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We study the spin-exotic JPC ¼ 1−þ amplitude in single-diffractive dissociation of 190 GeV=c pions
into π−π−πþ using a hydrogen target and confirm the π1ð1600Þ → ρð770Þπ amplitude, which interferes
with a nonresonant 1−þ amplitude. We demonstrate that conflicting conclusions from previous studies on
these amplitudes can be attributed to different analysis models and different treatment of the dependence of
the amplitudes on the squared four-momentum transfer and we thus reconcile these experimental findings.
We study the nonresonant contributions to the π−π−πþ final state using pseudodata generated on the basis
of a Deck model. Subjecting pseudodata and real data to the same partial-wave analysis, we find good
agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the
JPC ¼ 1−þ amplitude and also for amplitudes with other JPC quantum numbers. We investigate for the first
time the amplitude of the π−πþ subsystem with JPC ¼ 1−− in the 3π amplitude with JPC ¼ 1−þ employing
the novel freed-isobar analysis scheme. We reveal this π−πþ amplitude to be dominated by the ρð770Þ for
both the π1ð1600Þ and the nonresonant contribution. These findings largely confirm the underlying
assumptions for the isobar model used in all previous partial-wave analyses addressing the JPC ¼ 1−þ

amplitude.

DOI: 10.1103/PhysRevD.105.012005

I. INTRODUCTION

The presently known meson spectrum is to a large extent attributed to quark-antiquark (qq̄0) states. These states, i.e., the
ground states and their excitations, are described by the constituent-quark model and are classified using SUð3Þflavor ×
SUð2Þspin symmetry. However, QCD in principle allows for a richer spectrum of excitations including multiquark
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configurations as well as gluonic excitations, called
“exotic” mesons hereafter. Such states are expected to be
different from qq̄0 states in terms of either their quantum
numbers and/or their couplings to initial or final states, thus
leaving their own fingerprints. In case of quantum numbers
allowed for constituent-quark model states, they may,
however, mix in configuration space.
Many model calculations for light-quark exotic states

consisting of u, d, or s quarks exist, predicting a variety of
features (see, e.g., Refs. [1–5]), but no clear signatures exist.
More recently, first calculations of the excitation spectrum
of light mesons have been performed by the authors of
Refs. [6–9] using lattice QCD. They find exotic states with
large contributions from excited gluonic field configurations,
i.e., hybrid mesons, the lightest of which having so-called
spin-exotic quantum numbers JPC ¼ 1−þ that are forbidden
for qq̄ states.1 However, the predictive power of these
calculations is currently limited by the fact that all states
are considered to be quasistable. Recently, the authors of
Ref. [10] have performed the first lattice QCD calculation
of the hadronic decays of the lightest 1−þ resonance. This
calculation was performed using up, down, and strange-
quarkmasses that approximatelymatch the physical strange-
quark mass. At this SUð3Þflavor symmetric point, which
corresponds to a pion mass of about 700 MeV=c2, the
scattering amplitudes of eight meson-meson systems were
studied in a coupled-channel approach. Extrapolating the
extracted resonance pole and its couplings to the physical
light-quarkmasses suggests a broadπ1 resonance that decays
predominantly into b1ð1235Þπ and that has much smaller
partial widths into f1ð1285Þπ, ρð770Þπ, η0π, and ηπ. The
present state-of-the-art method to calculate multi-body
decays and scattering processes on the lattice requires using
large pion masses to limit the analysis to coupled two-body
channels only (see, e.g., Ref. [11] and references therein).
However, the extension of these calculations to three-body
final states is under active development (see, e.g., Ref. [12]).
The field of exotic hadrons has changed dramatically

with the observations of the X, Y, Z states involving
heavy quarks. In particular, the observation of charged
quarkoniumlike states, Z�

c [13,14] and Z�
b [15], has been

considered as clear evidence for the existence of exotic
hadrons. They are characterized by an exotic combination
of presumed flavor content and isospin quantum numbers.
In addition, the Pc states are considered as the first
observation of pentaquark states [16,17]. The nature and
internal structure of these states are discussed widely in the
literature (see, e.g., Refs. [18,19]).
In the sector of light-quark mesons, several candidates

for non-qq̄0 states with conventional qq̄0 quantum numbers
are discussed in the literature, e.g., f0ð1500Þ, πð1300Þ,
πð1800Þ, a1ð1420Þ, and f1ð1420Þ, although none of them

was conclusively identified as such. While production and
decay patterns constitute a mandatory but often strongly
model-dependent signature, spin-exotic JPC quantum num-
bers are generally considered the cleanest path to prove the
existence of mesonlike objects beyond qq̄0. Three such
states with JPC ¼ 1−þ, the π1ð1400Þ, π1ð1600Þ, and the
π1ð2015Þ, have been discussed frequently as first evidence
for exotic mesons and their observation was reported by
various experiments [20]. Their masses agree qualitatively
with lattice QCD calculations [9]. However, the existence
of these states is disputed and the experimental situation
requires clarification and further studies. The π1ð1400Þ has
been observed by several experiments [21–26] in the ηπ
final state produced in π− diffraction at beam momenta
ranging from 6.3 to 100 GeV=c. It has also been observed
in the ηπ final state produced in p̄p and p̄n annihilations
studied by the Crystal Barrel experiment [27–29] and in the
ρð770Þπ channel by the Obelix experiment [30]. The
π1ð2015Þ has so far been observed only by the BNL
E852 experiment in the f1ð1285Þπ [31] and b1ð1235Þπ
[32] decay modes.

A. Status of the π1ð1600Þ
The π1ð1600Þ is the most extensively studied spin-exotic

meson. Indications were found in η0π [33–36], in f1ð1285Þπ
[31,35,37], and inb1ð1235Þπ [32,33,35,37,38]. Recently, the
COMPASS collaboration has published further studies on
the η0π and ηπ final states in diffractive production relevant
to the search for π1ð1600Þ [39]. A reanalysis of these
data performed by the JPAC collaboration revealed a clear
resonance pole in the spin-exotic wave [40]. This analysis
could even reconcile the previous observations of the two
spin-exotic states π1ð1400Þ and π1ð1600Þ to be the result of
only a single pole with parameters that are consistent with
the π1ð1600Þ.
In this paper, we focus on the π−π−πþ final state

including the ρð770Þπ intermediate state. An observation
of the decay π1ð1600Þ → ρð770Þπ was first reported by
BNL E852 [41,42] followed by VES [37]. Later, the
COMPASS experiment confirmed some of the previous
findings [43]. For a review, we refer to Ref. [44]. All the
above experiments studied diffractive pion dissociation, but
at different beam energies, using different target materials,
and in various ranges of the four-momentum transfer
squared. Previous investigations of the 3π final state
yielded contradicting conclusions on what concerns the
proof of existence of the π1ð1600Þ or the determination of
its properties. While BNL E852 [41,42] and COMPASS
have stressed the observation of the π1ð1600Þ, VES [37],
and an analysis of BNL E852 data by Dzierba et al. [45]
have been inconclusive on its existence or even refuted it.
Recently, COMPASS published an extensive study of

isovector mesons using a large dataset on the π−π−πþ final
state [46]. In this analysis, we observed a strong modulation
of the shape of the intensity distribution of the spin-exotic

1Here, J is the spin, P the parity, and C the charge conjugation
quantum number of the state.
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ρð770Þπ P-wave carrying JPC ¼ 1−þ with the squared
four-momentum t0 transferred from the beam to the target
particle [see Figs. 1(a) and 1(b) and definition in Eq. (2)].
This modulation is described by the resonance model as a t0
-dependent interference between a π1ð1600Þ resonance
(blue curves) and a nonresonant wave component (green
curves). The nonresonant component was found to domi-
nate at low t0 whereas the π1ð1600Þ signal emerged at high
t0. The resonance characteristics of the π1ð1600Þ signal
was clearly demonstrated through its phase variation with
respect to 13 other waves. As an example, we show in
Fig. 1(c) the phase motion with respect to the ρð770Þπ
S-wave carrying JPC ¼ 1þþ. In addition, the dashed red
curves in Fig. 1 show the result of a fit, where the π1ð1600Þ
resonance was omitted from the fit model. Although at low
t0, where the nonresonant component is dominant, this
model is in fair agreement with data, it fails to describe the
data at high t0. This demonstrates that a π1ð1600Þ resonance
is needed to describe the COMPASS data.
The discrepancy of results and interpretations on the

π1ð1600Þ signal from the analyses discussed above
requires detailed studies as the origin could be either
inconsistent datasets or analysis artifacts. This paper aims
at understanding three different aspects of the spin-exotic
ρð770Þπ P-wave carrying JPC ¼ 1−þ based on the large
COMPASS data sample: (i) can the different and partially
inconsistent observations from previous analyses be
reconciled through studies of the model dependence of
the analyses? (ii) Are structures observed in this wave an
artifact of the partial-wave analysis model? Since the
resonant nature of the π1ð1600Þ has been already studied
extensively in Ref. [46], we will not readdress the

determination the π1ð1600Þ resonance parameters here.
(iii) Can we model nonresonant production through the
so-called Deck effect [48]?
This paper is organized as follows: after a short descrip-

tion of the COMPASS experiment in Sec. II, we will briefly
review the analysis of our data in Sec. III. Secs. IV to VI
each will address one of the three questions that we posed
above. In Sec. IV, we will reconcile our analyses and
previous ones performed by the BNL E852 [41,42,45] and
VES [37] experiments and trace the discrepancies to the
different analysis schemes used. Next, in Sec. V we will
extract the amplitude of the π−πþ subsystem present in the
JPC ¼ 1−þ wave using the new scheme of freed-isobar
analysis [49] proving the decay of π1ð1600Þ → ρð770Þπ.
Finally, we compare in Sec. VI the observed intensity
distributions (diagonal elements of the spin-density matrix)
of selected partial waves to model calculations on non-
resonant 3π production. Each of the three sections will
provide evidence that further confirms the π1ð1600Þ res-
onance and its decay into ρð770Þπ. Since the three result
sections are linked only weakly, we will summarize and
conclude them individually and refrain from an additional
summary and conclusion at the end of the paper.

II. ANALYZED DATA SAMPLE

The present study is based on a dataset of 46 × 106

exclusive events of diffractively produced mesons decaying
into three charged pions. The data were obtained by the
COMPASS experiment and were already presented in
detail in Ref. [47]. They contain exclusive events from
the inelastic reaction
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FIG. 1. Excerpt from the results of a previous study of resonance production in π−p → π−π−πþp at 190 GeV=c pion-beam
momentum by the COMPASS collaboration [46,47]. The partial-wave intensities of the spin-exotic ρð770Þπ P-wave carrying JPC ¼
1−þ are shown in (a) and (b) for the lowest and highest t0 bins, respectively, covered by the experiment. Panel (c) shows the phase relative
to the ρð770Þπ S-wave carrying JPC ¼ 1þþ. The red solid curve represents the full resonance model (see Table II in Ref. [46]), which is
the coherent sum of wave components that are represented by the other solid curves: π1ð1600Þ resonance (blue curves) and nonresonant
component (green curves). The extrapolation of the model and the wave components beyond the fit range are shown in lighter colors.
The narrow enhancement at 1.1 GeV=c2 in (a) is likely an artifact induced by imperfections in the analysis method (see Sec. IVA). The
dashed red curves represent a fit, where the π1ð1600Þ resonance was omitted from the fit model. This curve hence corresponds to a
purely nonresonant ρð770Þπ P-wave.
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π− þ p → π−π−πþ þ p; ð1Þ

which is induced by a high-energy π− beam impinging on a
hydrogen target. The dominant reaction mechanism is
single-diffractive scattering, where the target particle scat-
ters elastically and the beam pion is excited via the
exchange of a Pomeron with the target nucleon to a
short-lived intermediate state X− that then decays into
π−π−πþ as shown in Fig. 2. The experimental setup and the
criteria that were applied to select exclusive events of
reaction (1) are described in detail in Refs. [47,50]. Here,
we give only a brief summary.
The COMPASS experiment [51,52] is located at the M2

beam line of the CERN Super Proton Synchrotron. A beam
of negatively charged secondary pions with 190 GeV=c
momentum was incident on a 40 cm long liquid-hydrogen
target. The data selection required a recoil-proton signal
and an exclusive measurement was ensured through a
variety of criteria [47].
Reaction (1) depends on two Mandelstam variables:

the squared π−p center-of-momentum energy s, which is
fixed to about ð19 GeVÞ2 by the beam momentum, and the
squared four-momentum t transferred from the beam to the
target particle. It is convenient to define the reduced four-
momentum transfer squared

t0 ≡ jtj − jtjmin ≥ 0; ð2Þ

where

jtjmin ≈
�
m2

3π −m2
π

2jp⃗beamj
�

2

ð3Þ

is the minimum absolute value of the four-momentum
transfer needed to excite the beam pion to a 3π state with

invariant massm3π.
2 The beam momentum p⃗beam is defined

in the laboratory frame. For the present analysis, t0 was
chosen to be in the range from 0.1 to 1.0 ðGeV=cÞ2, where
the lower bound is dictated by the acceptance of the recoil-
proton detector and the upper bound by the exponential
decrease of the number of events with t0.
Since reaction (1) is dominated by Pomeron exchange,

which conserves isospin I and G parity of the beam pion,
only intermediate states X− with IG ¼ 1− can be produced.
This limits the analysis to meson states that belong to the πJ
and aJ families with spin J. This analysis focuses on 3π
resonances with masses up to about 2 GeV=c2. We hence
selected the m3π range from 0.5 to 2.5 GeV=c2.

