23U13U12DmM2D†
mU

†
12U

†
13U

†
23D

†
f; ð12Þ

where Df and Dm are diagonal rephasing matrices,
diagðeiα; eiβ; eiγÞ. Note that, since Dm commutes with
M2, it trivially cancels, while the Df rephasing can be
absorbed into the definitions of the neutrino flavor states.
The Df rephasing matrix requires some care if the
Hamiltonian is split into two parts for a perturbative
description; see Sec. III B below.

6While the mij and nij notation makes it appear as though the
1-2 interchange does not commute with a parameter symmetry
related to either m12 or n12, note that m12 and n12 always appear
as a sum, so swapping one for the other leads to no change.

7These were pointed out in Ref. [16].
8The choice of a minus sign on δ13 is arbitrary and is chosen

for consistency with the PDG convention.
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C. CPT parameter symmetry

All of the above parameter symmetries are symmetries of
the vacuum Hamiltonian up to rephasing, H → DfHD†

f

where Df is an arbitrary rephasing matrix. There is an
additional parameter symmetry of all oscillation observ-
ables (e.g., the probabilities) that is not of the above form
that depends on the assumption of CPT invariance [10,17].
This parameter symmetry can be written as

m2
i → −m2

i and δ → −δ: ð13Þ

Note that this requires the sum of the three phases,
P

δij, to
change signs. This is a parameter symmetry of the vacuum
Hamiltonian because it is equivalent to sending H → −H�.
The minus sign applies a time reversal to the vacuum
Hamiltonian, and the complex conjugate applies a charge-
parity reversal to the vacuum Hamiltonian; under the
reasonable assumption that CPT is a good symmetry at
scales relevant for neutrino oscillations, all physical observ-
ables remain the same.

D. Summary of parameter symmetries

These parameter symmetries can be rewritten relatively
compactly. For mij; nij ∈ f0; 1g, the following are exact
parameter symmetries of the Hamiltonian:

(i) (13): c13 → ð−1Þm13c13, s13 → ð−1Þn13s13, and
δ13 → δ13 � n13π,

(ii) (23): c23 → ð−1Þm23c23, s23 → ð−1Þn23s23, and
δ23 → δ23 � ðm23 þ n23Þπ,

(iii) (12): c12 → ð−1Þm12c12, s12 → ð−1Þn12s12, and
δ12 → δ12 � ðm12 þ n12Þπ,

(iv) (12): c12 → ð−1Þm12s12, s12 → ð−1Þn12c12, and
δ12 → δ12 � ðm12 þ n12 þ 1Þπ plus m2

1 ↔ m2
2,

(v) For three phases defined U23ðθ23; δ23Þ×
U13ðθ13;−δ13Þ ×U12ðθ12; δ12Þ, there are two free
degrees of freedom after applying the con-
straint: δ23 þ δ13 þ δ12 ¼ δ.

(vi) CPT: m2
i → −m2

i and δ → −δ,
See, for example, Ref. [18] for neutrino oscillation ampli-
tudes in vacuumwhich explicitly satisfy all of these discrete
parameter symmetries without additional manipulation, up
to an overall unphysical phase.

III. PARAMETER SYMMETRIES IN
DIFFERENT HAMILTONIANS

While the previous discussion was focused on the
vacuum Hamiltonian, we now show that it extends to
the matter Hamiltonian for constant (e.g., long-baseline
accelerator), smoothly varying (day-time solar), or sharply
varying (atmospheric and nighttime solar) density profiles.
In addition, it also applies to both exact and perturbative
scenarios, provided that the perturbative approach satisfies
certain properties discussed in Sec. III B below.

The three forms of the Hamiltonian considered in this
paper are

Hflav ¼
1

2E
½U23U13U12M2U†

12U
†
13U

†
23 þ A�; ð14Þ

¼ 1

2E
W23W13W12ΩW

†
12W

†
13W

†
23; ð15Þ

¼ 1

2E
½V23V13V12ΛV

†
12V

†
13V

†
23

þ ðU23U13U12M2U†
12U

†
13U

†
23 þ A

− V23V13V12ΛV
†
12V

†
13V

†
23Þ�; ð16Þ

each of which are exactly equivalent, and all terms have
identical mathematical structure of the form UM2U† apart
from matter term. In general, the rotation matrices have
complex phases associated with them as in the vacuum
case; see Eq. (7). The rotation and diagonal matrices are as
follows: (U;M2) in Eq. (14) are the vacuum parameters,
and (W, Ω) in Eq. (15) are the diagonalized exact eigen-
vectors and eigenvalues in matter [19]. For Eq. (16), (V, Λ)
are any approximation9 for the Hamiltonian in matter that is
diagonalized by rotations of the order: (23), (13), (12) of
any angles and phases, e.g., Denton, Minakata, and Parke
(DMP) [15]. That is, some of the V could be vacuum
rotations (U), exact rotations (V), or anything else. We use
hats to denote the parameters that exactly diagonalize the
Hamiltonian as shown in Eq. (15), e.g., θ̂ij and δ̂ij. We use
tildes to denote the parameters of the first line of the
perturbative Hamiltonian in Eq. (16), e.g., θ̂ij and δ̃ij, and
the indices for the parameter symmetries are similarly
expressed as m̃ij and ñij. Typically, the first line of Eq. (16)
is considered H0, and the second line is considered H1.
Since we are working at the Hamiltonian level, any

symmetry of the Hamiltonian is necessarily a symmetry of
the oscillation probability regardless of whether the matter
density profile is constant or not. For example, if the
density profile is a complicated function such as for
atmospheric or solar neutrinos, it may be difficult to solve
the Schrödinger equation (analytically or numerically), but
the symmetries are still valid since all of the information
required for propagation is in the Hamiltonian. In this case,
the effective oscillation parameters in matter, θ̂ij, δ̂ij, and

Δcm2
ij, all evolve as well, but since the symmetries

discussed below do not depend on the value of the matter
potential, a, they all apply for the entire probability for any
matter density profile.10

9These approximations need not be good approximations for
these parameter symmetries to hold.

10Note that these symmetries for supernova neutrinos, where
neutrino-neutrino interactions are relevant, require additional care.
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A. Parameter symmetries in matter

Since A≡ diagða; 0; 0Þ, the matter effect matrix11

respects all of the parameter symmetries in question apart
from the CPT parameter symmetry, adding A to the
vacuum Hamiltonian in Eq. (14) results in a matrix that
also respects the parameter symmetries when described
in terms of the vacuum parameters. Therefore, the
diagonalization of the Hamiltonian in matter also makes
no difference since the Hamiltonians in Eqs. (14) and (15)
are equal. This means that Eq. (15) also respects
the parameter symmetries in terms of the vacuum
parameters.
Moreover, since it is now written in the same form as that

of the vacuum Hamiltonian, the new diagonalized param-
eters (the eigenvalues, the mixing angles, and complex
phase of the eigenvectors in matter) also obey an addi-
tional set of parameter symmetries summarized here.
For m̂ij; n̂ij ∈ f0; 1g:

(i) (13): ĉ13 → ð−1Þm̂13 ĉ13, ŝ13 → ð−1Þn̂13 ŝ13, and
δ̂13 → δ̂13 � n̂13π,

(ii) (23): ĉ23 → ð−1Þm̂23 ĉ23, ŝ23 → ð−1Þn̂23 ŝ23, and
δ̂23 → δ̂23 � ðm̂23 þ n̂23Þπ,

(iii) (12): ĉ12 → ð−1Þm̂12 ĉ12, ŝ12 → ð−1Þn̂12 ŝ12, and
δ̂12 → δ̂12 � ðm̂12 þ n̂12Þπ,

(iv) (12): ĉ12 → ð−1Þm̂12 ŝ12, ŝ12 → ð−1Þn̂12 ĉ12, and

δ̂12 → δ̂12 � ðm̂12 þ n̂12 þ 1Þπ plus dm2
1 ↔

dm2
2,

(v) For three phases defined W23ðθ̂23; δ̂23Þ×
W13ðθ̂13;−δ̂13ÞW12ðθ̂12; δ̂12Þ, there are two free
degrees of freedom after applying the con-
straint: δ̂23 þ δ̂13 þ δ̂12 ¼ δ̂.

