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We present a measurement of the branching fractions of the Cabibbo favored B̄0 → Dþπ− and the
Cabibbo suppressed B̄0 → DþK− decays. We find BðB̄0 → Dþπ−Þ ¼ ð2.48� 0.01� 0.09� 0.04Þ ×
10−3 and BðB̄0 → DþK−Þ ¼ ð2.03� 0.05� 0.07� 0.03Þ × 10−4 decays, where the first uncertainty is
statistical, the second is systematic, and the third uncertainty is due to the Dþ → K−πþπþ branching
fraction. The ratio of branching fractions of B̄0 → DþK− and B̄0 → Dþπ− is measured to be
RD ¼ ½8.19� 0.20ðstatÞ � 0.23ðsystÞ� × 10−2. These measurements are performed using the full Belle
dataset, which corresponds to 772 × 106BB̄ pairs and use the Belle II software framework for data analysis.

DOI: 10.1103/PhysRevD.105.012003

I. INTRODUCTION

Two-body decays of B mesons serve as an important test
bed for phenomenological studies of the quark flavor sector
of the Standard Model of particle physics. The Cabibbo-
favored mode B̄0 → Dþπ− is an especially clean and
abundant hadronic decay that provides a good opportunity
to test models of hadronic Bmeson decays. Due to the large
mass of the b quark, the influence of the strong interaction
in these decays can be calculated more reliably than those
in light-meson decays. It has been suggested that improved
measurements of color-favored hadronic two-body decays
of B mesons will lead to a better understanding of poorly
known quantum chromodynamics (QCD) effects [1]. The
decays of B mesons to two-body hadronic final states can
be analyzed by decomposing their amplitudes in terms of
different decay topologies and then applying SU(3) flavor
symmetry of QCD to derive relations between them. The
Cabibbo-suppressed mode B̄0 → DþK− only receives con-
tributions from color-allowed tree amplitudes while B̄0 →
Dþπ− receives contributions from both color-allowed tree
and exchange amplitudes [2]. These two decay modes can
be related by a ratio [3],

RD ≡ BðB̄0 → DþK−Þ
BðB̄0 → Dþπ−Þ ≃ tan2θC

�
fK
fπ

�
2

; ð1Þ

where θC is the Cabibbo angle, and fK and fπ are meson
decay constants. The theoretical description for these had-
ronic decays has considerably improved over the years [4,5]
and has been followed by several recent developments [6,7].
This description relies on factorization and SU(3)-symmetry
assumptions, someasurements of thesemodes can be used to
test these hypotheses in heavy-quark hadronic decays. The
above two modes are also important because they constitute
high-statistics control samples for the hadronic B-decay
measurements related to time-dependent CP violation and
the extraction of theCabibbo-Kobayashi-Maskawaunitarity-
triangle angle ϕ3 [8]. Experimentally, calculating the ratio of
the branching fractions of B̄0 → DþK− and B̄0 → Dþπ−
modes has the advantage that many systematic uncertainties
cancel, enabling tests of theoretical predictions, particularly
those of factorization and SU(3) symmetry breaking inQCD.
The theoretical predictions made in Refs. [6,7] are based

on the framework of QCD factorization, at next-to-next-
to-leading order. However, these predictions significantly
differ from the experimental values. Several attempts
[9–11] have been made to explain the discrepancy in both
B̄0 → Dþπ− and B̄0 → DþK− decays within the context of
new physics. Final-state rescattering effects on B̄0 →
Dþh−ðh ¼ K=πÞ have also been proposed to explain the
discrepancy [12]. The results in Ref. [12] rule out
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rescattering effects as a cause for the discrepancies and
hence hint at a possible beyond-the-SM explanation.
Earlier, Belle reported a study of the Cabibbo-suppressed

B̄0 → DþK− decay using a small dataset [3] by measuring
the ratio of branching fraction of Cabibbo-suppressed B̄0 →
DþK− to that of the Cabibbo-favored B̄0 → Dþπ− decay.
The branching fraction for B̄0 → Dþπ− decay was previ-
ously measured by BABAR [13,14], CLEO [15,16], and
ARGUS [17]. LHCb measured the branching fraction of
B̄0 → DþK− as well as the ratio of hadronization fractions
fs=fd [18]. A clear understanding of B̄0 → Dþh−ðh ¼
K=πÞ decays constitutes an important ingredient for the
measurement fs=fd, which in turn will aid the measurement
of rare decayB0

s → μþμ−. Currently, theworld averages [19]
for the branching fractions of B̄0 → DþK− and B̄0 → Dþπ−