III. PARTIAL-WAVE ANALYSIS METHOD

We extract the π1ð1600Þ contribution with JPC ¼ 1−þ
from the COMPASS data through a partial-wave analysis
(PWA) using a model comprising 88 partial waves (see
Table IV in Appendix A). The PWAmodel has already been
described in detail in Refs. [47,53], so we will provide here
only a brief description.
We subdivide the data into 100 equidistant 20 MeV=c2

wide bins of the invariant mass m3π of the 3π system and
into 11 nonequidistant bins of the reduced four-momentum
transfer squared t0 (see Table IV in Ref. [47]) resulting
in 1100 kinematic ðm3π; t0Þ cells. We fit each of these
cells independently with a PWA model for the intensity
distribution,

Iðτ;m3π; t0Þ ¼
X
ε¼�1

XNε
r

r¼1

���� X
Nε

waves

a

T rε
a ðm3π; t0ÞΨε

aðτ;m3πÞ
����
2

þ I flatðm3π; t0Þ; ð4Þ

using an unbinned extended maximum likelihood
approach. Here, τ represents the five three-body phase-
space variables in a given ðm3π; t0Þ cell (see Sec. III in
Ref. [47] for a concrete choice for τ). The indices ε and r
are explained below. The transition amplitude T rε

a encodes
the (unknown) strength and phase of partial wave a, while
the decay amplitude Ψε

aðτÞ encodes the (known) depend-
ence on τ. Within a given ðm3π; t0Þ cell, we neglect the
dependence on m3π and t0; i.e., T rε

a is constant and Ψε
a

depends only on τ. The term I flat is the intensity of the so-
called flat wave, which represents three uncorrelated final-
state pions that are distributed isotropically in the three-
body phase space. The flat wave contributes only 3.1% to
the total intensity.
The partial waves that enter Eq. (4) are uniquely defined

by the quantum numbers of the intermediate state X− and
its decay mode (see Fig. 2). The X− quantum numbers are

FIG. 2. Single-diffractive dissociation of a beam pion on a
target proton into the π−π−πþ final state via exchange of a
Pomeron P. In this scattering process, an intermediate 3π state X−

with well-defined quantum numbers is produced. The decay of
X− is described using the isobar model, which assumes that the
decay proceeds via intermediate π−πþ states ξ0, the so-called
isobars, which also have well-defined quantum numbers. See
Sec. III for details.

2For the kinematic range considered here, jtjmin is well below
10−3 ðGeV=cÞ2 and hence t0 ≈ −t.
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isospin I, G parity, spin J, parity P, C parity, and the
projection M of J along the beam axis.3 We express the
amplitudes in Eq. (4) in the reflectivity basis [54]. As a
consequence, M ≥ 0 and an additional quantum number of
X−, the reflectivity ε ¼ �1, is introduced. The formulation
in the reflectivity basis allows us to take into account parity
conservation in the scattering process by summing inco-
herently over ε. In addition, at high s and neglecting
corrections of order 1=s, ε corresponds to the naturality
of the exchange particle in the scattering process [55–57].
Since at high s the scattering process is dominated by
Pomeron exchange, which has ε ¼ þ1, partial-wave ampli-
tudes with ε ¼ −1 are suppressed. Hence the two reflec-
tivity sectors are in general described using wave sets with
different numbers Nε

waves of waves.
For the COMPASS data, we find that a PWA model with

Nε¼þ1
waves ¼ 80, Nε¼−1

waves ¼ 7, and the flat wave describes the
data well [47]. This 88-wave set is listed in Table IV in
Appendix A. As we will show in Sec. IV, the wave set has a
strong influence on the shape and intensity of the spin-
exotic JPC ¼ 1−þ wave with Mε ¼ 1þ, which contains a
potential π1ð1600Þ signal.
The incoherent sum over the index r in Eq. (4) is used

to model the incoherence in the scattering process.
Incoherences may, for example, arise due to spin flip
and spin nonflip of the target proton. Also performing
the PWA over wide t0 ranges may lead to effective
incoherence because the transition amplitudes of the
various waves have different t0 dependences (see discussion
below). The number Nε

r of incoherent terms corresponds to
the rank of the spin-density submatrix with reflectivity ε.
Since the two values of ε correspond to different production
mechanisms, the rank may be different for different ε. For
the COMPASS data, we find that a PWA model with
Nε¼þ1

r ¼ 1 and Nε¼−1
r ¼ 2 describes the data well [47].

This means that all positive-reflectivity waves are assumed
to be fully coherent. The sum of the negative-reflectivity
amplitudes contributes only 2.2% to the total intensity
confirming the dominance of positive-reflectivity waves.
We construct the decay amplitudes in Eq. (4) using the

helicity formalism and the isobar model (see Sec. III in
Ref. [47] for details), i.e., we assume that the decay X− →
π−π−πþ proceeds via two subsequent two-particle decays,
X− → ξ0π− and ξ0 → π−πþ, with intermediate two-pion
states ξ0, which are called isobars (see Fig. 2). The decay
amplitude of a partial wave contains a propagator term
Δaðmπ−πþÞ that describes this isobar resonance and that we
refer to as dynamic isobar amplitude. In the case of the
ρð770Þ resonance, which dominates the JPCMε ¼ 1−þ1þ

wave, we use a relativistic Breit-Wigner amplitude with
mass-dependent width as given by Eqs. (31) and (40) in
Ref. [47] as the dynamic isobar amplitude.
In the following, we adopt the partial-wave notation

JPCMεξ0πL, where ξ0πL defines the decay mode of X− and
L is the orbital angular momentum between the isobar and
the bachelor π− (see Fig. 2). This means that the wave index
in Eq. (4) is given by

a ¼ JPCMεξ0πL: ð5Þ

The t0 dependence of the transition amplitudes
T rε

a ðm3π; t0Þ in Eq. (4) is in general unknown and may
be different for different waves a. In diffractive reactions,
the t0 spectra of the transition amplitudes exhibit an
approximately exponential decrease with t0 in the range
t0 ≲ 1 ðGeV=cÞ2. This behavior can be explained in the
framework of Regge theory [58]. For partial waves with
M ≠ 0, the t0 spectra are modified by an additional factor
ðt0ÞjMj, which is given by the forward limit of the Wigner D
functions [58]. This factor suppresses the intensity of the
waves toward small t0, i.e., the transition amplitude is
approximately proportional to ðt0ÞjMj=2. Diffractive produc-
tion of JPC ¼ 1−þ waves requires M ¼ 1. This follows
from parity conservation and the dominance of natural-
parity exchange in hadronic high-energy scattering reac-
tions [54].4 As a consequence, 1−þ partial-wave amplitudes
with positive reflectivity are suppressed at low t0.
In the analyses of small datasets (some of which will be

discussed in Sec. IV below), where a binning in t0 is not
possible, the t0 dependence of the transition amplitudes is
often modeled by replacing the transition amplitudes via

T rε
a ðm3π; t0Þ → T rε

a ðm3πÞfεaðt0Þ; ð6Þ

where the fεaðt0Þ are empirical real-valued functions. The
parameters of these functions are usually determined from
data by performing the PWA in wide m3π ranges and
narrow t0 bins. This approach assumes that the shapes of
the t0 spectra of the partial waves are largely independent
of m3π and also does not take into account possible t0
dependences of the relative phases between the partial
waves. However, we have shown in Ref. [47], by perform-
ing the PWA in 11 narrow t0 bins and extracting the t0
dependences in a model-independent way, that for some
waves the above assumptions do not hold.

IV. PREVIOUS RESULTS ON π1ð1600Þ → ρð770Þπ
In the past two decades, several experiments studied the

1−þ1þρð770ÞπP wave in the 3π final state. The key
parameters of the analyzed data samples and the employed
PWAmodels are listed in Table I. A list of the wave sets can

3Although the C parity is not defined for charged systems, it is
customary to quote the JPC quantum numbers of the correspond-
ing neutral partner state in the isospin triplet. For nonstrange light
mesons, the C parity is related to the G parity via G ¼ CeiπIy ,
where Iy is the y component of the isospin.

4M ¼ 0 would be allowed only in unnatural-parity exchange
with ε ¼ −1.
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be found in Table IV in Appendix A. In Fig. 3, we show the
intensity distributions of the 1−þ1þρð770ÞπP wave as
obtained in the previous analyses (blue data points).
Based on these distributions, the previous experiments
arrived at seemingly contradictory conclusions concer-
ning the existence of a π1ð1600Þ signal in the ρð770Þπ
channel. We will briefly summarize these findings in the
following.
The BNL E852 experiment was the first to claim a signal

for π1ð1600Þ → ρð770Þπ based on a PWA performed on
250 × 103 events obtained using an 18.3 GeV=c pion
beam incident on a proton target in the kinematic range
0.05 < t0 < 1.0 ðGeV=cÞ2 [41,42]. The employed PWA
model included 21 waves (see Table IV in Appendix A)
and a rank-1 spin-density matrix. The different t0 depend-
ences of the partial-wave amplitudes were not taken into
account. The blue data points in Fig. 3(a) show the resulting
intensity distribution of the 1−þ1þρð770ÞπP wave. This
distribution has two broad enhancements. The one in the
1.1 to 1.4 GeV=c2 region was attributed towrongly assigned
intensity leaking from the dominant 1þþ0þρð770ÞπS wave
into the 1−þ1þρð770ÞπP wave. This leakage was caused
by the finite instrumental resolution in combination with
a nonuniformdetector acceptance.Anestimate of this leakage
obtained usingMonte Carlo techniques is shown by the gray-
shaded histogram in Fig. 3(a). The second peak at
1.6 GeV=c2 is accompanied by phase motions with respect
to many waves (see, e.g., blue data points in Fig. 4 shown in
this paper and Fig. 19 in Ref. [42]) and was hence interpreted
as the π1ð1600Þ. A simultaneous fit of the 1−þ1þρð770ÞπP
and 2−þ0þf2ð1270ÞπS amplitudes and their relative
phase (see Fig. 24 in Ref. [42]) yielded Breit-Wigner para-
meters of mπ1ð1600Þ ¼ 1593� 8ðstatÞþ29

−47ðsysÞMeV=c2 and

Γπ1ð1600Þ ¼ 168� 20ðstatÞþ150
−12 ðsysÞ MeV=c2. It is notewor-

thy that the π1ð1600Þ peak remained when the PWA
was performed in a low-t0 region around 0.1 ðGeV=cÞ2.
However, a strong dependence of the shape andmagnitude of
the π1ð1600Þ signal on the PWA model was observed.
The VES experiment at IHEP used a 36.6 GeV=c pion

beam on a solid-beryllium target and performed a PWA on
3.0 × 106 events in the kinematic range 0.03 < t0 <
1.0 ðGeV=cÞ2 [37]. The PWA model contained 44 waves
(see Table IV in Appendix A) and the spin-density matrix
used in the PWA fit had maximum allowed rank. To search
for resonances, they extracted from this spin-density
matrix a rank-1 spin-density matrix of fully coherent
partial-wave amplitudes. In the PWA model, the partial-
wave amplitudes were multiplied by an additional factor of

fεaðt0Þ ¼ ðt0ÞjMj=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−b1t

0 þ Ae−b2t
0p
[59] [see Eq. (6)] to

take into account the fact that the partial-wave intensity
is proportional to ðt0ÞjMj. Using this approach, also the
VES experiment observed significant intensity in the
1−þ1þρð770ÞπP wave [see blue data points in Fig. 3(b)].
However, they did not observe a peak at 1.6 GeV=c2

comparable to the one found in the BNL E852 analysis in
Refs. [41,42]. Instead, they found a very broad intensity
distribution with a slow phase motion of about 60° in the
1.6 GeV=c2 region (see Fig. 4 in Ref. [37]). From this
they concluded that the ρð770Þπ data alone are incon-
clusive concerning the existence of a π1ð1600Þ signal.
However, in a combined fit of the intensity distributions of
the 1−þ wave in the b1ð1235Þπ, η0π, and ρð770Þπ channels,
they found a satisfactory description of the data using a
π1ð1600Þ resonance with mπ1ð1600Þ ¼ 1560� 60 MeV=c2

and Γπ1ð1600Þ ¼ 340� 50 MeV=c2 (see Fig. 6 in Ref. [37]).

TABLE I. Key parameters of the datasets and the PWAmodels used in analyses of diffractively produced 3π events studying a possible
spin-exotic JPC ¼ 1−þ resonance in the ρð770Þπ channel. The table also indicates whether the model takes into account different t0
dependences of the partial-wave amplitudes either by binning in t0 or by modeling according to Eq. (6). The wave sets are listed in
Table IV in Appendix A.

Experiment Dataset PWA model

BNL E852 [41,42] 18.3 GeV=c π− beam on proton target
250 × 103 π−π−πþ events

21 waves, rank 1, 0.05 < t0 < 1.0 ðGeV=cÞ2
same t0 dependence for all partial-wave amplitudes

VES [37] 36.6 GeV=c π− beam on beryllium target
3.0 × 106 π−π−πþ events

44 waves, “maximum” rank, 0.03 < t0 < 1.0 ðGeV=cÞ2
fεaðt0Þ ¼ ðt0ÞjMj=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−b1t

0 þ Ae−b2t
0p

BNL E852 [45] 18.3 GeV=c π− beam on proton target
2.6 × 106 π−π−πþ events
3.0 × 106 π−π0π0 events

36 waves, rank 1, 0.08 < t0 < 0.53 ðGeV=cÞ2
12 t0 bins

COMPASS [43] 190 GeV=c π− beam on lead target
420 × 103 π−π−πþ events

42 waves, rank 2, 0.1 < t0 < 1.0 ðGeV=cÞ2
fεaðt0Þ for each partial wave a

COMPASS [46,47] 190 GeV=c π− beam on proton target
46 × 106 π−π−πþ events

88 waves, rank 1,a 0.1 < t0 < 1.0 ðGeV=cÞ2
11 t0 bins

aA rank-1 spin-density matrix was used for the 80 waves with positive reflectivity. For the seven waves with negative reflectivity (see
Table IV in Appendix A), which together contribute only 2.2% to the total intensity, we used a rank-2 spin-density matrix.
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Dzierba et al. [45] performed a PWA of a second BNL
E852 data sample of in total 5.6 × 106 3π events, which is a
factor 20 larger than the one used in the first analysis in
Refs. [41,42]. The analysis was performed independently
in 12 t0 bins in the range from 0.08 to 0.53 ðGeV=cÞ2.
The PWA model employed a rank-1 spin-density matrix
and a set of 36 partial waves (see Table IV in Appendix A).
This wave set was derived from a larger parent wave set.
The resulting intensity distribution of the 1−þ1þρð770ÞπP
wave is broad and structureless and shows no peak at
1.6 GeV=c2. As an example, the blue data points in
Fig. 3(c) show the intensity distribution in the t0 bin from
0.18 to 0.23 ðGeV=cÞ2. The shape of the intensity distri-
bution was found to change strongly with t0 (see Fig. 31 in

