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In this work we obtain the analytical expressions for the boundaries of the charged current quasielastic
(CCQE) double differential cross section in terms of dimensionless energy and momentum transfers, for the
Relativistic Fermi Gas (RFG) and the Superscaling approach with relativistic effective mass (SuSAM*)
models, within the scaling formalism. In addition, we show that this double differential cross section in the
scaling formalism has very good properties to be implemented in the Monte Carlo (MC) neutrino event
generators, particularly because its peak is almost flat with the (anti)neutrino energy. This makes it
especially well suited for the event generation by the acceptance-rejection method usually used in the
neutrino generators. Finally, we analyze the total CCQE cross section σðEνÞ for both models and attribute
the enhancement observed in the SuSAM* total cross section to the high-momentum components which
are present, in a phenomenological way, in its scaling function, while these are absent in the RFG model.
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I. INTRODUCTION

The measurement of neutrino/antineutrino-nucleus
cross sections is a fundamental topic of research, not
only in itself because it can provide knowledge on the
fundamental interaction and on the nuclear properties and
modeling, but also for its importance in other special
fields in particle physics, such as the mixing of neutrino
flavors, the extraction of the CP-violating phase in the
lepton sector and the origin of the asymmetry between
matter and antimatter in the Universe. In particular, in the
last years many reviews and works have been dedicated to
these topics [1–10].
The total integrated Charged Current Quasielastic

(CCQE) neutrino/antineutrino cross section σCCQEðEνÞ
is an important quantity to be known for the neutrino
scattering and oscillation experiments [11–35]. In particu-
lar, the knowledge of this observable is crucial for choosing
of CCQE channel among others to generate appropriate
final lepton event kinematics in neutrino event generators,

that usually use the acceptance-rejection method to gen-
erate the events with a probability distribution given by
differential cross section.
In addition, the importance of a precise knowledge of

the total CCQE cross section and particularly its ratio
between the electron and muon neutrinos species is of great
importance in order to reduce the systematic uncertainties
for the determination of the CP-violating phase in the
lepton sector, as it has been shown in Refs. [36–42].
Our aim in this work is to perform a thorough study of

the analytical boundaries of the phase space of the CCQE
double differential cross section d2σ

dTμd cos θμ
for the relativistic

Fermi gas (RFG) [43–47] and superscaling with relativistic
effective mass (SuSAM*) models [48–52] within the
scaling formalism [53–57], where the boundaries are easier
to obtain. To this end, we will study the double differential
d2σ
dκdλ CCQE cross section, where κ and λ are the dimension-
less momentum and energy transfer variables in the scaling
formalism. This new double differential cross section has
also the very good property, for the generation of the final
charged lepton kinematics in the MC event generators,
of an almost flat peak, i.e., very weak dependent on the
neutrino/antineutrino energy. This important feature makes
it specially well suited for the generation of these events by
the acceptance-rejection method. It seems that this fact was
already known by some scientists working in the imple-
mentation of theoretical models in some MC event
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generators [58], but it was not familiar to us until this
article was completed.
The paper is organized as follows: In Sec. II we review in

brief the general formalism for the description of the CCQE
double differential cross section; in Sec. III we perform a
thorough discussion about the analytical boundaries of
the phase space in the RFG model, later extended to the
SuSAM* model in Sec. IV. In Sec. V we show our main
results for the double differential cross section and the
integrated total one, and, finally, in Sec. VI we draw our
conclusions and outline our future plans or prospects
related to the conclusions of the present work.

II. GENERAL FORMALISM

In this section, we are going to discuss in brief the
elementary ingredients to calculate the double differential
CCQE d2σ

dTμd cos θμ
cross section and its transformation into

the easier to work, for our purposes within the scaling
formalism, d2σ

dκdλ cross section. The expression for the first
double differential cross section is given by [51,59–61]:

d2σ
dTμd cos θμ

¼ G2
Fcos

2θc
4π

k0

Eν
v0ðVCCRCC þ 2VCLRCL

þ VLLRLL þ VTRT � 2VT 0RT 0 Þ; ð1Þ

where GF ¼ 1.116 × 10−11 MeV−2 is the Fermi coupling
constant, θc is the Cabibbo angle (cos θc ¼ 0.975), k0 is the
value of the final charged lepton momentum, k⃗0, Eν is
the neutrino/antineutrino energy in the lab frame, and
v0 ¼ ðEν þ Tμ þmμÞ2 − q2, with q2 being the squared
three-momentum transfer, q⃗, to the nucleus [62]. Finally,
it is worth noting that the � sign in the T 0 contribution
of Eq. (1) applies for neutrino and antineutrino CCQE
scattering, respectively.
The other ingredients appearing in Eq. (1) are the lepton

kinematic factors VK and the nuclear response functions
RK , the last ones depending only on the energy and
momentum transfer from the leptons to the nucleus, ω
and q, respectively. These factors come mainly from the
contraction of the lepton tensor with the hadron one,
and each of them are suitable combinations of the tensors
in a frame where the Z-axis is defined by the direction of
the three-momentum transfer, q⃗ ¼ k⃗ − k⃗0. Their explicit
expressions can be found, for instance, in Refs. [51,59–61],
and particularly in Sec. IIIA and Appendices B and C of the
recent review [8], where an exhaustive discussion and
derivation of the response functions and scaling in the RFG
model are given.
It is quite general that the nuclear response functions RK

can be written in factorized form as a product of an
integrated single-nucleon response (UK or GK in the
nomenclature of Ref. [8]) times a scaling function which
depends on the nuclear model. Nonetheless, in other

nuclear models different from those discussed in this work,
several different scaling functions can appear for the
different nuclear response functions. Examples of these
are the models for the description of the QE response in the
inclusive ðe; e0Þ or ðν; μÞ scattering, where different scaling
functions appear for each one of the nuclear responses (see
Refs. [55,63,64], just to cite a few of them).
However, in the two models discussed in this work, a

single scaling function appears as a common factor in all
the nuclear response functions RK and factorizes in the
cross section given in Eq. (1):

d2σ
dTμd cos θμ

¼ G2
Fcos

2θc
4π

k0

Eν
v0ðVCCUCC þ 2VCLUCL

þ VLLULL þ VTUT � 2VT 0UT 0 ÞfscalðψÞ;
ð2Þ

where ψ is the scaling variable and it is, in general, a
function of ω and q. For instance, in the particular case of
the RFG model, its expression is given by

fRFGðψÞ ¼
3

4
ð1 − ψ2Þθð1 − ψ2Þ; ð3Þ

where θðxÞ is the step function, while in the SuSAM*
model its expression is discussed in Sec. IV.
However, the differential cross section of Eq. (1) is given

with respect to the final lepton kinematic variables, its
kinetic energy Tμ and the cosine of its scattering angle with
respect to the incident neutrino direction, θμ. In the scaling
formalism it is not very difficult to find the relevant
boundaries where the differential cross section of Eq. (1)
is different from zero (as it will be shown in Secs. III
and IV, and Appendices A and B), but using the relevant
scaling variables, namely, the dimensionless energy and
momentum transfers, λ ¼ ω=ð2mNÞ and κ ¼ q=ð2mNÞ,
with mN the nucleon mass.
Therefore, in order to inspect the behavior of the double

differential cross section along its phase space and effi-
ciently integrate it to obtain the total CCQE cross section, it
is better to work with the d2σ

dκdλ cross section, which can be
obtained from that in Eq. (1) using the Jacobian trans-
formation from ðTμ; cos θμÞ variables to ðκ; λÞ ones:

d2σ
dκdλ

¼
���� ∂ðTμ; cos θμÞ

∂ðκ; λÞ
���� d2σ
dTμd cos θμ

¼ 4m2
Nq

Eνk0
d2σ

dTμd cos θμ
;

where the Jacobian has been calculated knowing the
relationships between both sets of independent variables,
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λ ¼ Eν − Tμ −mμ

2mN

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ν þ P2

μ − 2EνPμ cos θμ
q

2mN
;

with Eμ ¼ Tμ þmμ and Pμ ≡ k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
μ −m2

μ

q
.

III. RFG MODEL CASE

A. Analytical boundaries due to the scaling model

With the definitions of the dimensionless variables in the
scaling formalism, where the electroweak probe transfers
energy ω and momentum q to the nucleus:

λ ¼ ω

2mN
; κ ¼ q

2mN
ð4Þ

τ ¼ κ2 − λ2 ¼ Q2

4m2
N
≥ 0

ηF ¼ kF
mN

; ϵF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

q
≥ 1 ð5Þ

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0 − 1

ϵF − 1

s
signðλ − τÞ; ð6Þ

where ϵ0 is defined as

ϵ0 ¼ max

�
κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
− λ; ϵF − 2λ

�
; ð7Þ

and kF is the Fermi momentum of the nucleus. The
definition of ϵ0 given in Eq. (7) represents the minimum
energy of the initial nucleon, in units of the nucleon mass
mN , that can contribute to a quasielastic (QE) scattering
event for given energy and momentum transfers ðλ; κÞ
(cf. Eq. (C11) of Ref. [8]).
In the RFG model, see Eq. (3), the scaling variable ψ is

restricted to lie between −1 and þ1 to get a nonvanishing
contribution to the cross section. The scaling variable is
zero when ϵ0 ¼ 1, i.e., when λ ¼ τ (see Appendix A) in the
non-Pauli blocking (NPB) region. This condition is equiv-
alent to

τ ¼ λ ⇔ κ2 ¼ λ2 þ λ ⇔ κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þ

p
; ð8Þ

and hence Eq. (8) corresponds to where the scaling variable
is always zero, and where the QE peak appears. For
this reason, we call this curve in the ðλ; κÞ plane as
κQEðλÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þp

.
The boundaries of the RFG scaling variable (−1,þ1) are

reached when ϵ0 ¼ ϵF as it follows from Eq. (6). Solving
the equation ϵ0 ¼ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=τ

p
− λ ¼ ϵF in the NPB region

(corresponding to κ ≥ ηF) we get two different curves in the
ðλ; κÞ plane. These curves are labeled as κNPB� ðλÞ, and along
them the scaling variable is always ψ ¼∓ 1, respectively.
For a more detailed derivation the reader is referred to
Appendices A 1 and A 2.
The expressions of these two curves are given by

κNPB� ðλÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵF þ 2λÞ2 − 1

q
� ηF

2
; ð9Þ

and they are depicted in Fig. 1.
In Fig. 2 we show the values taken by the scaling variable

ψðκðλÞ; λÞ, as a function of λ, along different curves in the
NPB region. It can be seen that the scaling variable is zero
along the curve κQEðλÞ, i.e., the position of the QE peak.
Along the curves κNPB∓ ðλÞ, the scaling variable always takes
its limiting values in the RFG model, ψ ¼ �1, respectively.
These values are shown by the solid and short-dashed lines
in Fig. 2, respectively. Any curve lying in between κNPB− ðλÞ
and κQEðλÞ in Fig. 1, as the dot-dashed one indicates in
Fig. 2, has a positive value for the scaling variable; while
those curves lying in between κQEðλÞ and κNPBþ ðλÞ always
have negative values for the scaling variable, as can be
inspected from the dotted line of Fig. 2.
When κ ≥ ηF we are in the NPB region and ϵ0 is always

equal to the first argument of the maximum function given
in Eq. (7). However, when κ < ηF, there are some regions
in the ðλ; κÞ-plane where ϵ0 is equal to the second argument
of the maximum function of Eq. (7), and we call this region
the Pauli blocking (PB) region; while there are other
regions where ϵ0 is still equal to the first argument of
the maximum function. For a detailed derivation of the
boundaries of these regions and other proofs, the reader

FIG. 1. Plot of the two limiting curves κNPB� ðλÞ as a function of λ
in the RFG model in the NPB region, i.e., for κ ≥ ηF (notice that
for κ < ηF we are entering in the Pauli blocking (PB) region). In
this figure, we have taken ηF ¼ 0.239. The long-dashed curve
corresponds to κQEðλÞ.
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is referred to Appendix A 3. Here we only provide the
final results.
According to the derivation discussed in Appendix A 3,

we can conclude that the region where PB makes ϵ0 to be
equal to the second argument of Eq. (7), ϵF − 2λ, corre-
sponds to the region κPB− ðλÞ ≤ κ ≤ κPBþ ðλÞ in the range
where 0 ≤ λ ≤ λ−, with

κPB� ðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 4ðλϵF − λ2Þ2

p
2

s
;

where ρ ¼ 2λ2 − 2λϵF þ η2F and λ− ¼ ϵF−1
2
.

