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Theories with compact extra dimensions are sometimes unstable to decay into a bubble of nothing—an
instability resulting in the destruction of spacetime. We investigate the existence of these bubbles in
theories where the moduli fields that set the size of the extra dimensions are stabilized at a positive vacuum
energy—a necessary ingredient of any theory that aspires to describe the real world. Using bottom-up
methods, and focusing on a five-dimensional toy model, we show that four-dimensional de Sitter vacua
admit bubbles of nothing for a wide class of stabilizing potentials. We show that, unlike ordinary Coleman-
De Luccia tunneling, the corresponding decay rate remains non-zero in the limit of vanishing vacuum
energy. Potential implications include a lower bound on the size of compactified dimensions.
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I. INTRODUCTION

Awide range of experimental evidence strongly indicates
that our Universe is entering a phase of accelerated expan-
sion [1–3]. Accommodating this observation in the context
of general relativity requires the presence of dark energy, a
near-perfect fluid with equation of state p=ρ ≈ −1. The
simplest realization of dark energy is through a de Sitter
solution of Einstein’s equations, featuring a constant
positive vacuum energy.
Notwithstanding this apparent simplicity, the theoretical

standing of de Sitter vacua remains contentious.
Constructing de Sitter solutions in string theory has proven
remarkably hard [4–18]. Although there exist prescriptions
on how to achieve this goal [19,20], the hurdles to over-
come have even led to speculation that de Sitter vacua may
not exist in theories of quantum gravity [21–23]. Less
controversial is the expectation that if de Sitter exists, it will
only be metastable. In any geometric compactification of
string theory that aspires to describe the real world, all
moduli fields associated with the shape and size of the
compactification must be stabilized at a positive value of
the scalar potential—a goal that can only be achieved
locally. As a result, a four-dimensional de Sitter vacuum
generally will be unstable to decay into a Universe with

vanishing energy density, with spatial extra dimensions that
are no longer compactified [24–26].
In a seminal publication, Coleman and De Luccia (CDL)

extended previous results on the topic of tunneling in
quantum field theory [27,28] to include the effects of
gravitation [29]. The decay rate per unit volume of the false
vacuum is of the form Γ ∼ v4e−ΔS, with v some typical
energy scale, and ΔS the Euclidean action of the so-called
“bounce” solution that interpolates between true and false
vacuum. For a de Sitter vacuum with energy density Ufv,
separated by a large potential barrier from the true
Minkowski phase, ΔS is given by [29]

ΔS ≃
24π2m4

Pl

Ufv
: ð1Þ

Equation (1) diverges in the limit Ufv → 0, making the
corresponding false vacuum exponentially long-lived.
In this paper, we discuss an additional instability of

de Sitter and Minkowski vacua that may be present in
theories with stabilized extra dimensions. This decay is a
generalization of Witten’s “bubble of nothing” [30]—a
catastrophic instability that destroys the spacetime. Like
CDL, we focus on a real scalar field, ϕ, minimally coupled
to gravity in four dimensions. Interpreting ϕ as the radial
modulus of an extra dimension compactified on an S1, we
show that a wide range of scalar potentials with a local
de Sitter vacuum are compatible with the existence of a
bubble of nothing. The instanton describing this instability
corresponds to a solution to the CDL equations with
unusual boundary conditions. We construct this instanton,
analytically and numerically, for a general class of poten-
tials. Evaluating the corresponding Euclidean action, we
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find that, unlike Eq. (1), it remains finite in the limit of
vanishing vacuum energy.
Our result suggests the possibility of an upper bound on

the lifetime of realistic de Sitter vacua, set by the size of the
extra dimensions, and largely insensitive to the size of the
four-dimensional cosmological constant.
Most prior work has focused on the existence of bubbles

of nothing from the top-down in string compactifications
[31–34], and on the role of supersymmetry in suppressing
decay rates [35–37]. A number of interesting papers have
studied theories with explicit moduli stabilization mecha-
nisms, both with anti–de Sitter [35,38–41] and de Sitter
[39,40] false vacua, and with bubble solutions character-
ized by shrinking S1 [35,38] or S2 [39–41] fibers. We take a
complementary, bottom-up approach, remaining agnostic
about the details of the stabilizing potential, and we build
on the insights of [42], where it was first suggested that
these instabilities may survive moduli stabilization. Our
goal is to develop four-dimensional tools to assess the
relevance of bubbles of nothing in phenomenologically
viable models.