Ref. [45]). With increasing t0, intensity moves from the
1.2 GeV=c2 region to higher masses. Applying the 21-wave
set from Refs. [41,42] yielded a peak at 1.6 GeV=c2 in the
1−þ1þρð770ÞπP intensity distribution consistent with the
first analysis of BNL E852 data (see Figs. 24 and 25 in
Ref. [45]). The authors of Ref. [45] showed that leakage
from the π2ð1670Þ causes this peak, if the 2−þ0þρð770ÞπP,
the 2−þ0þρð770ÞπF, and the 2−þ1þρð770ÞπF wave are
omitted from the 36-wave model (see Figs. 27 and 28 in
Ref. [45]); the latter twowaves were missing in the 21-wave
model used in Refs. [41,42]. Using moments of the Wigner
D functions, Dzierba et al. demonstrated that the 36-wave
model describes the data significantly better than the
21-wave model. Based on these observations, they

(a)

(c) (d)

(b)

FIG. 3. Comparison of intensity distributions of the spin-exotic 1−þ1þρð770ÞπPwave as obtained by different experiments measuring
diffractive dissociation of a pion beam into 3π. Blue data points: (a) 21-wave fit of BNL E852 data in the range
0.05 < t0 < 1.0 ðGeV=cÞ2, (b) 44-wave fit of VES data in the range 0.03 < t0 < 1.0 ðGeV=cÞ2, (c) 36-wave fit of BNL E852 data
in the range 0.18 < t0 < 0.23 ðGeV=cÞ2, and (d) 42-wave fit of COMPASS lead-target data in the range 0.1 < t0 < 1.0 ðGeV=cÞ2. The
gray shaded area in panel (a) shows the result of a leakage study performed by the BNL E852 experiment [42]. The red data points
show the results of corresponding analyses of the COMPASS proton-target data using 11 t0 bins in the range 0.1 < t0 < 1.0 ðGeV=cÞ2:
(a) t0-summed intensity distribution from the 21-wave PWA, (b) t0-summed intensity distribution from the 88-wave PWA, (c) intensity
distribution from the 36-wave PWA in the range 0.189 < t0 < 0.220 ðGeV=cÞ2, and (d) intensity distribution from the 88-wave PWA in
the range 0.449 < t0 < 0.724 ðGeV=cÞ2. The red data points are scaled such that the intensity integrals of the blue and red data points in
the region where they overlap are equal. The blue data points are taken from (a) Fig. 18(b) in Ref. [42], (b) Fig. 4(a) in Ref. [37], (c)
Fig. 25(a) in Ref. [45], and (d) Fig. 2(d) in Ref. [43]. The red data points in (d) are taken from Fig. 43(j) in Ref. [46].

G. D. ALEXEEV et al. PHYS. REV. D 105, 012005 (2022)

012005-8



concluded that the BNL E852 data provide no evidence for
the existence of a π1ð1600Þ in the ρð770Þπ channel. For the
discussion in Sec. IVA below it is important to note
that this conclusion was based only on data in the range
t0 < 0.53 ðGeV=cÞ2 and that it was not corroborated
by any kind of resonance-model fit. In the 36-wave PWA,
Dzierba et al. observed an enhancement around 1.6 GeV=c2

in the higher t0 bins (see Fig. 31 in Ref. [45]) and an
approximately constant phase of the 1−þ1þρð770ÞπP
wave with respect to the 2−þ0þf2ð1270ÞπS wave around
1.6 GeV=c2 [see green data points in Fig. 4 shown in this
paper and Figs. 25(b) and 33 in Ref. [45] ]. These effects
could be a sign for a 1−þ resonance with similar para-
meters as the π2ð1670Þ, but they were both ascribed to
remaining leakage from the π2ð1670Þ into the 1−þ wave.
In contrast, the first analysis of a much smaller data

sample of 420 × 103 events obtained by the COMPASS
experiment using a 190 GeV=c pion beam on a solid-lead
target showed clear evidence for a π1ð1600Þ signal in the
1−þ1þρð770ÞπP wave [43]. We performed the PWA
employing a rank-2 spin-density matrix and a set of 42
waves (see Table IV in Appendix A) in the range 0.1 <
t0 < 1.0 ðGeV=cÞ2 using a parametrization for the t0 depen-
dence of the partial-wave amplitudes like in Eq. (6) with

different parameters for each wave. The 42-wave set is
similar to the 36-wave set used by Dzierba et al. in Ref. [45]
having 29 waves in common. In particular, it contains
those three 2−þ waves that were found to make the peak
at 1.6 GeV=c2 disappear (see discussion above). The
resulting intensity distribution of the 1−þ1þρð770ÞπP
wave is shown as blue data points in Fig. 3(d). By per-
forming a resonance-model fit of six partial-wave ampli-
tudes simultaneously, we obtained Breit-Wigner parame-
ters of mπ1ð1600Þ ¼ 1660� 10ðstatÞþ0

−64ðsysÞ MeV=c2 and
Γπ1ð1600Þ ¼ 269� 21ðstatÞþ42

−64ðsysÞ MeV=c2. The π1ð1600Þ
parameters are similar to the ones found for the π2ð1670Þ,
which aremπ2ð1670Þ ¼ 1658� 3ðstatÞþ24

−8 ðsysÞ MeV=c2 and
Γπ2ð1670Þ ¼ 271� 9ðstatÞþ22

−24ðsysÞ MeV=c2. This explains
the approximately constant phase observed between the
1−þ1þρð770ÞπP and 2−þ0þf2ð1270ÞπS waves (see orange
data points in Fig. 4).

A. Comparison of previous results with
COMPASS proton-target data

The COMPASS collaboration has recently published a
detailed PWA of the π−π−πþ final state using a PWAmodel
with 88 waves (see Tables I and IV). Here, we focus on the
1−þ1þρð770ÞπP wave. The red data points in Fig. 3(b)
show the intensity distribution summed over the 11 t0 bins.
It is similar to the one found by the VES experiment in a
similar t0 range [37] (blue data points). We do not observe a
peak at 1.6 GeV=c2 like in the BNL E852 21-wave PWA
[41,42] [cf. blue data points in Fig. 3(a)]. Surprisingly, the
t0-summed intensity distributions in Fig. 3(b) are different
from the one obtained in the analysis of the COMPASS
lead-target data [43] [blue points in Fig. 3(d)]. Naïvely, one
could expect these intensity distributions to be similar
because t0 > 0.1 ðGeV=cÞ2, i.e., far above the region
corresponding to coherent scattering off the lead nucleus.
Hence the beam pion scatters off quasifree nucleons inside
the nucleus. In the COMPASS proton-target data, the shape
of the intensity distribution of the 1−þ1þρð770ÞπP wave
exhibits a surprisingly strong dependence on t0 (see Fig. 13
shown in this paper and Fig. 43 in Ref. [46]). This confirms
a similar observation made by Dzierba et al. [45]. At low t0,
the intensity distribution is dominated by a broad structure
that extends from about 1.0 to 1.7 GeV=c2. With increasing
t0, the structure becomes narrower and its maximum moves
to about 1.6 GeV=c2. Interestingly, for t0 ≳ 0.5 ðGeV=cÞ2
(i.e., above the kinematic range considered by Dzierba
et al. [45]) the intensity distribution actually resembles
the one that we obtained in the analysis of the COMPASS
lead-target data in the range 0.1 < t0 < 1.0 ðGeV=cÞ2 [see
Fig. 3(d)].
In the COMPASS proton-target data, we observe slow

phase motions of the 1−þ1þρð770ÞπP wave with respect to
other waves in the 1.6 GeV=c2 region (see Fig. 44 in
Ref. [46]). As an example, the red data points in Fig. 4

FIG. 4. Comparison of the phases of the spin-exotic
1−þ1þρð770ÞπP wave with respect to the 2−þ0þf2ð1270ÞπS
wave as obtained by different experiments measuring diffractive
dissociation of a pion beam into 3π. Blue data points: 21-wave fit
of BNL E852 data in the range 0.05 < t0 < 1.0 ðGeV=cÞ2
(shifted by −180°); green data points: 36-wave fit of BNL
E852 data in the range 0.18 < t0 < 0.23 ðGeV=cÞ2 (shifted by
þ180°); orange data points: 42-wave fit of COMPASS lead-target
data in the range 0.1 < t0 < 1.0 ðGeV=cÞ2; red data points: 88-
wave fit of COMPASS proton-target data in the range 0.449 <
t0 < 0.742 ðGeV=cÞ2 (values for m3π < 1.1 GeV=c2 not shown).
Note that phase shifts of 180° may be caused, e.g., by different
choices of the analyzers in the definition of the coordinate
systems or by different conventions used for the Wigner D
functions. The data points were taken from Fig. 19(i) in Ref. [42]
(blue), Fig. 33 in Ref. [45] (green), Fig. 3(b) in Ref. [43] (orange),
and Fig. 121 in Ref. [53] (red).
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show the phase with respect to the 2−þ0þf2ð1270ÞπS
wave. Compared to the rather large differences in the
intensity distributions (see Fig. 3), the m3π dependence of
the phases of the 1−þ1þρð770ÞπP wave relative to other
waves is more robust with respect to changes of the analysis
model. The phase motion from the COMPASS proton-
target data is less pronounced than the one observed by
the BNL E852 collaboration but agrees qualitatively with
the phase motions observed by Dzierba et al. and in the
analysis of the COMPASS lead-target data. We have no
explanation for the approximately þ60° offset of the phase
motion reported by Dzierba et al. [45] with respect to the
other analyses.5

The strong t0 dependence of the shape of the intensity
distribution hints at large contributions from nonresonant
processes related, e.g., to the Deck effect [48]. This was
confirmed by our resonance-model fit of the COMPASS
proton-target data, which describes the partial-wave inten-
sities and interference terms of 14 selected partial waves
simultaneously [46]. The resonance-model fit was per-
formed for the first time simultaneously in all t0 bins with
the resonance parameters, i.e., masses and widths, forced to
be the same across the t0 bins. In this t0-resolved approach,
we exploit the in general different t0 dependences of the
resonant and nonresonant amplitudes to better disentangle
the two contributions. This eventually yields more realistic
estimates for the resonance parameters. The model repro-
duces the 1−þ1þρð770ÞπP intensities and phase motions
well by a t0-dependent interference between the π1ð1600Þ
and a nonresonant component.6 The latter strongly changes
shape, strength, and phase with t0. At low t0, the intensity is
dominated by the large nonresonant component, which
interferes constructively with the π1ð1600Þ at low masses.
With increasing t0, the strength of the nonresonant compo-
nent decreases more quickly than that of the π1ð1600Þ so
that the latter becomes the dominant component. For
t0 ≳ 0.5 ðGeV=cÞ2, i.e., in the two highest t0 bins, the
nonresonant component is small or even vanishing in the
1.6 GeV=c2 mass region, and the broad peak in the data is
nearly entirely described by the π1ð1600Þ. The resonance
model is not able to reproduce a narrow enhancement at
about 1.1 GeV=c2, which appears at low t0. This structure is
not accompanied by any phase motion and the intensity in
this mass region is sensitive to details of the PWA model.
This makes a resonance interpretation unlikely and we

hence suspect this structure to be an artifact induced by
imperfections in the analysis method. A similar observation
has been made in the VES analysis [37]. A similar structure
also appears in a more advanced PWA (see Sec. V and
Fig. 8), where we significantly reduce the model bias
introduced by the chosen parametrizations for the dynamic
isobar amplitudes. Hence its appearance does not seem to
be tightly related to how well the isobar amplitudes are
described by the PWA model.
From the resonance-model fit, we obtain Breit-

Wigner parameters of mπ1ð1600Þ ¼ 1600þ110
−60 MeV=c2 and

Γπ1ð1600Þ ¼ 580þ100
−230 MeV=c2. The quoted uncertainties

are systematic only (see Ref. [46] for details on the
performed studies); the statistical uncertainties are more
than an order of magnitude smaller and hence negligible.
Although the mass value agrees well with the one found
in our analysis of the COMPASS lead-target data [43] (see
Sec. IV), the width found in the proton-target data is
considerably larger. The reason for this discrepancy is not
understood. However, it could be related to the fact that
relative to the π1ð1600Þ the contribution from the nonreso-
nant components is much larger in the proton-target data
than in the lead-target data. Also, our resonance models,
which we use to decompose the partial-wave amplitudes
into coherent sums of Breit-Wigner resonances and non-
resonant amplitudes, might render the resonance para-
meters process dependent [61]. In addition, due to the
much smaller data sample, the analysis of the lead-target
data was performed by integrating over t0 and by modeling
the t0 dependence of the partial-wave amplitudes according
to Eq. (6). Therefore, a potential t0 dependence of the shape of
the 1−þ1þρð770ÞπP amplitude was not taken into account.
A recent coupled-channel analysis of COMPASS data on
diffractively produced ηπ− and η0π− final states performed
by the JPAC collaboration finds a resonance pole with para-
meters ofmπ1ð1600Þ ¼1564�24ðstatÞ�86ðsysÞMeV=c2 and
Γπ1ð1600Þ ¼492�54ðstatÞ�102ðsysÞMeV=c2 [40] that are
more consistent with the Breit-Wigner parameters we find in
the COMPASS proton-target data.
Are the different results from previous analyses, in

particular the two analyses based on BNL E852 data,
caused by inconsistencies of the data or by the different
PWA models? In order to answer this question, we
investigate the impact of the different analysis models used
for the BNL E852 data, by applying the 21-wave set from
Refs. [41,42] and the 36-wave set from Ref. [45] (see
Table IV in Appendix A) to the high-precision COMPASS
proton-target data sample keeping the subdivision into 11 t0
bins. The red data points in Fig. 3(a) show the t0-summed
intensity distribution of the 1−þ1þρð770ÞπP wave as
obtained from the PWA using the 21-wave set. The
intensity distribution exhibits a clear peak slightly above
1.6 GeV=c2, similar to the signal found in the BNL E852
analysis in Refs. [41,42] (blue data points). In the low-
mass region, the intensities from the two analyses shown in

5The panels in Fig. 33 in Ref. [45] that correspond to the t0 bins
numbered 6 and 7 show the same data points. Thus it is unclear
whether the shown phase motion is that of bin 6 or bin 7.
However, this probably does not explain the phase offset with
respect to the other analyses since the phase in the m3π ¼
1.6 GeV=c2 region depends only weakly on t0.

