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Cosmological phase transitions proceed via the nucleation of bubbles that subsequently expand and
collide. The resulting gravitational wave spectrum depends crucially on the bubble wall velocity. We use
holography to compute the wall velocity from first principles in a strongly coupled, non-Abelian, four-
dimensional gauge theory. The wall velocity is determined dynamically in terms of the nucleation
temperature. We verify that ideal hydrodynamics provides a good description of the system everywhere
except near the wall.
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I. INTRODUCTION

Although the electroweak (EW) transition is believed to
be a smooth crossover [1–3] in the Standard Model (SM),
this turns into a first-order phase transition (PT) even in
minimal extensions thereof [4–14]. In these scenarios the
Universe undergoes this PT as it expands and cools, and
this results in the production of gravitational waves (GWs)
[15] potentially observable by detectors such as LISA [17].
Further scenarios that motivate the study of cosmological
PTs include grand unified theories [18,19] and strongly
interacting dark matter (DM) [20,21]. In the first case one
imagines a gauge theory defined at an energy scale much
higher than the EW scale that could have its own PTs
[22–24]. The second case corresponds to the possibility that
DM, while weakly interacting with the SM, might be
strongly interacting with itself. Large classes of models in
this category possess first-order PTs and lead to the
production of GWs [25,26]. In summary, the discovery
of GWs originating from a cosmological PTwould not only
be the discovery of new physics beyond the SM but, in
some cases, it may be our only realistic window into such
physics.

Maximizing the discovery potential requires an accurate
prediction of the GW spectrum. The PT proceeds via the
nucleation of bubbles of the stable, low-energy phase inside
the supercooled phase. These bubbles subsequently expand
and collide. The computation of the resulting GW spectrum
requires knowledge of several parameters. Some of these,
such as the critical temperature, the strength of the
transition, etc., are thermodynamic in nature and can be
computed from static properties of the underlying theory
[27]. In contrast, the bubble wall velocity depends on out-
of-equilibrium physics and its computation in terms of the
microscopic theory is challenging even for weakly coupled
theories [39–43]. The fact that the GW spectrum is
particularly sensitive to this parameter [44] makes its
computation not just challenging but pressing.
The goal of this paper is to use holography to provide a

first-principle calculation of the bubble wall velocity in a
strongly coupled theory with a gravity dual [47]. We will
not describe the nucleation of the bubble but focus on the
postnucleation dynamics and determine its dependence
on the nucleation temperature. Holography maps the
full, quantum-mechanical dynamics of the bubble to the
classical dynamics of a black brane horizon in the dual
geometry. We thus set up appropriate initial conditions for
each nucleation temperature and numerically solve
Einstein’s equations to determine the time evolution of
the bubble. From this we read off the velocity and the
profile of the wall. We then verify that, in agreement with
general expectations, ideal hydrodynamics describes the
entire system except for the region near the wall.
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II. HOLOGRAPHIC MODEL

We consider a five-dimensional Einstein-scalar model
described by the action

S ¼ 2

κ25

Z
d5x
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Exclusively for simplicity we assume that the scalar
potential V can be derived from a superpotentialW through
the usual relation

VðϕÞ ¼ −
4

3
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Different choices of (super)potential correspond to different
dual four-dimensional gauge theories. As in [28,29], we
choose
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3

2
−
ϕ2

2
−

ϕ4

4ϕ2
M
þ ϕ6

ϕQ
; ð3Þ

where L is the asymptotic AdS radius and ϕQ and ϕM are
constants. In the limit ϕQ → ∞ the sextic term is absent and
the model reduces to that in [49–51]. The motivation for the
choice (3) is that this is a simple model of a nonconformal
theory with a first-order PT (for appropriate values of ϕQ
and ϕM [28]) whose dual gravity solution is completely
regular even at zero temperature [52]. The fall-off of the
scalar field near the asymptotic AdS geometry determines
the characteristic energy scale in the dual gauge theory, Λ,
which in turn sets the value of the critical temperature, Tc.
For concreteness, in this paper we will focus on the model
with ϕQ ¼ 10, ϕM ¼ 0.85 [53]. The phase diagram for this
case is shown in Fig. 1, where we see the usual multi-
valuedness characteristic of a first-order PT. The critical
temperature is Tc ¼ 0.418Λ, as indicated by the grey
vertical line.