Therefore, the exact expressions for neutrino oscillations
in matter [19,21,22] respect the 128 symmetries of the
vacuum parameters as described in the previous section
except for the CPT parameter symmetry. They also respect
128 symmetries in terms of the matter parameters described
above, for a total of 214 ¼ 16, 384 possible vacuum plus
matter parameter symmetries. This includes flipping
jν1i ↔ jν2i and/or jν̂1i ↔ jν̂2i where the jν̂ii are the exact
eigenstates of the Hamiltonian in matter. Adding the CPT
parameter symmetry, given by12

CPT∶cm2
i → −cm2

i and δ̂ → −δ̂ ;

doubles the total number of symmetries. All of these
symmetries impose constraints on the analytic form of
the oscillation probabilities matter, as will be discussed
in Sec. IV.
Each of these parameter symmetries can be applied at

each point in propagation in either a constant or varying

matter potential, and the physics at the step remains
invariant. In principle, one could choose a different param-
eter symmetry at each step; however, for continuity of
the mixing angles and CP phase, applying the same
parameter symmetries along the entire route is certainly
the simplest option, and the physics cannot depend on the
choice made.

B. Parameter symmetries of a perturbative
Hamiltonian

Since the exact expressions for neutrino oscillations
in matter for constant or sharply varying density profiles
tend to be fairly opaque, numerous approximation
schemes have been considered in the literature; for an
overview, see Ref. [23]. One technique is that of splitting
the Hamiltonian into a large part and a small part;
H ¼ H0 þH1. H0 is then the diagonal part of H after
successive diagonalizing with two component rotations
until the off-diagonal elements are sufficiently small.
Then, H1 is just the remaining off-diagonal part; see
Refs. [15,24–27]. While different perturbative schemes
have different benefits,13 we focus on that described in
Ref. [15] by DMP as a concrete example.
First, we note that the above parameter symmetries still

apply to the vacuum parameters, as they must, since the
addition of the matter potential matrix is invariant under the
parameter symmetries. Second, we find that there are four
key conditions for a perturbative Hamiltonian to satisfy in
order for the new approximate eigenvalues and approxi-
mate angles (denoted with tildes) to be independent under
the parameter symmetries:
(1) The order of rotations must match that of the vacuum

rotations.
(2) The approximate eigenvalues must respect all the

vacuum parameter symmetries.
(3) The phases of the new rotations must match the

corresponding vacuum ones mod π,

δ̃ij ¼ δij mod π: ð17Þ

(4) Certain vacuum and perturbative parameter sym-
metries must match:

m13 þm23 ¼ m̃13 þ m̃23 mod 2: ð18Þ

We now explain in more detail exactly what these con-
ditions are.

11The matter effect is given by a ¼ 2
ffiffiffi
2

p
GFENeρ [20].

12The CPT parameter symmetry of the matter parameters can
be achieved by the simultaneous transformations m2

i → −m2
i ,

δ → −δ, and a → −a.

13If in the approximation scheme one is considering, V12 ¼ I,
such as Ref. [25], then a jν̂1i ↔ jν̂3i interchange symmetry is
possible, which can be made exact by appropriate choices for θ̂
and δ̂ in V13, similar to what was performed for the jν̂1i ↔ jν̂2i
interchange symmetry in V12. Using the methods of this paper,
one can work out all the parameter symmetries for such
approximation schemes; see Appendix C.
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First, it is necessary to follow the same sequence of
rotations as in vacuum. That is, for the PDG parametriza-
tion of the lepton mixing matrix [6], the zeorth order part of
the Hamiltonian must be diagonalized by a (23)-rotation,
then a (13)-rotation, followed by a (12)-rotation. If the
lepton mixing matrix is parametrized in a different way [1],
then a different sequence of rotations would need to be
used, which may or may not be advantageous depending on
the exact region of interest. This condition is satisfied in the
work by DMP [15] (as well as in Ref. [25]), where it was a
noted convenient benefit that happened by chance due to
focusing on the large off-diagonal elements and removing
the level crossings. Note that, since the sequence of
rotations used in Ref. [24] is a different order, the
approximate matter parameters used there do not satisfy
these parameter symmetries.
Second, in general, the approximate eigenvalues (these

make up theΛmatrix) need to respect the symmetries of the
vacuum parameters in order for the parameter symmetries
to be satisfied by expressions derived from such an
approximation scheme. While the full Hamiltonian in
Eq. (16) does respect these parameter symmetries, if the
split between H0 and H1 is not done in a way that respects
these parameter symmetries, then expressions derived from
only part of the Hamiltonian will not respect these vacuum
parameter symmetries. We explicitly show in Appendix D
that each of the eigenvalues in the exact solution respects
the vacuum parameter symmetries as they must and in
Appendix E that each of the approximate eigenvalues in the
DMP scheme do respect the vacuum parameter symmetries.
Third, assuming the vacuum mixing matrix is parame-

trized with three phases as in Eq. (7), the phases in the dia-
gonalizing matrices Vij must be given by δ̃ij ¼ δij mod π.
This condition guarantees that no net phase appears between
the exact and approximate expressions. Therefore, there are
no parameter symmetry degrees of freedom related to the
delta shuffle for the perturbative complex phases, δ̃ij. Note
that in DMP this was satisfied as the vacuum matrix was
parametrized with the phase on the (23)-rotation as in Eq. (9)
the (23) diagonalization matrix was the same as the vacuum
parameters,

sin 2θ̃23eiδ̃23 ¼ sin 2θ23eiδ23 : ð19Þ

This form of the definition is motivated as the imaginary part
of Eq. (19) is known to be exactly satisfied for the exact
versions of the matter variables [28].14

Fourth, and most interestingly, a certain combination of
parameter symmetries of the vacuum and perturbative para-
meters is not parameter symmetries of the Hamiltonian.
Equation (6) shows how the Hamiltonian accumulates an
overall phase if m13 or m23 parameter symmetries are
applied. As this phase can be absorbed into the definition of
jνei, it is not a problem, but if different phases appear onH0

and H1, then the phase cannot be simply absorbed into the
definition of jνei anymore. Since the impact of such a phase
on H0 comes only from the symmetries of the approximate
parameters denoted m̃13 and m̃23 and the impact of such a
phase onH1 comes from not onlym13 andm23 but also m̃13

and m̃23 as can be seen from the second line of Eq. (16), the
only way to ensure that these phases can be absorbed into
jνei is if the impact of both are the same. This only happens
when the conditions of Eq. (18) are satisfied. This extra
condition implies that the number of symmetries in the
perturbative parameters is a factor of 2 lower; one can think
of it as once choices are made about m23, m13, and m̃23,
then m̃13 is fixed. Therefore, there are an additional 128=2
parameter symmetries for the perturbative parameters for a
total of 213 ¼ 8, 192 parameter symmetries for a perturba-
tive Hamiltonian that meets the above requirements.