In Fig. 3 we show the different regions filled with colors
for κ < ηF, where PB effect occurs or not. The shaded
regions between κPBþ ðλÞ and κ ¼ ηF, and between κPB− ðλÞ
and κNPB− ðλÞ, respectively, correspond to those zones of the
allowed phase space of the RFG where there is no PB, i.e.,
where ϵ0 ¼ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=τ

p
− λ. On the other hand, the shaded

regions between κPBþ ðλÞ and κQEðλÞ, and between this last
curve and the dotted κPB− ðλÞ one, respectively, correspond to
zones where ϵ0 ¼ ϵF − 2λ, i.e., where there is PB. It is
worth noting that in this region, delimited by that kind of
inverted parabola formed by joining together the dotted and
the three-fold dashed curves of Fig. 3, the variable ϵ0 and,
consequently, the scaling variable ψ only depend on λ
and not at all on κ. The only important issue to select the
sign of ψ is whether the points in these regions are above
the long-dashed thick line corresponding to the curve

κQEðλÞ (in whose case the scaling variable is negative);
or if on the contrary, the points are below this line, in whose
case the scaling variable is positive.
The purpose of Fig. 4 is to highlight, in general, the

smallness of the region of the (λ, κ)-space where PB plays a

FIG. 2. Plot of the values taken by the scaling variable ψ ,
defined on Eq. (6), as a function of λ, along different curves in the
ðλ; κÞ-plane. The long-dashed line corresponds to the case λ ¼ τ,
the solid and short-dashed lines correspond, respectively, to the
lower and upper bounds of the RFG, given by κ ¼ κNPB∓ ðλÞ in
Fig. 1. Two additional curves are shown for comparison (see main
text for discussion).

FIG. 3. Plot of the ðλ; κÞ-plane in the PB region, i.e., for 0 ≤
λ ≤ λ− and 0 < κ < ηF. The three-fold dashed thick curve
corresponds to the κPBþ ðλÞ curve, while the dotted thick line is
for the κPB− ðλÞ boundary. All of the region surrounded by these
two curves corresponds to the PB region. We have also displayed
the previously shown (in Fig. 1) κNPB� ðλÞ curves as dot-dashed
thin and solid lines, respectively. The curves κQEðλÞ and κ ¼ λ
are shown as long-dashed thick and short-dashed thin lines,
respectively.

FIG. 4. Same plot as in Fig. 3, but highlighting the smallness of
the region where PB plays a role. Notice that λ− ≪ ηF. Also
shown a new straight line, κ ¼ ηFλ=ð2λ−Þ, in short-dashed style,
that is entirely contained in the filled region between the long-
dashed and dotted curves, for the range of values 0 ≤ λ ≤ λ−. The
purpose of this line and that corresponding to the horizontal line
κ ¼ ηF=2 will be clear in Fig. 5.
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role. Note that λ− ≪ ηF=2 and that ηF is not visible in the
λ-axis due to units, while in the vertical axis it appears. Also
notice that the horizontal straight line κ ¼ ηF=2 is entirely
contained in the filled PB region above the curve of the QE
peak (as far as 0 ≤ λ ≤ λ−), just as it happens for the κPBþ ðλÞ
curve. The same can be said for the straight line
κ ¼ ηFλ=ð2λ−Þ and the κPB− ðλÞ curve in the filled PB region
just below the QE peak position curve (long-dashed line).
The purposes of these two straight lines will be clear in the
following discussion.
In Fig. 5 we show the values taken by the scaling variable

ψ in the RFG model along different curves κ ¼ κðλÞ in the
ðλ; κÞ-plane in the region where 0 ≤ λ ≤ λ−. Of course,
we have shown the limiting boundaries ψ ¼ �1 given by
the curves κNPB∓ ðλÞ, respectively. They correspond to the
medium-thick solid and dot-dashed horizontal straight lines
in Fig. 5, respectively; and to the curves of the same styles
in Figs. 3 and 4. Along the long-dashed thick κQEðλÞ curve
of Figs. 3 and 4, the scaling variable is equal to zero in
Fig. 5 because this is the curve where λ ¼ τ and the sign
function vanishes [see Eq. (6)].
The rest of curves shown, especially in Fig. 4, remains

inside the PB region for 0 ≤ λ ≤ λ−. In this region,
remarked by the filled region between κPBþ ðλÞ and κPB− ðλÞ
curves in Figs. 3 and 4, the scaling variable ψðκðλÞ; λÞ does
not depend at all on the κ value taken by any point or curve
inside the region, except for the sign of ψ . This can be
viewed in different forms. For instance, taking a look at the
values taken by ψ along the curves κPBþ ðλÞ (three-fold

dashed thick line) and along the straight line κ ¼ ηF=2
(very short-dashed thin curve in Fig. 5): both curves are
totally inside the filled PB region above the QE peak
position curve of Figs. 3 and 4, however, their values of κ
along the curves are totally different, and still the scaling
variable takes the same values in Fig. 5, i.e., it starts
equaling ψ ¼−1 for λ ¼ 0 because then ϵ0 ¼ ϵF − 2λ ¼ ϵF
and both curves are above the κ ¼ κQEðλÞ curve, thus
having negative values for the scaling variable. Finally,
for λ ¼ λ−, the scaling variable is zero along both paths
because it is the intersection point with the κQEðλÞ curve
(see especially Fig. 3).
Something similar occurs along the paths defined by

κPB− ðλÞ (dotted thick line) and κ ¼ ηFλ=ð2λ−Þ (medium-
dashed thick line), but in this case for positive values of the
scaling variable, because in this case both paths are entirely
in the filled PB region below the κQEðλÞ curve of Fig. 4,
thus in the region of positive values for the scaling variable,
as it can be seen again in Fig. 5.
The final example is a mixed case, a straight line

κ ¼ ηF=4 (see Fig. 3) that starts in the filled PB region
of negative values of the scaling variable ψ , passes across
the κQEðλÞ curve, enters in the filled PB region below the
κQEðλÞ line and, finally, it gets out of the PB region by
entering entirely in the NPB region of positive values of ψ .
In this case (corresponding to the solid thin line in Fig. 5),
the initial behavior of the scaling variable is the same as that
corresponding to the other curves lying entirely in the PB
region above the κQEðλÞ curve (negative values for ψ), until
the point where κQEðλÞ ¼ ηF=4 (corresponding approxi-
mately to λ ≃ 0.0036), where the κ ¼ ηF=4 horizontal line
enters in the PB region below the κQEðλÞ curve, and it
suddenly changes the sign of ψ along this crossing point,
as can be seen in Fig. 5 as the vertical solid thin line. Now
the values of ψ roam along those of any curve entirely
contained in the PB region below the κQEðλÞ curve
(corresponding to positive values of ψ ) until the new point
where κPB− ðλÞ ¼ ηF=4 (λ ≃ 0.011), where the line κ ¼ ηF=4
enters finally in the NPB region. In this last region,
however, ϵ0 is no longer equal to ϵF − 2λ, but to
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=τ

p
− λ, and then, while still having positive

values, the scaling variable now approaches ψ ¼ þ1,
which is what will happen when κNPB− ðλÞ ¼ ηF=4 (corre-
sponding to a value of λ ≃ 0.017 > λ−, and therefore out of
the range of Fig. 5).

B. Analytical boundaries coming
from the lepton kinematics

Up to now, nothing has been imposed from the lepton
kinematics, but we know that the final lepton scattering
angle must be a physical one. We discuss in this section that
imposing constraints from lepton kinematics (for a fixed
initial neutrino/antineutrino energy) further restricts the
available phase space for the RFG model; for a detailed

FIG. 5. Values taken by the scaling variable ψðκðλÞ; λÞ along
the different curves shown in Figs. 3 and 4 in the PB region,
i.e., when 0 ≤ λ ≤ λ−. For an exhaustive explanation see the
main text.
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derivation of some formulas relevant for this and future
sections, the reader is referred to Appendix A 4. Here we
only provide the relevant results.
The lepton kinematics’ restrictions come from the

allowed maximum and minimum final lepton energies
(we will assume muon neutrinos, and so the final lepton
will be a muon [65]) for a given initial neutrino/antineutrino
energy,

ω ¼ Eν − Eμ ⇔ Eμ ¼ Eν − 2mNλ ð10Þ

q2 ¼ ðk⃗ − k⃗0Þ2 ¼ E2
ν þ k02 − 2Eνk0 cos θμ; ð11Þ

where Eν is the initial neutrino energy, θμ is the muon
scattering angle with respect to the direction of the incident

neutrino, and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
μ −m2

μ

q
is the final muon momentum

with energy Eμ and mass mμ.
The minimal muon energy is its mass and from this

condition we can obtain from Eq. (10) the, in principle,
maximum allowed value for λ,

λmax ¼
Eν −mμ

2mN
¼ ϵν − m̃μ; ð12Þ

where we have introduced “reduced” and dimensionless
neutrino energy and muon mass variables, defined as

ϵν ≡ Eν

2mN
; m̃μ ≡ mμ

2mN
:

From Eq. (11) we can write that the absolute value of
the cosine of the muon scattering angle must be lesser or
equal to 1:

j cos θμj ≤ 1 ⇔

����E2
ν þ k02 − q2

2Eνk0

���� ≤ 1

⇔ −2Eνk0 ≤ E2
ν þ k02 − q2 ≤ 2Eνk0. ð13Þ

Notice that Eq. (13) gives two additional inequalities for κ
in terms of λ [the variable λ is hidden in k0 via its
dependence on Eμ and the dependence of the latter on λ
through Eq. (10)]. From the first inequality, and using the
“reduced” and dimensionless variables, we obtain:

q2 ≤ ðEν þ k0Þ2

⇔
q

2mN
≤

Eν

2mN
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEν − 2mNλÞ2 −m2

μ

q
2mN

⇔ κ ≤ ϵν þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵν − λÞ2 − m̃2

μ

q
≡ κleptonmax ðλÞ: ð14Þ

Analogously with the other inequality of expression
(13), we obtain the lower bound for κ constrained from the
lepton kinematics alone:

κ ≥ ϵν −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵν − λÞ2 − m̃2

μ

q
≡ κleptonmin ðλÞ: ð15Þ

As the PB region [filled domains in Figs. 3 and 4
surrounded by the κPBþ ðλÞ and κPB− ðλÞ curves] is always
contained inside the larger region bounded by κNPB− ðλÞ ≤
κ ≤ κNPBþ ðλÞ, and the only difference between the PB region
and the NPB one is the dependence of the scaling variable
with κ and λ; the furthest constrained phase space for the
RFG model is given by

max ðκleptonmin ; κNPB− Þ ≤ κ ≤ min ðκleptonmax ; κNPBþ Þ; ð16Þ

provided that the maximum on the left-hand side of
expression (16) is always smaller than the minimum on
the right-hand side of the same expression in the range of
λ-values ranging from λ ¼ 0 to λ ¼ λmax, where λmax is
given in Eq. (12) for a fixed neutrino/antineutrino energy.
The curves κleptonmax ðλÞ and κleptonmin ðλÞ, given in Eqs. (14)

and (15), respectively, are monotonically decreasing and
increasing with λ, respectively. Both curves reach the
same value when λ ¼ λmax, i.e., when κleptonmax ðλmaxÞ ¼
κleptonmin ðλmaxÞ ¼ ϵν.
In Fig. 6 we show the phase space in the ðλ; κÞ variables

for two different neutrino energies in the RFG model. We
have also shown the cutting points between the different
curves κleptonmax;minðλÞ and κNPB� ðλÞ, which constrain the lepton
and nuclear model kinematics in the RFG, respectively.
Note that, because we have shown the plots for the case of
muon neutrinos, mμ ¼ 106 MeV=c2, for neutrino energies
close to the muon mass the phase space is mostly con-
strained by the lepton kinematics (left panel). However, for
higher neutrino energies (right panel), the available phase
space is almost entirely constrained by the nuclear model
kinematics in the RFG (thin solid and dot-dashed lines
corresponding to the limits of the RFG scaling function). In
this latter case, lepton kinematics plays a really minor role,
except in the region of the endpoint in λ, which corresponds
to the largest energy transfers to the nucleus (and con-
sequently the least energy carried by the muon), so one
starts to see the effects of the muon mass as if one were in
the situation of the left panel.