III. INITIAL STATES

We now imagine that the system has been supercooled to
some state A on the upper metastable branch, and that at
this point a bubble corresponding to some state B on the
lower stable branch is nucleated. The nucleation temper-
ature is therefore TN ¼ TA. On general grounds we expect
a nonzero probability to nucleate bubbles with different
initial wall profiles and with different initial sizes. We will
therefore vary these parameters and determine their effect
on the subsequent postnucleation dynamics. We will also
vary the initial state B inside the bubble. Although this is
often assumed to have the same temperature as A, the
initial-value problem with TB ≠ TA is perfectly well-
defined on the gravity side. These parameters do not
completely determine the initial quantum state of the
bubble. On the gauge theory side they only specify the

one-point function of the stress-tensor in the initial state, for
example the profile of the energy density. On the gravity
side they only specify the fall-off of the metric near the
asymptotic AdS boundary. A complete determination of the
initial quantum state requires knowledge of all the higher
correlation functions in the gauge theory or, equivalently,
the complete metric on the gravity side. Therefore we will
also scan over different metrics in the initial data. As
in [54–56], for simplicity we will consider planar bubbles
that are translationally invariant along the transverse
fx; yg-directions and expand only along the longitudinal
z-direction. In particular, this means that there is no critical
size for the bubble. We will report on spherical bubbles
elsewhere [57].

IV. EVOLUTION

We begin with a bubble of size 14Λ−1 and a state B
inside the bubble with temperature TB ¼ TA ¼ 0.374Λ, as
indicated in Fig. 1. The initial energy profile, shown as a
dashed blue curve in Fig. 2, is arbitrarily chosen except for
the fact that it must interpolate between the energy EB
inside the bubble and the energy EA outside the bubble. We
then solve the Einstein equations in the bulk along the lines
of [51,58,59] to find the time evolution of this initial state.
Since the pressure in B is higher than in A, the initial wall is
accelerated toward the right. Figure 3 shows several snap-
shots of the resulting energy density at different times.
The wall starts at rest and reaches a steady state with

terminal velocity vAwall ≃ 0.24 in a time of orderΔt ∼ 50Λ−1

[60]. As illustrated by the solid blue curve in Fig. 3, in this
time the wall profile relaxes to a preferred shape. This shape
remains constant at subsequent times, as shown by Fig. 4.
In addition, in this time the energy density inside the wall
evolves to that of the state marked as C in Fig. 1. As time
progresses, energy conservation implies that an

FIG. 1. Energy density as a function of temperature and (inset)
speed of sound for ϕQ ¼ 10, ϕM ¼ 0.85. The grey vertical line on
the right indicates the critical temperature at which the PT takes
place. The grey vertical line on the left indicates that A and B have
the same temperature. Stable states are shown in solid blue,
metastable ones in dashed brown, and unstable ones in dotted-
dashed red.
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intermediate “hot” region develops in between the wall and
the asymptotic A-region. We have dubbed this region
Dboosted in Fig. 3. The reason is that the fluid velocity in
this intermediate region is constant and given by vD ≃ 0.22,
so Dboosted is the state D in Fig. 1 boosted to the right
with velocity vD. The interface between the Dboosted- and
the A-regions moves at constant velocity vint ≃ 0.57. This
means that the size ofDboosted grows linearly with time. The
width of the interface also grows, but more slowly than
linearly. As a consequence, if we plot the energy profile in
terms of ξ ¼ z=t for different fixed times, the interface
between Dboosted and A approaches a discontinuity at late
times, as illustrated in Fig. 5. In this limit the profile
becomes a function of ξ alone, as it is commonly assumed.
The features of the late-time state such as the wall profile,

the wall velocity, and the C- and D-states, are determined
dynamically and are independent of the bubble initial
conditions. We illustrate this for the wall profile in
Fig. 6. To obtain this plot we take the set of initial
conditions above and vary one initial condition at a time
to obtain a new set of wall profiles. Specifically, we change
the initial state B inside the bubble to the states B0 and B00 in
Fig. 1, whose corresponding energy profiles are shown in

