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We study chaos in non-Lorentzian field theories, specifically Galilean and Carrollian conformal field
theories in two dimensions. In a large central charge limit, we find that the Lyapunov exponent saturates the
bound on chaos, conjectured originally for relativistic field theories. We recover the same Lyapunov
exponent holographically by a shock-wave calculation in three-dimensional flat space cosmologies,
providing further evidence for flat space holography.
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I. INTRODUCTION

As aptly put by Edward Lorenz, a dynamical system
becomes chaotic when the present determines the future,
but the approximate present does not. In other words, the
dynamics of the system is strongly sensitive to initial
conditions. Colloquially, this is often described by flapping
butterfly wings in Brazil causing a tornado in Texas [1]. In
this Letter, we discuss aspects of chaos in unconventional
quantum field theories (QFTs) and their holographic
manifestation in cosmological spacetimes.
The QFTs we consider are non-Lorentzian conformal

field theories (CFTs) in two dimensions. We begin our
analysis with Galilean CFTs (GCFTs) [2], where the speed
of light goes to infinity [3]. GCFTs are natural analogs of
relativistic CFTs [4], which appear in the nonrelativistic
(NR) limit of all known relativistic conformally invariant
QFTs, e.g., massless scalars and fermions in all dimen-
sions, sourceless electrodynamics, and pure non-Abelian
gauge theories in four dimensions [5]. GCFTs are governed

by the Galilean conformal algebra (GCA), which in two
dimensions reads [6]

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

ðn3 − nÞδnþm;0; ð1aÞ

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

ðn3 − nÞδnþm;0; ð1bÞ

½Mn;Mm� ¼ 0; n; m ∈ Z: ð1cÞ

Here cL and cM are central charges. We take cL ¼ 0 and
large cM, since this is relevant for holographic applications
of our results. With methods mirroring recent advances in
relativistic two-dimensional (2D) CFTs [7–9] we compute
the diagnostics of chaos in GCFTs, specifically, the
Lyapunov exponent, which characterizes the divergence
of nearby trajectories in phase space.
We are also interested in another class of non-Lorentzian

CFTs, viz. Carrollian CFTs (CCFTs). In Carrollian theories,
the speed of light goes to zero, the opposite of the Galilean
limit [3,10–12]. Interestingly, in d ¼ 2, the Galilean and
Carrollian groups as well as their conformal versions are
isomorphic [13]. Hence our answers, constructed for 2D
GCFTs, are also valid for 2D CCFTs, albeit with an
interchange of the spatial and temporal directions, and
correspondingly different physical interpretations.
Finally, we use the holographic correspondence between

3D flat space and 2D CCFTs [10,13] (elaborated on later)
to holographically reproduce our field theory answers.
The main result of the present Letter is that both on the
field theory and the gravity sides the Lyapunov exponents
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λL ¼ 2π

β
ð2Þ

agree and saturate the conjectured bound on chaos [14] (β is
the inverse temperature). Since in NR and Carrollian field
theories the light cone degenerates (the speed of light tends
to infinity and zero, respectively), it is nontrivial that the
Lyapunov exponent (2) is finite, nonzero, and coincides
with the relativistic result.

II. GALILEAN CFT BASICS

We begin with some representation theory aspects of 2D
GCFTs. The states of the theory are labeled as [6]

L0jΦi ¼ ΔΦjΦi; M0jΦi ¼ ξΦjΦi: ð3Þ

The action of Ln, Mn for n > 0 on a state jΦi lowers the
weight ΔΦ. Hence in analogy with 2D CFTs, there is a
notion of primary states jΦip satisfying

LnjΦip ¼ MnjΦip ¼ 0; ∀ n > 0: ð4Þ

The rest of the module is built by acting with raising
operators L−n;M−n for n > 0 on a given primary state. Like
in relativistic CFTs, there is also a state-operator corre-
spondence Φð0; 0Þ ↔ jΦi. Below we exclusively use
operators.
Chaos in classical systems can be diagnosed via the

sensitivity to initial conditions using the Poisson bracket
fxðtÞ; pð0Þg ¼ ∂xðtÞ

∂xð0Þ, which can grow as a sum of expo-

nentials in t. The exponents therein are called Lyapunov
exponents. The analogous quantity for a quantum system
in a state that is described by a density matrix ρ is
−Trðρ½xðtÞ; pð0Þ�Þ [15]. Random phase cancellations that
thermalize this quantity too soon are avoided by consid-
ering the square of the commutator. To study chaos of a
thermal system in equilibrium at inverse temperature β we
thus consider the quantity [16–19]

