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Super-BMS4 algebras—also called BMS4 superalgebras—are graded extensions of the BMS4 algebra.
They can be of two different types; they can contain either a finite number or an infinite number of
fermionic generators. We show in this letter that, with suitable boundary conditions on the graviton and
gravitino fields at spatial infinity, supergravity on asymptotically flat spaces possesses as superalgebra of
asymptotic symmetries a (nonlinear) super-BMS4 algebra containing an infinite number of fermionic
generators, which we denote SBMS4. These boundary conditions are not only invariant under SBMS4 but
also lead to a fully consistent canonical description of the supersymmetries, which have, in particular, well-
defined Hamiltonian generators that close according to the nonlinear SBMS4 algebra. One finds, in
particular, that the graded brackets between the fermionic generators yield all the BMS4 supertranslations,
of which they provide therefore “square roots”.
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The study of the gravitational field at infinity has
revealed the somewhat unanticipated emergence of
infinite-dimensional asymptotic symmetry groups. This
phenomenon was exhibited first in the asymptotically flat
context in four spacetime dimensions, where the infinite-
dimensional BMS4 group, which contains the Poincaré
group of isometries of Minkowski space as a subgroup,
was shown to emerge as an asymptotic symmetry group at
infinity [1–4] (for recent reviews, see [5,6]). Later and
independently, anti-de Sitter gravity in three spacetime
dimensions was also shown to exhibit an infinite-
dimensional extension of the anti-de Sitter group [7].
While the significance of the infinite-dimensional

enhancement of the anti-de Sitter algebra takes a natural
place in the context of the AdS=CFT correspondence [8,9],
the physical implications of the infinite-dimensional BMS
(Bondi-Metzner-Sachs) algebra are still a subject of intense
study (see [10] for earlier work, [11–13] for an intriguing
extension of the formalism to include super-rotations, and
[14] for review and references to the more recent exciting
developments that triggered the current activity).

In the quantum theory, states are naturally defined on
general Cauchy hypersurfaces [15–17]. The asymptotic
symmetries are generated by operators that act on the
physical Hilbert space and form a representation of the
asymptotic symmetry algebra, up to possible central terms
when these are algebraically permitted. One direct access to
the quantum theory is based on the Hamiltonian formalism,
which closely parallels the quantum structure. In the
standard description, the classical state of the system is
completely specified (including radiation if any) by the
values of the dynamical variables on Cauchy hypersurfa-
ces, which asymptote to spacelike infinity. A satisfactory
formulation needs a specification of the falloff of the phase
space variables at spatial infinity, which should be such that
the action and the variational principle are well defined.
The connection between symmetries and Hamiltonian
generators is then given by standard theorems of classical
mechanics. One finds, in particular, that the symmetries
have a symplectic action and are captured by the moment
map (possibly defined on the centrally extended algebra
when central charges occur). This close parallel with the
quantum formulation is one of the reasons that make the
Hamiltonian formalism instructive.
A Hamiltonian formulation of the BMS4 symmetry on

spacelike hypersurfaces fulfilling the abovewell-definedness
requirement was developed in the papers [18–20]. This was
achieved through two distinct sets of boundary conditions.
In [18], the parity conditions on the leading orders of the
fields in an expansion at spatial infinity were taken to be
different and inequivalent to the parity conditions of [21],
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even up to a coordinate transformation. In [19,20], the parity
conditions on the leading orders of the fields were taken to
merely differ from those of [21] by a coordinate trans-
formation with specified falloff. In both cases, the BMS4
group emerges as an asymptotic symmetry group of the
theory. The first set of parity conditions (of [18]) represents a
more drastic twist of the parity conditions of [21] because
diffeomorphism invariant objects, such as the Weyl tensor,
obey inequivalent conditions.
We show in this letter how to extend the Hamiltonian

analysis of the asymptotic structure of gravity to cover
supergravity. It turns out that both sets of parity
conditions—those of [18] and those of [19,20]—admit
a supersymmetric extension of the BMS4 algebra with an
infinite number of fermionic generators, but those of [18],
on which we focus here, lead to a superalgebra with a
richer structure than those of [19,20]. In particular, the
graded brackets between the fermionic generators yield
all BMS4 supertranslations and not just the ordinary
spacetime translations. The fermionic generators may
be considered for that reason as being the “square roots”
of the BMS4 supertranslation generators.
Earlier work on the supersymmetric extensions of the