Fig. 2. We also vary the initial size of the bubble to the
larger and smaller values shown by the corresponding
curves in Fig. 2. In addition, the wall profile for the smaller
bubble is different from that of the original bubble. Finally,
we change the initial bulk metric so as to increase or
decrease the initial pressure anisotropy between the longi-
tudinal and the transverse directions by an order of
magnitude. As we see in Fig. 6, all these changes result
in the same late-time wall profile.
We now turn to the dependence on the nucleation

temperature. The states C and D and the wall velocity
vary monotonically with TN . Indeed, as TN approaches Tcrit
from the left the states C andD approach the vertical line at
T ¼ Tcrit, the wall velocity goes to zero and the system
approaches a static, phase-separated configuration in which
the states inside and outside the bubble coexist at the
critical temperature [30]. In the opposite limit, as TN
decreases from Tcrit toward the end of the metastable
branch, labeled as A1 in Fig. 1, the states C and D move
to the left and approach C1 and D1, respectively. Similarly,
the wall velocity increases monotonically from zero to a
maximum value vA1

wall ≃ 0.29.
We have explored the dependence of vwall on different

properties of the state A. The most suggestive result is
shown in Fig. 7, which seems to imply a linear dependence

FIG. 2. Different initial energy profiles for the same nucleation
temperature TA. In this and in subsequent plots we only show
positive values of z because we only consider states invariant
under z → −z.

FIG. 3. Snapshots of the energy density profile at different
times for the initial state with TB ¼ TA shown as a dashed blue
curve in Fig. 2.

FIG. 4. Same wall profiles as in Fig. 3, each shifted in z by a
different amount, to show that the wall profile remains constant in
time.

FIG. 5. Energy profile at as a function of ξ ¼ z=t for different
values of t.
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on the ratio between the pressure difference inside and
outside the bubble and the energy density outside the
bubble. Heuristically, this relation seems plausible given
that the force trying to accelerate the bubble increases with
the pressure difference, whereas the resisting force grows
with the energy density outside the bubble.
Changing the nucleation temperature also changes the

wall profile. However, we empirically observe that, up to a
rescaling, the latter is well approximated by the interface of
a phase-separated configuration at T ¼ Tcrit [30].
Specifically, the wall profile for any TN is given by

EðzÞ ¼ EC þ ðED − ECÞfðΛzÞ; ð4Þ

where the energies of the C- andD-states depend on TN but
f is a TN-independent, universal function that only depends
on the theory. In particular, taking TC ¼ TD ¼ Tcrit, this
formula gives the profile of the phase-separated configu-
ration. The latter is shown in Fig. 8, where we also compare
the exact wall profiles for several nucleation temperatures
with those predicted by Eq. (4).

V. HYDRODYNAMICS

As the bubble expands the gradients away from the wall
get diluted. Therefore the late-time state is expected to be
well described by ideal hydrodynamics everywhere except
in the region near the wall. This is confirmed by Fig. 9,
where we compare the exact result for the longitudinal
pressure with the prediction of both ideal and first-order
viscous hydrodynamics at late times. We see that none of
the hydrodynamic curves describe the wall region correctly.
Nevertheless, at asymptotically late times the size of the
wall becomes negligible and we can use ideal hydro-
dynamics to constraint the properties of the bubble. At
those times we can treat both the wall and the interface
between the Dboosted- and A-regions as discontinuities and
assume that the physics only depends on ξ. Requiring that
the energy and momentum fluxes are the same on both
sides of these discontinuities leads to a set of matching
conditions (see e.g., [62]). In combination with the hydro-
dynamic equations away from the wall, these conditions
determine the C- and D-states, the fluid velocity in D, and
the velocity of the interface in terms of the nucleation
temperature and the wall velocity. This means that, for a
given nucleation temperature, the entire system is con-
trolled by the wall velocity.

FIG. 6. Wall profiles for the same nucleation temperature
TN ¼ TA but different initial conditions, each shifted in z by a
different amount to show that the wall profile is independent of
the initial conditions.

FIG. 7. The points show the wall velocity for different
nucleation temperatures. The line is a fit as a function of the
ratio between the pressure difference inside and outside the
bubble and the energy density outside the bubble.

FIG. 8. Comparison between the exact wall profiles for several
nucleation temperatures with the results of applying Eq. (4). The
case TN ¼ Tcrit corresponds to a static, phase-separated configu-
ration. The universal function f is shown in the inset.