6We parametrize the nonresonant amplitude using Eqs. (27)
and (28) in Ref. [46]. This is an empirical parametrization in the
form of a Gaussian in the two-body breakup momentum of the
isobar-pion decay that was inspired by Ref. [60].
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Fig. 3(a) are not directly comparable. The COMPASS
acceptance is much more uniform than the acceptance
of the BNL E852 experiment and hence leakage induced
by the experimental acceptance is much suppressed.
We also confirm the finding of Dzierba et al. that the
1.6 GeV=c2 peak vanishes by applying the 36-wave set
to the COMPASS proton-target data. As an example, we
compare in Fig. 3(c) the intensity distributions around
t0 ¼ 0.2 ðGeV=cÞ2. Consequently, our data support the
conclusion from Ref. [45] that the 1.6 GeV=c2 peak
observed in Refs. [41,42] is an artificial structure caused
by using a wave set that misses important waves. This
conclusion is further supported by the fact that using the
21-wave set we find contrary to the expected dominance
of natural-parity exchange a peak of similar height in the
same mass region in the 1−þ1−ρð770ÞπP wave, which has
negative reflectivity corresponding to unnatural-parity
exchange. This has also been pointed out by VES [37].
Our t0-resolved analysis using the 88-wave set also

confirms the finding of Dzierba et al. that the π1ð1600Þ
signal is weak compared to the nonresonant com-
ponent in the range t0 ≲ 0.5 ðGeV=cÞ2. In the range t0 <
0.53 ðGeV=cÞ2 analyzed in Ref. [45], we find that the
π1ð1600Þ signal is masked by the dominant contribu-
tions from nonresonant processes. However, our analysis
contradicts the conclusion from Ref. [45] that there is no
evidence for the π1ð1600Þ in 3π. The COMPASS proton-
target data require a π1ð1600Þ resonance in the range t0 ≳
0.5 ðGeV=cÞ2 [see, e.g., Figs. 1(b) and 1(c)] and also the
COMPASS lead-target data cannot be described without
a π1ð1600Þ.
It is not yet understood why the π1ð1600Þ signal is

enhanced with respect to the nonresonant component in the
lead-target data as compared to our proton-target data.
However, we do observe a general enhancement of the
intensity of waves with spin projection M ¼ 1 over those
with M ¼ 0 in the lead-target data [50].

B. Summary: Previous results and comparison
with COMPASS data

Using our highly precise COMPASS proton-target data
we reproduce the key PWA results of all previous analyses
of the 1−þ1þρð770ÞπP wave by applying their analysis
models. We conclude that this wave contains a π1ð1600Þ
signal and that the discrepancies and mutual inconsisten-
cies observed in previous analyses originate either from
model artifacts or from studying too restricted t0 ranges.
The PWA model with 21 waves used in Refs. [41,42]
contained too few waves leading to an artificial peak being
misinterpreted as the π1ð1600Þ. The analysis in Ref. [45]
excluded the region t0 > 0.53 ðGeV=cÞ2 and hence missed
the region, in which the π1ð1600Þ signal rises above the
nonresonant background. Since the VES analysis was not
performed in t0 bins, their π1ð1600Þ signal was also diluted
by large nonresonant contributions.

A remaining puzzle is that in γ þ π� → π�π−πþ reac-
tions the production of the π1ð1600Þ seems to be much
less prominent than expected considering vector-meson
dominance and the observation of the ρð770Þπ decay.7

The CLAS experiment [62,63] and the COMPASS
Primakoff experiment [64,65] find nearly vanishing inten-
sities of the 1−þ wave in the 1.6 GeV=c2 mass region. This,
however, could in principle be due to destructive interfer-
ence of a π1ð1600Þ with a nonresonant component—a
hypothesis that could be verified by resonance-model fits.
In the future, much more precise photoproduction data
from Jefferson Laboratory will help to clarify the situation.

V. STUDY OF DYNAMIC ISOBAR
AMPLITUDES

The partial-wave analyses of the 3π final state performed
so far (see Sec. IV) used the conventional isobar model
where isobar resonances are described using fixed para-
metrizations for their dynamic amplitude ΔaðmξÞ (see
Sec. III) with resonance parameters taken from previous
experiments [20].8 Even though this approach is quite
common, it might introduce a model bias in the analysis
because the fixed dynamic amplitudes might deviate from
the true ones present in real data. The differences could be
due to distortions of the π−πþ dynamic amplitudes, caused
by the presence of the third pion, or due to contributions
from excited isobar resonances or nonresonant processes.
To study this possible bias in our PWA model, we

reanalyze our dataset using the freed-isobar PWA method
presented in detail in Refs. [49,66]. This analysis technique
no longer relies on fixed parametrizations for the dynamic
isobar amplitudes, but allows us to extract these amplitudes
from the data themselves with much reduced model
dependence. In this approach, the fixed parametrization
for the dynamic amplitude ΔaðmξÞ of an isobar ξ in wave a
[see Eq. (5)] is replaced by a set of piecewise constant
amplitudes defined over a contiguous set of intervals in the
π−πþ mass mξ that are indexed by k, i.e.,9

ΔaðmξÞ ¼
X
k

T a;kΠk;ξðmξÞ

with Πk;ξðmξÞ ¼
�
1; if mk;ξ ≤ mξ < mkþ1;ξ

0; otherwise
: ð7Þ

This way, the dynamic amplitude for isobar ξ is approxi-
mated by the set fT a;kg of complex-valued constants. This
method allows us not only to estimate the model bias

7The absolute partial width π1ð1600Þ → ρð770Þπ is currently
unknown. However, our results suggest that the branching
fraction might be in the percent region.

8Here, mξ ≡mπ−πþ .
9In the following, we discuss PWA models with rank 1 and

waves with positive reflectivity. We hence omit the ε and r indices
from here onwards.
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caused by the fixed dynamic isobar amplitudes in our PWA
model, but also to study the dynamic isobar amplitudes
themselves.
In our PWA model, we factorize the decay amplitude Ψa

of a partial wave a in Eq. (4) into the dynamic isobar
amplitude Δa and an angular amplitude Ka. Including the
Bose symmetrization with respect to the two indistinguish-
able π− in the π−1 π

−
2 π

þ
3 final state, we write for a given

ðm3π; t0Þ cell [see Eq. (47) in Ref. [47] ]:10

Ψaðτ13; τ23Þ ¼ Kaðτ13ÞΔaðm13Þ þKaðτ23ÞΔaðm23Þ: ð8Þ

It is important that Δa depends only on the invariant mass
mij of the π−i π

þ
j subsystems forming the isobar and that Ka

depends only on the four angular variables in the set of
five phase-space variables of the three-body system repre-
sented by τij (see Sec. III A in Ref. [47] for details on the
definition of the coordinate systems). Inserting Eq. (7) into
Eq. (8) and defining separate transition and decay ampli-
tudes for every π−πþ mass interval k via

T a;k ≡ T aT a;k ð9Þ

and

Ψa;kðτ13; τ23Þ≡Kaðτ13ÞΠk;ξðm13Þ þKaðτ23ÞΠk;ξðm23Þ;
ð10Þ

the expression for the intensity distribution in Eq. (4) can be
written as11

Iðτ13; τ23Þ ¼
����X

a

X
k

T a;kΨa;kðτ13; τ23Þ
����2 þ I flat: ð11Þ

Note that although Eq. (11) contains an additional sum
over the two-pion mass intervals k, the mathematical
structure is exactly the same as in Eq. (4). We can thus
use the same extended maximum likelihood approach to
determine the set fT a;kg of the unknown fit parameters
from the data.
Performing a freed-isobar PWA in ðm3π; t0Þ cells, yields

transition amplitudes T a;kðm3π; t0Þ ¼ T aðm3π; mξ; t0Þ that
now depend not only on m3π and t0 but also on mξ via the
index k. According to Eq. (9), a freed-isobar transition
amplitude contains information on both the 3π system and
the π−πþ subsystem. For each freed-isobar wave in the
PWA model and each ðm3π; t0Þ cell, the method yields an

Argand diagram ranging in mξ from 2mπ to m3π −mπ . It is
important to note that in the freed-isobar approach, we do
not make any assumptions on the resonance content of the
π−πþ subsystem. The freed-isobar PWA thus allows us to
determine from the data the overall amplitude of all π−πþ

intermediate states with given JPC quantum numbers in
the 3π partial wave defined by a. This amplitude hence
includes in principle all contributing π−πþ resonances,
potential nonresonant contributions, as well as distortions
due to final-state interactions. Note that a π−πþ system with
even relative orbital angular momentum, i.e., even total
spin J, has IGJPC quantum numbers 0þJþþ, which
correspond to fJ states, or 2þJþþ, which would be flavor
exotic. A π−πþ system with odd relative orbital angular
momentum, i.e., odd J, has IGJPC quantum numbers
1þJ−−, which correspond to ρJ states.
In the ansatz in Eq. (11), we sum coherently over the

index k of the mπ−πþ intervals. This takes into account the
interference of the amplitudes in different mπ−πþ intervals
due to Bose symmetrization of the final-state particles. This
is conceptually different from the binning in m3π and t0,
where all kinematic bins are independent.
The obtained dynamic isobar amplitudes can be different

for every wave a, even though they might describe π−πþ
subsystems with the same relative orbital angular momen-
tum. The reduced model dependence of the freed-isobar
method and the additional information on the π−πþ
subsystems come at the price of a considerably larger
number of fit parameters compared to the conventional
fixed-isobar PWA. Thus even for large datasets, the freed-
isobar approach is feasible only when it is applied to a
selected subset of partial waves in the PWA model, while
for the remaining partial waves the conventional fixed
isobar parametrizations are used.
Based on the COMPASS proton-target data, we have

performed a first freed-isobar PWA already in Ref. [47] to
extract the dynamic π−πþ S-wave amplitudes in three
different 3π partial waves.

A. Freed-isobar analysis model

In the following, we apply the freed-isobar method to the
1−þ1þρð770ÞπP wave. Since this wave has a low relative
intensity of only 0.8% it is prone to potential leakage
effects. Therefore, it does not suffice to free the dynamic
isobar amplitude only in the 1−þ wave. Small imperfections
in the description of the dynamic isobar amplitudes of
waves with much higher relative intensity could create
tensions between model and data, which in turn could
induce leakage into the freed 1−þ wave due to its high
flexibility.
Therefore, we free those 12 waves of our 88-wave PWA

model (see Table IV in Appendix A), that obtained a
relative intensity of more than 1% in the conventional
PWA. In addition to these 12 waves, we free the
1−þ1þρð770ÞπP wave to study its 1−− dynamic isobar

10The angular amplitude is that part of the decay amplitude,
which depends only on the decay angles and not onm3π ormπ−πþ.
It is given by Eqs. (11) and (7) in Ref. [47] without the dynamic
parts fJλ0 and f

Jξ
00.11See footnote 9.
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amplitude. The 88-wave PWA model contains subsets of
waves with identical quantum numbers but different
IGJPC ¼ 0þ0þþ isobar resonances. Such waves are
absorbed into a single freed-isobar wave with JPC ¼
0þþ of the π−πþ subsystem (indicated by the brackets in
Table II). As a consequence, three additional waves with a
relative intensity below 1% are also freed. In total, we
replace the dynamic isobar amplitudes of 16 of the original
88 fixed-isobar waves by 12 waves with freed-isobar
amplitudes (see Tables II and IV); 72 waves with fixed
dynamic isobar amplitudes remain in the freed-isobar PWA
model. In the conventional fixed-isobar PWA, the intensity
sum of the 16 freed waves accounts for 83.3% of the total
intensity.
For the freed-isobar waves, we choose mπ−πþ intervals

with a width of 40 MeV=c2 except in the regions of the
known ρð770Þ, f0ð980Þ, and f2ð1270Þ resonances, where
we use a finer binning. For the waves with JPC ¼ 1−−

isobars, we use an interval width of 20 MeV=c2 in the
range from 0.64 to 0.92 GeV=c2.12 Our freed-isobar PWA
model (see Table II) has a much larger number of fit
parameters than the conventional fixed-isobar PWA.13 In
order to sufficiently constrain the fit parameters by data, we
increase the m3π bin width from 20 MeV=c2 in the fixed-
isobar PWA to 40 MeV=c2 in the freed-isobar PWA and
reduce in addition the number of t0 bins from 11 to 4 (see
Table III). We thus decrease the total number of kinematic
ðm3π; t0Þ cells in the analyzed range from 1100 in the fixed-
isobar PWA to 200 in the freed-isobar PWA. All other
parameters of the PWA remain as described in Ref. [47].
For the m3π bins below 0.98 GeV=c2, the results from the
freed-isobar PWA turn out to be not well determined by the
data. This is probably related to the fact that thism3π region
corresponds to the range mπ−πþ ≲ 0.8 GeV=c2 where most
isobar resonances, which otherwise stabilize the fit, are
absent. Therefore, we exclude this m3π range from the
following analysis.
In a freed-isobar PWA mathematical ambiguities, so-

called zero modes, may arise at the level of the decay
amplitudes leading to ambiguous solutions for the tran-
sition amplitudes fT a;kg. These ambiguities can be
resolved by imposing conditions on the mπ−πþ dependence
of the dynamic isobar amplitudes [49,66]. We give details
on the zero mode in the 1−þ1þ½ππ�1−−πP wave and its
resolution in Appendix B. The zero modes are confined to

sectors with the same JPCMε quantum numbers of the 3π
system. Therefore, similar ambiguities present in other
waves have no influence on the results extracted for the
spin-exotic wave. In the following, we will discuss only
zero-mode corrected results.

B. Freed-isobar results for the JPC = 1− + wave

In the following, we will present results for the
1−þ1þ½ππ�1−−πP wave obtained from the freed-isobar
PWA with 12 freed waves as listed in Tables II and IV.
The corresponding sets fT a;kg of transition amplitudes [see
Eqs. (7) and (9)] for all mπ−πþ intervals and all ðm3π; t0Þ
cells are provided in computer-readable format at [68].

TABLE II. Waves in the freed-isobar PWAmodel with dynamic
isobar amplitudes parametrized according to Eq. (7). The notation
½ππ�JPC represents a π−πþ subsystem with well-defined JPC

quantum numbers.a The center column lists the corresponding
waves in the conventional 88-wave fixed-isobar PWA (see
Table IV in Appendix A) and the right column their relative
intensity as obtained in Ref. [47].

