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Maggiore observed that, in the high-damping regime, the quasinormal modes spectrum for the
Schwarzschild black hole resembles that of a quantum harmonic oscillator. Motivated by this observation,
we describe a black hole as a statistical ensemble of N quantum harmonic oscillators. By working in the
canonical ensemble, we show that, in the large-mass black hole limit, the leading contribution to the Gibbs
entropy is the Bekenstein-Hawking term, while the subleading one is a logarithmic correction, in agreement
with several results in the literature. We also find that the number of oscillators scales holographically with
the area of the event horizon.
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I. BACKGROUND AND MOTIVATIONS

Classically, a perturbed black hole reacts dynamically,
producing characteristic oscillations, called quasi-normal
modes (QNMs), which decay exponentially in time. At
linear perturbation level, QNMs correspond to complex
eigenfunctions of the system, namely modes characterized
by complex frequencies, whose imaginary part describes
the damping of the mode in time (see, e.g., Refs. [1–3]).
Moreover, boundary conditions at infinity and at the
horizon imply a discrete spectrum for the frequencies
ωn, with the imaginary part depending on an integer n,
the overtone number.
In the high-damping regime (large-n limit), the spectrum

of QNMs for a Schwarzschild black hole (SBH), with mass
M, is independent of l, the angular momentum “quantum”
number, and reads.1 [4–7] (see Refs. [1–3,8] for reviews)

8πGMωn ∼ ln 3þ 2πi

�
nþ 1

2

�
þOðn−1=2Þ: ð1Þ

By studying the system’s response to external perturba-
tions, in principle we could also have access to its internal
microscopic structure. Therefore, despite being classical,
QNMs could contain signatures of quantum gravity effects,
encoding information about the quantum properties of
black holes and their horizons [9]. This is particularly true

in the large-n limit, which is expected to probe the black
hole at short distances.
There are several indications supporting this perspective.

On one hand, QNMs could be useful to understand the
AdS=CFT conjecture. In fact, in the case of AdS black
holes, the damping of QNMs can be mapped into the
thermalization of the conformal field theory on the boun-
dary [10]. On the other hand, the emergent and corpuscular
gravity scenarios suggest that black holes could be char-
acterized by long-range quantum gravity effects of N
quanta building the black hole [11–16]. Similarly to what
happens for the surface gravity of a black hole (see
Ref. [15]), the quantum nature of Eq. (1) is obscured
(the Planck constant ℏ does not appear) by expressing ωn in
terms of the black-hole mass M, but becomes fully evident
when we express it in terms of the black hole temper-
ature TH.
Thus, the QNMs spectrum could represent a coarse-

grained description of the response of these N microscopic
degrees of freedom to external perturbations, in the same
spirit as the spectrum of the black body radiation is a
manifestation of the collective behavior of a photon gas.
However, the no-hair theorem [17,18] makes a black

hole drastically different from a black body. In the latter
case the extensive thermodynamic parameters scale with
the volume, while the number of photons, i.e., the number
of microscopic degrees of freedom, is independent of the
size of the system. For a black hole, on the other hand, the
mass M and the entropy S are fixed by the temperature or,
equivalently, by the horizon radius rh. From a corpuscular
gravity point of view, moreover, we can consider the black
hole as a macroscopic quantum state that saturates a
maximally packaging condition [16,19–21], which has
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been shown to be equivalent to the holographic scaling ofN
[15]. Essentially, in a black hole of a given mass, we can
“pack” a maximum amount of degrees of freedom, which is
constrained by the size of the system.
The proposal of using QNMs to capture some micro-

scopic properties of black holes is not completely new, but
was first proposed byMaggiore in [22]: the linear scaling of
the QNMs frequencies with the overtone number n sug-
gests that a SBH can be described, in the high-damping
limit, as a harmonic oscillator, with proper frequency

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R þ ω2

I

q
; ð2Þ

where ωR and ωI are the real and imaginary parts of the
frequencies (1) respectively.2

Until now, the high-damped QNMs spectrum has
been used in the quantum gravity context to explain and
fix the area spectrum of the event horizon (see, e.g.,
Refs. [6,24–26]), whose quantization was first suggested
by Bekenstein in [27,28]. This also allowed to fix the
Barbero-Immirzi parameter [24], which is essential to
correctly account for the Bekenstein-Hawking (BH)
entropy in loop quantum gravity [29,30].
In this paper, we use Maggiore’s result to model the SBH

as a canonical ensemble of N harmonic oscillators and
derive the black-hole entropy using the QNMs frequencies
only, without assuming horizon-area quantization.
Consistently with the no-hair theorem, for an asymptotic
observer, the only physical observable is the black-hole
mass M, which also determines the QNMs frequency
spectrum. On the other hand, we assume that, quantum
mechanically, the horizon area and the temperature can
fluctuate independently from M. This will allow us to
consistently define the canonical ensemble and to circum-
vent the no-hair theorem at quantum level.