IV. SUSAM* MODEL CASE

The SuSAM* model is theoretically based in the
Walecka (or σ − ω) model [66,67] for relativistic nuclear
matter. The Walecka model was the first relativistic, many-
body, quantum-field theory model that exhibited saturation
in nuclear matter. The Relativistic Mean Field (RMF)
version of the model for nuclear matter has constant scalar
and timelike vector potentials, associated to the expectation
values of the scalar and timelike component of the vector
fields. However, for nuclear matter, the RMF version is
exactly solvable and the dynamic nucleon fields can be
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expanded as plane-wave solutions as in a free theory,
because the dynamics due to the scalar and vector poten-
tials are hidden in a shift of the nucleon mass and the
energy. Thus, the effect of the condensed value of the scalar
field is to shift the mass of the nucleon, reducing it. What
we have done in previous works [48–52] is to use this
underlying well-founded theory to phenomenologically
adjust the relativistic effective mass for several nuclear
species, assuming that the “QE” electron scattering data
scale within an uncertainty band, that has been also
estimated; and that these “QE” electron scattering data
can be selected from the whole inclusive data by means of a
density criterion.
In this model, the Pauli blocking is treated exactly as in

the RFG, i.e., by means of using Eq. (7). This treatment can
be problematic and probably not excessively well founded,
but it is the easiest way to incorporate it. For problems
related to this treatment of the Pauli blocking in the
SuSAM* model, the reader is referred to Sec. VA, where
a more detailed discussion confronted with the results
is given.
The binding energy in the SuSAM* model is simulated

with the decrease in the nucleon mass, i.e., by using the
relativistic effective (shifted by the condensed value of the
scalar σ field) nucleon mass, although this mass (and
the Fermi momentum) is fitted for each nucleus for which
we have inclusive ðe; e0Þ data [52] from where selecting
“QE” points using the density criterion mentioned above.
This is not the first time such an attempt has been done to
describe QE electron scattering (see also Refs. [68,69]),
but, as far as we know, it is the first serious attempt to
translate it to describe CCQE neutrino scattering.

In Fig. 7 we show the scaling functions of the two
models we discuss in this article. In solid line style the
scaling function of the RFG model is depicted, whose
expression was given in Eq. (3). The other three scaling

FIG. 7. Different scaling functions used in this article as a
function of the scaling variable ψ . The well-known scaling
function of the RFG model is shown in solid style, while the
three SuSAM*-model scaling functions, extracted from a global
fit to “QE” electron scattering data off nuclei in Ref. [52], are
shown as dotted, dot-dashed, and dashed lines for the central, the
lower and upper bounds, respectively. The scaling functions of
the SuSAM* model plotted in this figure correspond to the
parameters denoted as Band C in Table I of Ref. [52].

FIG. 6. Available phase space in ðλ; κÞ variables in the RFG model for Eν ¼ 300 MeV (left panel) and for Eν ¼ 2000 MeV (right
panel), shown as the shaded regions for λ ≤ λþ−. Also displayed are the different cut points between the curves constraining the lepton
and nucleon kinematics, labeled as in Eqs. (A22) and (A24) of Appendix A 4. The value of ηF has been taken as 0.239, corresponding to
a Fermi momentum of kF ¼ 225 MeV=c. Also note that the curves κleptonmax;minðλÞ (dashed and dotted lines, respectively) are actually two
different branches of the same curve.
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functions are those of the SuSAM* model, in particular,
those extracted in a global fit to the world “QE” electron
scattering data [70,71] extracted out from the inclusive data
stored in the web site of Ref. [70]. These three scaling
functions (shown as central, min, and max in Fig. 7) were
obtained in Ref. [52] after a selection procedure based on
the scaling hypothesis of the QE data, and the lower and
upper scaling functions correspond to the estimation of the
uncertainty or thickness of the superscaling band where the
bulk of the QE data tend to accumulate.
The functional form of the scaling functions of the

SuSAM* model depicted in Fig. 7 is:

fSuSAM�ðψÞ ¼
a3e

−ðψ−a1Þ2
2a2

2 þ b3e
−ðψ−b1Þ2

2b2
2

1þ e−
ψ−c1
c2

; ð17Þ

where the parameters ai, bi, and ci can be found, for the
three different scaling functions of Fig. 7, in Table I of
Ref. [52], corresponding to the set labeled as Band C. It is
worth noting the asymmetry shown by the scaling functions
of the SuSAM* model, which have longer tails towards
positive values of the scaling variable ψ than they have
for negative ones, in contrast with the symmetric RFG
scaling function.
In Sec. III A we have discussed the boundaries in the

ðλ; κÞ-plane where the scaling variable ψ is between −1 and
þ1, and therefore, this comprises the region where the RFG
scaling function of Eq. (3) is different from zero. Because
of this, the five response functions entering in the double
differential (with respect to the final lepton kinematic
variables) CCQE neutrino/antineutrino-nucleus cross sec-
tion contribute only inside this boundary for the RFG
model (see Secs. IIA and IIB of Ref. [51]).
Now, to do the same for the SuSAM* scaling functions,

the procedure follows the lines sketched in Appendix A 2.
In this appendix, we obtain κNPB� ðλÞ for the RFG model by
imposing ϵ0 ≡ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=τ

p
− λ ¼ ϵF, which is the equiv-

alent condition to ψ ¼ �1. All we have to do to extend it
for the SuSAM* model is to identify extreme values of the
scaling variable, namely ψ extr, where we can safely affirm
that the SuSAM* scaling functions are negligible beyond
these extreme values, one on the left and the other on the
right. Note that, given the asymmetry of the SuSAM*
scaling functions, these extreme values are not going to be
necessarily the same at the left and at the right of the QE
peak position.
Let us assume we are in the region where λ > τ, and the

sign function appearing in Eq. (6) is positive. If the positive
extreme value (ψ extr) for the scaling variable in the
SuSAM* model is larger than 1, this obviously means
that ϵ0 > ϵF. The limiting curve in the ðλ; κÞ plane will be
obtained when ψ ≡

ffiffiffiffiffiffiffiffi
ϵ0−1
ϵF−1

q
¼ ψ extr, where ψ extr has to be

chosen properly as a large value where the scaling function

of the SuSAM* model can be totally neglected beyond
that value. This last equation is totally equivalent to:

ϵ0 ≡ κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
− λ ¼ 1þ ðϵF − 1Þψ2

extr: ð18Þ

The same equation would have been obtained for the
case λ < τ, with the negative sign function in Eq. (6), as it
also happened in the RFG case. Note that if we choose
ψ extr ¼ �1, we recover the condition of the RFG, ϵ0 ¼ ϵF,
as it should be.
To obtain the boundaries of the phase space in the ðλ; κÞ

plane for the SuSAM* model, note that Eq. (18) is the same
as that for the RFG (ϵ0 ¼ ϵF) with the right-hand side
replaced by 1þ ðϵF − 1Þψ2

extr instead of ϵF. Consequently,
we can take the Eq. (A11) of Appendix A 2 and replace any
appearance of ϵF by the new ϵ0F ≡ 1þ ðϵF − 1Þψ2

extr, where
ψ extr does not necessarily have to be equal for the κNPBþ ðλÞ
(corresponding to negative values of ψ) and for the κNPB− ðλÞ
(corresponding to positive values of the scaling variable)
functions, because of the asymmetry of the scaling func-
tions in the SuSAM* model.
The last important point that remains to be shown is that,

for the SuSAM* model, it is still true that κNPB− ð0Þ ¼ 0 and
that κNPBþ ð0Þ > ηF ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2F − 1
p

(these proofs are provided in
Appendix B). This is important because mainly the effect
of choosing a wider scaling function than that of the RFG is
to broaden the available phase space shown in Fig. 6
between the thin dot-dashed and solid curves, thus increas-
ing the domain of integration in ðλ; κÞ space and obtaining a
larger total cross section for a fixed neutrino/antineutrino
energy, σðEνÞ.
The fact that κNPBþ ð0Þ > ηF is related to the high

momentum components, larger than the Fermi momentum,
that real nuclei have in its ground state. These high
momentum components, mainly produced by interaction
and short-range correlations (SRC) [72–88], are totally
missing in the RFGmodel, but not in the phenomenological
scaling function of the SuSAM* model, which has been
obtained from a global fit to selected “QE” electron
scattering data from nuclei.
It is also well known that the effects of SRC are mainly

present in the left tail of the scaling function [89–91], i.e.,
for ψ extr < −1, which is precisely the left extreme ψ value
to be adequately chosen for the curve κNPBþ ðλÞ, but they also
show up in the right tail of the scaling function. This
connection between high momentum components and
scaling violations, and their effects in the total integrated
QE neutrino cross section are deferred for a forthcom-
ing study.
There are, in principle, other nuclear effects implicitly

incorporated in the SuSAM* scaling function, which has
been obtained in the scaling analysis of Ref. [52], by fitting
globally all the inclusive ðe; e0Þ scattering data of the nuclei
present in the database of [70], but selecting only those
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“QE” points that scale within an uncertainty band, using a
population density criterion to keep or reject them.
Therefore, we expect that, besides SRC, other nuclear
effects such as final-state interactions (FSI), long range
correlations (RPA), 1p-1h and 2p-2h MEC contributions...,
are also phenomenologically incorporated in the scaling
function of the SuSAM* model.
However, a recent scaling re-analysis of the inclusive