FIG. 9. Comparison between the holographic longitudinal
pressure at late times and the ideal and the first-order hydro-
dynamic predictions.

YAGO BEA et al. PHYS. REV. D 104, L121903 (2021)

L121903-4



VI. DISCUSSION

We have used holography to determine the postnuclea-
tion dynamics of bubbles in a theory with a first-order PT.
The state C inside the bubble, the state D between the
bubble wall and the asymptotic region, the wall velocity
and the wall profile are all dynamically determined and are
independent of the initial conditions. In general, the
temperature in C differs from the nucleation temperature.
One interesting feature of our model is that the speed of

sound is not constant. When the nucleation temperature
approaches the critical temperature the wall velocity
approaches zero. As a consequence the bubble expansion
is guaranteed to be a deflagration. In the opposite limit, as A
approaches the turning point labeled A1 in Fig. 1, the speed
of sound in A goes to zero. This guarantees that vwall > cAs .
Nevertheless, in our model the wall velocity remains lower
than the speed of sound in D, since vA1

wall ≃ 0.24 and
cD1
s ≃ 0.51, and we still find a deflagration with zero fluid
velocity behind the wall.
It will be interesting to construct holographic models in

which the wall velocity is much larger that the speed of
sound in any of the regions, as expected in a detonation. On
the one hand, the approximate linear relation that we
uncovered in Fig. 7 suggests that this will require that
the pressure difference between the inside and the outside
of the bubble be comparable to the energy density outside
the bubble. On the other hand we emphasize that, at this
point, this linear relation should be taken purely as an
empirical observation in a single model. Establishing its
validity beyond this case requires further analysis.
Although the C- and D-states depend on the nucleation

temperature we found evidence that, up to a rescaling, the
wall profile is well approximated by a universal, TN-
independent function, as illustrated in Fig. 8. However,
the small deviations from this universal form grow with the
wall velocity. This suggests that the good agreement seen in
Fig. 8 may be due to the relatively low velocity of the wall
in our model, and that this agreement may or may not
persist in cases with higher velocities.
As expected on general grounds, we verified that the

entire system except for the region near the wall is well

described by ideal hydrodynamics at late times. This,
together with the matching conditions across the wall,
determines the properties of the entire system in terms of
the nucleation temperature and the wall velocity. In order to
further determine the velocity in terms of the nucleation
temperature a model capable of resolving the dynamics in
the wall region is needed. Here we have used the micro-
scopic description provided by holography. The fact that
the wall profile is related to the interface of a phase-
separated configuration [30] suggests that an effective
description of the wall dynamics, based on the “purely
spatial” formulation of second-order hydrodynamics, may
also be possible.

ACKNOWLEDGMENTS

We are grateful to Alessio Caddeo, Mark Hindmarsh,
Martin Sasieta and Marija Tomašević for discussions.
Y. B. is supported by the European Research Council
Grant No. ERC-2014-StG 639022-NewNGR. T. G.
acknowledges financial support from FCT/Portugal
Grant No. PD/BD/135425/2017 in the framework of the
Doctoral Programme IDPASC-Portugal. M. S. G. acknowl-
edges financial support from the Ajuts de Personal
Investigador predoctoral en Formacio program,
Fellowship No. APIF_18_19/226. M. Z. acknowledges
financial support provided by FCT/Portugal through the
IF programme, Grant No. IF/00729/2015. J. C. S., D. M.
and M. S. G. are also supported by Spanish Government
Grants No. SGR-2017-754, No. CEX2019-000918-M,
No. PID2019-105614GB-C21 and No. PID2019-
105614GB-C22. The authors thankfully acknowledge the
computer resources, technical expertise and assistance
provided by CENTRA/IST. Computations were performed
in part at the cluster “Baltasar-Sete-Sóis” and supported
by the H2020 ERC Consolidator Grant “Matter and
strong field gravity: New frontiers in Einstein’s theory”
Grant Agreement No. MaGRaTh-646597. We also
thank the MareNostrum supercomputer at the BSC (activity
Id FI-2020-1-0007) for significant computational
resources.

[1] K. Kajantie, M. Laine, K. Rummukainen, and M. E.
Shaposhnikov, Phys. Rev. Lett. 77, 2887 (1996).