decays are BðB̄0 → DþK−Þ ¼ ð1.86� 0.20Þ × 10−4 and
BðB̄0→Dþπ−Þ¼ ð2.52�0.13Þ×10−3, respectively, where
the uncertainty is the sum in quadrature of the statistical
and systematic errors. LHCb [20] measured the ratio of the
branching fractions for B̄0 → DþK− and B̄0 → Dþπ− to be
0.0822� 0.0011ðstatÞ � 0.0025ðsystÞ,whichdominates the
current world-average value.
In this paper, we present measurements of the branching

fractions of B̄0 → Dþπ− and B̄0 → DþK− decays using the
full ϒð4SÞ dataset collected with the Belle detector.
The paper is organized as follows. Section II describes

the Belle detector, as well as the data and simulation
samples used in this analysis. The event selection require-
ments are outlined in Sec. III. Section IV describes how the
values of RD and the B̄0 → Dþh−ðh ¼ K=πÞ branching
fraction are determined from the data. The results and the
evaluation of systematic uncertainties are described in
Sec. V, and the conclusion is given in Sec. VI.

II. THE BELLE DETECTOR AND DATA SAMPLE

We use the full ϒð4SÞ data sample containing 772 × 106

BB̄ events recorded with the Belle detector [21] at the
KEKB asymmetric-beam-energy eþe− collider [22]. Belle
is a large-solid-angle magnetic spectrometer that consists of
a silicon vertex detector, a 50-layer central drift chamber, an
array of aerogel threshold Cherenkov counters, a barrel-like
arrangement of time-of-flight scintillation counters, and an
electromagnetic calorimeter comprised of CsI(Tl) crystals.
All these detector components are located inside a super-
conducting solenoid coil that provides a 1.5 T magnetic
field [21].
A Monte Carlo (MC) simulated event sample is used to

optimize the event selection, study background, and com-
pare the distributions observed in collision data with
expectations. A signal-only simulated event sample is
utilized to model the features of the signal for fits and
determine selection efficiencies. One million signal events
are generated for both decay channels. The so-called
generic MC sample consists of simulated events that

include eþe− → BB̄, uū, dd̄, ss̄, and cc̄ processes in
realistic proportions, and corresponds in size to more than
five times the ϒð4SÞ data. The generic MC sample is used
to study background and make comparisons with the data.
The B- andD-meson decays are simulated with the EVTGEN

generator [23] where the D_DALITZ model is used for the
Dþ → K−πþπþ final state. The effect of final-state radi-
ation is simulated by the PHOTOS package [24]. The
interactions of particles with the detector are simulated
using GEANT3 [25].

III. EVENT SELECTION AND RECONSTRUCTION

We use the Belle II Analysis Software Framework
(BASF2) [26] for the decay-chain reconstruction and convert
the Belle data to BASF2 format using the B2BII software
package [27]. The decays B̄0 → Dþπ− and B̄0 → DþK−

have nearly the same kinematic properties. The former is
used to establish selection criteria on kinematic variables and
determine the experimental resolution due to its larger data
size compared to the latter. Charged particle tracks originat-
ing from eþe− collisions are selected by requiring dr <
0.2 cm and jdzj < 1.5 cm, where dr and jdzj represent the
distance of closest approach to the interaction point in the
plane transverse to and along the z axis, respectively. The z
axis is the direction opposite the eþ beam.
Information from the central drift chamber, aerogel

threshold Cherenkov counters, and time of flight scintilla-
tion counters is used to determine a K=π likelihood ratio
LðK=πÞ ¼ LK

LKþLπ
for charged particle identification (PID),

where LK and Lπ are the likelihoods that a particular track
is either a kaon or a pion, respectively. The likelihood value
ranges from 0 to 1 where 0 (1) means the track is likely to
be a π (K). To ensure high efficiency and purity, we require
LðK=πÞ > 0.6 for kaon candidates and LðK=πÞ < 0.6 for
pion candidates. The chargedDþ candidate is formed using
K−πþπþ combinations, which is then combined with a
prompt hadron ðh ¼ K=πÞ to form a B̄0 candidate. (The
inclusion of charge conjugate states is implied throughout
this paper.) Dþ meson candidates are required to have a
mass within �2.5σ of the known Dþ mass value [19],
where the Gaussian resolution σ is approximately 5 MeV.
The effective σ value is obtained by fitting the invariant
mass distribution of Dþ → K−πþπþ decays with a double
Gaussian function for signal and a first-order polynomial
for background as shown in Fig. 1.
The kinematic variables used to discriminate B decays