ðe; e0Þ scattering data off 12C has been carried out in
Ref. [92], where the 2p-2h MEC have been explicitly
accounted for within the same model of RMF in nuclear
matter with relativistic effective mass and vector energy in
which the SuSAM* model is based. The authors have
finally obtained essentially the same scaling function
and band than in the SuSAM* model used here, even
although the theoretical 2p-2h MEC contribution was
subtracted from the experimental data before carrying
out the scaling analysis. These findings at least seem to
hint that the 2p-2h MEC contributions present in the
electron scattering data are not so relevant to extract a QE
scaling function.
In Fig. 8 we show the comparison between the available

phase space in the RFG (already shown in Fig. 6) and
SuSAM* scaling models, for the same two neutrino
energies as in Fig. 6. The most remarkable difference is
the enlargement of the phase space, shown as the paler
shade, in the SuSAM* model. This enlargement is only
attributable to the tails of the superscaling function of the
SuSAM* model, which are absent in the RFG, because the
curves delimiting the boundaries from the lepton kinemat-
ics constraints are the same, they do not depend at all on the
scaling function. The main consequence of this enlarge-
ment of the phase space will be reflected in a larger total

integrated cross section. Of course, this increase in the
integrated cross section will depend on the values attained
by the double differential [with respect to ðλ; κÞ variables]
CCQE cross section in the enlarged region. We can ensure
that there is going to be a clear increase, because in the
regions outside the phase space of the RFG, but close to its
boundaries, the differential cross section will still be
substantial because the scaling function of the SuSAM*
is truly different from zero for scaling variables larger
than 1 and lesser than −1, which corresponds to points
lying in the paler shaded regions. In any case, as expected,
when the values of ðλ; κÞ are approaching the two-fold thin
dashed curve κNPBþSuSAM�ðλÞ and the long-dashed thin line
κNPB−SuSAM�ðλÞ, their contribution to the total cross section
will be very small because in these zones of the phase space
the SuSAM* scaling function becomes negligible.
It is also worth noting that the SuSAM* boundaries have

been calculated in Fig. 8 for ψ left ¼ −2.5 and ψ right ¼ 6 for
the upper and lower SuSAM* boundaries, corresponding to
the two-fold dashed and long-dashed thin curves, respec-
tively. These extreme values of the scaling variable for the
left and right tails of the SuSAM* superscaling function
have been chosen thinking in the values attained by the
central SuSAM* function (shown in Fig. 7) at them, which
amount to roughly a factor 10−7 of the value of this scaling
function at the peak. Also, in Fig. 8 we show, in the κ-axis,
the value η0F ≈ 0.62, defined as

η0F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ02F − 1

q
;

with ϵ0F ¼ 1þ ðϵF − 1Þψ2
left as the horizontal thin dot-

dashed line.

FIG. 8. Comparison of the available phase spaces in ðλ; κÞ variables in the RFG (darker shade) and SuSAM* (paler shade) models for
Eν ¼ 300 MeV (left panel) and for Eν ¼ 2000 MeV (right panel), shown as the shaded regions for λ ≤ λmodelþ− , in general. Also displayed
are the different cut points between the curves constraining the lepton and scaling model kinematics, labeled as in Fig. 6 for the different
models. Note that the available phase space gets much more enlarged in the SuSAM* model, due to the tails of the scaling function.
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The analytical delimitation of the phase space bounda-
ries in the ðλ; κÞ variables is important because when
integrating over the final lepton kinematics in order to
obtain the total CCQE integrated cross section as a function
of the neutrino/antineutrino energy, we can make the
integration procedure as efficient as possible, as we are
evaluating the integrand only where it is different from
zero. This is particularly important when the neutrino
energy is really huge, Eν ∼ 50–100 GeV, because then
the contribution of the QE peak is concentrated at small
values of the energy transfer ω (if compared with the
neutrino energy) and at very forward angles. As for huge
neutrino energies the allowed interval in ω is also huge, it is
convenient to constrain as much as possible the angular
interval (related to κ) where truly integrating.

V. RESULTS

In this section, we show the results for the CCQE double
differential d2σ

dTμd cos θμ
and d2σ

dκdλ neutrino and antineutrino

cross sections for the RFG and SuSAM* models, as well
as the fully integrated total cross sections in both models.

A. Double differential cross sections

In Fig. 9 we show the double differential CCQE d2σ
dκdλ

cross section per neutron for the ðνμ; μ−Þ reaction off 12C, at
incident neutrino energies of 300 MeV, for the two models
discussed in this work: RFG (left panel) and SuSAM*
(right panel). The available phase spaces in the two models
at this neutrino energy are those already depicted in the left
panel of Fig. 8. Note that, although not exactly the same,

both scales in the two panels are very similar, as well as the
values reached by the cross section. In Fig. 9 we also show
as the short-dashed line the curve κ ¼ κQEðλÞ, where λ ¼ τ
and ψ ¼ 0, i.e., the curve corresponding to the position of
the QE peak, which, as expected, runs over the region of
largest cross section. In solid style, it is also shown the
boundary of the PB region. As already mentioned in
Sec. III A, in the PB region the scaling variable ψ only
depends on λ and not on κ. Because of this, the contour
lines (curves with the same value of the cross section)
inside the PB region are almost vertical lines, because the
dependence on κ mainly enters through the lepton kin-
ematic factors VK and the nuclear response functionsUK of
Eq. (2) and it is very mild at least for the RFG (left panel)
model. Notice also that at the boundaries of the PB region,
the contour lines show a sudden change of their direction.
This is because at these boundaries the scaling variable ψ
starts to sharply depend on κ as well.
There is, nevertheless, a remarkable difference between

the left and right panels of Fig. 9 in the PB region: in the
SuSAM* model (right panel) the color gradient along
vertical lines of constant λ changes abruptly when crossing
the QE curve, especially for small values of λ; however this
effect is totally absent in the left panel, corresponding to the
RFG model. The reason for this is because of the properties
of the scaling functions in the two models. In the RFG, the
scaling function given by Eq. (3) is an even function of ψ .
This means that for constant λ there is no difference in
being above or below the QE curve inside the PB region
(the only difference is the sign of the scaling variable, but
not the value of the scaling function in the RFG model).
However, the situation is very different in the SuSAM*

FIG. 9. Comparison of the density plots for the νμ CCQE double differential d2σ
dκdλ cross section per neutron in 12C for the RFG (left

panel) and SuSAM* (right panel) models at Eν ¼ 300 MeV. Note that the available phase spaces in the different models are those
shown in the left panel of Fig. 8. We show in short-dashed style the curve κQEðλÞ, where the QE peak is placed; while in solid fashion we
also display the boundary of the PB region, already shown in Figs. 3 and 4.
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model because its scaling function, given by Eq. (17), also
depends on ψ and not only on ψ2. Hence, a simple change
of sign in the scaling variable can produce a large difference
in the scaling function (see dotted line of Fig. 7), thus
inducing a sudden change in the value of the cross section
when passing from positive values of the scaling variable
(below the short-dashed curve) to negative ones (above the
same curve) in the PB region. Nonetheless, this effect
seems to be quite pronounced only for small values of λ in
the PB region, and not so perceptible for λ values closer to
the end point of the PB region, given by λ− in Eq. (A21).
The physical reason for this sharp discontinuity in the

value of the differential cross section when crossing the
κQEðλÞ curve inside the PB region can be surely related to
the treatment of the Pauli blocking effect in the SuSAM*
model. As discussed already in Sec. IV, the treatment of
the Pauli blocking in the SuSAM* model is exactly the
same as that of the RFG, which for sure is not the ideal one,
although being the simplest one. For instance, in
Refs. [64,93] for the SuSA and SuSAv2 models, a totally
different and surely more well-founded approach has been
used to incorporate the Pauli blocking, the so-called
“mirror” scaling function subtraction. At the present stage
of the SuSAM* model we have treated the Pauli blocking
in the simplest way, and although we are aware of this
limitation (that could be amended in future refinements of
the model), it is not the purpose of this article to discuss
these drawbacks in detail. The fairest option we can take is
to warn the reader of this issue and of other possible ways
of incorporating the Pauli blocking when using “by hand”
phenomenological scaling functions that do not derive from
a well-known momentum distribution, as it is also the case
of the SuSAM* model.

In Figs. 10 and 11 we show the density and contour plots
of the double differential CCQE d2σ

dκdλ cross section per
neutron for νμ reactions on 12C at a fixed neutrino energy of
2000 MeV. Figure 10 corresponds to the RFG model, while
Fig. 11 shows the results for the SuSAM* one. Left panels
highlight the region of small values of energy transfers λ,
i.e., showing clearly the PB region, while right panels in
both figures show the full phase space. At this neutrino
energy, the boundary of the phase space is basically
delimited by the curves obtained from the scaling model
conditions (limited by imposing the condition that the
scaling function is zero or negligible), and not from the
lepton kinematics, as it happened in Fig. 9 for smaller
neutrino energy. Besides that, the sharp boundaries of the
phase space for the RFG model, shown in Fig. 10, are due
to the sharp way in which the RFG scaling function goes to
zero at ψ ¼ �1. However, in Fig. 11, the phase space
extends further than for the RFG case just because the
SuSAM* scaling function has tails beyond ψ ¼ �1.
Actually, the phase space of the SuSAM* model would
extend even further than what is shown in Fig. 11, but with
negligible values of the cross section, already visible in the
own figure.
In general, the values of the cross section in both models

at Eν ¼ 2000 MeV are very similar in the same regions of
the ðλ; κÞ phase space. In Fig. 11, there seems to be a non-
negligible cross section in the SuSAM*model in regions of
the phase space below and close to the lower boundary of
the RFG model, according to its color legend. These
additional contributions will have a large impact in the
total integrated CCQE cross section shown later on in
Fig. 16 at Eν ¼ 2000 MeV.
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FIG. 10. Density plots for the νμ double differential CCQE
d2σ
dκdλ cross section per neutron in

12C in the RFG model at Eν ¼ 2000 MeV.
The left panel highlights the PB region, while the right one shows the full phase space region corresponding to those already shown in
the right panels of Figs. 6 and 8. Lines have the same meaning as in Fig. 9.
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Nonetheless, the most important feature of Figs. 10
and 11, if compared with Fig. 9 for Eν ¼ 300 MeV of
incident neutrino energy, is that the maximum of the double
differential cross section d2σ

dκdλ depends very little on the
neutrino energy. Indeed, for Eν ¼ 300 MeV the maximum
of the cross section is around 550 × 10−39 cm2=neutron,
while for Eν ¼ 2000 MeV this maximum is around
450 × 10−39 cm2=neutron. This remarkable feature makes
this double differential cross section especially well suited
to be used in MC generators to select the kinematics of the
final lepton events for fixed neutrino energy. This is
especially relevant for the generators that use the accep-
tance-rejection method to select the events, because using
this method it is necessary to normalize the double differ-
ential cross section to its maximum value. And if this
maximum value depends very weakly with the neutrino
energy, one can efficiently set a fixed maximum suitable for
all the neutrino energies. We will see that this efficiency
would not be so attainable if one uses the double differ-
ential cross section d2σ

dTμd cos θμ
, given in Eq. (2), instead of

d2σ
dκdλ, just because the maximum of the former depends very
strongly on the neutrino energy.
Indeed, if we inspect Fig. 12, where the CCQE νμ-double

differential cross section d2σ
dTμd cos θμ

per neutron has been

plotted for three different neutrino energies in the SuSAM*
model, we can conclude two main things: First, the height
of the peak of this cross section is strongly growing with the
neutrino energy, as it can be seen from the values taken in
the graduated color scale. Second, the larger the neutrino
energy is, the more concentrated the bulk of the cross
section is in a smaller region of the phase space, although

this last conclusion can get overshadowed by the
differences in the figures’ scales. Moreover, the gradient
of the cross section grows strongly with the neutrino energy
for this differential cross section (larger variations of the
cross section in a smaller region of the phase space, which
makes the contour lines of constant cross section to appear
closer and closer as the neutrino energy increases). Note, in
particular, that this behavior is very striking in the bottom
panel of Fig. 12, i.e., for Eν ¼ 20 GeV. In this latter panel,
in the bottom left corner, there is a white hole which means
that there, the double differential cross section is much
larger than the maximum value shown in its scale.
These conclusions should be compared with those of the

d2σ
dκdλ cross section per neutron shown in Figs. 9–11, where
they were the opposite, i.e., the peak of the cross section
was almost flat with the neutrino energy (we have also
checked that this statement is also true for Eν ¼ 20 GeV,
although not shown in any figure), and the variation of the
cross section over the phase space is much softer. These
two special features make the double differential cross
section d2σ

dκdλ much more suitable to generate the final lepton
events in any MC generator, specially those which use the
acceptance-rejection method. Indeed, the event generation
consists in the following steps:

(i) randomly select a point in kinematic phase space,
e.g., λ0 and κ0;

(ii) randomly choose uniformly distributed variable t in
range (0,1);

(iii) accept event if d2σ
dκdλ jλ¼λ0;κ¼κ0

> tmaxð d2σdκdλÞ and reject
otherwise.