II. GRAVITATION AND TUNNELING

We dedicate this section to reviewing the relevant aspects
of the CDL formalism, as well as Witten’s bubble.

A. Coleman-DeLuccia formalism

The formalism of [27–29] is centered upon finding the
bounce: the solution to the Euclidean field equations whose
analytic continuation provides the spacetime to which the
false vacuum decays. In the presence of gravity, the
problem is greatly simplified by the (postulated) Oð4Þ
symmetry of the bounce, which restricts our attention to
metrics of the form

ds4 ¼ dξ2 þ ρðξÞ2dΩ3; ð2Þ

where ξ is a radial coordinate, and dΩ3 is the line element
of the unit three-sphere, with curvature radius ρ. For a
single real scalar field minimally coupled to gravity, the
Euclidean field equations take the form

ϕ00 þ 3ρ0

ρ
ϕ0 ¼ dUðϕÞ

dϕ
; ð3Þ

ρ02 ¼ 1þ ρ2

6m2
Pl

ðϕ02 − 2UðϕÞÞ: ð4Þ

What are the boundary conditions that accompany
Eq. (3) and (4)? The answer depends on the topology of
the solution, which as usual in general relativity we do not
necessarily know beforehand. For a de Sitter false vacuum,
and a scalar potential satisfying UðϕÞ ≥ 0, the solution has
the topology of a four-sphere, and ρ vanishes twice [43].

WLOG, the first zero can be placed at ξ ¼ 0, and
ξ ∈ ½0; ξmax�, with ρðξmaxÞ≡ 0. Any nonsingular solution
must then satisfy the boundary conditions ϕ0ð0Þ ¼
ϕ0ðξmaxÞ ¼ 0.
One such solution is the de Sitter false vacuum:

ϕdS ≡ ϕfv; and ρdSðξÞ ¼ Λ sin

�
ξ

Λ

�
; ð5Þ

with Λ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

Pl=Ufv

p
the radius of the cosmological de

Sitter horizon. On the other hand, the bounce describing the
decay of this false vacuum features an inner region where ϕ
approaches the true vacuum, and an outside regionwhere the
solution asymptotes to the metastable phase. The exponen-
tial factor governing the decay rate is obtained by evaluating
the action of the bounce relative to that of the false vacuum,
that isΔS≡ SEjCDL − SEjdS, and the action evaluated on any
nonsingular solution to the field equations can be written as
SE ¼ −2π2

R ξmax
0 dξρ3U. When the de Sitter vacuum energy

is much smaller than the potential barrier separating false
and true vacua, ΔS is given by Eq. (1).

B. Bubble of nothing

Witten’s bubble is a peculiar instability of the Kaluza-
Klein vacuum M4 × S1 [30]. The corresponding instanton
is the five-dimensional Euclidean Schwarzschild solution,

ds5 ¼
dr2

1 − R2=r2
þ r2dΩ3 þ

�
1 −

R2

r2

�
dy2; ð6Þ

with r ∈ ½R;∞Þ, and y ∼ yþ 2πR. Analytically continuing
Eq. (6) into a Lorentzian manifold reveals the spacetime
into which the Kaluza-Klein vacuum decays. The new
spacetime resembles the original M4 × S1, except with a
“hole” inside: from the perspective of a four-dimensional
observer, the region x2 − t2 < R2 has been removed, and
spacetime ends on the surface x2 − t2 ¼ R2. The existence
of a fifth dimension plays a crucial role in ensuring that the
solution remains smooth. Although asymptotically the
proper length of the S1 remains 2πR, it shrinks to zero
size at x2 − t2 ¼ R2—effectively sealing off what other-
wise would be a manifold with a boundary. Like in the
traditional picture of quantum tunneling, a bubble is
nucleated within the false vacuum sea. Unlike the familiar
process, the bubble is not filled with true vacuum, but rather
it has “nothing” in it.
It was noted in [42] that Witten’s bubble can be rewritten