IV. DISCUSSION

A. Definition of the parameters

The 26 ¼ 64 discrete parameter symmetries of the
vacuum parameters not including the 1–2 interchange
are exactly equivalent to the fact that one can define the
range of each of the three mixing angles to be in only one
quadrant. That is, one could choose that each of the mixing
angles θij exists in ½ηijπ=2; ðηij þ 1Þπ=2Þwhere the ηij ∈ Z
need not be the same for each angle.15 For convenience,
the standard convention is that ηij ¼ 0 for each of the
mixing angles. This is equivalent to requiring that sij ≥ 0

and cij ≥ 0.
The remaining parameter symmetry for the vacuum

parameters is the 1-2 interchange symmetry. Given the
above range of the mixing angles and complete freedom in
identifying the mass states, the 1-2 interchange symmetry
exists. As with the mixing angles, this implies that one
should make a definition restricting this; there are two
typical approaches to proceed (for a comprehensive exami-
nation of how one labels the mass states, see e.g., Ref. [8]).
First, one could fix the order of the mass states such that the
first mass state is smaller than the second. Second, one
could fix θ12 to be contained within one octant, typically

14The Toshev identity, sin 2θ̃23 sin δ̃ ¼ sin 2θ23 sin δ [28],
gains a sign under certain changes in the definitions; this is
consistent with the rest of the results of this paper since the
Toshev identity is not a physically measurable quantity likeΔPCP,
given in Eq. (26). With the correct signs, the Toshev identity
reads ð−1Þm̃12þñ12þñ13 sin2θ̃23 sin δ̃¼ ð−1Þm12þn12þn13 sin2θ23 sinδ
without 1 ↔ 2 interchanges. With such interchanges in matter/

vacuum an additional factor of (−1) is needed on the matter/
vacuum side of this generalized Toshev identity.

15In fact, this generalizes somewhat. The angles can be defined
to be within any region given by θ ∈∪i ½xi; yiÞ for any xi and yi
possibly different for each angle such that fj cos θjg are all unique
as are fj sin θjg across the allowed range of θ. For example, one
could define θ12 to be in the range ð−0.5π;−0.2π� ∪ ½0; 0.2πÞ.
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θ12 ∈ ½0; π=4Þ. Each of these are equivalent as described by
the interchange symmetry (up to a factor of π on δ12). Thus,
the fact that we can define Δm2

21 > 0 or θ12 ∈ ½0; π=4Þ is
exactly due to the 1-2 interchange symmetry.
We also note that for the same reason that there is a

parameter symmetry of mass states jν1i and jν2i related to
θ12 there is also a different discrete parameter symmetry
related to flavor states jνμi and jντi and θ23, also subject to
appropriate modifications if the lepton mixing matrix is
parametrized in a different way. This parameter symmetry
is not a parameter symmetry like the others since we can
differentiate between jνμi and jντi by measuring the
properties of their associated charged leptons.

B. LMA-dark degeneracy

The CPT parameter symmetry discussed in Sec. II C has
appeared in the literature typically accompanied with the 1-
2 interchange parameter symmetry stated in Eq. (5) and is
often written as

c12 ↔ s12; Δm2
31 ↔ −Δm2

32; and δ → π − δ: ð20Þ

This form, or variations thereof, is often referred to as the
LMA-light/LMA-dark degeneracy or the Generalized Mass
Ordering Degeneracy; see e.g., Refs. [9,12–14]. This
particular combination of parameter symmetries is of
interest due to interesting phenomenological implications,
in particular when the matter effect is included. In the
presence of matter, the vacuum CPT parameter symmetry
changes the Hamiltonian as follows,

Hvac þ A → −H�
vac þ A; ð21Þ

where A≡ diagða; 0; 0Þ and a is the matter potential which
is unchanged by this parameter symmetry. This is the
LMA-light to LMA-dark interchange. The fact that this is
the only parameter symmetry of the vacuum Hamiltonian
but not of the matter Hamiltonian is exactly why measuring
the matter effect (as has already been done by combining
solar data [29] with KamLAND data [30]) is a necessary
condition for measuring both mass orderings.
In the presence of new physics, it is possible that the

matter effect could take the opposite sign of the expectation
in the SM (i.e., A → −A) where the new physics is
described in the neutrino nonstandard interactions (NSI)
framework [20,31,32]. This also means that, in the presence
of NSIs, it is not possible to determine the atmospheric
mass ordering since then even the matter Hamiltonian is
invariant underΔm2

31 ↔ −Δm2
32, although the details of the

NSI model may allow one to break this degeneracy in most
cases [9,13,14].
This parameter symmetry adds a factor of 2 to the

number of symmetries in vacuum. In matter, it also adds a
factor of 2 because, while the probabilities are no longer
invariant under this parameter symmetry of the vacuum

parameters as shown in Eq. (21), they are invariant under
the same symmetry but for the equivalent parameters in
matter,

cm2
i → −cm2

i and δ̂ → −δ̂: ð22Þ
Similarly, for any approximate diagonalization scheme, so
long as all three eigenvalues change sign along with the
complex phase, the CPT parameter symmetry holds.

C. Some technical details

In this section, we aim to understand these parameter
symmetries conceptually. We begin with the delta shuffle
since it is distinct from the others. The main notable
difference from the other parameter symmetries is that this
represents a continuous parameter symmetry. That is, it
represents two additional continuous parameters in the
matrix. These two extra parameters are physical if neutrinos
have a Majorana mass term [16,33]. If one writes the
mixing matrix as a product of the usual PDG [6] form and
the Majorana phase matrix P ¼ diagðe−iα; e−iβ; 1Þ as
UPDGP, then our parametrization in Eq. (7) with δij on
each rotation is equivalent to P†UPDGP, which is equal to
UPDGP after rephasing the charged leptons. The Majorana
phases α and β are related to the phases in our notation by

δ ¼ δ23 þ δ13 þ δ12; α ¼ δ12 þ δ23; β ¼ δ23: ð23Þ
See Appendix B for more on rephasing.
Note that, while the discrete parameter symmetries are

related to the definition of the ranges of the parameters (see
Sec. IVA), they are still parameter symmetries of the
probabilities. This means that every probability expression
must respect these parameter symmetries and they can
be used as a valuable and quick cross-check for any
expression.
If the Hamiltonian is written as a series of three rotations

in a different order, see Ref. [1], the same parameter
symmetries apply, but care is required with regard to the
inner vs outer rotations for the delta shuffle and the angle
shift (mij). It is the sign change on the cosine in the middle
rotation that does not result in a factor of π on the associated
complex phase, and the 1-2 interchange applies only to the
third rotation. For example, if the lepton matrix is para-
metrized by a sequence of rotations in the order (23), (12),
(13), then the 1-2 interchange would become a 1-3
interchange involving θ13 instead of θ12 and m2

1 ↔ m2
3

instead of m2
1 ↔ m2

2. It would then be θ12 for which a
c12 → −c12 change would not include a change to δ, and it
would be m12 þm23 that would need to be equivalent
between the vacuum and perturbative parameters.
While the parameter symmetries derived in the

Hamiltonian framework presented in Sec. II are all exact,
some care is required. The Hamiltonian framework benefits
from a high level of generality: any parameter symmetries
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of the Hamiltonian are automatically parameter symmetries
of the physical observables—the probabilities. It is pos-
sible, however, to artificially break the parameter sym-
metries of the Hamiltonian while the parameter symmetries
of the probabilities persist. For example, it is known that the
probabilities are invariant under the addition of any matrix
proportional to the identity matrix as this is equivalent to
adding an overall phase which is not detectable in oscil-
lations. But if one adds a matrix that does not respect the
parameter symmetries, then the resultant Hamiltonian will
also no longer respect some of the parameter symmetries,
but the probabilities still will, of course. For example, if one
writes the Hamiltonian with M2 ¼ diagðm2