Freed wave Fixed wave(s) Relative intensity

0−þ0þ½ππ�0þþπS

(
0−þ0þ½ππ�SπS
0−þ0þf0ð980ÞπS
0−þ0þf0ð1500ÞπS

8.0%
2.4%
0.1%

0−þ0þ½ππ�1−−πP 0−þ0þρð770ÞπP 3.5%

1þþ0þ½ππ�0þþπP
n
1þþ0þ½ππ�SπP
1þþ0þf0ð980ÞπP

4.1%
0.3%

1þþ0þ½ππ�1−−πS 1þþ0þρð770ÞπS 32.7%
1þþ1þ½ππ�1−−πS 1þþ1þρð770ÞπS 4.1%
1−þ1þ½ππ�1−−πP 1−þ1þρð770ÞπP 0.8%
2þþ1þ½ππ�1−−πD 2þþ1þρð770ÞπD 7.7%

2−þ0þ½ππ�0þþπD
n
2−þ0þ½ππ�SπD
2−þ0þf0ð980ÞπD

3.0%
0.6%

2−þ0þ½ππ�1−−πP 2−þ0þρð770ÞπP 3.8%
2−þ1þ½ππ�1−−πP 2−þ1þρð770ÞπP 3.3%
2−þ0þ½ππ�1−−πF 2−þ0þρð770ÞπF 2.2%
2−þ0þ½ππ�2þþπS 2−þ0þf2ð1270ÞπS 6.7%

Intensity sum 83.3%
aIn the fixed-isobar PWA, ½ππ�S represents a parametrization

for the broad component of the π−πþ S-wave amplitude based on
Ref. [67] (see Sec. III A in Ref. [47] for details).

TABLE III. Borders of the four nonequidistant t0 bins, in which
the freed-isobar PWA is performed. The intervals are chosen such
that each bin contains approximately 11.5 × 106 events.

Bin 1 2 3 4

t0 [ðGeV=cÞ2] 0.100 0.141 0.194 0.326 1.000

12For JPC ¼ 0þþ isobars, we use an interval width of
10 MeV=c2 in the range from 0.92 to 1.08 GeV=c2; for
JPC ¼ 2þþ, we use an interval width of 20 MeV=c2 from
1.18 to 1.40 GeV=c2.

13In the highest m3π bin at 2.48 GeV=c2, the number of free
real-valued parameters in the freed-isobar PWA is 1520. This
number decreases with decreasing m3π because fewer mπ−πþ

intervals are kinematically allowed. In the same m3π bin, the 88-
wave fixed-isobar PWA model (see Table IV in Appendix A) has
184 free real-valued parameters.
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Figure 5 shows the partial-wave intensities jT̄ a;kj2 for the
four t0 bins listed in Table III. Here,

T̄ a;k ¼
T a;kffiffiffiffiffiffi
wk

p ð12Þ

is the transition amplitude normalized by the width wk of
the mπ−πþ interval k. We observe a clear correlation of
the m3π distribution of the 3π system with IGJPCMε ¼
1−1−þ1þ with the mπ−πþ distribution of the π−πþ sub-
system with IGJPC ¼ 1−1−−. The mπ−πþ spectra are domi-
nated by a peak in the ρð770Þ region. The shape of the m3π

spectrum in the ρð770Þ region depends strongly on t0. At
low t0, it is characterized by a broad structure peaking at low
values of m3π around 1.1 GeV=c2. A similar enhancement
is observed in the conventional fixed-isobar PWA [see
Fig. 1(a) and Sec. IVA]. The freed-isobar PWA shows
that this enhancement indeed contains mainly ρð770Þπ
(see discussion below). With increasing t0, the intensity in
the low-mass region decreases quickly and in the highest t0

bin, a peak emerges in the m3π ¼ 1.6 GeV=c2 region [see
Fig. 5(d)].

The left column of Fig. 6 shows the intensity distribu-
tions as a function of mπ−πþ for selected m3π bins that are
indicated by vertical lines in Fig. 5.14 The mass bin 1.34 <
m3π < 1.38 GeV=c2 is dominated by nonresonant contri-
butions, whereas the bin 1.58 < m3π < 1.62 GeV=c2 lies
in the π1ð1600Þ resonance region. For the low-mass region,
we show, as an example, only the data in the highest t0 bin,
while for the π1ð1600Þ resonance region, we present the
results for the lowest and the highest of the four t0 bins.
Since the freed-isobar PWA extracts the amplitude as a

function of m3π and mπ−πþ , we have also information about
the phase as a function of mπ−πþ . This is shown in the right
column of Fig. 6 in the form of Argand diagrams for the
selected m3π bins.15 The dominant ρð770Þ peak in the
intensity spectra corresponds to a clear circular structure in
the Argand diagrams with a phase motion by about 180°.

(a) (b)

(d)(c)

FIG. 5. Two-dimensional intensity distribution of the 1−þ1þ½ππ�1−−πPwave obtained in the freed-isobar PWA (after correction for the
zero mode) as a function of m3π and mπ−πþ for all four t0 bins. The color scale represents the intensity in units of number of events per
40 MeV=c2 interval in mπ−πþ and in m3π . The white vertical lines indicate the m3π bins shown in Fig. 6.

14The mπ−πþ intensity distributions for all ðm3π; t0Þ cells are
shown in Appendix F of the Supplemental Material of this paper
[69].

15The Argand diagrams for all ðm3π; t0Þ cells are shown in
Appendix F of the Supplemental Material of this paper [69].
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(a) (b)

(d)(c)

(e) (f)

FIG. 6. The ½ππ�1−− dynamic isobar amplitude in the 1−þ1þ½ππ�1−−πP wave as a function of mπ−πþ for selected m3π and t0 bins. Left
column: intensities; right column: Argand diagrams. The blue data points with error bars or error ellipses, respectively, are the result of
the freed-isobar PWA corrected for the zero mode. In the Argand diagrams, the data points are connected by lines to indicate the order
and the red numbers correspond to mπ−πþ values in GeV=c2. The line segments highlighted in orange correspond to the mπ−πþ range
from 0.64 to 0.92 GeV=c2 around the ρð770Þ. The overall phase of the Argand diagrams is fixed by the 4þþ1þρð770ÞπG wave. For
comparison, the fixed parametrization of the dynamic isobar amplitude for the ρð770Þ as used in the conventional PWA is shown by the
gray lines with the ρð770Þ region indicated by thicker lines. In the Argand diagrams, the orange point indicates the nominal ρð770Þmass
and the green- and red-circled points indicate the lowest and the highest mπ−πþ interval, respectively.
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This confirms, that the presence of the ρð770Þ has not been
artificially enforced by the fixed parametrizations of the
dynamic isobar amplitudes as used in previous analyses.
Just as the mπ−πþ spectra, also the Argand diagrams exhibit
no strong dependence on m3π or t0. The spin-exotic wave is
clearly dominated by the ρð770Þ over the full m3π region
and in all four t0 bins.
We study the freed-isobar transition amplitudes that we

extracted from the data in terms of isobar resonances and
possible distortions. In a first study, we investigate the
ρð770Þ resonance in the presence of another pion, which
together form a 3π system with JPC ¼ 1−þ. Lacking
an elaborate model, we perform this study by fitting the
JPC ¼ 1−− dynamic isobar amplitudes with a ρð770Þ
Breit-Wigner model of the form

T̂ aðmπ−πþ ;m3π; t0Þ

¼ Caðm3π; t0Þ
N aðm3π; mπ−πþÞ

m2
ρð770Þ −m2

π−πþ − imρð770ÞΓðmπ−πþÞ
ð13Þ

in every ðm3π; t0Þ cell independently. Here, a ¼ 1−þ1þ
½ππ�1−−πP, N aðm3π; mπ−πþÞ is a normalization factor,
which takes into account the variation of the mπ−πþ bin
width, the self-interference of the Breit-Wigner amplitude
due to Bose symmetrization, and the angular-momentum
barrier factors FLðm3π;mπ−πþ ; mπÞ and FJξðmπ−πþ ;mπ; mπÞ
from Eqs. (10) and (8) of Ref. [47], and Γðmπ−πþÞ is the
mass-dependent total width of the ρð770Þ as given by
Eq. (40) in Ref. [47]. In the fits, the resonance parameters
mρð770Þ and Γρð770Þ are fixed to the values used in the
conventional fixed-isobar PWA (see Table III in Ref. [47]).
The only free fit parameter is the complex-valued coupling
Caðm3π; t0Þ, which determines strength and phase of the
ρð770Þ signal in the given ðm3π; t0Þ cell, i.e., radius and
rotation of the resonance circle about the origin in the
Argand diagram.16 The model is evaluated at those mπ−πþ

values that correspond to the centers of the mπ−πþ intervals
defined in Eq. (7).
The fits are limited to the region mπ−πþ < 1.12 GeV=c2

to avoid bias from excited ρð770Þ resonances at higher
masses. The results of these fits are shown as gray curves in
Fig. 6. The resulting curves are in good agreement with the
extracted dynamic isobar amplitudes in the m3π region of
the π1ð1600Þ, which confirms the validity of the isobar
model. For the lower m3π bin shown, the agreement is
slightly worse, which could hint at a stronger influence of
nonresonant contributions in this mass region.
In a second study, we let the ρð770Þ resonance param-

eters float in the fit and determine them independently for
every ðm3π; t0Þ cell. We hence do not assume anymore that
we can factorize the mπ−πþ dependence of the transition
amplitudes from theirm3π and t0 dependence. The weighted

average of the obtained ρð770Þ mass values is about
760 MeV=c2, only slightly below the PDG averages.
The weighted average of the obtained ρð770Þ width
values is approximately 130 MeV=c2, which lies 15 to
20 MeV=c2 below the PDG averages. We have currently no
explanation why the ρð770Þ in the 1−þ wave appears so
much narrower.17 The ρð770Þ parameters exhibit variations
of about�10% withm3π (see Fig. 7), while they show little
variation with t0 [66]. More advanced models are needed to
study the distortion of the ρð770Þ line shape due to effects
of final-state interaction and interfering contributions from
nonresonant processes in the π−πþ system.

(a)

(b)

FIG. 7. Parameters of the ρð770Þ resonance obtained by fitting
the JPC ¼ 1−− dynamic isobar amplitudes of the spin-exotic
wave from the freed-isobar PWA. The fit is performed inde-
pendently in every ðm3π; t0Þ cell; the results shown are for the
highest t0 bin. (a) shows the ρð770Þ mass and (b) the ρð770Þ
width. The gray lines indicate the corresponding parameter values
used in the conventional PWA.

16These fits also resolve the mathematical ambiguity discussed
in Sec. VA. This is explained in detail in Appendix B.

17Allowing the range parameter qR [see below Eq. (39) in
Ref. [47] ] of the angular-momentum barrier factor FJξ of the
ρð770Þ decay as an additional free fit parameter, yields slightly
larger width values in some m3π regions. However, qualitatively
the picture remains unchanged.
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C. Comparison with the conventional
partial-wave analysis

In order to directly compare the results from the freed-
isobar PWA with the conventional PWA with fixed para-
metrizations for the dynamic isobar amplitudes, we repeated
the latter with the same 88-wave PWAmodel as in Ref. [47]
but applying the coarser binning inm3π and t0 from the freed-
isobar PWA (see Sec. VA and Table III). From the result of
the freed-isobar PWA, we obtain intensity distributions as a
function ofm3π and t0 alone by summing the contributions of
the freed-isobar transition amplitudes fT a;kg [see Eqs. (7)
and (9)] from all mπ−πþ intervals coherently. Doing so, we
take into account the interference of amplitudes in different
mπ−πþ intervals, i.e., the so-called overlaps, that arise due to
Bose symmetrization of the final-state particles. The inten-
sity of these coherent sums is by definition not affected by
the zero-mode ambiguity mentioned in Sec. VA (see also
Appendix B). The intensity distributions of the coherent
sums are provided in computer-readable format at [68].
In Fig. 8, we overlay the intensity distributions from

the freed-isobar PWA obtained as described above (orange
data points) with the corresponding distributions from
the conventional fixed-isobar PWA (blue data points).18

Although the 1−þ wave contributes only about 1% to the
total intensity, the distributions are surprisingly similar. The
shapes of the intensity distributions are consistent in both
approaches, regardless of the t0 bin. However, the intensity
of the 1−þ wave is higher for the freed-isobar PWA. This
intensity increase is not caused by freeing the dynamic isobar
amplitude of the 1−þ wave itself, but rather by the other 11
freed-isobar waves (see Table II). Keeping these 11 freed
waves but fixing the dynamic isobar amplitude in the 1−þ
wave to the ρð770Þ, like in the conventional PWA, yields
basically the same 1−þ intensity distribution as in the PWA
with 12 freed waves. Further systematic studies show that no
single freedwave causes the increase of the 1−þ intensity, but
that this is the result of the interplay of all 11 freed waves.
This suggests that—unlike for the 1−þ wave—the fixed-
isobar amplitudes, which in the conventional 88-wave PWA
correspond to the these 11 freed-isobar waves, do not match
the data completely. Deviations could be caused, for exam-
ple, by unsuitable parametrizations and/or parameters used
for the dynamic isobar amplitudes or by neglecting higher
excited isobar resonances thatmay become relevant at higher
values of m3π .
Another way to compare the two PWA methods is to use

the information that we obtain by fitting the mπ−πþ

dependence of the amplitudes extracted by the freed-isobar
PWAwith Eq. (13) using the same fixed ρð770Þ parameters
as in Ref. [47] (gray curves in Fig. 6). The interesting
information is contained in the complex-valued quantity

Taðm3π; t0Þ≡ Caðm3π; t0ÞN aðm3πÞ ð14Þ

that we determine for every ðm3π; t0Þ cell and that is
directly comparable to the transition amplitude
T aðm3π; t0Þ obtained in the fixed-isobar PWA.19 In
Fig. 9(a), we compare the intensity distribution
jTaðm3πÞj2 from the freed-isobar PWA (red data points)
to the intensity distribution from the fixed-isobar PWA
(blue data points) for the 1−þ wave in the highest t0 bin.20

The red data points in Fig. 9(a) are very similar to the
orange ones in Fig. 8(b). This confirms that the 1−þ wave is
well described a dynamic isobar amplitude containing only
the ρð770Þ.

(a)

(b)

FIG. 8. Comparison of the m3π intensity distributions of the
1−þ1þ½ππ�1−−πP wave from the freed-isobar PWA (orange data
points) and of the 1−þ1þρð770ÞπP wave from the conventional
PWA (blue data points). For the former, the intensities are
calculated by coherently summing the contributions from all
mπ−πþ intervals. (a) shows the lowest and (b) the highest t0 bin.
The shaded m3π range is excluded from the freed-isobar PWA.

18The intensity distributions for the two intermediate t0 bins
are shown in Appendix E of the Supplemental Material of this
paper [69].

19Note thatN a contains a normalization factor we choose such
that jTaj2 gives the number of events per interval in m3π and t0.