For this method to be efficient, the differential cross
section has to be as flat as possible for all neutrino energies
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FIG. 11. Same as Fig. 10 but for the SuSAM* model. Short-dashed and solid lines have the same meaning as in Figs. 9 and 10. Notice,
however, in the left panel, the dot-dashed lines that correspond to the upper and lower boundaries of the RFG model, i.e., the same
boundaries shown in the left panel of Fig. 10.
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because of two main reasons: first, it allows the maximum
search algorithm to be more efficient (seeking the maxi-
mum more accurately in a shorter time); second, the fewer
attempts to select kinematic variables that are rejected, the
faster the events are generated.
In Figs. 13 and 14 we show the CCQE ν̄μ-induced

double differential cross section d2σ
dκdλ per proton for two

different antineutrino energies, respectively. In the left
panels we display the density plots for the RFG model,
while in the right ones we show those for the SuSAM*
model. The main conclusion that can be drawn from these
figures if compared with the corresponding ones for the

neutrino case is that, as expected, the antineutrino cross
sections are smaller than their neutrino counterparts. This is
especially clear in Fig. 13, if compared with Fig. 9, because
the values in the scales of the figure for antineutrinos are
roughly half of the values shown in Fig. 9, and the regions
where the maximum values are reached in Fig. 13 are
clearly smaller in size than those of Fig. 9, despite the fact
that the available phase space is exactly the same.
The comparison can be less clear for the case of

antineutrinos of Eν̄ ¼ 2000 MeV (Fig. 14) if one compares
the corresponding model with the left panels of Figs. 10
and 11, because in this case the color scales reach similar

FIG. 12. Comparison of the density plots for the CCQE νμ-double differential cross section 1
N

d2σ
dTμd cos θμ

off 12C in the SuSAM*
model for three different neutrino energies, highlighting the PB region, where the bulk of the cross section is concentrated. In the top
left panel we show the density plot for Eν ¼ 300 MeV; in the top right panel we display that for Eν ¼ 2000 MeV; while in the
bottom panel the plot for Eν ¼ 20 GeV is shown as well. Curves on the plot have the same meaning as they had in Figs. 9–11. The
white hole in the bottom left corner of the bottom panel means that in that region the cross section is reaching values larger than
the maximum shown in its scale.
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values, although a bit smaller for antineutrinos. However,
one can notice that the number of contour lines of constant
cross section that enter completely inside the shown phase
space (this is the same area of phase space shown in the left
panels of Figs. 10 and 11) is larger in Fig. 14 (8 contour lines
out of 10) than it was for the neutrino case (6 contour lines
out of 10). This means that, even although the color scales

could be considered similar, the contour lines for the
antineutrino case appear more concentrated in the same
region of phase space than their neutrino counterparts. Thus,
we can conclude that larger cross sections extend far beyond
the same phase space shown in Fig. 14 for the neutrino case
than for the antineutrino one, yielding a larger CCQE total
cross section for neutrinos than for antineutrinos.

FIG. 13. Comparison of the density and contour plots for the ν̄μ CCQE double differential d2σ
dκdλ cross section per proton in 12C for the

RFG (left panel) and SuSAM* (right panel) models at Eν̄ ¼ 300 MeV. Lines have the same meaning as in Fig. 9. Note that now the
cross section is roughly half than that for the neutrino case, but also much smaller along other regions of the whole phase space because
of the minus sign in Eq. (2), which applies for CCQE antineutrino scattering. Notice as well about the difference this minus sign makes
in the contour lines of constant double differential cross section.

FIG. 14. Same as Fig. 13 but for Eν̄ ¼ 2000 MeV. The left panel (RFG model) should be compared with the left panel of Fig. 10,
while the right one (SuSAM* model) should be compared with the left one of Fig. 11. These plots highlight the PB region and do not
show the full phase space. Note again that the double differential cross section is smaller for CCQE antineutrino scattering than it is for
neutrino case. The dot-dashed lines in the right panel are the boundaries of the RFG model shown in the left panel.
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B. Total integrated cross section

In this section we discuss the integrated CCQE cross
sections both for neutrinos and antineutrinos off 12C, when
integration over the ðλ; κÞ phase space is carried out.
First of all, we want to point out a thorough description

of how the ðλ; κÞ phase space behaves as the neutrino
energy increases. Notice that the curves κNPB� ðλÞ, either
those described by Eq. (9), or by Eq. (A11) (which
are actually the same expressions, as explained in
Appendix A 2), do not depend at all on the reduced
neutrino energy ϵν. Therefore these boundaries are always
the same irrespective of the values taken by the neutrino
energy. The dependence on the neutrino energy is in the
curves κleptonmax;minðλÞ given by Eqs. (14) and (15).
At low neutrino energies, the phase space is completely

bounded by the final lepton kinematics, i.e., by the curves

κleptonmax;minðλÞ solely. This is the case, for instance, of the right
panels of Figs. 9 and 13. In this case, there are no cutting
points between the two lepton kinematic branches and
between the upper and lower κNPB� ðλÞ curves. This same
effect would occur in the left panels of Figs. 9 and 13,
corresponding to the RFG model, but at a neutrino energy
lower than 300 MeV, because in the RFG the κNPB� ðλÞ
curves are squeezed with respect to those of the SuSAM*
model. This can be seen, for instance, in the top left panel of
Fig. 15 for the RFG.
As the neutrino energy increases, the cutting points

between the curves κleptonmax;minðλÞ and κNPB� ðλÞ start to appear.
One of these cuts is discussed in Appendix A 4, labeled as
λþþ, given in Eq. (A22) and shown in Figs. 6 and 8. The
other two additional cuts that can occur are those given by
Eq. (A24), labeled as λ�−, and shown in Figs. 6 and 8 as

FIG. 15. Plot of the phase space for the RFG model at four different neutrino energies, where different situations arise. In the top left
panel, the reduced neutrino energy is given by ϵ̃νþ in Eq. (19), and the cut between the curves κleptonmin ðλÞ and κNPB− ðλÞ is sole and tangent.
However, when the neutrino energy increases a bit (top right panel), the two different solutions λ�− given by Eq. (A24) appear, first as
cuts between the curves κleptonmin ðλÞ and κNPB− ðλÞ. For higher neutrino energies, as that shown in the bottom left panel, the λþ− cut given by
Eq. (A24) occurs exactly at λ ¼ λmax, and this happens for the reduced neutrino energy ϵ̃ν given in Eq. (20). Finally, in the bottom right
panel we show the situation for a bit larger neutrino energy. In this case, the λþ− solution given by Eq. (A24) corresponds to a cut point
between the curves κNPB− ðλÞ and κleptonmax ðλÞ.
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well. However, there is a reduced neutrino energy ϵν for
which λþ− ¼ λ−−. This happens when the radicand of
Eq. (A24) is zero. Thus, we can find the ϵν value for this to
happen by equating the radicand of Eq. (A24) to zero and
solving the second degree equation for ϵν. The result is

ϵ̃ν� ¼ m̃μðm̃μ � 1Þ
ϵ0F − η0F

; ð19Þ

where ϵ0F ≡ 1þ ðϵF − 1Þψ2
right and η0F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ02F − 1

p
. Of

course, if one wants to recover the results of the RFG,
one substitutes ψ right ¼ 1.
In principle, the ϵ̃ν− solution can be ruled out for electron

and muon neutrinos because it is negative [94], but ϵ̃νþ is
positive and must be considered. At this reduced neutrino
energy ϵ̃νþ, there is a single and tangent cut between the
curves κleptonmin ðλÞ and κNPB− ðλÞ, as it can be seen in the top left
panel of Fig. 15.
If the neutrino energy continues increasing, the two

λ-cuts given by Eq. (A24) are different, but still both cuts
occur between the κleptonmin ðλÞ and κNPB− ðλÞ curves (as it can be
observed in the top right panel of Fig. 15), until a higher
neutrino energy (ϵ̃ν) is reached, at which λþ− ¼ λmax, with
λmax given by Eq. (12). In this range of values for
ϵν ∈ ½ϵ̃νþ; ϵ̃ν�, the range of integration in λ still runs from
λ ∈ ½0; λmax�.
To find ϵ̃ν one could equate λþ− ¼ λmax and try to solve it

for ϵν, but this is very difficult because the equation turns
out to be a third degree equation in ϵν. Nonetheless, there is
a very easy way to obtain this value of ϵ̃ν: we can equate
κleptonmax ðλmaxÞ ¼ κNPB− ðλmaxÞ and solve it for ϵν. Given that
κleptonmax ðλmaxÞ ¼ ϵν, we can take Eq. (9) for κNPB− ðλmaxÞ and
solve the equation for ϵν. The result is straightforward:

ϵ̃ν ¼
m̃μðϵ0F − m̃μÞ
ϵ0F − η0F − 2m̃μ

: ð20Þ

This is the situation shown in the bottom left panel of
Fig. 15. And now, we can ensure that for ϵν > ϵ̃ν, the λþ−
cut given by Eq. (A24) is lesser than λmax, but now it is a cut
between the curve κNPB− ðλÞ and the upper branch of the
lepton kinematics boundary, κleptonmax ðλÞ. This can be
observed in the bottom right panel of Fig. 15.
Now, the integration range in the λ variable is further

constrained to be λ ∈ ½0; λþ−�where λþ− < λmax (only valid
when ϵν > ϵ̃ν). Thus we can integrate the double differ-
ential cross section d2σ

dκdλ in the region of the phase space
where it is truly different from zero, thus making the
integration algorithm the most efficient as possible. The
integrated total CCQE cross section can now be written

σðEνÞ ¼
Z

λu

0

dλ
Z

κuðλÞ

κdðλÞ
dκ

d2σ
dκdλ

ðEνÞ;

where

λu ¼
�
λmax if ϵν ≤ ϵ̃ν;

λþ− if ϵν > ϵ̃ν;

κdðλÞ ¼ max ðκNPB− ðλÞ; κleptonmin ðλÞÞ;
κuðλÞ ¼ min ðκNPBþ ðλÞ; κleptonmax ðλÞÞ:

In Fig. 16 we show the results for the total CCQE
integrated cross section off 12C for the two models
discussed in this work: RFG (solid line) and SuSAM*
(short-dashed line). The left panel is for muon neutrino
scattering, while the right one corresponds to muon
antineutrino. We have displayed the uncertainty band of
the SuSAM* model, taken as the area between the
predictions for the total cross sections obtained by taking
the fmax;min