1; m
2
2; m

2
3Þ, then

all the parameter symmetries are respected in the
Hamiltonian. If, however, one subtracts m2

1I so that

M2 → diagð0;Δm2
21;Δm2

31Þ; ð24Þ

the 1-2 interchange symmetry is not respected since m2
1I is

not invariant under the 1-2 interchange symmetry. One can,
however, subtract a term that is known to be invariant under
the parameter symmetries, see the previous paragraph, and
the parameter symmetries will still remain valid. For exam-
ple, one could subtract ðc212m2

1 þ s212m
2
2ÞI, which sends

M2 ¼ diagðm2
1; m

2
2; m

2
3Þ

→ diagð−s212Δm2
21; c

2
12Δm2

21;Δm2
eeÞ; ð25Þ

which still respects all the parameter symmetries since the
initial Hamiltonian does, as does the subtracted identity
matrix. It is interesting to note then that these parameter
symmetries (particularly the 1-2 interchange symmetry)
applies to the physical observables so long as there is
at least one Hamiltonianwhich can be shifted to by amultiple
of the identity matrix such that that parameter symmetry
applies; the fact that this is true for the physically motivated
definition ofM2 ¼ diagðm2

1; m
2
2; m

2
3Þ is one of convenience.

We also note that the form of the parameter symmetries
as shown in Sec. II D and elsewhere through this paper is
not fully symmetric under the different parameters. This is
because the specific description of parameter symmetries
discussed depend on the parametrization of the mixing
matrix. A different parametrization in terms of a different
sequence of rotations will result in similar parametrization
symmetries where one needs to pay attention to which
rotation is next to the diagonal mass matrix for the 1-2
interchange (which could become the 1-3 interchange or
the 2-3 interchange accordingly) and which rotation is the
final one to get to the flavor basis.
At least some of the discrete parameter symmetries can

also be embedded in a group structure [34].
While we do not know for sure if the list presented here

contains all of the relevant parameter symmetries of this
form, we do believe that it is complete.

V. PHYSICAL CONSEQUENCES

All physical oscillation observables must satisfy these
parameter symmetries. In this section, we discuss a few
important examples of how these parameter symmetries
appear in physical observable variables and constrain the
dependence on the parameters.
The CP violating term in appearance experiments

proportional to the Jarlskog invariant [35] is given by

ΔPCP ∝ s23c23s13c213s12c12 sinðδ23 þ δ13 þ δ12Þ
× sinΔ21 sinΔ31 sinΔ32; ð26Þ

which is unchanged under all of the above parameter
symmetries including the CPT symmetry. We note that
the fact that m13 (the change on c13) is treated differently
from the othermij; nij is the same reason that c213 appears in
Eq. (26); if m13 ¼ 1, then c213 → c213, and thus we must
have sin δ → sin δ to remain invariant, while for the
remaining sij and cij terms as each picks up a minus sign,
it is exactly offset by the minus sign in sinðδ23 þ δ13 þ δ12Þ.
This is a useful nontrivial cross-check of the symmetries
discussed in this paper.
The Hamiltonians are invariant under these parameter

symmetries as described above, but certainly individual
elements that appear in the Hamiltonian are not, such as
s13 or Δm2

21. That said, there are a number of interesting
nontrivial terms that appear regularly in exact and various
approximate oscillation probabilities that are invariants of
all of the parameter symmetries. We list the parameter
symmetry invariant factors here:

(i) s13eiδ13 , s213 and c213,
(ii) s23c23eiδ23 , s223 and c223,
(iii) s12c12eiδ12Δm2

21,
(iv) cos 2θ12Δm2

21 ¼ ðc212 − s212ÞΔm2
21,

(v) c212Δm2
31 þ s212Δm2

32 ≡ Δm2
ee (see ref. [36]).

In addition, combinations of these expressions appear
in the probabilities. For example, the usual cos δ
or sin δ terms must appear in the combination,
s13s23c23s12c12eiðδ23þδ12þδ13ÞΔm2

21 possibly with additional
parameter symmetry invariant factors such as c213; s

2
23;….

See, for example, Table 1 of Ref. [15]. Also, these parameter
symmetries exclude some combinations of parameters in
physical observables, such as, odd powers of c13.

VI. PARAMETER SYMMETRIES OF
APPROXIMATIONS IN THE LITERATURE

A. Simple probability approximations

The DMP approximation [15] has many useful features
including the fact that it automatically respects the maxi-
mum number of parameter symmetries for an approxima-
tion scheme. There are numerous other interesting
approximate expression in the literature; see Ref. [23]
for a review. While many of these approximate expres-
sions do not follow the form of Eq. (16), we nonetheless
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investigate which of these parameter symmetries they
respect.
We first note that all other expressions only consider

the single complex phase δ≡ δ23 þ δ13 þ δ12; thus, the
delta shuffle parameter symmetry is not relevant. Next, we
investigate the behavior of these approximations under the
discrete parameter symmetries.
We begin with the expressions for the probabilities

written as simple functions of the vacuum parameters
and the matter potential. As such, there are no approximate
matter parameter symmetries. This includes seven expres-
sions16 [37–42]. All of these expressions respect the 26 ¼
64 parameter symmetries of the mixing angles represented
by the mij; nij except for that of Ref. [38], which only
respects the parameter symmetry associated with m13. On
the other hand, none satisfies the 1-2 interchange, although
many could with a simple change of Δm2

31 → Δm2
ee (a

change which, in some cases, is known to increase the
precision of approximations [43,45]). In addition, since
these are all expressions as functions of the vacuum
parameters only but include the matter effect, none satisfies
the CPT symmetry of the vacuum parameters either.
One interesting approximate expression is that from

Ref. [39], which we reproduce here,17

Pμe ¼ 4s223s
2
13c

2
13

�
Δm2

31

Δm2
31 − a

�
2

sin2
�ðΔm2

31 − aÞL
4E

�

þ 4c223s
2
12c

2
12

�
Δm2

21

a

�
2

sin2
�
aL
4E

�

þ 8Jr

�
Δm2

21

a

�
sin

�
aL
4E

��
Δm2

31

Δm2
31 − a

�

× sin

�ðΔm2
31 − aÞL
4E

�
cos

�
δþ Δm2

31L
4E

�
; ð27Þ

where Jr ¼ s23c23s13c213s12c12 is the reduced Jarlskog
invariant [15,35]. We now rewrite this expression in such
a way that it respects the 1-2 interchange symmetry, and
thus all the vacuum parameter symmetries,

Pμe ¼ 4s223s
2
13c

2
13

�
Δ
m2

ee
Δm2

ee − a

�
2

sin2
�ðΔm2

ee − aÞL
4E

�

þ 4c223c
2
13s

2
12c

2
12

�
Δm2

21

a

�
2

sin2
�
aL
4E

�

þ 8Jr

�
Δm2

21

a

�
sin

�
aL
4E

��
Δm2

ee

Δm2
ee − a

�

× sin

�ðΔm2
ee − aÞL
4E

�
cos

�
δþ Δm2

eeL
4E

�
: ð28Þ

Note that we have changed Δm2
31 → Δm2

ee and have also
added in a factor of c213 to the second term compared to the
expression in Ref. [39]. The impact of this c213 term is small,
2% on an already small term, but there is a slight improve-
ment in the precision of the expression. More importantly,
it allows one to easily write Eq. (28) as the sum of two
amplitudes squared Pμe ¼ jAμej2, where