20The intensity distributions for the other t0 bins are shown in
Appendix E of the Supplemental Material of this paper [69].
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As explained in Sec. V, the amplitudes fT a;kg deter-
mined by the freed-isobar PWA contain information on
both the 3π system and the π−πþ subsystem [see Eqs. (7)
and (9)]. In order to consistently extract the m3π depend-
ence of the phase of a freed wave, we thus need to model
the mπ−πþ dependence of the freed-isobar transition ampli-
tude. This is accomplished by the introduction of the
amplitudeTaðm3π; t0Þ via Eqs. (13) and (14), which defines
the phase of the 1−þ wave that can be compared to the
phase obtained in the fixed-isobar PWA. We use the fixed-
isobar 4þþ1þρð770ÞπG wave as a reference wave since it
exhibits a nonzero intensity distribution over a broad m3π

range and a clear signal of the a4ð2040Þ.21 From the fits of
Eq. (13) with fixed ρð770Þ parameters we obtain Fig. 9(b).
In this figure, we compare the phase of the 1−þ wave with
respect to the 4þþ1þρð770ÞπG wave obtained from the
freed-isobar PWA in the way described above (red data
points) with the corresponding phase from the fixed-isobar
PWA (blue data points).22 The two phase motions are in
qualitative agreement in the m3π range from about 1.4 to
2.0 GeV=c2. For m3π ≲ 1.2 GeV=c2, the phase is not well
determined because the intensities of the two waves are
small. The rapid phase motion at 1.2 GeV=c2 is caused by
the nearly vanishing intensity of the 4þþ wave. The rising
phase motion in the range from 1.4 to 1.7 GeV=c2 indicates
the presence of the π1ð1600Þ in the 1−þ wave, whereas the
falling phase motion from 1.7 to 2.0 GeV=c2 is caused by
the a4ð2040Þ in the 4þþ wave. Similar rising phase motions
are also observed with respect to other waves, e.g., with
respect to the 4−þ0þρð770ÞπF and 6−þ0þρð770ÞπH waves
discussed in Sec. VI.
To further check the consistency between the con-

ventional and the freed-isobar PWA, we fit the m3π

dependence of the amplitude Ta defined in Eqs. (13)
and (14) simultaneously for all four t0 bins using the same
Breit-Wigner model as in Ref. [46]. However, we cannot
perform the same 14-wave fit as given in Table II of
Ref. [46] because most of the selected 14 waves are in the
set of 12 freed waves (see Tables II and IV) and hence do
not provide well-defined phases. Here, we perform a much
simpler fit that only includes the 1−þ intensity distribution,
i.e., jTaðm3πÞj2, and the phase of Taðm3πÞ with respect to
the amplitude of the fixed-isobar 4þþ1þρð770ÞπG wave.
The 4þþ1þρð770ÞπG wave was included in the 14-wave
resonance-model fit in Ref. [46], which was another reason
to choose it as the reference wave. The m3π fit range is
restricted to the overlap region from 1.26 to 2.02 GeV=c2

of the fit ranges of the 1−þ and the 4þþ waves in the

resonance-model fit in Ref. [46]. We take the parametriza-
tions for the 1−þ and the 4þþ partial-wave amplitudes from
Ref. [46] and use them to model the real and imaginary part
ofTaðm3πÞ. In the fit, we let the parameters of the π1ð1600Þ
and the nonresonant component in the 1−þ wave float. We
describe the phase of the 4þþ wave without any free
parameters by using the fit result from Ref. [46]. Since the
phase of the 4þþ wave depends on the t0 bin, we have to
translate the 11 t0 bins used in Ref. [46] to the four bins
used here. Thus, for our four t0 bins we construct a linear
combination of the phases in the 11 t0 bins, using the
overlap of the corresponding t0 bins weighted with the t0
distribution of all events as coefficients. This is possible,
since the phase of the 4þþ wave changes smoothly with t0.
In an alternate approach, we replace these linear combi-
nations of the phases in t0 bins by a single phase taken from

(a)

(b)

FIG. 9. (a) intensity distribution and (b) phase of the spin-exotic
wave with respect to the 4þþ1þρð770ÞπG wave in the highest t0

bin. The red data points represent the 1−þ1þ½ππ�1−−πP amplitude
from the freed-isobar PWA after modeling the mπ−πþ dependence
using the ρð770Þ Breit-Wigner amplitude in Eq. (13); the blue
data points represent the 1−þ1þρð770ÞπP amplitude from the
conventional fixed-isobar PWA. The red curve represents the
result of a fit of a resonance model to the red data points, which is
the coherent sum of a resonant amplitude for the π1ð1600Þ
(magenta curve) and a nonresonant term (green curve).

21Usually, the largest waves in the PWA model are used as
reference waves. However, in the freed-isobar PWA model these
waves use freed dynamic isobar amplitudes (see Tables II and IV)
and therefore do not offer a consistent reference phase.

22The phases for the other t0 bins are shown in Appendix E of
the Supplemental Material of this paper [69].
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the closest of the 11 t0 bins yielding a very similar result.
The found π1ð1600Þ resonance parameters are

mπ1ð1600Þ ¼ 1550 MeV=c2 ð15Þ

and

Γπ1ð1600Þ ¼ 500 MeV=c2: ð16Þ

These values are compatible with those found in Ref. [46]
and are based on the same data. We do not give any
uncertainties in Eq. (15), since we did not perform
systematic studies and the statistical uncertainties are
negligible compared to the systematic ones. The latter
are expected to be in the same order of magnitude as those
quoted in Ref. [46]. Increasing the lowerm3π limit of the fit
range to 1.34 GeV=c2, for example, yields a π1ð1600Þ that
is 30 MeV=c2 heavier and 180 MeV=c2 narrower.

D. Summary: Dynamic isobar amplitude in the
JPC = 1− + wave

In conclusion, the results for the spin-exotic JPC ¼ 1−þ
wave from the freed-isobar PWA confirm the findings
from the conventional PWAwith fixed parametrizations of
the dynamic isobar amplitudes presented in Refs. [46,47]
in several important aspects: (i) the emergence of the
ρð770Þ resonance in the π−πþ subsystem of the 1−þ wave,
as shown in Figs. 5 and 6, confirms that the assumption of
the 1−þ wave decaying via a ρð770Þ isobar is indeed valid.
(ii) The observed agreement of the extracted dynamic
isobar amplitude of the JPC ¼ 1−− π−πþ subsystem with
the ρð770Þ amplitude used in the conventional PWA
validates the chosen ρð770Þ parametrization and the
parameter values within about 10%. (iii) We observe good
agreement between the results from the freed-isobar PWA
with those from the fixed-isobar PWA in terms of the phase
motions and the shape of the intensity distributions as
function of m3π , as shown in Figs. 8 and 9. Thus the
structures observed in the 1−þ amplitude in the conven-
tional PWA are not an artifact due to the employed
parametrizations for the dynamic isobar amplitudes. This
is supported by the similarity of the π1ð1600Þ resonance
parameters from the freed-isobar PWAwith those from the
14-wave resonance-model fit from Ref. [46].

VI. THE DECK PROCESS AND ITS PROJECTION
INTO THE JPC = 1− + WAVE

Most partial-wave amplitudes contained in the 88-wave
set used to analyze the COMPASS proton-target data (see
Secs. III and IVA) contain coherent contributions from
resonant and nonresonant processes. Aiming at extracting
the resonant components through fits of resonance models
to the m3π and t0 dependence of the spin-density matrix,
COMPASS has used a simple empirical description for the

amplitude of the nonresonant processes (see Sec. IVA 2 in
Ref. [53]). Our resonance-model fits reveal contributions of
nonresonant processes that are very different for the various
partial waves. The intensity of the nonresonant contribu-
tions shows a strong dependence on t0 that is often more
pronounced than that of the resonances. In the analyzed
m3π and t0 range, the nonresonant components are expected
to originate predominantly from double-Regge exchange
processes, of which the so-called Deck effect is the most
prominent one. In Fig. 10, we show the diagram of the
Deck process for the π−π−πþ final state. In this process, a
quasi-on-shell pion is exchanged between the vertices a
and b becoming real by scattering off the target proton via
Pomeron or Reggeon exchange. The π−πþ state produced
at vertex a, originally taken to be the ρð770Þ, is the only
appearing resonance. The described process was proposed
by R. T. Deck in Ref. [48] as an alternative explanation to
a1ð1260Þ resonance production in the ρð770Þπ S-wave
channel [70,71].
In the COMPASS proton-target data, we found that the

shape of the intensity distribution of the spin-exotic
1−þ1þρð770ÞπP wave changes strongly with t0 [46], which
is indicative of large nonresonant contributions that seem to
contribute particularly at low t0 as already discussed in
Sec. IV. This is consistent with the result of our resonance-
model fit, where we found that the 1−þ wave is strongly
dominated by nonresonant amplitudes at low t0. In this
paper, we investigate the role of the Deck process in this
wave by determining the intensity distribution of a Deck
model in the 1−þ1þρð770ÞπP wave and by comparing
it to the analytical description of the nonresonant com-
ponent that we obtained in our resonance-model fit. We
also study projections of the Deck amplitude into waves
with higher spin for which no confirmed resonances exist
[20] and compare with the corresponding intensity distri-
butions obtained from real data. To perform these studies
we use pseudodata generated according to a model of
the Deck process using Monte Carlo techniques. Since the
pseudodata contain only nonresonant contributions, the
direct comparison with real data neglects the interference
between the resonant and nonresonant wave components.

FIG. 10. Schematic diagram of the Deck process with the
relevant kinematic variables.
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However, similar intensity distributions in real and pseu-
dodata would point to dominant contributions from non-
resonant Deck-like processes in the real data.
For our first attempt to model the Deck process, we use

the simplified model from Refs. [72–74] to construct the
Deck amplitude that we use to generate the pseudodata.
In the model, the Deck amplitude is factorized into three
terms (cf. Fig. 10): (i) an amplitude Aππ that describes the
π−πþ → π−πþ scattering including the vertices a and d,
(ii) a stable-particle propagator that describes the pion
exchange, and (iii) an amplitude Aπp that describes the
π−p → π−p scattering including the vertices b and c. We
hence write the Deck amplitude as23

ADeckðsππ; sπp; tπ; tÞ ¼ Aππðsππ; tπÞ
e

b
2
tπ

m2
π − tπ

Aπpðsπp; tÞ:

ð17Þ
It is important to note that we Bose-symmetrize the
amplitude in Eq. (17) with respect to the two indistinguish-
able π−. The kinematic variables are defined in Fig. 10 with
sππ being the squared center-of-momentum energy of the
π−πþ system between vertices a and d, tπ the squared
four-momentum transferred by the exchange pion, sπp the
squared center-of-momentum energy of the π−p system
including the vertices b and c, and t the squared four-
momentum transferred to the target. Note, that both t and tπ
are negative. Like in the original Deck model in Ref. [48],
we only take into account pion exchange between vertices a
and b in Fig. 10, while possible additional processes like
ρð770Þ meson exchange are neglected.
The π−πþ → π−πþ amplitude in Eq. (17) is taken from

Ref. [75] using the result of a so-called energy-dependent
analysis based on data for the reaction π−p → π−πþn
measured at 17.2 GeV=c pion-beam momentum. This
analysis yielded the ππ partial-wave amplitudes T I

l for
orbital angular momenta l ¼ 0, 1, 2, 3 between the two
pions. The model included amplitudes with isospin I ¼ 0
of the ππ system for even l and I ¼ 1 for odd l. In
addition, an I ¼ 2 amplitude was included for l ¼ 0. The
P-, D-, and F-wave amplitudes are dominated by ρð770Þ,
f2ð1270Þ, and ρ3ð1690Þ, respectively. The parametrization
of the S-, P-, and D-wave amplitudes T 0

0, T
1
1, and T 0

2 is
based on K matrices that take into account the ππ and KK̄
channels. The F-wave amplitude is parametrized by a
dynamic-width Breit-Wigner amplitude for the ρ3ð1690Þ
[see Eq. (12d) in Ref. [75] ]. The S- and P-wave amplitudes
use a K matrix containing two poles and a constant
background term [see Eqs. (12a), (12b), and (13a) in
Ref. [75] ], where the ρð770Þ pole in the P wave includes
the angular-momentum barrier factor. The K matrix for
the D-wave amplitude contains a single pole, which
includes the angular-momentum barrier factor, and a

constant background term [see Eqs. (12c) and (13b) in
Ref. [75] ]. For the I ¼ 2 S-wave amplitude, a scattering-
length formula is used [see Eq. (14) in Ref. [75] ]. We use
the parameters given in Table 1 of Ref. [75].
For the propagator of the exchanged pion, we use in

Eq. (17) the nonreggeized form containing only the pion
pole 1=ðm2

π − tπÞ and a form factor ebtπ [see Eq. (2.1) in
Ref. [73] ].We use a slope parameter ofb ¼ 3.4 ðGeV=cÞ−2,
which provides a reasonable description of the angular
distributions of the COMPASS data in the m3π range from
2.3 to 2.5 GeV=c2 assuming that the Deck process domi-
nates in this mass range.
For the π−p → π−p amplitude in Eq. (17) we employ the

simple parametrization from Eq. (3.1) in Ref. [72]:

Aπpðsπp; tÞ ¼ isπpe
a
2
t; ð18Þ

with an exponential slope of a ¼ 8 ðGeV=cÞ−2.
Figure 11 shows the m3π and mπ−πþ distributions of the

75 × 106 Deck Monte Carlo events. The various π−πþ
resonances that are included in the model are reflected in
the mπ−πþ distribution. In order to roughly estimate the
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FIG. 11. (a) π−π−πþ invariant mass spectrum for the Deck
Monte Carlo sample. (b) invariant mass distribution of the π−πþ
subsystem (two entries per event). The arrows indicate 2π
resonances included in the Deck model.