BMS4 algebra considered fermionic extensions with only a
finite number of fermionic generators—the standard super-
charges—both at null infinity [22] and spatial infinity [23].
Extensions involving an infinite number of fermionic
generators have been studied recently at null infinity
[24–26], mostly in the context of “celestial CFT”. Our
work differs from those interesting investigations in that we
deal with spatial infinity and insist throughout in having a
well-defined moment map. We denote by SBMS4 the
supersymmetric extension of the BMS4 algebra with an
infinite number of fermionic generators that emerges in
our work.
A noticeable feature of SBMS4 is that it arises as a

nonlinear superalgebra, with the natural definition of the
supersymmetry transformations outlined below. Non-
linearities also appear in the discussion of the asymptotic
symmetries of AdS supergravity in three dimensions,
where the nonlinear superalgebras of [27–29] emerge at
infinity [30], but we have not analyzed in the SBMS4 case
whether the nonlinearities were intrinsic or could be
redefined away.
The Hamiltonian action of simple supergravity in four

spacetime dimensions reads [31–35]

S½πia; eai ;ψm;ω;N;Nk;ψ0; λab� ¼
Z

dt½K −H�; ð1Þ

where the kinetic term is

K ¼
Z

d3x

�
πia _eai þ

i
2

ffiffiffi
g

p
ψT
k γ

km _ψm

�
þ BK

∞; ð2Þ

and where the Hamiltonian is

H ¼
Z

d3x

�
NHþ NiHi þ iψT

0S þ 1

2
λabJ ab

�
þ BH

∞:

ð3Þ

Here, BK
∞ and BH

∞ are surface integrals at infinity. The
explicit form of BK

∞ is determined below, while BH
∞ is

the standardArnowitt-Deser-Misner (ADM) energy (N → 1,
Nk → 0 at infinity). The canonical variables are the triads eai ,
their conjugate momenta πia, and the components ψk of the
gravitino field. They also include the field ω, which is a
fermionic surface field that must be introduced at infinity to
preserve invariance under Lorentz boosts subject to the
relaxed boundary conditions that we adopt following [36].
This field enters only in the surface term BK

∞.
The lapseN and the shiftNk are the Lagrange multipliers

associated to the Hamiltonian and momentum constraints,
whose explicit expressions are

H ¼ 1ffiffiffi
g

p
�
πijπ

ij −
1

2
π2
�
−

ffiffiffi
g

p
Rþ F1 ≈ 0; ð4Þ

Hi ¼ −2∇jπ
j
i þ F2 ≈ 0 ð5Þ

with gij ¼ eai eaj, πij ¼ 1
2
eaðiπjÞa . Here, F1 and F2 are

bilinear in fermions (∼ψ∂ψ , ωψψ , πψψ , where ω stands
for the spatial spin connection ωabk and π stands for the
momenta πia). The time component of the gravitino field ψ0

plays the role of the Lagrange multiplier associated to the
fermionic constraint

S ¼ ffiffiffi
g

p
γmn∂mψn þ F3 þ F4 ≈ 0; ð6Þ

where F3 is linear in fermions with coefficients that involve
the spatial spin connection or the triad momenta
(∼ωψ ; πψ), and F4 is at least cubic in fermions. The
constraints J ab ¼ −J ba read

J ab ¼ 1

2
ðπaiebi − πbieai Þ þ

1

2

ffiffiffi
g

p
ψT
i γ

ijγabψ j ≈ 0 ð7Þ

and do not involve derivatives of the fields. They generate
local spatial rotations, and the λab’s are their respective
Lagrange multipliers.
We freeze asymptotically the freedom of making rota-

tions of the local frames by tying at infinity these local
frames to the Cartesian coordinates, i.e., fea ≡ eai dx

ig →
fdxag or equivalently for the dual basis, feag → f ∂

∂xag,
more precisely,

eai ¼ δai þ
1

2
δajhij þOðr−2Þ; ð8Þ

πia ¼ 2δajπ
ij þOðr−3Þ; ð9Þ
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where hij and πij behave as in [18], namely,

hij ¼
h̄ijðθ;φÞ

r
þOðr−2Þ; ð10Þ

πij ¼ π̄ijðθ;φÞ
r2

þOðr−3Þ; ð11Þ

with leading orders subject to definite parity conditions
explicitly spelled out in the articles [18,37]. These boun-
dary conditions on the bosonic fields imply, in particular,
that πia and the spatial spin connection ωabk decrease at
least as r−2 at infinity.
The crucial steps that lead to the extension of the BMS4

algebra with an infinite number of fermionic generators, all
acting as well-defined canonical transformations, are as
follows.
(1) First, one extends the boundary conditions of [23] on