as a solution of Eq. (3) and (4). Indeed, the five-
dimensional Einstein-Hilbert action can be dimensionally
reduced into a four-dimensional problem including
Einstein’s gravity plus a real scalar ϕ—the radial modulus,
whose vacuum expectation value determines the size of
the compactified dimension. The following parametrization
results in the canonical normalization for ϕ:
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ds5 ¼ e−
ffiffi
2
3

p
ϕ

mPlds4 þ e2
ffiffi
2
3

p
ϕ

mPldy2: ð7Þ

Witten’s bubble can be written as in Eq. (7), with the four-
dimensional metric satisfying the Oð4Þ-symmetric ansatz
of Eq. (2). The corresponding field equations are Eq. (3)
and (4), with UðϕÞ≡ 0.
The Oð4Þ-invariant CDL coordinate is related to the

radial coordinate of the Schwarzschild metric by

ξðrÞ ¼
Z

r

R

dr̂

ð1 − R2=r̂2Þ1=4 ; ð8Þ

and the profiles ϕðξÞ and ρðξÞ corresponding to Witten’s
bubble are shown in Fig. 1. Near ξ ¼ 0:

ϕbonðξÞ ≃mPl

ffiffiffi
2

3

r
log

�
3ξ

2R

�
; ð9Þ

ρbonðξÞ ≃ R

�
3ξ

2R

�
1=3

: ð10Þ

This highlights how Witten’s bubble is not a CDL bounce
proper, as it appears singular at ξ ¼ 0. The existence of a
fifth dimension is key to ensure that this is only a
coordinate singularity. In the near-horizon region:

ds5 ≃ dλ2 þ λ2dỹ2 þ R2dΩ3; ð11Þ

where λ≡ Rð3ξ=2RÞ2=3, and ỹ≡ y=R. The solution is
indeed smooth, and has the topology of R2 × S3.
Upon dimensional reduction, the action of Witten’s

bubble consists of a single term evaluated at ξ ¼ 0:

ΔSbon ¼ π2mPl

ffiffiffi
2

3

r
ρbonðξÞ3ϕ0

bonðξÞ
����
ξ¼0

¼ π2m2
PlR

2: ð12Þ

III. BOUNCE OF NOTHING

It was an important insight of [42] that rewriting the
bubble of nothing as a CDL problem makes it natural to
look for analogous solutions in the presence of a non-
vanishing UðϕÞ. Indeed, in any realistic construction, all
moduli must be stabilized, so the survival of these solutions
in the presence of a scalar potential is a necessary require-
ment if they are to remain relevant in “real life.”
What classes of scalar potentials are compatible with the

existence of Witten’s bubble? It was speculated in [42] that
only potentials that vanish in the compactification limit
would be compatible with a bubble of nothing. Instead,
let us consider potentials whose asymptotic behavior is of
the form UðϕÞ ≃U0 expfaϕ=mPlg as ϕ → −∞, with no
assumption regarding the sign of a. Evaluated on Witten’s
solution, the right-hand side of Eq. (3) near ξ ¼ 0 reads

dUðϕÞ
dϕ

����
bon

≃
aU0

mPl

�
3ξ

2R

� ffiffi
2
3

p
a
: ð13Þ

On the other hand, both terms on the left-hand side of
Eq. (3) scale as ξ−2 in the limit ξ → 0. Solutions satisfying
the same boundary conditions as Witten’s bubble at the
center of the bounce are therefore compatible with the
corresponding field equations, provided [44]

ffiffiffi
2

3

r
aþ 2 > 0 ⇒ a > −

ffiffiffi
6

p
: ð14Þ

This includes all a > 0, in which case the potential
vanishes as ξ → 0, where the extra dimension shrinks to
zero size. More surprisingly, it also allows for a negative
range of a, corresponding to jUj → ∞ in the direction
where the extra dimension becomes compactified.
In the remainder of this paper we focus on potentials that

satisfy the requirement of Eq. (14). As illustrated in Fig. 2,
this includes potentials that vanish in the compactification
limit, but also potentials that grow exponentially provided
the growth rate is not too large. For simplicity, we will take