[2] M. Laine and K. Rummukainen, Phys. Rev. Lett. 80, 5259
(1998).

[3] K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, and
M. E. Shaposhnikov, Nucl. Phys. B532, 283 (1998).

[4] M. Carena, M. Quiros, and C. E. M. Wagner, Phys. Lett. B
380, 81 (1996).

[5] D. Delepine, J. M. Gerard, R. Gonzalez Felipe, and J.
Weyers, Phys. Lett. B 386, 183 (1996).

[6] M. Laine and K. Rummukainen, Nucl. Phys. B535, 423
(1998).

[7] S. J. Huber and M. G. Schmidt, Nucl. Phys. B606, 183
(2001).

[8] C. Grojean, G. Servant, and J. D. Wells, Phys. Rev. D 71,
036001 (2005).

BUBBLE WALL VELOCITY FROM HOLOGRAPHY PHYS. REV. D 104, L121903 (2021)

L121903-5

https://doi.org/10.1103/PhysRevLett.77.2887
https://doi.org/10.1103/PhysRevLett.80.5259
https://doi.org/10.1103/PhysRevLett.80.5259
https://doi.org/10.1016/S0550-3213(98)00494-5
https://doi.org/10.1016/0370-2693(96)00475-3
https://doi.org/10.1016/0370-2693(96)00475-3
https://doi.org/10.1016/0370-2693(96)00921-5
https://doi.org/10.1016/S0550-3213(98)00530-6
https://doi.org/10.1016/S0550-3213(98)00530-6
https://doi.org/10.1016/S0550-3213(01)00250-4
https://doi.org/10.1016/S0550-3213(01)00250-4
https://doi.org/10.1103/PhysRevD.71.036001
https://doi.org/10.1103/PhysRevD.71.036001


[9] S. J. Huber, T. Konstandin, T. Prokopec, and M. G. Schmidt,
Nucl. Phys. A785, 206 (2007).

[10] S. Profumo, M. J. Ramsey-Musolf, and G. Shaughnessy, J.
High Energy Phys. 08 (2007) 010.

[11] V. Barger, P. Langacker, M. McCaskey, M. J.
Ramsey-Musolf, and G. Shaughnessy, Phys. Rev. D 77,
035005 (2008).

[12] M. Laine, G. Nardini, and K. Rummukainen, J. Cosmol.
Astropart. Phys. 01 (2013) 011.

[13] G. C. Dorsch, S. J. Huber, and J. M. No, J. High Energy
Phys. 10 (2013) 029.

[14] P. H. Damgaard, A. Haarr, D. O’Connell, and A. Tranberg,
J. High Energy Phys. 02 (2016) 107.

[15] For a review see e.g., [16].
[16] M. B. Hindmarsh, M. Lüben, J. Lumma, and M. Pauly,

SciPost Phys. Lect. Notes 24, 1 (2021).
[17] C. Caprini et al., J. Cosmol. Astropart. Phys. 03 (2020) 024.
[18] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438

(1974).
[19] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); 11,

703 (1975).
[20] G. D. Kribs and E. T. Neil, Int. J. Mod. Phys. A 31, 1643004

(2016).
[21] S. Tulin and H.-B. Yu, Phys. Rep. 730, 1 (2018).
[22] A. H. Guth and E. J. Weinberg, Phys. Rev. D 23, 876 (1981).
[23] V. A. Kuzmin, M. E. Shaposhnikov, and I. I. Tkachev, in

Second Seminar on Quantum Gravity (Springer, Boston,
1982).

[24] W.-C. Huang, F. Sannino, and Z.-W. Wang, Phys. Rev. D
102, 095025 (2020).

[25] P. Schwaller, Phys. Rev. Lett. 115, 181101 (2015).
[26] W.-C. Huang, M. Reichert, F. Sannino, and Z.-W. Wang,

Phys. Rev. D 104, 035005 (2021).
[27] Holographic calculations of some of these parameters

include [28–38].
[28] Y. Bea and D. Mateos, J. High Energy Phys. 08 (2018) 034.
[29] Y. Bea, O. J. C. Dias, T. Giannakopoulos, D. Mateos, M.

Sanchez-Garitaonandia, J. E. Santos, and M. Zilhao, J. High
Energy Phys. 02 (2021) 061.