Aμe ¼ 2c13

�
s23s13

�
Δ
m2

ee
Δm2

ee − a

�
sin

�ðΔm2
ee − aÞL
4E

�

þ c23s12c12

�
Δm2

21

a

�
sin

�
aL
4E

�

× exp

�
i

�
δþ Δm2

eeL
4E

���
: ð29Þ

B. Probability approximations with rotations

The remaining approximate expressions [15,24,25] use
perturbative techniques of diagonalizing a part of the
Hamiltonian. In Ref. [24], we note that the approximate
eigenvalues denoted λ0� and λ00� do not respect the 1-2
interchange symmetry of the vacuum parameters but do
respect the mij; nij discrete parameter symmetries of the
vacuum angles. With regard to the approximate matter
variables, they work in the vacuum mass basis so the
equivalent form of Eq. (16) becomes

Hflav ¼ U23U13U12V12V23ΛV†
23V

†
12U

†
12U

†
13U

†
23

þ ðU23U13U12M2U†
12U

†
13U

†
23 þ A

− U23U13U12V12V23ΛV†
23V

†
12U

†
12U

†
13U

†
23Þ; ð30Þ

for some Vij and Λ. Note that in Ref. [24] the U12V12

rotations are subsequently combined into a single rotation.
In addition, the sequence of rotations is different for
antineutrinos than for neutrinos. Since the order of the
diagonalization of the Vij matrices is not the same as the
lepton mixing matrix, the discrete parameter symmetries of
the perturbative parameters in general do not remain.
Next, Refs. [15,25] both start in the mass basis and

perform a (23)-rotation first with θ̃23 ¼ θ23. They then
perform a (13)-rotation for some angle θ̃13. After this,
Ref. [15] also performed a (12)-rotation for some angle θ̃12,
while Ref. [25] was done and can be thought of as setting
θ̃12 ¼ 0 and is thus of the same form for the context of the
parameter symmetries discussed here. The remaining point
to confirm is that the eigenvalues all satisfy the symmetries
of the vacuum parameters, which is shown in Appendix E.
Thus, the expressions in Refs. [15,25] respect the 27

discrete parameter symmetries of the vacuum parameters
and the additional 26 discrete parameter symmetries of the
perturbative parameters provided that one considers θ̃23 and

16We consider Eqs. (31) and (48) of Ref. [37] and Eq. 36 of
Ref. [38].

17The notation is slightly modified, and the absolute value
signs are removed as they are not relevant, for convenience.
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δ̃ as separate parameters from θ23 and δ that are allowed
to transform differently even though they take the same
values in the standard ranges. In addition, the CPT
parameter symmetry of the matter parameters is also res-
pected. Finally, we note that as pointed out in Ref. [23] the
approximation scheme in Ref. [15] which respects all the
possible parameter symmetries of a perturbative expression
is numerically more precise than the similar approach in
Ref. [24] which respects fewer parameter symmetries.
In fact, we found that there is generally an increase in

precision18 when using a form that respects all the available
parameter symmetries for both the simpler expressions
discussed at the beginning of the section and those based on
rotations in the previous papers. In Fig. 1, we show the
precision for the expressions from Refs. [15,24,39] and
Eq. (28). We also verified that in Refs. [37,40], which are
similar to Ref. [39], the original approximate expressions
have a constant error ∼2% as E → ∞, but a change from
Δm2

3i → Δm2
ee results in convergence at high energies for

the expressions from Refs. [39,40] and generally improved
precision.

C. Approximations for other oscillation parameters

Another example of the impact of these parameter
symmetries on the physics of neutrino oscillations is the
size of the matter potential at the solar and atmospheric
resonances given by

aRsol ≈ cos 2θ12Δm2
21=cos

2θ13

and aRatm ≈ cos 2θ13Δm2
ee; ð31Þ

respectively. These expressions are both extremely accurate
as fractional corrections to these expressions are of
order [47]

Oðs413; s213ðΔm2
21=Δm2

eeÞ; ðΔm2
21=Δm2

eeÞ2Þ: ð32Þ

The above expressions for the matter potential at the
resonances satisfy all the parameter symmetries including
the 1-2 symmetries. Note for the atmospheric resonance it
is Δm2

ee, not Δm2
31 nor Δm2

32 that appears, as the approxi-
mation is best when the 1-2 interchange symmetry is
respected.
The Jarlskog invariant in matter is the coefficient of the

OðL3Þ term in the appearance probability and can also be
simply approximated as [45]

Ĵ ≈
J

S⊙Satm
; ð33Þ

S⊙ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ12 − c213a=Δm2

21Þ2 þ sin2 2θ12

q
; ð34Þ

Satm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ13 − a=Δm2

eeÞ2 þ sin2 2θ13

q
: ð35Þ

Each of these terms respects all the symmetries, and if
Δm2

ee is changed to Δm2
31 or Δm2

32 which do not respect
these parameter symmetries, the precision of the approxi-
mation is a factor ≳10 times worse.

FIG. 1. Left panel: we show the fractional precision for the appearance probability in Ref. [39] compared to the exact expression in
blue. In orange, we change Δm2

31 → Δm2
ee, which makes the expression in Ref. [39] respect all 27 ¼ 128 discrete parameter symmetries

of the vacuum parameters including the 1-2 interchange and include a c213 factor; see Eq. (28). Right panel: we show the precision of
Agarwalla-Kao-Takeuchi, [24], which does not respect the parameter symmetries as well as DMP, [15], which does respect the
parameter symmetries. In both of these panels, expressions that respect the parameter symmetries have better precision. We use the best
fit oscillation parameters from Ref. [44] and δ ¼ 1.6π to avoid any accidental CP phase cancellations.

18The improved precision using Δm2
ee instead of Δm2

3i broadly
applies, except for a small range of δ values near δ ¼ π=2, a
region that is disfavored by current T2K data [46].
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The effective Δm2’s for disappearance experiments in
vacuum are given by

Δm2
ee ¼ cos2θ12Δm2

31 þ sin2θ12Δm2
31; ð36Þ

Δm2
μμ ≈ sin2θ12Δm2

31 þ cos2θ12Δm2
31

þ 2 sin θ23 cos θ23 sin θ13 sin θ12 cos θ12

× Δm2
21 cosðδ12 þ δ13 þ δ23Þ=cos2θ23; ð37Þ

Δm2
ττ ≈ sin2θ12Δm2

31 þ cos2θ12Δm2
31

− 2 sin θ23 cos θ23 sin θ13 sin θ12 cos θ12

× Δm2
21 cosðδ12 þ δ13 þ δ23Þ=sin2θ23; ð38Þ

for νe, νμ, and ντ disappearance, respectively [36]. Each of
these satisfies the symmetries given in Sec. II for (12), (13),
and (23) sectors independently. Similarly, Ref. [48] found
that the eigenvalues in matter can be better approximated
by using an atmospheric mass splitting of either Δm2

ee or
1
2
ðΔm2

31 þ Δm2
32Þ, both of which respect the above param-

eter symmetries, over other possible definitions which may
not respect these parameter symmetries.
Finally, we note that the relevant exact and approximate

two-flavor Δm2 and mixing angle for νe disappearance in
matter [49],

Δcm2
ee ¼ cm2

3 − ðcm2
1 þ cm2

2Þ
− ½m2

3 − ðm2
1 þm2

2Þ� þ Δm2
ee; ð39Þ

Δfm2
ee ¼ Δm2

eeSatm; and sin 2θ̃13 ¼
sin 2θ13
Satm

; ð40Þ

also respect all of the above symmetries and that other
possible forms that do not respect these symmetries are less
precise.