FIG. 1. Witten’s bubble, in terms of the degrees of freedom of
the corresponding CDL problem. Its asymptotic behavior, for
ξ ≫ R, is shown in the figure, with γ ¼ ffiffiffi

π
p

Γð3
4
Þ=Γð1

4
Þ ≃ 0.6.

FIG. 2. Theories with stabilized extra dimensions and positive
vacuum energy are generally unstable to decay into the decom-
pactification regime, as illustrated by the ϕ ≥ 0 region of this
figure. Instead, our work concerns the region ϕ ≤ 0 that probes
the compactification limit. Depending on the details of the
underlying theory, the asymptotic behavior of the potential in
the compactification regime may vary, as illustrated by the dashed
and dotted curves.
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the mass of the modulus in the false vacuum to satisfy
m ≪ 1=R, and assume that the overall scale of the potential
is such that U0 ≲m2

Plm
2 ≪ m2

Pl=R
2. These simplifications

are not necessary for the existence of these instantons, or
any of their qualitative features we discuss, but it will allow
us to obtain simple analytic expressions for both the bounce
and the corresponding tunneling exponent. A more general
discussion, where these assumptions are relaxed, can be
found in [45]. The location of the false vacuum is arbitrary,
and we choose ϕfv ≡ 0. Around the metastable vacuum,
UðϕÞ ≃ Ufv þ 1

2
m2ϕ2.

There is a one-parameter family of bubble of nothing
solutions to Eq. (3) and (4) with UðϕÞ≡ 0, given by

ϕηðξÞ≡
ffiffiffi
3

2

r
mPl log ηþ ϕbonðξ · η−3=2Þ; ð15Þ

ρηðξÞ≡ η3=2ρbonðξ · η−3=2Þ; ð16Þ

for any η > 0. The value of η, however, is without
consequence, as it merely rescales the five-dimensional
metric by a constant conformal factor. Given that Euclidean
Schwarzschild is a solution of Einstein’s equations in
vacuum, one may therefore take η≡ 1 WLOG. A more
extensive discussion on this point can be found in section 1
of the Supplemental Material [46].
The above no longer holds in the presence of a potential

for ϕ. In this case, Eq. (15) and (16) only provide an
approximate solution to the Euclidean field equations
for a limited range of ξ ≥ 0. Nevertheless, as long as
y ∼ yþ 2πR, the corresponding five-dimensional geometry
remains smooth. Indeed, near ξ ¼ 0,

ds5 ≃ dλ2 þ λ2dỹ2 þ η2R2dΩ3; ð17Þ

with λ and ỹ as defined below Eq. (11). Equation (17)
clarifies the meaning of η: it parametrizes the radius of the
S3 of the near-horizon geometry, R3 ≡ ηR, corresponding
to the radius of the ‘hole’ that nucleates in spacetime.
Provided U0 ≪ m2

Pl=R
2, it is easy to see by inspecting

Eq. (3) and (4) that Witten’s bubble provides an approxi-
mate solution well into the regime where ρ≳ R. Here,
ρ0 ≃ 1, and

ϕηðρÞ ≃
ffiffiffi
3

2

r
mPl

�
log η −

η3

2

�
R
ρ

�
2
�
: ð18Þ

Assuming that η − 1 ≪ 1, as we will justify in time,
jϕj=mPl ≪ 1, and the system finds itself in the vicinity
of the false vacuum. In this regime, Eq. (3) reads

d2ϕ
dρ2

þ 3

ρ

dϕ
dρ

≃m2ϕ; ð19Þ

and the relevant solution is of the form

ϕiðρÞ ≃ C
K1ðmρÞ
mρ

; ð20Þ

where C is a constant of integration. When mρ ≪ 1,
jϕiðρÞj ∝ ρ−2, whereas

jϕiðρÞj ∝
e−mρ

ðmρÞ3=2 for mρ ≫ 1: ð21Þ

ϕi interpolates between the bubble of nothing and the
metastable vacuum, approaching the latter exponentially
fast once ρ ≫ m−1. Demanding that both ϕ and ϕ0 remain
continuous across the transition allows us to find expres-
sions for both C and η. In particular,