23Since we do not use the Deck amplitude to calculate absolute
cross sections, the normalization of Eq. (17) is irrelevant.
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Deck-like contributions to the real-data intensity distribu-
tions, we perform a PWAof theDeckMonteCarlo data using
the same 88-wave PWA model that was applied to the
COMPASS proton-target data in Ref. [46] (see Table IV in
AppendixA).We show in Fig. 12 as an example the intensity
distributions of the Deck model in the 4−þ0þρð770ÞπF and
6−þ0þρð770ÞπH waves for low and high values of t0
superimposed with the real-data distributions. Owing to
the absence of confirmed resonances in these waves, we
expect the measured intensities to be dominated by non-
resonant contributions. This hypothesis is supported by the
fact that the shapes of the Deck intensity distributions are in
good qualitative agreement with the real data over the full t0
range. Note that the Deck Monte Carlo data are normalized
using only one common factor for all waves that is deter-
mined from the 1−þ wave as described further below.
In Fig. 13, we compare the intensity distributions of

the 1−þ1þρð770ÞπP wave for Deck pseudodata and real
data, where the latter contains contributions from reso-
nances as well as nonresonant processes. In addition, we
show curves that correspond to the nonresonant component
found in the resonance-model fit in Ref. [46]. We normalize

the Deck intensity in the 1−þ wave to the nonresonant
curves from the resonance-model fit by matching their
m3π-integrated intensities summed over the lowest 9 of the
11 t0 bins. The two highest t0 bins are excluded from the
calculation of the normalization factor because in this
region the π1ð1600Þ resonance dominates the 1−þ wave
and hence the nonresonant component has a large system-
atic uncertainty. The same normalization factor is also
used for the other waves shown in Fig. 12. For the first 9 t0

bins, i.e., for t0 ≲ 0.5 ðGeV=cÞ2, the shapes of the Deck
intensity distributions are in qualitative agreement with the
nonresonant curves from the resonance-model fit [see
Figs. 13(a) to 13(c)]. This shows that the empirical para-
metrization used for the nonresonant component in the
resonance-model fit is able to capture the gross features of
the Deck amplitudes. We find that the t0 dependence of the
Deck intensity is shallower than that of the nonresonant
curve leading to an undershoot of the Deck intensity at low t0
[see Fig. 13(a)] and an overshoot at high t0 [see Fig. 13(c)].
For the two highest t0 bins, i.e., for t0 ≳ 0.5 ðGeV=cÞ2, the
shapes of the Deck intensity distribution and the nonresonant
curve start to deviate [see Fig. 13(d)]. The observed behavior

(a)

(c)

(b)

(d)

FIG. 12. Intensity distributions of the 4−þ0þρð770ÞπF wave (left column) and the 6−þ0þρð770ÞπH wave (right column) for two t0
bins as obtained from the 88-wave PWA. The real data are represented by the blue data points; the Deck pseudodata by the green data
points. The pseudodata are normalized using a common factor for all waves (see text for details).
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of the Deck model is consistent with our finding in Ref. [46]
that at low t0 the broad structure in the 1−þ intensity
distribution is mostly due to nonresonant contributions
masking the small π1ð1600Þ signal.

A. Summary: The Deck process and the JPC = 1− + wave

We have studied a simple model for the Deck process
[see Eq. (17) and Fig. 10] and have compared its intensity
distribution in selected waves with the ones obtained from
real data. With only one common normalization factor, we
find that the Deck intensity is in qualitative agreement with
the measured intensity distributions of the 4−þ0þρð770ÞπF
and 6−þ0þρð770ÞπH waves in the analyzed t0 range. This
is consistent with the expectation that these waves are
dominated by nonresonant components because there are
no confirmed π4 or π6 resonances [20].
We find that the Deck intensity distribution in the spin-

exotic 1−þ1þρð770ÞπP wave qualitatively reproduces the
strong t0 dependence of intensity and shape of the non-
resonant component that we extracted in our resonance-
model fit in Ref. [46] in the range t0 ≲ 0.5 ðGeV=cÞ2.

In this t0 range, the intensity of the nonresonant contribu-
tion is similar to or larger than the intensity of the π1ð1600Þ
component. However, with regard to the t0 dependence it
must be recognized that the present simple version of the
Deck model does not adequately describe the background
yield in the high-t0 range where the π1ð1600Þ resonance
dominates the 1−þ wave (see Fig. 13).
Nuclear effects such as absorption seem to play an

important role in the scattering process in the t0 range
between 0.1 and 1.0 ðGeV=cÞ2, so that the process cannot
be described simply as incoherent scattering off quasifree
nucleons. There are currently no models available that
describe Deck-like processes on nuclear targets. Such
models could help to better understand the enhancement
of the π1ð1600Þ signal relative to the nonresonant compo-
nent that we observe in the lead-target data as compared to
the proton-target data (see Sec. IV).
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APPENDIX A: COMPILATION OF WAVE SETS
USED IN PARTIAL-WAVE ANALYSES

OF THE 3π SYSTEM

Table IV lists the wave sets used in the partial-wave
analyses that are summarized in Table I.

TABLE IV. Comparison of the 88-wave set used for the COMPASS proton-target data with the wave sets of BNL
E852, VES, Dzierba et al., and the one used for the COMPASS lead-target data. Entries that are not in the
COMPASS 88-wave set are marked with �. Entries marked with † indicate waves that are replaced in the freed-
isobar PWA by waves with dynamic isobar amplitudes parametrized according to Eq. (7) (see also Table II).

COMPASS BNL E852 VES Dzierba et al. COMPASS
88 waves 21 waves 44 waves 36 waves 42 waves

JPCMε Isobar L Table IX in [47] Table I in [42] [37] Table IV in [45] [43]

† 0−þ0þ ½ππ�S S ✓ ✓ ✓ ✓ ✓
† 0−þ0þ ρð770Þ P ✓ ✓ ✓ ✓ ✓
† 0−þ0þ f0ð980Þ S ✓ ✓ ✓ ✓ ✓

0−þ0þ f2ð1270Þ D ✓ ✓
† 0−þ0þ f0ð1500Þ S ✓

† 1þþ0þ ½ππ�S P ✓ ✓ ✓ ✓
1þþ1þ ½ππ�S P ✓ ✓ ✓

† 1þþ0þ ρð770Þ S ✓ ✓ ✓ ✓ ✓
† 1þþ1þ ρð770Þ S ✓ ✓ ✓ ✓ ✓

1þþ0þ ρð770Þ D ✓ ✓ ✓ ✓

1þþ1þ ρð770Þ D ✓ ✓ ✓
† 1þþ0þ f0ð980Þ P ✓ ✓ ✓

1þþ1þ f0ð980Þ P ✓

1þþ0þ f2ð1270Þ P ✓ ✓ ✓

1þþ1þ f2ð1270Þ P ✓ ✓ ✓ ✓

1þþ0þ f2ð1270Þ F ✓
1þþ0þ ρ3ð1690Þ D ✓

1þþ0þ ρ3ð1690Þ G ✓

† 1−þ1þ ρð770Þ P ✓ ✓ ✓ ✓ ✓

† 2þþ1þ ρð770Þ D ✓ ✓ ✓ ✓ ✓
2þþ2þ ρð770Þ D ✓

2þþ1þ f2ð1270Þ P ✓ ✓ ✓

2þþ2þ f2ð1270Þ P ✓
2þþ1þ ρ3ð1690Þ D ✓

† 2−þ0þ ½ππ�S D ✓ ✓ ✓ ✓ ✓
2−þ1þ ½ππ�S D ✓ ✓ ✓ ✓

(Table continued)
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TABLE IV. (Continued)

COMPASS BNL E852 VES Dzierba et al. COMPASS
88 waves 21 waves 44 waves 36 waves 42 waves

JPCMε Isobar L Table IX in [47] Table I in [42] [37] Table IV in [45] [43]

† 2−þ0þ ρð770Þ P ✓ ✓ ✓ ✓ ✓
† 2−þ1þ ρð770Þ P ✓ ✓ ✓ ✓

2−þ2þ ρð770Þ P ✓
† 2−þ0þ ρð770Þ F ✓ ✓ ✓ ✓

2−þ1þ ρð770Þ F ✓ ✓ ✓ ✓
† 2−þ0þ f0ð980Þ D ✓ ✓ ✓
� 2−þ1þ f0ð980Þ D ✓
† 2−þ0þ f2ð1270Þ S ✓ ✓ ✓ ✓ ✓

2−þ1þ f2ð1270Þ S ✓ ✓ ✓ ✓ ✓

2−þ2þ f2ð1270Þ S ✓

2−þ0þ f2ð1270Þ D ✓ ✓ ✓ ✓ ✓

2−þ1þ f2ð1270Þ D ✓ ✓ ✓ ✓ ✓
2−þ2þ f2ð1270Þ D ✓

2−þ0þ f2ð1270Þ G ✓

2−þ0þ ρ3ð1690Þ P ✓ ✓

2−þ1þ ρ3ð1690Þ P ✓ ✓

3þþ0þ ½ππ�S F ✓

3þþ1þ ½ππ�S F ✓

3þþ0þ ρð770Þ D ✓ ✓ ✓ ✓
3þþ1þ ρð770Þ D ✓ ✓

3þþ0þ ρð770Þ G ✓

3þþ1þ ρð770Þ G ✓

3þþ0þ f2ð1270Þ P ✓ ✓ ✓ ✓

3þþ1þ f2ð1270Þ P ✓ ✓
3þþ0þ ρ3ð1690Þ S ✓ ✓ ✓ ✓ ✓

3þþ1þ ρ3ð1690Þ S ✓ ✓ ✓

3þþ0þ ρ3ð1690Þ I ✓

3−þ1þ ρð770Þ F ✓

3−þ1þ f2ð1270Þ D ✓

4þþ1þ ρð770Þ G ✓ ✓ ✓ ✓

4þþ2þ ρð770Þ G ✓

4þþ1þ f2ð1270Þ F ✓ ✓ ✓ ✓

4þþ2þ f2ð1270Þ F ✓
4þþ1þ ρ3ð1690Þ D ✓ ✓

4−þ0þ ½ππ�S G ✓
4−þ0þ ρð770Þ F ✓ ✓ ✓ ✓

4−þ1þ ρð770Þ F ✓ ✓

4−þ0þ f2ð1270Þ D ✓ ✓

4−þ1þ f2ð1270Þ D ✓

4−þ0þ f2ð1270Þ G ✓
� 4−þ0þ ρ3ð1690Þ P ✓ ✓

5þþ0þ ½ππ�S H ✓
5þþ1þ ½ππ�S H ✓

5þþ0þ ρð770Þ G ✓

5þþ0þ f2ð1270Þ F ✓

5þþ1þ f2ð1270Þ F ✓

5þþ0þ f2ð1270Þ H ✓
5þþ0þ ρ3ð1690Þ D ✓

6þþ1þ ρð770Þ I ✓
6þþ1þ f2ð1270Þ H ✓

6−þ0þ ½ππ�S I ✓

(Table continued)

G. D. ALEXEEV et al. PHYS. REV. D 105, 012005 (2022)

012005-24



APPENDIX B: AMBIGUITY IN THE JPC = 1 − +

AMPLITUDE IN THE FREED-ISOBAR
PARTIAL-WAVE ANALYSIS

As has been already mentioned in Sec. V, continuous
mathematical ambiguities of certain decay amplitudes, called
zero modes, may appear in a freed-isobar PWA. Methods to
detect and resolve zero modes are discussed in detail in
Refs. [49,66]. Because of zero modes, different values of the
transition amplitudes fT a;kg defined in Eqs. (7) and (9) may
lead to the same total amplitude

P
k T a;kΨa;k in Eq. (11),

wherek labels themπ−πþ intervals. Zeromodesmay appear in
sets of freed waves that have the same JPCMε quantum
numbers but describe decays via different isobars. In special
cases, such as the one described below, zero modes may also
appear within a single freed wave due to Bose symmetriza-
tion of final-state particles.
In the following,we focus on the zeromode presentwithin

the 1−þ1þ½ππ�1−−πP wave. For the employed wave set (see
Tables II and IV), it is mathematically well defined and it is
the only zero mode affecting this wave. First, we show the
origin of this zero-mode ambiguity in the 1−þ wave. To this
end, we express the angular amplitude KaðτÞ with a ¼
1−þ1þ½ππ�1−−πP in Eq. (10) in the helicity formalism:24,25

KaðτÞ∝
X
λ¼�1

−
λffiffiffi
2

p ðε¼þ1ÞD1�
1;λðϕGJ;ϑGJ;0ÞD1�

λ;0ðϕHF;ϑHF;0Þ:

ðB1Þ

Here, λ is the helicity of the 1−− isobar. The factor −λ=
ffiffiffi
2

p
is

the Clebsch-Gordan coefficient ðL0 JξλjJλÞ that describes
the coupling of the relative orbital angular momentumL ¼ 1
between the isobar and the bachelor π− with the spin Jξ ¼ 1

of the isobar to the spin J ¼ 1 of X. The angular distribu-
tions of the decays X− → ξ0 þ π− and ξ0 → π− þ πþ are
described by Wigner D functions, where the one for the X−

decay is defined in the reflectivity basis according to
Eq. (19) in Ref. [47]. The subscripts GJ and HF of the
angles denote the Gottfried-Jackson and helicity rest frames
of X and the isobar, respectively (see Sec. III A in Ref. [47]
for the definition of the coordinate systems). Inserting theD
functions

ðε¼þ1ÞD1
1;λðϕGJ; ϑGJ; 0Þ ¼

1ffiffiffi
2

p ðcosϕGJ − iλ sinϕGJ cos ϑGJÞ

ðB2Þ

and

D1
λ;0ðϕHF; ϑHF; 0Þ ¼ −

λffiffiffi
2

p e−iλϕHF sin ϑHF ðB3Þ

with λ ¼ �1 into Eq. (B1), we find

KaðτÞ∝ ðcosϕGJ cosϕHF− cosϑGJ sinϕGJ sinϕHFÞ sinϑHF:
ðB4Þ

The π−1 π
−
2 π

þ
3 system contains two indistinguishable π−,

and hence Eq. (B4) needs to be Bose-symmetrized. We
choose the isobar to decay into π−1 π

þ
3 and the vector p⃗HF

1 to

TABLE IV. (Continued)

COMPASS BNL E852 VES Dzierba et al. COMPASS
88 waves 21 waves 44 waves 36 waves 42 waves

JPCMε Isobar L Table IX in [47] Table I in [42] [37] Table IV in [45] [43]

6−þ1þ ½ππ�S I ✓

6−þ0þ ρð770Þ H ✓
6−þ1þ ρð770Þ H ✓

6−þ0þ f2ð1270Þ G ✓

6−þ0þ ρ3ð1690Þ F ✓

1þþ1− ρð770Þ S ✓ ✓ ✓ ✓

1−þ0− ρð770Þ P ✓ ✓ ✓ ✓ ✓

1−þ1− ρð770Þ P ✓ ✓ ✓ ✓ ✓

2þþ0− ρð770Þ D ✓ ✓ ✓ ✓ ✓
� 2þþ1− ρð770Þ D ✓

2þþ0− f2ð1270Þ P ✓ ✓

2þþ1− f2ð1270Þ P ✓ ✓

� 2−þ1− ρð770Þ P ✓

2−þ1− f2ð1270Þ S ✓ ✓ ✓ ✓

Flat ✓ ✓ ✓ ✓ ✓

24Also cf. with Eqs. (11) and (7) in Ref. [47].
25To ease the notation, we omit the wave index a in this

section.
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represent the momentum of π−1 in the helicity rest frame of
this isobar. We calculate the magnitude of this vector using
the two-body breakup momentum

q2ðm;m1; m2Þ ¼
½m2 − ðm1 þm2Þ2�½m2 − ðm1 −m2Þ2�

4m2
:

ðB5Þ
Thus jp⃗HF

1 j ¼ q13, where

qij ≡ qðmij; mπ; mπÞ ðB6Þ

is the breakup momentum between pions i and j with mij

being the invariant mass of the two-pion system. Using the
above equations, we express the x and y components of p⃗HF

1

using the helicity angles as spherical coordinates:

q13 cosϕHF sinϑHF ¼ pHF
1;x

¼ cos ϑ̂GJ
sin ϑGJ

Q23 −
cosϑGJ
sin ϑGJ

p⃗13 · p⃗23

Q13

;

ðB7Þ

q13 sinϕHF sin ϑHF ¼ pHF
1;y

¼ Q23 sin ϑ̂GJ sinðϕGJ − ϕ̂GJÞ: ðB8Þ

Here, angles with a hat (“ ^”) indicate the Bose-
symmetrized system, where the isobar decays into π−2 π

þ
3 .