from background are the beam-energy-constrained mass

Mbc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam − p2

B

q
; ð2Þ

and the energy difference

ΔE≡ EB − Ebeam: ð3Þ
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Here EB and pB are the B candidate’s energy and
momentum, respectively, and Ebeam is the beam energy;
these quantities are calculated in the eþe− center-of-mass
frame. Natural units ℏ ¼ c ¼ 1 are used throughout the
paper. For correctly reconstructed signal events, Mbc peaks
at the known mass of the B̄0 meson and ΔE peaks at zero.
We retain the B̄0 candidates satisfying Mbc > 5.27 GeV
and jΔEj < 0.13 GeV.
The background from eþe− → qq̄ (q ¼ u, d, s, c)

continuum processes are suppressed by requiring the ratio
of the second-to-zeroth order Fox-Wolfram moments [28]
to be less than 0.3. This selection removes ∼70% of the
continuum while rejecting ∼30% of the signal in both
B̄0 → Dþπ− and B̄0 → DþK− decays. After applying the
aforementioned selection criteria, only 0.7% of events are
found to have more than one candidate. In such events, we
choose the best candidate as the one having the smallest
value of jMbc −mBj where mB is the known B̄0 mass. The
kaon identification efficiency ϵK is determined from a
kinematically selected sample of high momentum D�þ
mesons, which is used to calibrate the PID performance.
With the application of the requirements LðK=πÞ < 0.6 for
pions and LðK=πÞ > 0.6 for kaons, the kaon efficiency
(ϵK) value is found to be ð84.48� 0.35Þ% and the rate of
pions misidentified as kaons is ð7.62� 0.44Þ%.

IV. SIMULTANEOUS FIT

As the B̄0 → Dþπ− branching fraction is an order of
magnitude larger than that of B̄0 → DþK−, the former can
serve as an excellent calibration sample for the signal
determination procedure. Furthermore, there is a significant
contamination from B̄0 → Dþπ− decays in the B̄0 →
DþK− sample in which the fast charged pion is

misidentified as a kaon. A simultaneous fit to samples
enriched in prompt tracks that are identified as either pions
½LðK=πÞ < 0.6� or kaons [LðK=πÞ > 0.6], allows us to
directly determine this cross feed contribution from data.
An unbinned maximum-likelihood fit is performed to
extract the signal yield by fitting the ΔE distribution
simultaneously in pion and kaon enriched samples. The
yields of the B̄0 → Dþπ− and B̄0 → DþK− signals, as well
as their cross feed contributions, in the pion and kaon
enriched samples can be expressed by the following
relations:

NDþπ−
pion enhanced ¼ ð1 − κÞNDþπ−

total ; ð4Þ

NDþπ−
kaon enhanced ¼ κNDþπ−

total ; ð5Þ

NDþK−

kaon enhanced ¼ ϵKRDNDþπ−
total ; ð6Þ

NDþK−

pion enhanced ¼ð1 − ϵKÞRDNDþπ−
total : ð7Þ

Here the values of NDþh−
pion enhancedðh ¼ K=πÞ are the kaon

and the pion yields in pion enriched sample with
[LðK=πÞ < 0.6], and the NDþh−

kaon enhancedðh ¼ K=πÞ are the
kaon and pion yields in the kaon enriched sample with
[LðK=πÞ > 0.6]. The pion misidentification rate κ is a free
parameter, as well as RD and NDþπ−

total , where the latter is the
total signal yield for the B̄0 → Dþπ− decay. Due to a small
contribution from B̄0 → DþK− cross feed in the pion-
enriched sample, the kaon identification efficiency ϵK is
fixed to the value given in Sec. III. The yields are obtained
from fitting the ΔE distribution. The background compo-
nents are divided into the following categories in the fit:
(1) continuum qq̄ background and combinatorial BB̄

background, in which the final state particles could
be from either the B or B̄ meson in an event; and

(2) cross feed background from B̄0 → Dþh−, where
h ¼ π, K, in which the charged kaon is misidentified
as a pion or vice versa.