[30] M. Attems, Y. Bea, J. Casalderrey-Solana, D. Mateos, and
M. Zilhão, J. High Energy Phys. 01 (2020) 106.

[31] M. Ahmadvand and K. Bitaghsir Fadafan, Phys. Lett. B 772,
747 (2017).

[32] M. Attems, Y. Bea, J. Casalderrey-Solana, D. Mateos, M.
Triana, and M. Zilhao, J. High Energy Phys. 06 (2017) 129.

[33] M. Ahmadvand and K. Bitaghsir Fadafan, Phys. Lett. B 779,
1 (2018).

[34] M. Attems, Y. Bea, J. Casalderrey-Solana, D. Mateos, M.
Triana, and M. Zilhão, Phys. Rev. Lett. 121, 261601 (2018).

[35] M. Ahmadvand, K. Bitaghsir Fadafan, and S. Rezapour,
arXiv:2006.04265.

[36] F. Bigazzi, A. Caddeo, A. L. Cotrone, and A. Paredes,
J. High Energy Phys. 12 (2020) 200.

[37] F. Bigazzi, A. Caddeo, A. L. Cotrone, and A. Paredes,
J. High Energy Phys. 04 (2021) 094.

[38] F. R. Ares, M. Hindmarsh, C. Hoyos, and N. Jokela, J. High
Energy Phys. 04 (2021) 100.

[39] G. D. Moore and T. Prokopec, Phys. Rev. Lett. 75, 777
(1995).

[40] D. Bodeker and G. D. Moore, J. Cosmol. Astropart. Phys.
05 (2017) 025.

[41] S. Höche, J. Kozaczuk, A. J. Long, J. Turner, and Y. Wang,
J. Cosmol. Astropart. Phys. 03 (2021) 009.

[42] A. Azatov and M. Vanvlasselaer, J. Cosmol. Astropart.
Phys. 01 (2021) 058.

[43] R.-G. Cai and S.-J. Wang, J. Cosmol. Astropart. Phys. 03
(2021) 096.

[44] See e.g., [45,46].
[45] M. Hindmarsh, Phys. Rev. Lett. 120, 071301 (2018).
[46] M. Hindmarsh and M. Hijazi, J. Cosmol. Astropart. Phys.

12 (2019) 062.
[47] Holographic bubbles in the probe approximation have been

considered in [48].
[48] X. Li, Z.-Y. Nie, and Y. Tian, J. High Energy Phys. 09

(2020) 063.
[49] M. Attems, J. Casalderrey-Solana, D. Mateos, I.

Papadimitriou, D. Santos-Oliván, C. F. Sopuerta, M. Triana,
and M. Zilhão, J. High Energy Phys. 10 (2016) 155.

[50] M. Attems, J. Casalderrey-Solana, D. Mateos, D.
Santos-Oliván, C. F. Sopuerta, M. Triana, and M. Zilhão,
J. High Energy Phys. 01 (2017) 026.

[51] M. Attems, J. Casalderrey-Solana, D. Mateos, D.
Santos-Oliván, C. F. Sopuerta, M. Triana, and M. Zilhão,
J. High Energy Phys. 06 (2017) 154.

[52] In top-down deformations of N ¼ 4 super Yang-Mills by
relevant operators the field theory content includes both
bosons and fermions. For example, the dimension-three
operator dual to the bulk scalar field is typically a fermion
bilinear. We expect the same to be generically true in
bottom-up models like ours.

[53] This choice is motivated by the requirement that the phase
diagram be generic, meaning that it does not exhibit any
large hierarchies, in contrast with e.g., [30,32].

[54] K. Enqvist, J. Ignatius, K. Kajantie, and K. Rummukainen,
Phys. Rev. D 45, 3415 (1992).

[55] J. Ignatius, K. Kajantie, H. Kurki-Suonio, and M. Laine,
Phys. Rev. D 49, 3854 (1994).

[56] B.-H. Liu, L. D. McLerran, and N. Turok, Phys. Rev. D 46,
2668 (1992).

[57] Y. Bea, J. Casalderrey-Solana, T. Giannakopoulos, D.
Mateos, M. Sanchez-Garitaonandia, and M. Zilhao (to be
published).

[58] P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett. 106, 021601
(2011).