VII. CONCLUSIONS

The PDG [6] parametrization of the lepton mixing matrix
of three rotations has been the de facto standard para-
metrization for neutrino oscillations for many years now.
This parametrization has many favorable phenomenologi-
cal properties [1], but it also leaves open many parameter
symmetries. These parameter symmetries relate two seem-
ingly different sets of parameters to the same underlying
physics, such as θ13 ¼ 8.5° and θ13 ¼ 171.5°. In this paper,
we elucidate what these parameter symmetries are in the
context of changing signs of sin θij or cos θij and adjusting
the appropriate complex phase adjustment. These param-
eter symmetries then allow one to define the mixing angles
as within a range spanning π=2 rad subject to certain
restrictions, typically taken to be θij ∈ ½0; π=2Þ. In addition,

these parameter symmetries allow one to either fix Δm2
21>0

or θ12 ∈ ½0; π=4Þ depending on one’s preference.
While the allowed ranges of the vacuum parameters have

been previously identified, the framework presented here
makes the connection to the parameter symmetries mani-
fest, which makes it clear that the same parameter sym-
metries separately apply to the parameters in the presence
of matter. Thus, in matter, one has 214 ¼ 16, 384 parameter
symmetries including both vacuum and matter parameters.
In addition, if one uses an approximate perturbative scheme
such as that in DMP [15], one has nearly all of the
parameter symmetries to any order in perturbation theory
as well, 213 ¼ 8, 192, subject to key matching conditions
between the vacuum parameters and the approximate
matter parameters. Finally, we note that CPT invariance
leads to another factor of 2 in the number of symmetries for
each vacuum, matter, and approximate matter expression.
All combined, this paper highlights 49,408 discrete param-
eter symmetries which apply to both neutrino and anti-
neutrino oscillations across the three different frameworks.
The CPT parameter symmetry combined with one of the
other discrete parameter symmetries gives rise to the well-
known LMA-light/LMA-dark degeneracy.
These parameter symmetries not only make it clear

where the restricted ranges on the parameters come from,
but they also provide a powerful tool when working with
approximations for various physical quantities. While such
approximate expressions need not satisfy any of the
parameter symmetries mentioned here to be useful, these
symmetries do provide an important cross-check and
generally lead to improved precision.
We have focused on the standard PDG parametrization

of the lepton mixing matrix, but the results presented here
apply to different parametrizations containing a different
sequence of rotations after straightforward modifications. It
may be interesting to explore connections to other para-
metrizations involving generators of SU(3) [50–52], four
complex phases [53], five rotations and a complex phase
[54], and the exponential of a complex matrix [55].
Recently, Ref. [56] appeared on a related topic. We note

that the various vacuum, matter, and perturbative parameter
symmetries mentioned there are all covered in this paper.
We explicitly show the connection to our work for a
representative example in Appendix F.
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APPENDIX A: TRANSFORMATIONS OF THE ROTATION MATRICES

In this Appendix, we give the effects of the transformations given in Sec. II on the rotation matrices U23, U13, and U12,
respectively.
The application of the parameter symmetries to the (23)-rotation,
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In this equation, c ¼ c23; s ¼ s23; δ ¼ δ23 with m ¼ m23; n ¼ n23.
The application of the parameter symmetries to the (13)-rotation is
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In this equation, c ¼ c13; s ¼ s13; δ ¼ δ13 withm ¼ m13; n ¼ n13. The left (right) diagonal matrix commutes withU23 (U12

and also M2).
The application of the parameter symmetries to the (12)-rotation without the 1-2 interchange is
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In this equation, c ¼ c12; s ¼ s12; δ ¼ δ12 with m ¼ m12; n ¼ n12.
The application of the symmetries to the (12)-rotation with 1-2 interchange is
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In this equation, c ¼ c12; s ¼ s12; δ ¼ δ12 with m ¼ m12; n ¼ n12. The second matrix in Eq. (A4) performs the m2
1 ↔ m2

2

interchange.
Then, under all the parameter symmetries given in Sec. II, we have the symmetry transformation equation for the

Hamiltonian in the flavor basis:

U23U13U12M2U†
12U

†
13U

†
23 ⇒ diagðð−1Þðm23þm13Þ; 1; 1ÞU23U13U12M2U†

12U
†
13U

†
23diagðð−1Þðm23þm13Þ; 1; 1Þ: ðA5Þ

Only the diagonal matrices immediately after the equal side in Eqs. (A1) and (A2) appear in this transformation of the
vacuum Hamiltonian in the flavor basis. This can also be seen directly by calculating the Hamiltonian in the flavor basis and
then applying the parameter symmetries. Only the first row and column get modified by multiplication by ð−1Þðm23þm13Þ. An
identical result to Eq. (A5) exists for DMP at zero order, i.e., for V23V13V12ΛV†

12V
†
13V

†
23 with ðm23 þm13Þ replaced

with ðgm23 þ gm13Þ.
Adding the matter potential to both sides of Eq. (A5) does not effect this result as

diagðð−1Þðm23þm13Þ; 1; 1ÞAdiagðð−1Þðm23þm13Þ; 1; 1Þ ¼ A: ðA6Þ

Therefore, Eq. (6) is valid in both vacuum and matter.
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APPENDIX B: DELTA SHUFFLE EXAMPLES

In this Appendix, we show exactly how one relates Eq. (7) to Eqs. (9)–(11) via diagonal rephasing matrices. Recall that
we drew attention to the delta shuffle, which allows us to write the following mixing matrices in the same way,

U23ðθ23; δ23ÞU13ðθ13;−δ13ÞU12ðθ12; δ12Þ ¼ D23U23ðθ23; δÞU13ðθ13; 0ÞU12ðθ12; 0ÞD†
23;

¼ D13U23ðθ23; 0ÞU13ðθ13;−δÞU12ðθ12; 0ÞD†
13;

¼ D12U23ðθ23; 0ÞU13ðθ13; 0ÞU12ðθ12; δÞD†
12; ðB1Þ

where19

D23 ¼ diagð1; e−iδ12 ; eþiδ13Þ; D13 ¼ diagðeþiδ12 ; 1; e−iδ23Þ; D12 ¼ diagðe−iδ13 ; eþiδ23 ; 1Þ ðB2Þ

given that δ ¼ δ23 þ δ13 þ δ12 mod 2π. Note the Djk’s are not unique.

APPENDIX C: PARAMETER SYMMETRIES IN MP

In the approximation scheme of Minakata and Parke (MP) [25], where V12 ¼ 1, Eq. (16) becomes

Hflav ¼
1

2E
½V23V13ΛV†

13V
†
23þðU23U13U12M2U†

12U
†
13U

†
23 þ A − V23V13ΛV†

13V
†
23Þ�: ðC1Þ

Applying the 27 vacuum symmetries to 1
2E ½U23U13U12M2U†

12U
†
13U

†
23 þ A� results in the phase matrix

diagðð−1Þm23þm13 ; 1; 1Þ multiplying the both from the left and the right, whereas 1
2E ½V23V13ΛV

†
13V

†
23� is invariant.

Applying the following symmetries for the matter variables, we find, for m̃ij; ñij ∈ f0; 1g:
(i) (23): c̃23 → ð−1Þm̃23 c̃23, s̃23 → ð−1Þñ23 s̃23, and δ̃23 → δ̃23 � ðm̃23 þ ñ23Þπ,
(ii) (13): c̃13 → ð−1Þm̃13 c̃13, s̃13 → ð−1Þñ13 s̃13, and δ̃13 → δ̃13 � ðm̃13 þ ñ13Þπ,
(iii) (13): c̃13 → ð−1Þm̃13 s̃13, s̃13 → ð−1Þñ13 c̃13, and δ̃13 → δ̃13 � ðm̃13 þ ñ13 þ 1Þπ, plus λ− ↔ λþ,
(iv) The two phases given in V23ðθ̃23; δ̃23ÞV13ðθ̃13;−δ̃13Þ are determined from the cancellations that must occur for the

MP perturbation theory; these are

s̃23c̃23eiδ̃23 ¼ s23c23eiδ23

signðc̃23Þc̃13s̃13eiδ̃13Δλþ− ¼ signðc23Þc13s13eiδ13Δm2
ee: ðC2Þ

Not surprisingly, CP violation is determined by the sum of the vacuum δ’s: δ23 þ δ13 þ δ12 ¼ δ as in the work
by DMP.