SuSAM�ðψÞ scaling functions depicted in Fig. 7, instead
of taking the fcentralSuSAM�ðψÞ scaling function of the same
figure, which is the one we have used throughout this
article. To compare with another important and relevant
scaling model, already incorporated in GENIE [95], the
SuSAv2-MEC model of Ref. [96], we have plotted the
curve of this model in Fig. 16 in dot-dashed style as well.
In Fig. 16 we also display, in the form of a very narrow

band of points surrounding the SuSAM* central curve, a
Monte Carlo band that has been obtained by choosing an
uniformly distributed value for the scaling function
between the minimum and the maximum scaling functions
of the SuSAM* model (Fig. 7) for each kinematic point
ψðλ; κÞ in the integration procedure for each neutrino/
antineutrino energy. Although it is almost imperceptible in
the scale of Fig. 16, for each neutrino/antineutrino energy,
there are 12 dots forming this extremely narrow band. Only
for the higher and higher energies the spread of these points
starts to become appreciable. This can be seen in Fig. 17,
where a zoom view of this band is shown, exhibiting that
the scale of fluctuations of this Monte Carlo band is much
thinner than that shown in Fig. 16, where it is seen almost
as a single curve without spreading.
An argument in favor of choosing an uniform distribu-

tion to draw a value for the scaling function for each
kinematic point being integrated is that, in the superscaling
analysis performed in Ref. [52], the superscaling band was
found almost equally populated between the minimum and
maximum scaling functions of the SuSAM* model. In fact,
that band was obtained by using a density criterion, i.e., by
keeping those points with at least more than a fixed number
of neighboring points inside a circle of given radius.
The main conclusion that can be drawn by comparing

the curves of the three different scaling models (RFG,
SuSAM*, and SuSAv2-MEC) is that all of them lie inside
the uncertainty band of the SuSAM* model. It is true that
this band is very large, but not so large if compared with the
experimental uncertainties, which is even truer for the
antineutrino total cross section (right panel of Fig. 16),
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where one can see that the theoretical uncertainty of the
SuSAM* model is of the same order as the error bars of
the experimental points. In fact, the central prediction of the
SuSAM* model is in between those of the RFG and the
SuSAv2-MEC, and as observed in Fig. 16, it passes closer to
both sets of the experimental data shown in the figure. These
are the results of MiniBooNE [20–22] (for intermediate
neutrino energies and for the new technique based on kaon
decay at rest [20]) and NOMAD [97] (for the high neutrino
energy range) experiments. It is worth another remark: the
SuSAM* predictions (band and central curve) are solely
based on the superscaling properties of the selected “QE”

electron scattering data out of the total inclusive (e, e0) data,
in the global fit carried out in Ref. [52], and no CCQE
neutrino scattering parameter has been fitted at all. The same
can be said for the SuSAv2-MEC model, which is based
on another scaling function [98] and with the contribution of
the weak charged meson-exchange currents (MEC) calcu-
lated in Ref. [99]. The SuSAv2-MEC model describes the
MiniBooNE data very well, but systematically overestimates
the cross section at the NOMAD energies. In fact, this could
point to a conflict between theMEC contribution used in this
model and the NOMAD data.
It is not the purpose of this work to discuss the

discrepancies between both sets of data shown in
Fig. 16, because the experimental collaborations recognize
in their works [21] that the experiments use different
detector technologies and assume different topologies in
defining CCQE events. And, in addition, the neutrino/
antineutrino energy drawn in the abscissa axes of Fig. 16 is
the true neutrino energy, while in the experiments the
energy is the reconstructed one (except for the kaon decay
at rest technique), which assumes an educated guess to
obtain it from the measured final lepton kinematic variables
via an unfolding procedure. In fact, the problems related to
the reconstruction of the neutrino energy have been
addressed in a series of articles [100–111].
The total integrated CCQE cross sections shown in

Fig. 16 have been obtained with the set of parameters
(kF ¼ 212 MeV=c and M� ¼ m�

N=mN ¼ 0.83) for 12C
obtained in the global fit to “QE” electron scattering data
of Ref. [52], and given in Table II of the same reference.
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FIG. 16. Plot of the total CCQE cross section σðEνÞ (normalized per interacting nucleon) as a function of the neutrino/antineutrino
energy Eνðν̄Þ for the two models discussed in this work: RFG (solid line) and SuSAM* (short-dashed line). In the left panel the neutrino
total cross section per neutron off 12C is displayed along with the experimental measurements of MiniBooNE [20,22] and NOMAD [97].
In the right panel, we show the same for the antineutrino total cross section per proton, compared with the measurements of MiniBooNE
[21] and NOMAD [97] collaborations. For both models, RFG and SuSAM*, the nucleon relativistic effective mass m�

N ¼ 0.83mN has
been taken, as well as a Fermi momentum of kF ¼ 212 MeV=c, accordingly to the global fit to “QE” electron scattering data performed
in Ref. [52]. Additionally, in dot-dashed style, it is also shown the SuSAv2-MECmodel prediction, which has been taken from Ref. [96].
The Monte Carlo band (shown as points surrounding the SuSAM* central line) is also displayed (see main text for an explanation about
how it has been obtained).
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We did not try to adjust these and any other parameters of
the model (e.g., axial mass of the nucleon) to the neutrino
data. This is important to be stressed, because in the
previous figures and formulas of this work, we have utterly
used the values of kF ¼ 225 MeV=c and M� ¼ 1 for the
Fermi momentum and the relativistic effective mass,
respectively. We used these values in the calculations of
the previous figures because we did not want to bother the
reader with additional complications related to the under-
lying Walecka model [66,67] (see also Refs. [68,69]) in
which the SuSAM* approach is based. It is also worth
warning the reader that in this work we have used the usual
dipole axial-vector form factor with a charged-current
axial-vector mass of MA ¼ 1.008 GeV, and the set of
vector form factors taken from the Galster parametrization
given in Ref. [112]. This value of MA was obtained
in a global fit to all available self-consistent data on
CCQE (anti)neutrino scattering on nuclei, within the
Smith-Monitz RFG model [44] and so-called running
axial-vector mass of nucleon [113]. Since MA is an
effective model-dependent parameter, we plan to adjust
it from a global fit within the SuSAM* model.
It is worth noting that all the formulas appearing in this

work can be translated to the real SuSAM* model by just
changing the value of the Fermi momentum and the free
nucleon mass mN → m�

N , where m�
N is the value of the

relativistic effective mass. These changes affect the values
of ηF, ϵF, ϵ0F, η

0
F…, but the form of the equations obtained

in this work remains the same. Of course, what also does
not change at all is the form of the scaling functions shown
in Fig. 7. What changes is the value of the scaling variable
ψ for a given kinematics (ω,q), but not the form of the
scaling functions.
What can also be stressed from the inspection of Fig. 16

is the effect of nuclear correlations in the integrated cross

section. The RFG model does not contain nuclear corre-
lations, not either high momentum components in its
nuclear ground state. However, the SuSAM* model does
contain them phenomenologically, because its scaling
function has been fitted to a selected sample of “QE”
electron scattering data extracted from the inclusive (e, e0)
reaction data from a large list of different nuclear targets
(see Ref. [52]). Therefore, the SuSAM* contains high
momentum components in its nuclear model, although
phenomenologically. In fact, the tails of the SuSAM*
scaling function, that extend beyond ψ ¼ �1, partially
account for these high momentum components, producing
the enlarging of the available phase space if compared with
the RFG (see in particular the right panel of Fig. 8, where
the cut of the upper boundary of the SuSAM* model with
the κ-axis occurs at κ ¼ η0F, which can be considered as
playing the role of an effective higher Fermi momentum).
One can also compare the left panels of Figs. 10 and 11, or
the left and right panels of Fig. 14 for CCQE antineutrino
scattering, where one can observe that for the SuSAM*
model, beyond the boundaries of the RFG denoted by the
dot-dashed lines, there is still a significant region of
the phase space with a non-negligible contribution to the
double differential cross section. This is mainly responsible
of the enhancement observed in the total cross section in
both panels of Fig. 16 for the SuSAM* model with respect
to the RFG.
The bands in Fig. 16 have been obtained by integrating

the differential cross sections calculated with the minimum
and maximum scaling functions fitted to the QE electron
data and shown in Fig. 7. But the width of these bands do
not necessarily correspond to the theoretical error, but an
upper bound of it. The determination of the theoretical error
in the total cross section is not the objective of this work.
Nonetheless, we have examined a possible way to estimate
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FIG. 18. Same as Fig. 16 but for muon (anti)neutrino, (right) left panel, CCQE scattering off 27Al. The experimental points are
taken from the experiment of Ref. [12]. The values taken for the theoretical calculations of the RFG and SuSAM* models are
kF ¼ 233 MeV=c for the Fermi momentum and m�

N ¼ 0.80mN for the relativistic effective mass (see “Global fit” parameters in
Table II of Ref. [52]).
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this error statistically, shown in Fig. 17, corresponding
to the cross section of neutrinos between 5000 and
100000 MeV.
For a fixed energy of the neutrino we perform the

numerical integration over q and ω using random values
for the scaling function fðψÞ within the band. That is, we
choose fðψÞ ¼ x, where x is a random value between
fminðψÞ and fmaxðψÞ with an uniform probability distri-
bution. A value of x is sampled for each kinematics ðq;ωÞ
inside the integral. In this way, we estimate the statistical
error as if we randomly chose experimental points within
the quasielastic band. Repeating the calculation of the cross
section many times, we obtain a series of points that form
the band shown in Fig. 17. We see that now the dispersion
of the points, which is the statistical error calculated, is
much smaller than the width of the bands of Fig. 16.
Finally, in Figs. 18 and 19 we show similar results

as those of Fig. 16 for older experiments [12,114] using
27Al and 56Fe targets, respectively. The comparison of the
SuSAM* band with the experimental results of Ref. [12],
shown in Fig. 18 for muon neutrinos (left panel) and muon
antineutrinos (right panel), seems to indicate that these data
are closer to the lower bounds of the band, accumulating
along the RFG curve. Nonetheless, the error bars are large
enough, especially for the antineutrino induced CCQE
reactions, to conclude the same than in Fig. 16, i.e., that
the size of the vertical error bars is similar to the theoretical
uncertainty derived from the SuSAM* model for the
total CCQE cross sections as a function of the neutrino/
antineutrino energy, σðEνðν̄ÞÞ. Similar conclusions can be
drawn by inspecting Fig. 19, except that for CCQE muon
antineutrino scattering (right panel), the experimental
measurements have a trend to accumulate along the upper
bounds of the SuSAM* band, but with very large
uncertainties.

VI. CONCLUSIONS

In this work we have thoroughly analyzed the analytical
boundaries of the phase space for the CCQE double
differential cross section d2σ

dκdλ within the scaling formalism
for the RFG model, where these boundaries can be more
easily obtained. This allows to perform the integration
of this double differential cross section only in the region
where it is truly different from zero, thus making the
integration algorithm as efficient as possible. We have also
easily extended the formalism to accommodate the
SuSAM* model as well, taking into account the tails of
the scaling function.
We have analyzed these double differential cross sec-

tions for CCQE muon neutrino and antineutrino scattering
off 12C at several neutrino/antineutrino energies as a
benchmark. Our results show that the d2σ

dκdλ cross section
has very good properties to be implemented in the MC
neutrino event generators, basically because of two main
reasons: it is quite flat regardless of the neutrino energy;
and it has a significant contribution in a larger region of the
available phase space if compared with the usual d2σ

dTμd cos θμ

cross section, especially at very high neutrino energies
Eνðν̄Þ ≳ 10–20 GeV. We think these features of the d2σ

dκdλ
cross section make it especially well suited to be used to
generate final lepton events in any MC generator that uses
the acceptance-rejection method.
We have used the analytical boundaries obtained in this

work to integrate the double differential cross section in
order to obtain the CCQE total integrated σðEνðν̄ÞÞ cross
section for the two models studied in this work: RFG and
SuSAM*. The effect of the tails of the phenomenological
SuSAM* scaling function, that partially account for nuclear
correlations in the model, are directly responsible of an
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FIG. 19. Same as Figs. 16 and 18 but for muon (anti)neutrino, (right) left panel, CCQE scattering off 56Fe. The experimental points are
taken from Ref. [114]. The values taken for the theoretical calculations of the RFG and SuSAM* models are kF ¼ 240 MeV=c for the
Fermi momentum and m�

N ¼ 0.72mN for the relativistic effective mass (see “Global fit” parameters in Table II of Ref. [52]).
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enhancement of about a 17 − 18% for intermediate and
high neutrino energies. The same conclusion can be drawn
for CCQE antineutrino scattering with roughly the same
enhancement in percentage.
Finally, we have also compared the fully integrated

CCQE total cross section in the RFG and SuSAM* models
with past measurements carried out by several experiments
using targets of 12C, 27Al and 56Fe. The main conclusion
here is that all these measurements lie inside the uncertainty
band of the SuSAM* model, being these uncertainties of
roughly the same size as the experimental error bars.
Nonetheless, we interpret the large uncertainty band of
the SuSAM* model as lower and upper bounds for the true
theoretical error in the total CCQE neutrino/antineutrino
cross sections, based solely on our scaling analysis of
electron scattering data [52]. The reader, by no means,
should have the impression that this uncertainty band
reflects the true error, just that the true error must be
inside the band. This last statement, at first sight, can seem
futile; but the experimental errors are also large, and even
with that, different sets of data can become incompatible
with the others.
Future works can be done based on the findings of this

study. In particular, we are working on the study of how
nuclear correlations can be approximately and phenom-
enologically incorporated in the RFG model.
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APPENDIX A: ANALYTICAL FORMULAS FOR
THE BOUNDARIES IN THE RFG MODEL

The RFG model requires that ϵ0 ≤ ϵF, otherwise the
scaling variable would take values jψ j > 1. The physical
constraint of τ ≥ 0 implies that we have to search only in
the region where κ ≥ λ. Finally, it can be shown that if
κ ≥ ηF (or q ≥ 2kF, which corresponds to the NPB region)
then ϵ0 ¼ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=τ

p
− λ ≥ ϵF − 2λ for all positive values

of the energy transfer λ [115,116]. In the NPB region,
typically q≳ 500 MeV=c, and the above condition can be
rewritten as κ ≳ 1=4.
As discussed in Sec. III A, the boundaries of the RFG

scaling variable (−1, þ1) are reached when ϵ0 ¼ ϵF
as it follows from Eq. (6). Solving the equation ϵ0 ¼
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=τ

p
− λ ¼ ϵF in the NPB region (corresponding to

κ ≥ ηF) we get two different curves in the ðλ; κÞ plane. One
of them, κNPBþ ðλÞ, is always greater than κQEðλÞ and

corresponds to ψ ¼ −1, just because κNPBþ ðλÞ >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þp

and this implies λ < τ:

κNPBþ ðλÞ > κQEðλÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þ

p
≥ 0

⇔ ðκNPBþ ðλÞÞ2 − λ2 > λ

⇔ τNPBþ ðλÞ > λ

⇒ signðλ − τNPBþ ðλÞÞ ¼ −1: ðA1Þ

Therefore, along the curve κNPBþ ðλÞ the scaling variable is
always equal to −1. Analogously, there is another curve, a
solution of ϵ0 ¼ ϵF, called κNPB− ðλÞ, which is always less
than κQEðλÞ, and where [by similar arguments as those
proven in Eq. (A1)] the scaling variable is always equal
to þ1.
The expressions of these two curves, κNPB� ðλÞ, are given

below in two different ways in the Appendices A 1 and A 2.

1. Obtaining κNPB� ðλÞ
One of the easiest ways to obtain the limiting curves

κNPB� ðλÞ can be found in Eq. (A.2) of Appendix A of
Ref. [117] (see also Eqs. (C7)–(C9) of Ref. [8]). This latter
equation allows to find the lowest and highest ω limits for
fixed q. These two limits can be found from the equation
ϵ0 ¼ ϵF:

ω� ¼ EkF�q − EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkF � qÞ2 þm2

N

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

N

q
:

Dividing on both sides of the above equations by 2mN, and
writing everything in terms of the dimensionless variables
given in Eqs. (4) and (5), we obtain the boundaries in λ� for
fixed κ:

λ�ðκÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηF � 2κÞ2 þ 1

q
−
1

2
ϵF: ðA2Þ

The problem with the boundaries given in (A2) is that
they are given as curves λ ¼ λðκÞ, whereas we want
them in the form of curves κ ¼ κðλÞ. Thus, we have to
find the inverse functions. Then, writing λþðκÞ≡
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηF þ 2κÞ2 þ 1

p
− 1

2
ϵF ¼ λ, and solving for κ, we obtain

the lower bound κNPB− ðλÞ, which is given by

κNPB− ðλÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵF þ 2λÞ2 − 1

q
−
ηF
2
: ðA3Þ

In Fig. 20 one can inspect that the inversion of λ−ðκÞ≡
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηF − 2κÞ2 þ 1

p
− 1

2
ϵF ¼ λ needs a bit of care because it

must be solved for κ in the region where λ ≥ 0.

λ−ðκÞ ¼ λ ⇔ ðηF − 2κÞ2 ¼ ð2λþ ϵFÞ2 − 1

⇔ jηF − 2κj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵF þ 2λÞ2 − 1

q
; ðA4Þ
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if κ ≥ ηF then jηF − 2κj ¼ 2κ − ηF and thus Eq. (A4)
becomes

κNPBþ ðλÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵF þ 2λÞ2 − 1

q
þ ηF

2
: ðA5Þ

Eqs. (A3) and (A5) are plotted as the thick solid and short-
dashed lines of Fig. 1.

2. Alternative form of obtaining κNPB� ðλÞ
In the NPB region, it is true that ϵ0 ¼ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=τ

p
− λ.

The maximum value is ϵ0 ¼ ϵF and this last equation
defines two curves in the ðλ; κÞ plane. Taking the square and
using τ ¼ κ2 − λ2, we obtain the following biquadratic
equation in κ:

κ4 − ð2λ2 þ ϕÞκ2 þ λ2ðλ2 þ ϕþ 1Þ ¼ 0;

where ϕ ¼ ϵFðϵF þ 2λÞ − 1. Now, making a change in a
variable t≡ κ2 we arrive to a quadratic equation

t2 − ð2λ2 þ ϕÞtþ λ2ðλ2 þ ϕþ 1Þ ¼ 0; ðA6Þ

whose two roots are

t�ðλÞ ¼
2λ2 þ ϕ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − 4λ2

p
2

: ðA7Þ

It can be easily shown that the discriminant of Eq. (A7) is
always positive for λ ≥ 0, because it can be written as

ϕ2 − 4λ2 ¼ η2Fð4λ2 þ 4λϵF þ η2FÞ > 0 if λ ≥ 0: ðA8Þ

This ensures that the roots t�ðλÞ are real. With this, we can
write Eq. (A6) as

½κ2 − tþðλÞ�½κ2 − t−ðλÞ� ¼ 0: ðA9Þ

It is also easy to demonstrate that both roots t�ðλÞ, besides
being real, are also positive. To this end we first write the
negative of the coefficient of t in Eq. (A6) as

2λ2 þ ϕ ¼ 2λ2 þ 2λϵF þ η2F > 0 if λ ≥ 0: ðA10Þ

With this, it is obvious that tþðλÞ is positive for λ ≥ 0. To
demonstrate the same for t−ðλÞ, it is enough to prove that
the square of Eq. (A10) is greater than the discriminant
given in Eq. (A8). This comes from

ð2λ2 þ 2λϵF þ η2FÞ2 ≥ η2Fð4λ2 þ 4λϵF þ η2FÞ ⇔
4λ2ðλ2 þ 2ϵFλþ ϵ2FÞ ≥ 0;

which is true if λ ≥ 0. With these proofs we can be sure
that the four roots of κ in Eq. (A9) are all real as well.
This means that the boundary in the ðλ; κÞ-plane where
−1 ≤ ψ ≤ 1 is bounded by the curves

κNPB� ðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2λ2 þ ϕÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − 4λ2

p
2

s
; ðA11Þ

in the NPB region, i.e., for κ ≥ ηF.
It could seem that these two curves given by Eq. (A11)

are totally different from those obtained in Appendix A 1
and given in Eqs. (A3) and (A5), but they are actually the
same, and already plotted in Fig. 1. One way of proving this
is by raising to the square the κNPB� ðλÞ functions obtained in
Appendix A 1, given by Eqs. (A3) and (A5); then an easy
but lengthy algebra manipulation can demonstrate that the
square of Eq. (A5) is equal to tþðλÞ and that the square
of Eq. (A3) is also equal to t−ðλÞ, both jointly given
in Eq. (A7).

3. Obtaining κPB� ðλÞ
Up to now we have been discussing the boundaries in

the ðλ; κÞ-plane of the NPB region, where the following
identity holds true:

ϵ0≡max

�
κ

ffiffiffiffiffiffiffiffiffiffi
1þ1

τ

r
−λ;ϵF−2λ

�
¼ κ

ffiffiffiffiffiffiffiffiffiffi
1þ1

τ

r
−λ: ðA12Þ

As it was stated above, Eq. (A12) always holds when
κ ≥ ηF, but not necessarily when κ < ηF. We will see below
that for λ ≤ κ < ηF (since τ ≥ 0), there are some regions
in the ðλ; κÞ-plane where ϵ0 can be equal to the second
argument of the maximum function appearing in Eq. (A12),
while there are other regions where ϵ0 is still equal to the
first argument of the maximum function.

FIG. 20. Plot of the two limiting curves λ�ðκÞ as a function of κ
in the RFG model in the NPB region, i.e., for κ ≥ ηF [notice that
for κ < ηF the λ−ðκÞ curve reaches negative values, which are
forbidden; this is because it is entering into the PB region]. In this
figure, we have taken ηF ¼ 0.239. The dashed curve λQEðκÞ ¼
− 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κ2

p
corresponds to the inverse of κQEðλÞ ¼ κ.
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In order to delimit these boundaries note that

κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
− λ ≤ ϵF − 2λ ⇔ κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
≤ ϵF − λ: ðA13Þ

The latter inequality defines some region in the ðλ; κÞ-
plane. As both sides of the inequality given in Eq. (A13) are
positive (because we are looking for solutions where
λ < ηF < ϵF), taking the square, substituting τ ¼ κ2 − λ2,
and rearranging terms we finish with another biquadratic
inequality for κ:

κ4 − ρκ2 þ ðλϵF − λ2Þ2 ≤ 0; ðA14Þ

where ρ ¼ 2λ2 − 2λϵF þ η2F. Performing the usual trick of
solving the inequality by making the change of variable
u≡ κ2, we obtain that the equality holds for

u�ðλÞ ¼
ρ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 4ðλϵF − λ2Þ2

p
2

: ðA15Þ

For Eq. (A15) to have real solutions, the discriminant must
be positive at least in the region of λ-values where we are
seeking a solution.
It is not difficult to write the condition for the discrimi-

nant to be positive as

ρ2 − 4ðλϵF − λ2Þ2 ≥ 0 ⇔

½ρ − 2ðλεF − λ2Þ�½ρþ 2ðλεF − λ2Þ� ≥ 0 ⇔

4λ2 − 4λϵF þ η2F ≥ 0. ðA16Þ

The last equality has two roots for λ. They are

λ� ¼ ϵF � 1

2
> 0: ðA17Þ

Hence, the last inequality of Eq. (A16) can be written as

4ðλ − λþÞðλ − λ−Þ ≥ 0: ðA18Þ

The only meaningful solution to Eq. (A18) is that λ ≤ λ− <
λþ [118]. The next step is to see if λ− is lesser than ηF or
not, because if so then the interval in λ where to have real
roots for u�ðλÞ is further constrained compared to the
interval defined by 0 ≤ λ < ηF. Clearly,

λ− ≡ ϵF − 1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

p
− 1

2

¼ η2F
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

p
þ 1Þ <

η2F
4

< ηF; ðA19Þ

where the last inequalities hold because 0 < ηF < 1, which
implies that η2F < ηF. So we can conclude that the dis-
criminant of Eq. (A15) is positive and u�ðλÞ are real roots

of Eq. (A14) for 0 ≤ λ ≤ λ− < ηF. The next step is
wondering about the sign and magnitude of the coefficient
of κ2 in Eq. (A14) in the region of λ-values between 0 and
λ−. The reason for this is because depending upon its sign
and magnitude, the roots u�ðλÞ can be negative and we
want them to be positive because u�ðλÞ ¼ ½κPB� ðλÞ�2 should
be the square of real roots of Eq. (A14). To this end, we set
out the following inequality and seek for their solutions:

ρ ≥ 0: ðA20Þ

The equality ρ ¼ 0 has two positive roots for λ:

λ0� ¼ ϵF �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ϵ2F

p
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2F

p
2

> 0:

We have to compare them with λ−, given in Eq. (A17). The
reason for this is because if any of the two new roots λ0�
is lesser than λ−, then the interval in λ where to seek the
boundary of the PB region can be, again, further con-
strained from the last condition 0 ≤ λ ≤ λ−. It is easy to see
that λ0þ is clearly greater than λ−:

λ0þ ¼ ϵF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2F

p
2

>
ϵF
2

>
ϵF − 1

2
≡ λ−:

On the other hand, it is also straightforward to see that λ0− is
greater than λ− as well:

λ0− ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2F

p
2

¼ η2Fffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2F

p >
η2F
4

> λ−;

where in the second step we have multiplied and divided
by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2F

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2F

p
.