the fermionic fields along the lines of [36], by adding to the
standard Oðr−2Þ behavior a gradient term that decays
slower at infinity, ψk ¼ ∂kχ þ μ0k with χ ¼ Oð1Þ and
μ0k ¼ Oðr−2Þ. The term ∂kχ is the leading piece of a
supersymmetry transformation of the gravitino field
δχψk. The subsequent terms in δχψk are of lower order
and can be included in μ0k. The same is true for the
supersymmetry variations of the bosonic fields, which
are of the same type as the existing terms h̄ijðθ;φÞ=r
and π̄ijðθ;φÞ=r2, as it indirectly follows from our sub-
sequent analysis. The idea of the new extended boundary
conditions, thus, is that the supergravity fields are defined
at spatial infinity up to a supersymmetry transformation.
Because this supersymmetry transformation has a non-
vanishing charge, it is an improper gauge transformation
with nontrivial physical content, and it cannot be gauged
away [38]. Once included, it must be kept.
In order to maintain manifest space covariance, we write,

instead of the decomposition ψk ¼ ∂kχ þ μ0k, the equiv-
alent covariant decomposition

ψk ¼ ∇kχ þ μk; χ ¼ Oð1Þ; μk ¼ Oðr−2Þ; ð12Þ

the difference between ∇kχ and ∂kχ being absorbed in a
redefinition of the subleading term μk. The spinor χ is
moreover assumed to be even to leading order,

χðxiÞ ¼ χð0ÞðniÞ þ χð1ÞðniÞ
r

þOðr−2Þ; ð13Þ

with

χð0Þð−niÞ ¼ χð0ÞðniÞ: ð14Þ

Here, ni stands for the unit normal to the sphere at infinity,
or what is the same, the angles ðθ;φÞ on the 2-sphere at

infinity. Furthermore, since the leading order of ψk is given
by ∂kχ

ð0Þ, we can assume that χð0Þ has no zero mode [39].
(2) With these boundary conditions, the kinetic term in

the action is formally divergent. However, the leading
(linear) divergence is actually a total derivative and so
can be eliminated by adapting the surface term BK

∞ as
BK
∞ ¼ B̃div

∞ þ B̃K
∞, where B̃div

∞ cancels the bulk linear
divergence, and B̃K

∞ is given below. The next apparent
divergence is logarithmic but is actually not present with
the parity conditions given above.
To display the manifestly finite form of the kinetic term,

it is convenient to extend χ and μk into the bulk and treat
them as independent bulk fields in the variational principle.
This is permissible since the equations obtained by varying
χ and μk are equivalent to the original equations obtained
by varying ψk. The procedure merely introduces an extra
redundancy in the description, given by χ → χ þ σ,
μk → μk −∇kσ, under which the field ψk is invariant. To
remove the degeneracy of the symplectic term, one intro-
duces at the same time the momentum πχ conjugate to χ in
the bulk and the fermionic first class constraint

F ¼ πχ þM ≈ 0; ð15Þ

which canonically generates this redundancy, together with
its Lagrange multiplier Λ. Here, M stands for the coef-
ficient of _χ in the expression obtained by substituting ψk ¼
∇kχ þ μk in i

2

ffiffiffi
g

p
ψT
k γ

km _ψm and making the integration by
parts necessary to get rid of the time derivative _μk. Again,
this step is permissible since πχ and Λ can be viewed as
auxiliary fields that can be eliminated using their own
equations of motion, yielding back the formulation without
πχ and Λ.
When all this is done, the kinetic term takes the explicit

form

K¼
Z

d3x
�
Πi

a _eai þ iπTχ _χþ
i
2

ffiffiffi
g

p
μTk γ

km _μm

�
þ B̃K

∞; ð16Þ

with

B̃K
∞ ¼ i

2

I
dθdφ sin θωT _χð0Þ: ð17Þ

As we recalled above, the surface field ω, which is
conjugate to the asymptotic value of χ, is necessary for
the canonical implementation of Lorentz invariance. This
was shown in [36] for the linear theory, but the argument
can be straightforwardly extended to the interacting one.
Without loss of generality, we take ω to be even and
without zero mode.
The fields Πi

a involve a parity-preserving redefinition of
the variables πia that make them have simpler canonical
brackets with the other phase space variables. This redefi-
nition follows from the above decomposition of ψk and the
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subsequent redefinitions in the kinetic term. Note, however,
that the Πi

a’s are not invariant under the redundancy
χ → χ þ σ, μk → μk −∇kσ, while the original πia are.
The action takes the form

S½Πi
a; eai ;ψm;ω;N;Nk;ψ0; λab� ¼

Z
dt½K −H�; ð18Þ

where K is given by (16), and H involves the new
constraint,

H¼
Z

d3x

�
NHþNiHiþ iψT

0Sþ1

2
λabJ abþ iΛF

�
þBH

∞:

ð19Þ
(3) Poincaré invariance follows straightforwardly from

the analyses of [18,36]. This is because the interaction
terms are subleading at spatial infinity with respect to the
free terms. We focus therefore on supersymmetry.
The functional

Gε ¼
Z

d3xðεTS þ ξðε0ÞHþ ξiðεÞHi þ iλTðεÞF Þ þ Σε;

ð20Þ
where the supersymmetry parameter

ϵ ¼ Oð1Þ ¼ ϵð0ÞðniÞ þOð1=rÞ; ð21Þ

such that its leading order is an arbitrary even function
ϵð0Þð−niÞ ¼ ϵð0ÞðniÞ on the 2-sphere, is a well-defined
canonical generator, in the sense that it fulfills ιXΩ ¼
−dVGϵ for some vector field X (exactly and not up to
surface terms). Here, Ω is the symplectic form, dV the
exterior derivative in field space, and ιXΩ the inner
contraction of Ω by the vector field X defining the trans-
formation generated by Gϵ.
The ϵ-dependent compensating diffeomorphisms and

reshufflings between χ and μ generated by ξðε0ÞHþ
ξiðεÞHi þ λTðεÞF are included to preserve the boundary
conditions1 (specifically, h̄rA ¼ 0 and μi ¼ Oðr−2Þ, where
h̄rA is the radial-angular component of the leading order of
the metric [18], as well as the absence of zero-mode
condition for χð0Þ and ω). One has [to leading Oð1Þ order]

ξðε0Þ ¼ −
i
4
εT0 χ; ξiðεÞ ¼ −

i
4
∂iðrεTγ0γrÞχ;

λðεÞ ¼ −ðε − ε0Þ; ð22Þ

where ϵ0 stands for the zero mode of the parameter ϵ.
Finally, the surface term Σϵ to which the generator Gϵ

reduces when the constraints hold is given by

Σε ¼ −i
I

d2x
ffiffiffī
g

p
εT0 γrγ̄

Aμ̄A þ i
4

I
d2x

ffiffiffī
g

p ðε − ε0ÞTχð0Þh̄rr

−
i
8

I
d2x

ffiffiffī
g

p ðε − ε0ÞTγrγ̄Aχð0Þ∂Ah̄rr

−
i
2

I
d2x

ffiffiffī
g

p ðε − ε0ÞTω

−
i
2

I
d2xðε − ε0ÞTγ0γrχð0ÞðΠ̄rr − Π̄A

AÞ; ð23Þ

where d2x ¼ dθdφ corresponds to the integral measure,
and ḡ stands for the determinant of the metric on the
2-sphere at infinity. The surface integral Σϵ involves both
linear and quadratic terms in the asymptotic fields. Note
that in this integral only the asymptotic value of ϵ, i.e., ϵð0Þ,
contributes.
The transformation generated by Gϵ is a standard

supersymmetry transformation with supersymmetry param-
eter ϵ. Indeed, one can see, for instance, that the trans-
formation of the metric and the gravitino field reads

δϵgij ¼
i
2
ϵ̄γðiψ jÞ þ “more”; δϵψ i ¼ −ð4Þ∇iϵþ “more”;

ð24Þ

where “more” in the metric transformation law stands for
the coordinate transformation that is included to preserve
h̄rA ¼ 0, while “more” in the gravitino transformation law
stands for higher order terms in fermions. This implies, in
particular,

δϵχ
ð0Þ ¼ −ðϵ − ϵ0Þ: ð25Þ

The conjugate to χð0Þ transforms as

δεω ¼ 1

2
ðε − ε0Þh̄rr þ

1

4
γrγ̄

Aðε − ε0Þ∂Ah̄rr; ð26Þ

insuring that the transformation is canonical (no unwanted
surface term in the relation ιXΩ ¼ −dVGϵ relating the
exterior derivative in the field space of the generator Gϵ to
the contraction of the symplectic form Ω with the vector
field X defining the infinitesimal transformations).
The transformations with nonvanishing ϵ at infinity are

improper gauge symmetries since the surface term (23)
does not vanish in this case [38]. Because the asymptotic
value of the supersymmetry parameter is an arbitrary (even)
function ϵð0Þðθ;φÞ on the 2-sphere, we have given a
formulation of supergravity with an infinite number of
improper fermionic gauge symmetries.
The set of fermionic transformations is in fact larger

since the theory is also invariant under time-independent
shifts of ω with generator Qσ

1The parameter ξðε0Þ is chosen such that the supercharge
reduces to the one of rigid supersymmetry for ε ¼ ε0 in [20].
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δσω ¼ σ ¼ ½ω; Qσ�; Qσ ¼
i
2