The B̄0 → Dþh−ðh ¼ K=πÞ signal distributions are repre-
sented by the sum of a double Gaussian function and an
asymmetric Gaussian with a common mean. These signal
probability density functions (PDFs) are common to both
kaon- and pion-enhanced samples. The means of the signal
PDFs for B̄0 → Dþπ− and B̄0 → DþK− are directly
extracted from the data, along with a single scaling factor
to the narrowest signal Gaussian to account for any
difference in ΔE resolution between simulated and data
samples. Other parameters are fixed to those obtained from
a fit to a large simulated sample of signal events.
A combined PDF is used to model combinatorial back-

ground consisting of continuum background and BB̄
background for B̄0 → DþK− (B̄0 → Dþπ−) decay, where
the continuum is modeled with a first-order polynomial
and the combinatorial BB̄ background with an exponential
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FIG. 1. Fit to the invariant mass distribution for Dþ →
K−πþπþ in data. The black vertical dotted lines show the D
mass window. The dashed curve shows the signal component and
dotted black line shows the background component. The dis-
tribution of pulls between the fit and the data points is also shown.
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function. The slope of the linear background and the
exponential functions exponent are determined from the
fit to data; other parameters are fixed to those obtained from
a fit to the corresponding simulated sample.
The cross feed background is described by a double

Gaussian function in the B̄0 → DþK− (B̄0 → Dþπ−) sam-
ple. The mean and scale factor for the B̄0 → Dþπ− cross
feed component PDF in the kaon-enhanced B̄0 → DþK−

sample are determined from the fit to data.
There is a background that can peak in the same manner

as the B̄0 → Dþπ− signal mode, which we call the
“peaking background.” The most prominent decay that
peaks in the ΔE distribution is B0 → K�J=ψ , K� → Kþπ−,
J=ψ → μþμ−, or eþe−. This source accounts for ∼2% of
the total background. To reject this contamination arising
due to leptons misidentified as pions, we veto candidates
with an invariant mass Mðπþπ−Þ value falling within �3σ
of the known J=ψ mass [19]. This essentially removes this
peaking background with ∼3% signal loss. The remaining
peaking background contributions include semileptonic D
decays for which the normalization is fixed from MC
simulation. All yields are determined from a fit to data
except for the peaking background yield. The uncertainty
associated with the fixed peaking component is included in

the systematic uncertainties. All other shape parameters are
fixed to their MC values. The yields obtained from the fit
are listed in Table I, and the signal-enhanced fit projections
for the data are shown in Fig. 2.

V. RESULTS

The branching fraction of B̄0 → Dþπ− decay is calcu-
lated as

BðB̄0 → Dþπ−Þ

¼ Ntotal
Dþπ−

2 × f00 × NBB̄ × ϵDþπ− × BðDþ → K−πþπþÞ ; ð8Þ

where Ntotal
Dþπ− is the yield of B̄0 → Dþπ− obtained from the

fit, NBB̄ is the total number of BB̄ pairs, ϵDþπ− ¼ ð24.09�
0.04Þ% is the detection efficiency for B̄0 → Dþπ− deter-
mined from signal MC events where the error is the
associated statistical error from MC sample. The factor
f00 represents the neutral B meson production ratio at the
ϒð4SÞ, which is 0.486� 0.006 [19], and BðDþ →
K−πþπþÞ is the subdecay branching fraction of Dþ, which
is ð9.38� 0.16Þ% [19]. The branching fraction for B̄0 →
DþK− decay is calculated by multiplying the RD value
from the fit by the calculated B̄0 → Dþπ− branching
fraction.
The systematic uncertainties in the measurements from

various sources are listed in Table II. Since the kinematics
of B̄0 → Dþπ− and B̄0 → DþK− processes are similar,
most of the systematic effects cancel in the ratio of their
branching fractions. The main source of systematic uncer-
tainty that does not cancel is the uncertainty in K=π
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FIG. 2. ΔE distributions for B̄0 → Dþh− candidates obtained from the (left) pion-enriched B̄0 → Dþπ− and (right) kaon-enriched
B̄0 → DþK− data samples. The projections of the combined fit and individual components of a simultaneous unbinned maximum-
likelihood fit are overlaid. The long-dashed red curve shows the B̄0 → Dþπ− component. The large-dotted magenta curve shows the
B̄0 → DþK− component. The small-dotted gray curve shows the combinatorial background component and the dash-dotted green curve
show the peaking background component in B̄0 → Dþπ− decay. The distribution of pulls between the fit and the data points is
also shown.

TABLE I. Various event yields and their statistical uncertainties
obtained from the simultaneous fit.