Finally, it is worth noting that the inequality (A20) can be
rewritten as

2ðλ − λ0þÞðλ − λ0−Þ ≥ 0; ðA21Þ

which is absolutely fulfilled if λ ≤ λ− < λ0− < λ0þ, because
then both parentheses in Eq. (A21) are negative and their
product is positive. Having found the most restrictive
region in the λ variable where Eqs. (A16) and (A20) are
simultaneously fulfilled, we can assert that the roots u�ðλÞ
given in Eq. (A15) are both real and positive [119]. Thus,
we can rewrite Eq. (A14) as

½κ2 − uþðλÞ�½κ2 − u−ðλÞ� ≤ 0:

From the above inequality, it is obvious that the only
solution is
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ffiffiffiffiffiffiffiffiffiffiffi
u−ðλÞ

p
≤ κ ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
uþðλÞ

p
;

where we have taken the square roots because the solutions
u�ðλÞ and κ are all positive. Therefore, we can conclude
from all this discussion that the region where PB makes ϵ0
to be equal to the second argument, ϵF − 2λ, of the
maximum function displayed in Eq. (A12), corresponds
to the region κPB− ðλÞ ≤ κ ≤ κPBþ ðλÞ in the region where
0 ≤ λ ≤ λ− with

κPB� ðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 4ðλϵF − λ2Þ2

p
2

s
:

It is also easy to find the values of κPB� ðλÞ for λ ¼ 0 and
λ ¼ λ−. They are

κPB� ðλ−Þ ¼
ηF
2

κPB− ð0Þ ¼ 0; κPBþ ð0Þ ¼ ηF:

The first two above equations can be easily found by
noticing that, for λ ¼ λ− ¼ ðϵF − 1Þ=2, the discriminant of
u�ðλÞ is exactly zero [see Eq. (A18)], and then there is no
difference between κPBþ ðλ−Þ and κPB− ðλ−Þ. It is also easy to
notice that κQEðλ−Þ ¼ ηF=2:

κQEðλ−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ−ðλ− þ 1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2F − 1

4

r
¼ ηF

2
:

This means that for λ ¼ λ−, ϵ0 ¼ ϵF − 2λ− ¼ 1 and then the
scaling variable at the point ðλ; κÞ ¼ ðλ−; ηF=2Þ is exactly 0
[see definition given in Eq. (6)].

4. Obtaining κleptonmax ;minðλÞ
As both κNPB� ðλÞ curves are increasing functions of λ (see

for example Figs. 1, 3, or 4), it is interesting to look for the
cutting points between κleptonmax ðλÞ and κNPB� ðλÞ, or between
κleptonmin ðλÞ and κNPB� ðλÞ, if any. These cutting points will help
us to constrain and to understand the form of the available
phase space in the RFG model for a fixed neutrino/
antineutrino reduced energy ϵν.
We can start by looking for the λ value where

κNPBþ ðλÞ ¼ κleptonmax ðλÞ. This value can give us the λ point
where the minimum function appearing in expression (16)
changes from selecting one curve to the other. In this case,
to obtain the solution for λ, it is better to use the expression
for κNPBþ ðλÞ given in Eq. (A5) rather than that given in
Eq. (A11), although both are equivalent, just because the
first one is much simpler to manipulate. To obtain the
solution it is necessary to square twice the equation, and we
finish with the following second degree equation for λ after
a lengthy algebra manipulation:

aλ2 þ bλþ c ¼ 0

with

a≡ 1þ 4ϵνðϵF þ ηFÞ;
b≡ 2ϵFðm̃2

μ þ ϵνηFÞ þ 2ϵν½η2F þ 2m̃2
μ − 2ϵνðϵF þ ηFÞ�;

c≡ m̃2
μðη2F − 2ϵνηF þ m̃2

μÞ:

The above equation has two roots. Only the solution with the
positive square root is positive for some values of ϵν.
The other solution is always negative and we discard it.
The relevant solution, which we call λþþ, is given by

λþþ ¼ ζþð2ϵν − ηFÞ − m̃2
μðϵF þ 2ϵνÞ

ð1þ 4ζþÞ

þ
j2ϵν − ηFj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃4

μ − m̃2
μ þ ζþðζþ − 2m̃2

μÞ
q

ð1þ 4ζþÞ
; ðA22Þ

where we define ζþ ¼ ϵνðϵF þ ηFÞ. In the above Eq. (A22)
there is a value for the reduced neutrino energy ϵν for which
λþþ ¼ 0. This value can be found by equating the numerator
of (A22) to zero and solving for ϵν. This value of ϵν is
precisely that for which the cut point between κNPBþ ðλÞ and
κleptonmax ðλÞ occurs at λ ¼ 0. Again, a lengthy and tedious
algebraic manipulation leaves us with another second degree
equation in the variable ϵν:

aϵ2ν þ bϵν þ c ¼ 0

with

a≡ 8ηFðηF þ ϵFÞ;
b≡ 2ðηF − 2ðηF þ ϵFÞðη2F þ m̃2

μÞÞ;
c≡ −η2F − m̃2

μ:

Only the solution with the positive square root is again
positive, while the other solution is always negative and we
discard it. The meaningful solution is [120]

ϵνþ ¼ η2F þ m̃2
μ

2ηF
> 0: ðA23Þ

Notice that the solution given in the above Eq. (A23)
depends both on the reduced final lepton mass and on a
nuclear property, namely the Fermi momentum (in units of
the nucleon mass).
Also note that, given the behavior of the curves κleptonmax ðλÞ

(which is a monotonically decreasing function of λ, as
already mentioned in Sec. III B), and κNPBþ ðλÞ (which is
monotonically increasing), for m̃μ ≤ ϵν ≤ ϵνþ the upper
limit of the phase space of the QE double differential cross
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section with respect to final lepton variables in the RFG
model is bounded only by the curve κleptonmax ðλÞ. Or said in
other words, if m̃μ ≤ ϵν ≤ ϵνþ , then the minimum function
of the right-hand side of inequality (16) is always the curve
κleptonmax ðλÞ for all the allowed λ values.
On the other hand, the presence of the reduced lepton

mass in Eq. (A23) means that the necessary ranges of
neutrino energies to allow the lepton kinematic constraints
to determine by themselves the upper boundary of the
phase space, depend a lot on the kind of neutrino flavor for
charged current processes. For instance, for tau neutrinos
and for typical values of Fermi momenta (ηF ≃ 0.24),
the neutrino energy Eνþ ¼ 2mNϵνþ ≃ 3.72 GeV, which is
already a quite large neutrino energy for the intermediate
neutrino energy range. However, for muon neutrinos,
Eνþ ≃ 240 MeV, which is a quite low neutrino energy.
Of course, these values are completely related to the
threshold neutrino energies to produce a τ lepton or a
muon in charged-current elastic scattering with nucleons,
respectively.
Now we can look for the cut point between κleptonmax ðλÞ and

κNPB− ðλÞ, which will occur for a λ value larger [121] than
λþþ, given in Eq. (A22). Again, after a lengthy calculation,
solving κNPB− ðλÞ ¼ κleptonmax ðλÞ for λ, we find two roots:

λ�− ¼ ζ−ð2ϵν þ ηFÞ − m̃2
μðϵF þ 2ϵνÞ

ð1þ 4ζ−Þ

�
ð2ϵν þ ηFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃4

μ − m̃2
μ þ ζ−ðζ− − 2m̃2

μÞ
q

ð1þ 4ζ−Þ
; ðA24Þ

where we define ζ− ¼ ϵνðϵF − ηFÞ. Both roots are physical
(not complex numbers) for some reduced neutrino energies
which depend on the model scaling function (see Fig. 15).
Note that the expression for the first root, λþ−, corresponds
to the solution λþþ given in Eq. (A22) if one makes the
replacement ηF ↦ −ηF, which makes sense because the
only difference between κNPBþ ðλÞ [given in Eq. (A5)], and
κNPB− ðλÞ [Eq. (A3)] is the sign of ηF. The other root, λ−−,
when it is physical, always corresponds to the cutting point
between the curves κNPB− ðλÞ and κleptonmin ðλÞ. This latter
solution corresponds to the λ point where the maximum

function appearing on the left-hand side of the inequality
(16) changes from one of its arguments to the other. It could
seem striking at first glance that this solution appears when
we have not used at all the κleptonmin ðλÞ curve to obtain it, but
(as it can be seen from Fig. 6) the curves κleptonmax;minðλÞ form
actually two different branches of the same unique curve,
namely, ðκ − ϵνÞ2 ¼ ðϵν − λÞ2 − m̃2

μ.

APPENDIX B: EXTENSION OF THE FORMULAS
TO THE SuSAM* MODEL

As discussed in Secs. IVand V B, all the above analytical
formulas obtained for the RFG model in the Appendix A
can be used for the SuSAM* model by just replacing
ϵF → ϵ0F and ηF → η0F ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ02F − 1
p

.
In this Appendix B we demonstrate that κNPB− ð0Þ ¼ 0

and κNPBþ ð0Þ > ηF for the SuSAM* model, as stated in
Sec. IV [122].
It is straightforward to prove that κ2−ð0Þ ¼ t−ð0Þ ¼ 0,

either from Eqs. (A7) or (A11), irrespective of the values
taken by ϵF or ϵ0F, provided that both are greater than 1, as it
is the case. For the second demonstration we have, from
Eq. (A7),

κ2þð0Þ ¼ tþð0Þ ¼
ϵ02F − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ02F − 1Þ2

p
2

¼ ϵ02F − 1

¼ ð1þ ðϵF − 1Þψ2
leftÞ2 − 1;

where ψ left is the negative value of the scaling variable,
lesser than −1, that one has to take to ensure that the scaling
function is negligible beyond that value. Finally, as
ψ2
left > 1, it is also true that

1þ ðϵF − 1Þψ2
left > ϵF > 1

⇒ κ2þð0Þ ¼ ð1þ ðϵF − 1Þψ2
leftÞ2 − 1 > ϵ2F − 1≡ η2F

⇔ κþð0Þ > ηF;

where in the first step we have multiplied the inequality
ψ2
left > 1 on both sides by ðϵF − 1Þ without changing the

direction of the inequality because ϵF > 1.
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