η ¼ R3

R
≃ 1þm2R2

4
logðmRÞ−1 þOðm2R2Þ: ð22Þ

By assumption, mR ≪ 1, which justifies our earlier
approximation that η − 1 ≪ 1. The terms of Oðm2R2Þ
capture the dependence of the solution on the detailed
features of the potential in the region to the left of the local
minimum, and, as it will become apparent in Sec. IV, they
do not affect the leading contribution to the bounce action.
Further details complementing this discussion can be found
in section I of the Supplemental Material [46].
Provided Ufv > 0, the bounce eventually transitions into

the de Sitter false vacuum, where ρ is given by

ρðξÞ ≃ Λ sin

�
ξþ γR

Λ

�
; ð23Þ

with γ ¼ ffiffiffi
π

p
Γð3

4
Þ=Γð1

4
Þ ≃ 0.6.

Our conclusions are borne out by numerical analysis.
Like the traditional CDL bounce, this class of instantons
can be found by implementing an overshoot-undershoot
method, where ϕ corresponds to the position of a particle
moving in a potential −UðϕÞ. In the familiar CDL solution,
ϕ starts at rest in the vicinity of the true vacuum,
corresponding to the boundary condition ϕ0ð0Þ ¼ 0, and
eventually approaches the local minimum. On the contrary,
the bubble of nothing starts at ϕð0Þ ¼ −∞, with “infinite
velocity.” The particle breezes through the potential, and
finally comes to rest in the vicinity of the false vacuum.
Unlike the CDL bounce, the appropriate shooting param-
eter is not ϕð0Þ, but rather η ¼ R3=R. Figure 3 shows one
such numerical solution. A more extensive numerical
discussion can be found in [45].

IV. DE SITTER DECAY RATE

Having built an approximate solution that interpolates
between Witten’s bubble and the de Sitter false vacuum, we
now turn to the evaluation of the corresponding Euclidean
action. Since we are interested in the behavior of the action
in the limit of vanishing cosmological constant, we will
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neglect terms that vanish as Ufv → 0. Relative to that of the
false vacuum, the bounce action is given by

ΔS ¼ π2mPl

ffiffiffi
2

3

r
ρðξÞ3ϕ0ðξÞ

����
ξ¼0

− 2π2
Z

ξmax

0

dξρ3U − SE

����
dS
: ð24Þ

The first line in Eq. (24) is a contribution from the center
of the bounce. It reads

ΔSjξ¼0 ≡ π2mPl

ffiffiffi
2

3

r
ρðξÞ3ϕ0ðξÞ

����
ξ¼0

¼ π2m2
PlR

2η3

≃ π2m2
PlR

2

�
1þ 3

4
m2R2 logðmRÞ−1

�
; ð25Þ

where we have used Eq. (22) to expand around η ¼ 1, and
we have ignored terms of Oðm2R2Þ inside the bracket.
Let us now turn to the second line in Eq. (24). Much like

for the traditional CDL solution, the contribution to the
action from the region where the bounce has effectively
reached the false vacuum is vanishingly small. We are
therefore left with that from the inner region, up to ρ ∼m−1.
In this regime, the integral is dominated by the region of
large ρ, where ρ0 ≃ 1, andUðϕÞ is in the vicinity of the local
minimum. We find