I
d2x

ffiffiffī
g

p
σTχð0Þ: ð27Þ

(Note that the equations of motion imply, in particular,
_χð0Þ ¼ 0, and hence, _Qσ ¼ 0.)
(4) The asymptotic symmetry algebra is the standard one

for Poincaré and BMS, in the Hamiltonian basis [18,40].
The two additional fermionic symmetries Gϵ and Qσ form
infinite-dimensional (reducible but indecomposable) rep-
resentations of the homogeneous Lorentz group, with zero
modes transforming in the finite-dimensional spin-1

2
rep-

resentation. In the case of Gϵ, there are additional nonlinear
terms in the bracket with the boost generators, involvingQσ

and the supertranslations, due to the quadratic terms in the
surface integral Σϵ. The fermionic symmetries both com-
mute with the supertranslations.
Finally, the (graded) brackets of the fermionic sym-

metries provide square roots of all BMS supertranslations,
i.e., ½Gϵ; Gϵ0 � ∼GT̂;Ŵ , generalizing the familiar relation
½Q;Q0� ∼ γμPμ of ordinary finite-dimensional supersym-
metry, where the resulting BMS supertranslation parameter
is expressed in terms of the independent parameters ϵ and ϵ
of the two fermionic symmetries as

T̂ ¼ −
i
4
εT0 ε

0
0 −

i
4
ðε − ε0ÞTðε0 − ε00Þ; ð28Þ

Ŵ ¼ −
i
4
εT0 γ0γrε

0
0 þ

i
4
ðε − ε0ÞTγ0γrðε0 − ε00Þ. ð29Þ

Here, T and W are even and odd functions under parity,
respectively, and together form the angle-dependent super-
translation parameter [18,20]. The brackets of the other
fermionic symmetries vanish, ½Qσ; Qσ0 � ¼ 0, while there
is a nontrivial central charge in the bracket ½Gϵ; Qσ� ¼
− i

2

H
d2x

ffiffiffī
g

p ðϵ − ϵ0ÞTσ.
We have thus successfully provided boundary conditions

at spatial infinity for supergravity that are invariant under an
extension of the BMS4 algebra by an infinite number of
fermionic generators. These can be thought of as square
roots of the supertranslations. One central idea in the
construction is to enlarge the boundary conditions of [23],
which lead to a finite-dimensional fermionic extension of the
BMS4 algebra, by allowing an improper gauge term ∂kχ that
decays slower at infinity in the gravitino field ψk.
Extending the formalism in order to enlarge the set of

improper gauge transformations may not be always direct
or possible, as the papers [41,42] have shown for the

minimal electromagnetic coupling. What makes the exten-
sion work in the case of supergravity is the fact that the
Abelian part of the supersymmetry transformation domi-
nates the non-Abelian corrections, as for pure gravity [43],
while this is not so for Yang-Mills theory where the
derivative operator ∂k and the connection Ak are of same
order Oðr−1Þ. The difficulty is somewhat reminiscent of
the “boost problem” in field theories [44] and also of the
difficulties encountered in imposing asymptotically the
Lorenz gauge in the case of electrodynamics with massless
charged fields [42,45].
One attractive feature of the Hamiltonian description of

the symmetries on Cauchy hypersurfaces is that it does not
rely on the dynamical question of the existence of a smooth
null infinity, which is a delicate and somewhat intricate
issue [46–52].
Two intriguing properties of the superalgebra SBMS4

should be stressed. First, nonlinear terms appear in the
brackets of the asymptotic generators, as in AdS3 super-
gravity [30], but we have not explored whether these
nonlinear terms could be absorbed through redefinitions.
Second, another infinite-dimensional fermionic sym-
metry arises, generated by Qσ. It would be worthwhile
to understand the reason behind its emergence, which
might perhaps be related to subleading soft theorems
through the corresponding Ward identities (see [14] for
the connection between soft theorems and asymptotic
symmetries).
Since we derived a bone fide Hamiltonian description of

the asymptotic symmetry, the transition to the quantum
theory can be performed by applying the usual correspon-
dence rules. The symmetry generators would correspond to
quantum operators, with an algebra that is ðiℏÞ times the
classical bracket algebra up to possible corrections of
higher order in Planck’s constant. The fact that the super-
translations are given by the anticommutators of fermionic
symmetries might lead to interesting new positivity theo-
rems [53,54] (provided the Hilbert space has no negative
norm states [55]).
The detailed derivation of the results presented here, as

well as the discussion of other boundary conditions, will be
given in a separate publication.
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