The above 25 matter parameter symmetries give

1

2E
½V23V13ΛV

†
13V

†
23� → diagðð−1Þm̂23 ; 1; 1Þ 1

2E
½V23V13ΛV

†
13V

†
23�diagðð−1Þm̂23 ; 1; 1Þ: ðC3Þ

Matching the phase of νe between the two terms leads to the constraint that m̂23 ¼ m23 þm13, so the total number of matter
and vacuum parameter symmetries for MP perturbation theory is 211.

APPENDIX D: SYMMETRIES OF THE EXACT HAMILTONIAN IN MATTER

The Hamiltonian in matter was first explicitly solved by Zaglauer and Schwarzer (ZS) [19], but the eigenvalues as written
do not respect the parameter symmetries, yet the probabilities must. If we adjust the diagonal matrix by

M2 ¼ ðc212m2
1 þ s212m

2
2ÞI þ diagð−s212Δm2

21; c
2
12Δm2

21;Δm2
eeÞ; ðD1Þ

then coefficients of the characteristic equation,

19Note that the Dij matrices may also have an additional overall phase which cancels out.
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ðdm2
iÞ3 − Aðdm2

iÞ2 þ Bdm2
i − C ¼ 0; ðD2Þ

where dm2
i are the three eigenvalues, are20

A ¼ Δm2
ee þ ðc212 − s212ÞΔm2

21 þ a; ðD3Þ

B ¼ ðc212 − s212ÞΔm2
21Δm2

ee − ðs12c12Δm2
21Þ2 þ a½c213Δm2

ee þ ðc212 − s212ÞΔm2
21�; ðD4Þ

C ¼ −ðs12c12Δm2
21Þ2Δm2

ee þ a½c213ðc212 − s212ÞΔm2
21Δm2

ee − s213ðs12c12Δm2
21Þ2�: ðD5Þ

From Eq. (17) of ZS [19], the shift must be accounted for in order to see that the parameter symmetries are respected. Note
that Δm2

ee, ðc212 − s212ÞΔm2
21, and ðs12c12Δm2

21Þ2 are all unchanged under the 1-2 interchange. Under this parameter
symmetry, the mass-squared matrix changes

M2 ⇒ diagð−c212Δm2
12; s

2
12Δm2

12;Δm2
eeÞ ¼ diagðc212Δm2

21;−s212Δm2
21;Δm2

eeÞ; ðD6Þ

which leads to an identical characteristic equation; see Eq. (25).
Recall that once the eigenvalues of the Hamiltonian and the eigenvalues of the principal minors of the Hamiltonian are

determined the norm of the elements of the eigenvectors (or the norm of the elements of the diagonalizing matrix, jWαjj2)
are determined [22,57] and only the relative phases between the elements of the diagonalizing matrix are to be determined.
There are multiple ways to choose these relative phases, and this leads to most, but not all, of the parameter symmetries
discussed in this paper.
Alternatively, without using an explicit parametrization of the Pontecorvo-Maki-Nakagawa-Sakata matrix, U, and using

M2 ¼ diagðm2
1; m

2
2; m

2
3Þ; ðD7Þ

then the coefficients of the characteristic equation [Eq. (D2)] are given by

A ¼ m2
1 þm2

2 þm2
3 þ a ðD8Þ

B ¼ m2
1m

2
2 þm2

2m
2
3 þm2

3m
2
1 þ a

X
i

m2
i ð1 − jUeij2Þ ðD9Þ

C ¼ m2
1m

2
2m

2
3 þ a

X
i;j;k

m2
i m

2
j jUekj2; ðði; j; kÞ all differentÞ; ðD10Þ

where jUαij2’s are the fraction of the α-flavor in the ith mass eigenstate in vacuum, and thus invariant under all the vacuum

parameter symmetries of this paper. Therefore, the eigenvalues in matter, cm2
i, are also invariant under the vacuum parameter

symmetries.
In matter, the fraction of the α-flavor in the ith matter mass eigenstate is given by, see Refs. [22,57],

jWαij2 ¼
ððcm2

iÞ2 − ðξþ χÞαcm2
i þ ðξχÞαÞ

ðcm2
i − cm2

jÞðcm2
i − cm2

kÞ
; ðD11Þ

with (i,j,k) all different. The sum and product of the eigenvalues of the principal minors are given by

ðξþ χÞα ¼
X
i

m2
i ð1 − jUαij2Þ þ

�
0 α ¼ e

a α ¼ μ; τ
with

X
α

ðξþ χÞα ¼ 2A; ðD12Þ

20A and C (B) are odd (even) under the CPT symmetry, so that the cm2
j ’s are odd under this symmetry, as expected.
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ðξχÞα ¼
X
i;j;k

m2
i m

2
j jUαkj2 þ

8>>><
>>>:

0 α ¼ e

a
P
i
m2

i jUτij2 α ¼ μ

a
P
i
m2

i jUμij2 α ¼ τ

with
X
α

ðξχÞα ¼ B: ðD13Þ

Thus, all vacuum parameter symmetries are respected by
the matter physical observables as well. Only the unitarity
of U has been used to derive these expressions.21 The

variables cm2
i’s and jWeij2’s are only dependent onm2

i ’s and
jUeij2’s and are explicitly independent of jUμij2 ’s and
jUτij2’s (θ23 and δ in the PDG parametrization).
For oscillation physics, the only other quantity needed is

the Jarlskog in matter, Ĵ, which is related to Jarlskog in
vacuum, J, by [58,59]

ĴΠi>jðcm2
i − cm2

jÞ ¼ JΠi>jðm2
i −m2

jÞ: ðD14Þ

As discussed earlier the lhs (rhs) of this equation is
invariant under all matter (vacuum) parameter symmetries
of this paper. Thus, all physical observables of the exact
solution in uniform matter are invariant under all parameter
symmetries of both the matter variables and the vacuum
variables.

APPENDIX E: CONFIRMATION OF THE
PERTURBATIVE CONDITIONS FOR DMP

Reference [15] (DMP) presented an approximation
scheme for neutrino oscillations inmatter based on diagonal-
izing “most” of theHamiltonianvia three rotations defined as
a rotation of the vacuum parameters [U23ðθ23; δÞ] and then
diagonalizing a 2 × 2 submatrix twice in succession: 13 and
then 12. We confirm here that the requirements for the
parameter symmetries to hold are all satisfied by the details of
this scheme.