ΔSjU ≡ −2π2
Z

ξmax

0

dξρ3U − SE

����
dS

≃ −2π2
Z

m−1

dρρ3ðU −UfvÞ

≃ −
3π2

8
m2

Plm
2R4 logðmRÞ−1; ð26Þ

where, again, we ignore non-log-enhanced terms, as well as
terms that vanish as Ufv → 0.
Adding up Eq. (25) and (26), the bounce action in the

limit Ufv → 0 is approximated by

ΔS ≃ π2m2
PlR

2

�
1þ 3

8
m2R2 logðmRÞ−1

�
: ð27Þ

This result is finite, and smaller than that of the traditional
CDL bounce, given in Eq. (1). Under the simplifying
assumptions introduced in Sec. III—namely, that the mass
of the radion and the overall scale of the potential satisfy
m ≪ 1=R and U0 ≲m2

Plm
2—the tunneling exponent in

Eq. (27) is approximately equal to that of the original
bubble of nothing, up to small corrections. Relaxing these
assumptions will change the exact expression for ΔS, but,
crucially, the tunneling exponent will remain finite pro-
vided the scalar potential satisfies the existence condition
discussed around Eq. (14). Further details on this point are
dicussed in section 3 of the Supplemental Material [46].
A more extended discussion of the behavior of the decay
rate into a bubble of nothing that relaxes our previous
assumptions on the form of the scalar potential can be
found in [45].

V. CONCLUSIONS

It remains crucial to improve our understanding of de
Sitter vacua, and this includes identifying its potential
instabilities. This can affect the viability of proposed de
Sitter constructions, with potential implications for our
understanding of the string landscape and the cosmological
constant problem.
We have shown that de Sitter vacua can be susceptible to

a bubble of nothing instability, with a decay rate that
remains finite in the limit of vanishing vacuum energy. This
is true for a wide range of stabilizing potentials, including
potentials that diverge in the compactification limit, and
that naively would only be susceptible to the spontaneous
decompactification instability of [24–26]. This opens the
possibility that Witten’s bubble may be a crucial ingredient
to our understanding of vacuum decay in generic and
realistic models, and it is the main qualitative result of
this work.
There is a lower bound on the action of the correspond-

ing instanton, approximated by that of Witten’s bubble,
and that is largely independent of the four-dimensional
cosmological constant, or the size of the barrier separating
false and true vacua. To illustrate the potential implications
of this result, let us estimate the decay probability of
our Universe into one of these bubbles. Parametrically,
it is given by Γ=H4

0 ∼ v4e−ΔS=H4
0, and ΔS≳ 560 −

logðm4
Pl=v

4Þ is necessary to ensure that Γ=H4
0 ≲ 1. For a

bounce action similar to that of Eq. (27), this leads to a
moderate lower bound on the size of the compact dimen-
sion: R≳ 8m−1

Pl .

FIG. 3. Instanton describing a bubble of nothing instability of a
de Sitter vacuum. The choice of scalar potential used in this
analysis is given in section 2 of the Supplemental Material [46].
The radius of the extra dimension in the false vacuum, R, is an
input, as indicated. The radius of the corresponding bubble of
nothing, R3, is obtained via an overshoot-undershoot algorithm.
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Our work has followed a bottom-up philosophy, inves-
tigating the existence of bubbles of nothing in phenom-
enologically relevant settings, namely assuming the
stabilization of moduli at a positive vacuum energy. This
is not a sufficient condition for our Universe to admit this
class of instabilities, but it is a necessary one.
Obstacles to the existence of bubbles of nothing

have mainly concerned supersymmetry, as a choice of
supersymmetric boundary conditions for fermions can
provide a topological obstruction [30], and in cases without
such an obstruction the rate must still vanish in the
supersymmetric limit [35,36]. However, the topological
obstruction is not universal across all internal manifolds,
and moreover, supersymmetry is broken in our universe
by an amount much greater than required by the positive
vacuum energy. Further, nonsupersymmetric boundary

conditions that generate tree-level fermion masses pro-
vide a phenomenologically attractive implementation of
supersymmetry breaking [47–55], and are compatible
with such bubbles [31]. Overall, the obstructions to the
existence of bubbles of nothing in our world seem less
rather than more.
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