Parameter Fit value

B̄0 → Dþπ− total yield 42065� 235

B̄0 → Dþπ− background yield 7414� 128

B̄0 → DþK− background yield 2458� 89
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identification efficiency. All the sources of systematic
uncertainty are assumed to be independent, such that the
total uncertainty is the quadratic sum of their contributions.
The uncertainty associated with the Dþ → K−πþπþ sub-
decay branching fraction is taken from its world average
[19]. The uncertainty due to prompt tracking efficiency is
based on a previous study of high momentum ðp >
200 MeVÞ tracks. Tracking efficiency is calculated as
the ratio between partially and fully reconstructed Dþ

decays in data andMC events. The entry forNBB̄ represents
the uncertainty in the total number of BB̄ events in data.
Here f00 refers to the uncertainty due to Bðϒð4SÞ → B0B̄0Þ
branching fraction calculated from PDG 2020 [19] along
with the uncertainty due to isospin asymmetry calculated in
[29]. The efficiency variation due to the Dþ → K−πþπþ

model is evaluated by varying the model and adding a
phase space component. The resulting difference with
respect to the measured central value of the branching
fraction is treated as a systematic uncertainty. The system-
atic uncertainty due to PDFs for the Dþh−ðh ¼ K=πÞ
components and the Dþh−ðh ¼ K=πÞ cross feed compo-
nents are evaluated by varying the fixed shape parameters
by �1σ. The uncertainty due to the kaon identification
efficiency is calculated by varying the measured value by
its uncertainty obtained in data from the D� calibration
sample as described in Sec. III. The D mass window and
Mðπþπ−Þ for veto position have been varied and the
resulting difference with respect to the measured branching
fraction is taken as a systematic. The uncertainty due to
the peaking background is obtained by varying its yield by
the statistical uncertainty in its estimation. The uncertainty
associated with the reconstruction efficiency is measured
using signal MC data samples. We perform tests to validate
the fit procedure and determine any possible bias in
the fit procedure. The bias is not corrected and is used

as a systematic uncertainty. The uncertainty due to the
continuum suppression requirement is found to be
negligible.
The ratio of branching fractions is found to be

RD ¼ 0.0819� 0.0020ðstatÞ � 0.0023ðsystÞ: ð9Þ

The total Dþπ− yield from the simultaneous fit is used to
determine the branching fraction of the B̄0 → Dþπ− decay,

BðB̄0 → Dþπ−Þ ¼ ð2.48� 0.01� 0.09� 0.04Þ × 10−3;

ð10Þ

where the first uncertainty is statistical, the second is
systematic, and the third is associated with Dþ →
K−πþπþ branching fraction. The branching fraction of
B̄0 → DþK− is calculated by multiplying Eq. (9) by
Eq. (10),

BðB̄0 → DþK−Þ ¼ ð2.03� 0.05� 0.07� 0.03Þ × 10−4:

ð11Þ

The κ value obtained from the fit is ð7.79� 0.21Þ%, which
agrees within one standard deviations with the expected
pion misidentification rate as given in Sec. III. In both
measurements listed in Eqs. (10) and (11), one of the
dominant sources of systematic uncertainty arises from the
fixed PDF parametrization.

VI. CONCLUSION

In summary, we have reported measurements of the
branching fraction ratio between Cabibbo suppressed B̄0 →
DþK− and Cabibbo favored B̄0 → Dþπ− using the full
ϒð4SÞ data sample collected by the Belle experiment,

TABLE II. Systematic uncertainties in the measured RD value and branching fractions for B̄0 → Dþπ− and
B̄0 → DþK−. The total systematic uncertainty is the quadratic sum of the uncorrelated uncertainties.

Source RD BðB̄0 → Dþπ−Þ BðB̄0 → DþK−Þ
BðDþ → K−πþπþÞ … 1.71% 1.71%

Tracking … 1.40% 1.40%
NBB̄ … 1.37% 1.37%
f00=fþ− … 1.92% 1.92%
Dþ → K−πþπþ model … 0.69% 0.69%
PDF parametrization 2.71% 1.63% 1.79%
PID efficiency of K=π 0.88% 0.68% 0.73%
Dþ mass selection window 0.05% 0.56% 0.64%
J=ψ veto selection 0.12% 0.004% 0.15%
Peaking background yield 0.07% 0.04% 0.00%
MC statistics < 0.01 0.04% 0.04%
Fit bias … 0.58% 0.61%

Total 2.85% 3.43% 3.54%
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which supersedes the previous Belle measurement [3].
We also present a measurement of the branching fractions
for B̄0 → Dþπ− and B̄0 → DþK− decays. The B̄0 →
Dþh−ðh ¼ K=πÞ branching fraction and RD values are
compatible with the corresponding world averages [19]
within their uncertainties. Individual branching fractions of
B̄0 → Dþπ− and B̄0 → DþK− deviate from the theory
predictions in Refs. [6,7], however, the ratio agrees within
uncertainties.
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