The p⃗ij represent the sums of the momenta of particles i
and j in the 3π center-of-momentum system and theQij are
the two-body breakup momenta of the 3π system given by

Qij ≡ qðm3π; mij; mπÞ: ðB9Þ

The right-hand sides of Eqs. (B7) and (B8) are obtained
from transforming the four-momentum vector of πþ1 from
the Gottfried-Jackson frame into the helicity frame of the
isobar. This calculation can be found in Appendix D of the
Supplemental Material of this paper [69].
The angular amplitude KaðτÞ in Eq. (B4) depends on the

helicity angles with the coordinate system in the helicity
rest frame depending on the particles forming the isobar.
Equations (B7) and (B8) allow us to replace the depend-
encies of KaðτÞ on the helicity angles by expressions
depending only on Gottfried-Jackson angles for the
two combinations of the final-state particles that corre-
spond to Bose symmetrization. The coordinate system in
the Gottfried-Jackson rest frame does not depend on the
particles forming the isobar.26 Expressing in addition
the scalar product p⃗13 · p⃗23 in Eq. (B7) in terms of the
Gottfried-Jackson angles, we obtain

Kaðτ13Þ

∝
Q23

q13
ðcosϕGJ sinϑGJ cos ϑ̂GJ − cos ϕ̂GJ sin ϑ̂GJ cosϑGJÞ;

ðB10Þ

where τ13 is the set of phase-space variables for the isobar
decaying into π−1 π

þ
3 . Performing the Bose symmetrization

and including the dynamic isobar amplitude ΔðmijÞ, we
find for the decay amplitude

Ψaðτ13; τ23Þ ¼ Kaðτ13ÞΔðm13Þ þKaðτ23ÞΔðm23Þ: ðB11Þ

This amplitude exactly vanishes at every point in phase
space if the dynamic amplitude ΔðmijÞ has the form

Δ̃ðmijÞ ¼ Qijqij: ðB12Þ
This is because the two terms in the bracket in Eq. (B10) are
Bose-symmetrized versions of each other and thus

Kaðτ13Þ ¼ −
Q23

q13

q23
Q13

Kaðτ23Þ: ðB13Þ

Consequently, changing the dynamic isobar amplitude
according to

ΔðmijÞ → ΔðmijÞ þ CΔ̃ðmijÞ ðB14Þ

with an arbitrary complex-valued coefficient C does not
alter the decay amplitude and hence also leaves the
intensity as well as the likelihood function unchanged.
Therefore, the coefficient C represents a mathematical
ambiguity, or zero mode, in the PWA model that is defined
by the real-valued zero-mode shape Δ̃ðmijÞ. In the conven-
tional PWA, this ambiguity does not appear owing to the
fixed parametrization of the dynamic isobar amplitudes.
However, in a freed-isobar PWA a shift in the direction of
the zero mode is possible due to the freedom in the dynamic
isobar amplitudes.
Let fT fit

k g be the set of binned transition amplitudes as
defined in Eqs. (7) and (9) that are extracted in a freed-
isobar PWA, with k being the index of the mπ−πþ interval.
The fT fit

k gmight be shifted away from their physical values

fT phys
k g in the direction of the zero mode Δ̃ðmijÞ according

to Eq. (B14). Thus for each mπ−πþ interval, the center of
which is represented by mk, we have27

T fit
k ¼ T phys

k þ CΔ̃k with Δ̃k ≡ Δ̃ðmkÞ: ðB15Þ

Since the ambiguity represented by C in Eq. (B15)
leaves the intensity and therefore the likelihood function

26Therefore, ðϑGJ;ϕGJÞ and ðϑ̂GJ; ϕ̂GJÞ in Eq. (B10) are two
different sets of angles defined in the same coordinate system.

27Since the shape of the zero mode is multiplied with an
arbitrary coefficient, we normalize it to

P
k Δ̃2

k ¼ 1.
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unchanged, it can only be resolved by imposing prior
knowledge about the dynamic isobar amplitudes.28 For the
1−þ wave, we can safely assume the fT phys

k g to contain the
ρð770Þ resonance. We resolve the zero-mode ambiguity by
determining that value of C that minimizes the deviation of
fT fit

k g from the ρð770Þ Breit-Wigner amplitude. The
deviation is measured by the residuals

δkðCÞ≡ T fit
k − CΔ̃k − T̂ aðmk;m3π; t0Þ; ðB16Þ

where T̂ aðmk;m3π; t0Þ is the Breit-Wigner amplitude for the
ρð770Þ resonance as given by Eq. (13). To determine C and
thereby resolve the zero-mode ambiguity, we minimize the
Mahalanobis distance29

χ2ðCÞ ¼
X
k;l

δkðCÞV−1
kl δlðCÞ; ðB17Þ

where V is the covariance matrix of the fT fit
k g (see

Appendix C). Since we cannot exclude contributions
from excited ρð770Þ states at higher mπ−πþ, we limit the
sum in Eq. (B17) to those mπ−πþ intervals k and l
where mπ−πþ < 1.12 GeV=c2.30

Imposing the ρð770Þ Breit-Wigner amplitude in
Eq. (B16) by minimizing the χ2 function in Eq. (B17),
we determine only one complex-valued degree of freedom,
i.e., C, from the data. The real-valued zero-mode shape
Δ̃ðmijÞ that enters Eq. (B17) is fixed and given by
Eq. (B12). It is important to note that this procedure does
not lead to a circular argument, i.e., we do not get out what
we put in. This is because our procedure that resolves the
zero-mode ambiguity cannot artificially generate a fake
ρð770Þ resonance signal in the π−πþ isobar amplitude, i.e.,
a circular structure in the Argand diagram, if the ρð770Þ is
not contained in the data. This has been verified through
Monte Carlo studies [49,66]. In other words, we do not
demand that the dynamic isobar amplitude is described
entirely by the ρð770Þ as in the conventional PWA method.
Instead, we only impose the ρð770Þ to be a part of the
amplitude. We hence fix a single complex value, i.e., C,
using minimal assumptions on the shape of the dynamic
isobar amplitude. This still leaves 2ðn − 1Þ complex-valued
degrees of freedom, where n is the number of mπ−πþ

intervals, that are determined from the data. The freed-
isobar PWA thus yields much more information on the

dynamic isobar amplitude in the 1−þ1þ½ππ�1−−πP wave
than the conventional PWA method, which only returns a
single complex-valued parameter, i.e., the transition ampli-
tude, for this wave.
In Fig. 14, we show the result of the freed-isobar PWA

(green data points) and the corresponding zero-mode
corrected amplitude (blue data points) for an exemplary
ðm3π; t0Þ cell. The green points are shifted away from
their physical value by the zero mode with an accidental
value for the coefficient C, which is different in every
ðm3π; t0Þ cell. The gray histogram represents the ρð770Þ

(a)

(b)

FIG. 14. Similar to Fig. 6 but showing the effect of resolving
the zero-mode ambiguity in the 1−þ1þ½ππ�1−−πP wave using, as
an example, the highest t0 bin and an m3π bin in the π1ð1600Þ
resonance region. (a) shows the intensity distribution and (b) the
corresponding Argand diagram as a function of mπ−πþ . The green
data points correspond to the set fT fit

k g of binned transition
amplitudes [defined in Eqs. (7) and (9)] as extracted in the freed-
isobar PWA. The blue data points represent the transition ampli-
tudes fT fit

k − CΔ̃kg after resolving the zero-mode ambiguity by
minimizing Eq. (B17). The upper limit mπ−πþ ¼ 1.12 GeV=c2 of
the range used in this minimization is indicated by the vertical
line in (a). The gray histogram represents the ρð770Þ Breit-
Wigner amplitude used to resolve the zero-mode ambiguity. In
the Argand diagram, corresponding green and blue data points
are connected by gray lines representing the fCΔ̃kg values.

28This is conceptually similar to gauge fixing in gauge
symmetries.

29Since the δk are complex-valued, while the covariance matrix
describes real-valued quantities, the sum over the mπ−πþ interval
indices k and l runs implicitly also over the real and imaginary
parts of the corresponding amplitudes (see also Sec. IV B in
Ref. [46]).

30The covariance matrix is first cut to thismπ−πþ range and then
inverted.
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Breit-Wigner amplitude T̂ aðmk;m3π; t0Þ used in Eqs. (B16)
and (B17) to resolve the zero-mode ambiguity. Since the
zero-mode shape given in Eq. (B12) is real valued, all green
points in the Argand diagram are shifted in parallel
directions to the blue points. It should be noted that only
data for mπ−πþ < 1.12 GeV=c2 were used to resolve the
ambiguity. The resulting zero-mode corrected amplitude
agrees well with the ρð770Þ Breit-Wigner also in the mass
region mπ−πþ > 1.12 GeV=c2. This method to resolve the
ambiguity is used to produce Figs. 5 and 6. Note that the
zero mode does not influence them3π intensity distributions
obtained by summing the contributions of the freed-isobar
transition amplitudes fT a;kg from all mπ−πþ intervals
coherently (see Fig. 8).
We have studied several constraints to resolve the zero-

mode ambiguity. In a first study, we extend the fit range to
the full kinematically allowed mπ−πþ range. In a second
study, we allow the ρð770Þ resonance parameters to float in
the fit that resolves the ambiguity. In this approach, we
either use a single set of ρð770Þ resonance parameters while
simultaneously fitting all ðm3π; t0Þ cells or we allow for
different ρð770Þ resonance parameters in each ðm3π; t0Þ
cell. The resulting ρð770Þ resonance parameters obtained
using the above approaches are discussed in Sec. V B. All
these approaches yield similar results for the zero-mode
corrected amplitudes (see also discussion in Sec. V).
In a third study, we try to resolve the zero mode by

minimizing the variation of the zero-mode corrected ampli-
tudes between neighboring m3π bins. This means we do not
make any assumption on the mπ−πþ dependence of the
amplitudes and just require a smooth behavior as a function
of m3π . The resulting zero-mode corrected amplitudes still
exhibit a clear ρð770Þ resonance signal but the method
induces a considerable bias towards small intensities of the
dynamic isobar amplitudes across all m3π and mπ−πþ bins.
Because of this observed bias, we do not use this approach.

APPENDIX C: PREPARATION OF THE
COVARIANCE MATRIX

In the freed-isobar PWA, the zero-mode coefficient C
in Eq. (B15) is a nuisance parameter that contains no
physical information and is not constrained by the data
(see Appendix B). But since C mixes with all other
fit parameters, it influences the uncertainties of these
parameters. We thus want to remove the corresponding
uncertainties from the covariance matrix V of the extracted
transition amplitudes fT fit

k g that we obtain from the
minimizing algorithm. Since the zero-mode Δ̃ðmijÞ in

Eq. (B12) is real valued, the ambiguity does not mix real
and imaginary parts of the transition amplitudes. We
therefore remove the uncertainty that corresponds to the
zero-mode individually from the covariance matrices VRe
and VIm of real and imaginary parts of the transition
amplitudes. Those entries of the covariance that mix real
and imaginary parts of the fT fit

k g are unaffected by the zero
mode. To this end, we define a projection operator P that
acts on the covariance matrix according to

VRe;Im → P · VRe;Im · P: ðC1Þ

This projection operator is an n × n real-valued matrix,
where n is the number of mπ−πþ intervals. It is defined as

Pkl ≡ δkl − Δ̃kΔ̃l; ðC2Þ

so that

P · ⃗Δ̃ ¼ 0⃗; P · ⃗Δ̃⊥ ¼ ⃗Δ̃⊥; and P · P ¼ P: ðC3Þ

Here, ⃗Δ̃⊥ is an arbitrary direction in the space of the fT fit
k g

that is orthogonal to the zero mode ⃗Δ̃.31

By construction, the covariance matrices VRe;Im in
Eq. (C1), from which we removed the uncertainties
corresponding to the zero mode, have eigenvectors in
the direction of the zero mode with an eigenvalue of zero.
However, using these matrices in Eq. (B17) would render
the χ2 function completely independent of the zero-mode
coefficient C so that we would not be able to determine C
by minimizing this function. We hence reinsert the zero
mode as an eigenvector weighted with an arbitrary positive
coefficient L, i.e., we perform the transformation

VRe;Im → P · VRe;Im · Pþ L ⃗Δ̃ ⊗ ⃗Δ̃: ðC4Þ

Doing so, we ensure that the zero mode ⃗Δ̃ is an exact
eigenvector of the covariance matrix V and therefore the
determination of C is independent from the determination
of all other fit parameters in Eq. (B17). For this reason, the
solutions for the zero-mode coefficient C and the other fit
parameters in Eq. (B16) are also independent of the
particular choice for the value of L. We verified numeri-
cally that this holds over 17 orders of magnitude for the
value of L.

31 ⃗Δ̃ is the vector that has the fΔ̃kg as components.
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