CðtÞ ¼ −h½WðtÞ; Vð0Þ�2iβ; ð5Þ

which can be written in terms of time-ordered and out-
of-time-ordered correlation functions (OTOCs). In a
generic quantum many-body system the former approach
a constant after the relaxation time β while the OTOCs
start at a large value and decrease over time, resulting in
an increase of CðtÞ. Thus, one can use OTOCs to diagnose
chaos [20]. To find chaotic behavior in a generic 2D
GCFT we study the late time behavior of the following
OTOC of pairs of local primary operators in a thermal
state

hV†ð0ÞW†ðtÞVð0ÞWðtÞiβ
hV†ð0ÞVð0ÞiβhW†ðtÞWðtÞiβ

: ð6Þ

It is evaluated by mapping the 2D GCFT from the plane to
a cylinder of radius β. We work in the approximation
cM=ξn ≫ 1, where ξn ¼ ξV; ξW are the weights defined in
Eq. (3). This allows the use of closed-form expressions of
Galilean conformal blocks [21–26].

III. CHAOTIC CORRELATORS IN GCFT

We start with a 2D GCFT on a complex plane with
coordinates ðu; vÞ. Consider two local scalar primary
operators V and W with weights ðΔV; ξVÞ and ðΔW; ξWÞ,
respectively. Symmetry restricts the vacuum four-point
function [6]

hV†ðu1; v1ÞVðu2; v2ÞW†ðu3; v3ÞWðu4; v4Þi
hV†ðu1; v1ÞVðu2; v2ÞihW†ðu3; v3ÞWðu4; v4Þi

¼ A ð7aÞ

to be a function A ¼ Aðχ; ζÞ of the GCFT cross ratios

χ ¼ u12u34
u13u24

;
ζ

χ
¼ v12

u12
þ v34
u34

−
v13
u13

−
v24
u24

; ð7bÞ

where unm ≔ un − um and vnm ≔ vn − vm. The amplitude
A is invariant under a map to the (thermal) cylinder
u ¼ exp ð2πβ τÞ, v ¼ 2π

β σ exp ð2πβ τÞ, with a spacelike coor-
dinate −∞ < σ < ∞ and complexified time τ ¼ tR þ itE,
where tR and tE denote real and Euclidean time, and τ
satisfies τ ∼ τ þ iβ.
The OTOC (6) is obtained by an analytic continuation

from the Euclidean version of Eq. (7) involving three
steps. First, one separates all operators in Euclidean time
tEn

¼ ϵn such that ϵ1 < ϵ3 < ϵ2 < ϵ4. This preserves the
real-time ordering of the operators in Eq. (6). Second, the
real time is evolved until the desired values of tR. Finally,
one takes the ϵn to zero. We place V and V† at σ ¼ tR ¼ 0

and W as well as W† at σ ¼ x, tR ¼ t. This leads to
ðun; vnÞ ¼ ðexp ½2πβ iϵn�; 0Þ for n ∈ f1; 2g and ðun; vnÞ ¼
ðexp ½2πβ ðtþ iϵnÞ�; 2πβ x exp ½2πβ ðtþ iϵnÞ�Þ for n ∈ f3; 4g.
An illuminating choice of operator positions along the

thermal circle is to place them in diametrically opposite
pairs, i.e., ϵ2 ¼ ϵ1 þ β=2 and ϵ4 ¼ ϵ3 þ β=2. We set ϵ1 ¼ 0
without loss of generality and define the angular displace-
ment of both operator pairs as θ ¼ 2π

β ϵ3, which satisfies
0 < θ < π, maintaining the required operator ordering. The
cross ratios χ and ζ simplify to

1

χ
¼ −sinh2

�
πt
β
þ iθ

2

�
;

ζ

χ
¼ −

2πx
β

coth

�
πt
β
þ iθ

2

�
: ð8Þ

The first equality in Eq. (8) shows that the cross ratio χ
encircles counterclockwise the point χ ¼ 1, which will turn
out to be a branch point of the amplitude A. The variable ζ
follows a closed contour that does not enclose singularities
or branch cuts of A.
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IV. GCA BLOCKS AND REGGE LIMITS