For definiteness we consider NO ⇒ λ1 < λ2 < λ3. We
start with M2 shifted as in Eq. (25). Then, we define the
initial eigenvalues after the (23)-rotation before either of the
diagonalizations,

λa ¼ aþ s213Δm2
ee; λb ¼ ðc212 − s212ÞΔm2

21;

λc ¼ c213Δm2
ee; ðE1Þ

thus, all parameter symmetries are satisfied for ðλa; λb; λcÞ.
Next, after the (13)-rotation, we obtain the eigenvalues,

λ� ¼ 1

2
ðaþ Δm2

ee � Δλþ−Þ;

Δλþ− ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

ee cos 2θ13 − aÞ2 þ ðsin 2θ13Δm2
eeÞ2

q
;

λ0 ¼ λb ¼ ðc212 − s212ÞΔm2
21; ðE2Þ

thus, all parameter symmetries are also satisfied for the
ðλ−; λ0; λþÞ eigenvalues. Therefore, the diagonalizing
angle, ϕ≡ θ̃13, given by

sin2 ϕ ¼ λþ − λc
λþ − λ−

; ðE3Þ

also satisfies all parameter symmetries.22 This is the point at
which Ref. [25] stops; thus, the eigenvalues in that paper
all respect the parameter symmetries of the vacuum
parameters.
Continuing on with the framework of Ref. [15], after the

(12)-rotation,

λ3 ¼
1

2

	
aþ Δm2

ee þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

ee cos 2θ13 − aÞ2 þ ðsin 2θ13Δm2
eeÞ2

q 

;

λ2;1 ¼
1

2
ðλ− þ λ0 � Δλ21Þ;

Δλ21 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

21 cos 2θ12 − a12Þ2 þ ðcos2ξÞðsin 2θ12Δm2
21Þ2

q
; ðE4Þ

where parameter symmetry invariant quantities a12 and cos2 ξ are given by23

a12 ¼
1

2
ðaþ Δm2

ee − Δλþ−Þ; ðE5Þ

21In particular, use of the identity jUαij2 ¼ jUβjUγk − UβkUγjj2, with (i, j, k) and ðα; β; γÞ all different, is needed. This relation follows
from U† ¼ U−1 ¼ adjðUÞ= detðUÞ.

22The choice of sign when taking the square root gives rise to the parameter symmetries.
23In the work by DMP, cos2 ξ is related to ϕ and θ13 via ξ ¼ ϕ − θ13, which may experience various reflections or shifts.
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cos2 ξ ¼ 1

2

Δm2
ee þ Δλþ− − a cos 2θ13

Δλþ−
: ðE6Þ

All parameter symmetries are satisfied for ðλ1; λ2; λ3Þ.
In the Hamiltonian, whether we chose Λ ¼

diagðλ1; λ2; λ3Þ or Λ ¼ diagðλ2; λ1; λ3Þ determines whether
the second diagonalizing angle, ψ ≡ θ̃12, is given by

sin2 ψ or cos2 ψ ¼ λ2 − λ0
λ2 − λ1

: ðE7Þ

Again, we have the sign choices when the square root
is taken.
Nothing here depends on what sign choices one has

made in vacuum. However, whether δϕ ¼ δ13 or δϕ ¼
δ13 þ π and similarly for δψ , does depend on both sets of
choices. This is related to Eq. (16) where in the work of
DMP V23 is a rotation of a new angle and phase that are
taken to be the same as θ23 and δ in vacuum, V13 is a
rotation of the angle ϕ, and V12 is a rotation of the angle ψ .
This section confirms that the approximate eigenvalues that
make up the Λ matrix are invariant under all the parameter
symmetries as required by the second condition.
Here, we precisely quantify how the procedure carried

out in the work by DMP [15] is properly generalized to take
advantage of all available parameter symmetries. First, we
note that it makes sense to treat θ̃23 as a separate parameter
from θ23, just like how θ̃13 and ψ ¼ θ̃12 are treated as
separate variables from θ13 and θ12, similarly for the δ̃ij.
Thus, the conditions that need to be satisfied to follow the
DMP procedure are

s2̃3c2̃3e
iδ̃23 ¼ s23c23eiδ23

signðc2̃3ÞcϕsϕeiδϕΔλee¼ signðc23Þc13s13eiδ13Δm2
ee

sψcψeiδψΔλ21¼ðjcϕc13jþjsϕs13jÞs12c12eiδ12Δm2
21:

ðE8Þ

From these equations, its clear that the new phases must
satisfy

δ̃jk ¼ δjk mod π: ðE9Þ

In addition, the final requirement from Sec. III B,

m13 þm23 ¼ mϕ þ m̃23 mod 2; ðE10Þ

follows from the middle condition of Eq. (E8) when
combined with the other requirements.

APPENDIX F: RELATIONSHIP TO HM21

Recently, Ref. [56] (HM21) appeared on a related topic.
All of the parameter symmetries presented in HM21 fit

within our framework. To illustrate the relationship, we
pick one representative example containing all relevant
features, Symmetry-IVB (last line of Table 1 in HM21) for
which the parameter symmetry is proven through first order
in perturbation theory (our result in Sec. III B is correct to
all orders).
Symmetry-IVB is written as the following interchanges:

θ23→−θ23; θ13→−θ13; θ12→−θ12; δ→ δþπ;

ϕ→−ϕ; λ1↔ λ2; cψ ↔�sψ ; sψ ↔�cψ : ðF1Þ

We note that in the notation of HM21 (which matches that
by DMP [15]; see also Appendix E) λi are the approximate
matter eigenvalues of the perturbative matrix and ϕ (ψ ) are
θ̃13 (θ̃12). Care is required in translating the statement of the
parameter symmetry in HM21 to that of this paper since in
HM21 it is implicitly assumed that θ̃23 is the same (and thus
transforms the same) as θ23; δ̃ and δ are similarly linked. In
fact, each of the fδij are taken to transform the same as the
corresponding δij (although this can be written as just a
single complex phase for each side given the delta shuffle).
Then, this parameter symmetry with the upper signs is

equivalent to our framework with the 1-2 interchange on
the approximate variables, all the mij ¼ m̃ij ¼ 0, and all
the nij ¼ ñij ¼ 0 except those listed here:

(i) for θ23 → −θ23, therefore n23 ¼ 1, and this requires
a π be added to δ23,

(ii) for θ13 → −θ13, therefore n13 ¼ 1, and this requires
a π be added to δ13,

(iii) for θ12 → −θ12, therefore n12 ¼ 1, and this requires
a π be added to δ12,

Thus, δ → δþ π and m23 þm13 ¼ 0. For the approximate
matter parameters, we recall that we must also modify θ̃23
and that the resultant modifications to δ̃ must match the
factor of π gained for δ. We have:

(i) for θ̃23 → −θ̃23, therefore ñ23 ¼ 1, and this requires
π be added to δ̃23,

(ii) for θ̃13 → −θ̃13, therefore ñ13 ¼ 1, and this requires
π be added to δ̃13,

(iii) fm2
1 ↔

fm2
2 with c1̃2 → �s1̃2 and s1̃2 → �c1̃2, and

this requires π be added to δ̃12,
Thus, δ̃ → δ̃þ π and m̃23 þ m̃13 ¼ 0. So, δ and δ̃ match as
they must by the choice of definition for DMP, and this
example satisfies our parameter symmetry requirements
including the constraint given by Eq. (18). For the lower
signs, one additionally sets m̃12 ¼ ñ12 ¼ 1, each of which
results in a factor of π added to δ̃12 and thus no change to
the complex phase. We have also verified that our scheme
contains all of the parameter symmetries presented in
Table 1 of HM21.
Since HM21 uses the same symbol for δ in vacuum and

in matter, it is important that they agree. However, using the
same symbol in vacuum and matter for θ23 and δ limits the
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number of possible discrete parameter symmetries by
23 ¼ 8 (4 for θ23 and 2 for δ). Note that in a general
perturbative framework δ̃ and δ can differ by π. Even
accounting for these parameter symmetries, there are still
additional parameter symmetries unexplored in HM21
such as those including a 1-2 interchange of both vacuum
and matter parameters, those without the 1-2 interchange
of the matter parameters, or those which send cij → −cij

(and ceij → −ceij). Using a different symbol for θ23 in

matter with its associated δ23 in matter allows additional
parameter symmetries. To address the maximum pos-
sible parameter symmetries, one must use different
symbols for matter and vacuum for all variables and
associate a separate δ for each angle, even though the
oscillation probabilities only depend on the sum of
these δ’s.
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