[59] P. M. Chesler and L. G. Yaffe, J. High Energy Phys. 07
(2014) 086.

[60] For holographic studies of nonequilibrium steady states in
the context of the Riemann problem see e.g., [61] and
references thereof.

[61] C. Ecker, J. Erdmenger, and W. Van Der Schee, SciPost
Phys. 11, 047 (2021).

[62] J. R. Espinosa, T. Konstandin, J. M. No, and G. Servant,
J. Cosmol. Astropart. Phys. 06 (2010) 028.

YAGO BEA et al. PHYS. REV. D 104, L121903 (2021)

L121903-6

https://doi.org/10.1016/j.nuclphysa.2006.11.154
https://doi.org/10.1088/1126-6708/2007/08/010
https://doi.org/10.1088/1126-6708/2007/08/010
https://doi.org/10.1103/PhysRevD.77.035005
https://doi.org/10.1103/PhysRevD.77.035005
https://doi.org/10.1088/1475-7516/2013/01/011
https://doi.org/10.1088/1475-7516/2013/01/011
https://doi.org/10.1007/JHEP10(2013)029
https://doi.org/10.1007/JHEP10(2013)029
https://doi.org/10.1007/JHEP02(2016)107
https://doi.org/10.21468/SciPostPhysLectNotes.24
https://doi.org/10.1088/1475-7516/2020/03/024
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1142/S0217751X16430041
https://doi.org/10.1142/S0217751X16430041
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1103/PhysRevD.23.876
https://doi.org/10.1103/PhysRevD.102.095025
https://doi.org/10.1103/PhysRevD.102.095025
https://doi.org/10.1103/PhysRevLett.115.181101
https://doi.org/10.1103/PhysRevD.104.035005
https://doi.org/10.1007/JHEP08(2018)034
https://doi.org/10.1007/JHEP02(2021)061
https://doi.org/10.1007/JHEP02(2021)061
https://doi.org/10.1007/JHEP01(2020)106
https://doi.org/10.1016/j.physletb.2017.07.039
https://doi.org/10.1016/j.physletb.2017.07.039
https://doi.org/10.1007/JHEP06(2017)129
https://doi.org/10.1016/j.physletb.2018.01.066
https://doi.org/10.1016/j.physletb.2018.01.066
https://doi.org/10.1103/PhysRevLett.121.261601
https://arXiv.org/abs/2006.04265
https://doi.org/10.1007/JHEP12(2020)200
https://doi.org/10.1007/JHEP04(2021)094
https://doi.org/10.1007/JHEP04(2021)100
https://doi.org/10.1007/JHEP04(2021)100
https://doi.org/10.1103/PhysRevLett.75.777
https://doi.org/10.1103/PhysRevLett.75.777
https://doi.org/10.1088/1475-7516/2017/05/025
https://doi.org/10.1088/1475-7516/2017/05/025
https://doi.org/10.1088/1475-7516/2021/03/009
https://doi.org/10.1088/1475-7516/2021/01/058
https://doi.org/10.1088/1475-7516/2021/01/058
https://doi.org/10.1088/1475-7516/2021/03/096
https://doi.org/10.1088/1475-7516/2021/03/096
https://doi.org/10.1103/PhysRevLett.120.071301
https://doi.org/10.1088/1475-7516/2019/12/062
https://doi.org/10.1088/1475-7516/2019/12/062
https://doi.org/10.1007/JHEP09(2020)063
https://doi.org/10.1007/JHEP09(2020)063
https://doi.org/10.1007/JHEP10(2016)155
https://doi.org/10.1007/JHEP01(2017)026
https://doi.org/10.1007/JHEP06(2017)154
https://doi.org/10.1103/PhysRevD.45.3415
https://doi.org/10.1103/PhysRevD.49.3854
https://doi.org/10.1103/PhysRevD.46.2668
https://doi.org/10.1103/PhysRevD.46.2668
https://doi.org/10.1103/PhysRevLett.106.021601
https://doi.org/10.1103/PhysRevLett.106.021601
https://doi.org/10.1007/JHEP07(2014)086
https://doi.org/10.1007/JHEP07(2014)086
https://doi.org/10.21468/SciPostPhys.11.3.047
https://doi.org/10.21468/SciPostPhys.11.3.047
https://doi.org/10.1088/1475-7516/2010/06/028