II. THE MODEL

In the high-damping regime, ωI ≫ ωR, QNMs probe the
internal structure of the black hole, as the wavelength of
each oscillator gets smaller and smaller as n grows. From
Eqs. (1) and (2), we easily get the frequency spectrum

ωn ≃ jωIj ¼
1

4GM

�
nþ 1

2

�
þOðn−1=2Þ: ð3Þ

FollowingMaggiore’s proposal, we model the black hole
as a statistical ensemble of N ≫ 1 indistinguishable non-
interacting (at least in a first approximation) quantum
harmonic oscillators with frequencies

ωn ¼ ω0

�
nþ 1

2

�
; ð4Þ

where ω0 ¼ 1=4GM is the proper frequency of each
oscillator.
Our derivation relies entirely on equilibrium statistical

mechanics, without resorting to usual black-hole thermo-
dynamics. The black hole will be regarded as an ensemble
in thermal equilibrium with its surroundings at temperature
T ¼ 1=β. We will therefore work entirely in the canonical
ensemble and consider the number of oscillators N fixed.
This is motivated by the no-hair theorem, which tells us that
the chemical potential of a SBH is zero, being the mass M
the only classical hair of the hole. Considering the SBH as a
system at fixed temperature is also consistent with the fact
that the QNMs spectrum is computed at fixed black-hole
mass. For the asymptotic observer, the latter is related to the
Hawking temperature, which is therefore fixed.
It is very important to stress that, in our statistical

description, we treat β and ω0 as independent variables,
i.e., the temperature of the ensemble can change independ-
ently from the black-hole mass. At first sight, this may
seem at odds with standard black-hole thermodynamics.
However, we argue that quantum mechanically this is fully
consistent.
In standard black-hole thermodynamics, the Hawking

temperature TH can be defined as the coefficient of pro-
portionality between the entropy (the area of the black-hole
event horizon,AH) and its energy (the massM). Classically,
AH is a function of M, i.e., AH ¼ 16πG2M2. The latter,
however, should be considered as the mean value, measured
at infinity, of the area of the event horizon, which can
fluctuate around its expectation value, from a quantum
mechanical point of view [27,28,31].3 Only local measure-
ments would allow us to probe these fluctuations [31]. An
observer at infinity thereforewould not have access to them,
as the only degree of freedom he/she can measure is the
classical hair of the black hole, i.e., its mass. This tells us
that, at least quantum mechanically, the area of the event
horizon can fluctuate independently from M. Hence,
only the observer at infinity can make the identification
β ¼ βH ¼ 1=TH ¼ 8πGM.
Using the spectrum (3), the statistical Boltzmann

weight of each harmonic oscillator black hole microstate
is therefore

e−βωn ¼ e−βω0ðnþ1
2
Þe−β

κffiffi
n

p
; ð5Þ

where κ is a dimensionful constant, proportional to ω0 on
dimensional grounds, parametrizing the low-n behavior of
the damping modes. As long as we consider the limit of
large-mass black holes ω0 → 0 (or the high-temperature

2A similar proposal for the description of a black hole as a
harmonic oscillator, from a corpuscular gravity perspective, can
be found in [23].

3This is also supported by the fuzzball proposal for black holes
in string theory [32].

CADONI, OI, and SANNA PHYS. REV. D 104, L121502 (2021)

L121502-2



limit, β → 0), the factor e−βκn
−1=2

can be set equal to 1 and
the partition function will be insensible to the subleading
terms Oðn−1=2Þ.
Being the SBH effectively featureless, except from its

mass, and having zero chemical potential, the probability of
occupying a given energy level will be the same for all
oscillators. The partition function for the composite system
of N oscillators therefore reads

Z ¼
�X∞

n¼0

e−βω0ðnþ1
2
Þ
�N

¼
�

eβω0=2

eβω0 − 1

�N

;

lnZ ¼ Nω0

2
β − N ln ðeβω0 − 1Þ: ð6Þ

Using standard statistical mechanics relations, we com-
pute the mean energy and the entropy

hEi ¼ −∂β lnZ ¼ Nω0

2
cotgh

�
βω0

2

�
; ð7Þ

S ¼ lnZ þ βhEi ¼ −N ln ðeβω0 − 1Þ þ Nβω0eβω0

eβω0 − 1
: ð8Þ

As expected for consistency, the expressions above satisfy
the first law of thermodynamics, dhEi ¼ TdS.
Let us now focus on macroscopic black holes, by

considering the large M limit, i.e., ω0 → 0. By expanding
the mean energy (7) and the entropy (8), we get:

hEi ¼ N
β
þ N
12

βω2
0 þOðω3

0Þ; ð9Þ

S ¼ N − N ln ðβω0Þ þ
N
24

β2ω2
0 þOðω3

0Þ: ð10Þ

We see that the leading terms in the expansions satisfy
hEi ¼ TS, hence they capture only the purely thermal
extensive contribution TS to the mean energy. However, for
β → ∞ (zero-temperature limit), the subleading terms in
Eq. (9) diverge at fixed ω0. The same problem appears in
standard black-hole thermodynamics, where a zero
Hawking temperature implies a divergence of the black-
hole massM. However, this is an artefact of the expansion.
This divergence problem can be simply solved in our
approach by first taking the β → ∞ limit in the exact
expression for hEi given by Eq. (7). We get hEi ¼ Nω0=2.
This is a finite value, which cures the divergence appearing
in Eq. (9) and has the simple physical interpretation of the
zero-point energies ω0=2 of the N oscillators, representing
therefore the contribution of the vacuum. Notice that this
contribution cancels out when we perform first the ω0 → 0
limit and keep the leading terms only.
The black-hole mass M measured by an observer at

infinity can be seen as the sum of the purely extensive
contribution of Eq. (9) and the contribution of the vacuum

EV . Our microscopic description of the SBH in terms of N
noninteracting harmonic oscillators holds in the large-n
limit. Thus, we may expect deviation of EV from the naive
value Nω0=2. Owing to the absence of an external scale
different from the thermal one βH ¼ 1=TH, we nevertheless
expect EV to get only order-one corrections, and M to take
the form

M ¼ N
β
þ c

Nω0

2
; ð11Þ

where c is a Oð1Þ constant, which can be fixed using
symmetry arguments. The expansions (9) and (10) can be
also obtained by considering the limit β → 0 instead of
ω0 → 0 in Eqs. (7) and (8). Despite being mathematically
equivalent, these two limits have a very different physical
meaning. While the latter corresponds to black holes with
large masses, the former is related to small-mass SBHs.
Treating ω0 and β separately introduces some kind of
duality between small and large black holes, which is again
a consequence of the absence of an external scale different
from βH. This implies that in our microscopic description
there is no difference between the thermodynamic proper-
ties of small- and large-mass black holes (a behavior very
different from AdS black holes [33]).
Since the asymptotic observer can only measure the

classical hair M, both the limits β → 0 and β → ∞ in
Eq. (11) must lead to the same result, giving c ¼ 1=π.
For the asymptotic observer, the black-hole equilibrium

temperature is TH, so that Eq. (11) gives

N ¼ βHM
2

¼ 4πGM2: ð12Þ

Seen by the distant observer, therefore, the number of
oscillators scales holographically with the area of the event
horizon. The leading term of Eq. (10), together with
Eq. (12), yields

S ¼ N ¼ 4πGM2 ð13Þ

which is exactly the BH entropy. The subleading term in
Eq. (10) represents a logarithmic correction N lnT, which
is consistent with several results in the literature (see, e.g.,
Refs. [31,34–46]).
Our description of the black hole in terms of a canonical

ensemble of harmonic oscillators, with frequency given by
the fundamental QNMs frequency ω0, is fully consistent
with the corpuscular description [11,47]; the latter sees the
black hole as a coherent state of particles with occupation
numbers njðpÞ sharply peaked around the characteristic
momentum p ∼ 1=RH, with j labeling some internal micro-
scopic degrees of freedom (DOF). The relation ω0 ∼ p is a
highly nontrivial check of this consistency. Unfortunately,
our thermodynamic treatment based on the QNMs spec-
trum does not give any information about the origin of these
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internal DOF and their occupation numbers njðpÞ. This is
mainly due to the fact that the oscillators are treated as
indistinguishable from the beginning, coherently with the
no-hair theorem. Consequently, we do not have any
chemical potential and the only observable is the total
number of oscillatorsN ¼ P

j nj. It is quite obvious that, in
order to gain information about nj, we need some further
insight, beyond the QNMs spectrum, on the “quantum hair”
associated with the internal DOF.

III. CONCLUDING REMARKS

All the information a distant observer can achieve about a
SBH is itsmass and the response of the hole to perturbations,
theQNMs spectrum. In this letter, we used this fact to build a

microscopic description of the black hole in terms of a
statistical ensemble of N harmonic oscillators. In this way,
we were able to derive, microscopically, the BH entropy as
the leading term in the large-mass expansion. We found a
subleading logarithmic correction to the BH entropy, in
agreement with several results in the literature. In our
microscopic description, the holographic character of the
BH formula is a natural consequence of the horizon-area
scaling of N. An intriguing duality between black holes of
small and large sizes also emerged in this approach.
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