For large values of cM=ξn the amplitudeAðχ; ζÞ given by
Eq. (7) can be written in terms of s-channel global GCA
blocks [21,22] and three-point coefficients Cp

nm

Aðχ;ζÞ¼
X
p

Cp
VVC

p
WWg

VV
WWðpjχ;ζÞ; with

gVVWW ¼4Δp−1ð1−χÞ13ðΔVþΔW−3
2
ÞχΔpþ4

3
ðΔW−2ΔVÞ

×e
ζ
χð43ð2ξV−ξWÞ−

ξpffiffiffiffiffi
1−χ

p ÞþζðξVþξW Þ
3ð1−χÞ ð1þ

ffiffiffiffiffiffiffiffiffiffi
1−χ

p
Þ2−2Δp : ð9Þ

Note gVVWWðpjχ; ζÞ exhibits a branch cut along χ ∈ ð1;∞Þ.
For large, negative values of t the contribution from the

identity channel (p ¼ 0) dominates since χ ≈ 0 and ζ ≈ 0.
At late times t ≫ β one has again χ ≈ 0 and ζ ≈ 0.
However, χ crosses the branch cut along χ ∈ ð1;∞Þ leading
to a nontrivial monodromy of gVVWWðpjχ; ζÞ. This process is
equivalent to taking the GCA Regge limit [9]

ð1− χÞ→ e2πið1− χÞ; χ; ζ → 0;
ζ

χ
¼ const: ð10Þ

In the limit (10) the cross ratios χ and ζ simplify to

χ ¼ − exp

�
−
2π

β
t

�
ϵ12ϵ

�
34;

ζ

χ
¼ −

2π

β
x; ð11Þ

with ϵnm ≔ i½expð2πβ iϵnÞ − expð2πβ iϵmÞ�. The leading behav-
ior of the amplitude (9) is then given by

gReggeV;W ðpjx; tÞ
Nðp; V;WÞ ¼ e−

2π
β tð2−Δ0

pÞ−2π
β xξ

0
pðϵ12ϵ�34Þ2−Δ

0
p : ð12Þ

whereNðp; V;WÞ ¼ 16Δp−1 exp ðπi
3
½2ðΔV þ ΔWÞ − 3�Þ and

Δ0
p ¼ Δp − 4

3
ðΔW − 2ΔVÞ,andsimilarlyforξ0p.Equation(12)

is our first key result.

V. LYAPUNOV EXPONENT IN GCFT

For large cM=ξn and t ≫ β, the OTOC (7) is dominated
by the identity block [25]

A1 ∼ 1þ 2

cM
ðΔVξW þ ΔWξV þ ξVξWζ∂χÞF ðχÞ; ð13Þ

where F ðχÞ ¼ χ22F1ð2; 2; 4; χÞ. Applying the limit, we
find

A1ðx; tÞ ∼ 1þ hðxÞ exp
�
2π

β
ðt − t�Þ

�
; with

hðxÞ ¼ 48πi
ϵ12ϵ

�
34

�
ðΔVξW þ ΔWξVÞ þ ξVξW

2π

β
x

�
: ð14Þ

We define the scrambling time t� in Eq. (14) as the
timescale where the global block expansion fails [27]:

t� ∼
β

2π
log cM: ð15Þ

From the exponential behavior of the OTOC (14) we read
off the main result of our field theory calculations, the
Lyapunov exponent for 2D GCFTs

λL ¼ 2π

β
: ð16Þ

We conclude the GCFT discussion with a few technical
remarks. Crossing the branch cut and passing to the second
sheet of A is essential for obtaining chaotic behavior. The
sign in front of hðxÞ in Eq. (14) ensures that the magnitude
ofA1 decreases in time for any choice of ϵn consistent with
the real-time ordering of operators in Eq. (6). It does so in
an exponential manner, signaling the onset of chaos in a
2D GCFT.
To obtain the corresponding Carrollian results, one

simply replaces t ↔ x. Thus, in stark contrast to CFTs,
it is not an OTOC that exhibits chaotic behavior in a CCFT
but rather an out-of-space-ordered correlation function.
The expression for the Lyapunov exponent stays the same
as above.

VI. HOLOGRAPHY AND FLAT SPACE
COSMOLOGY

There have been recent efforts generalizing holography
beyond AdS=CFT [28] specifically to 3D asymptotically flat
spacetimes [10,13,29–41]. In asymptotically flat spacetimes,
the asymptotic symmetry group at null infinity is the Bondi-
Metzner-Sachs (BMS) group. Following intuition from 3D
anti–de Sitter space [42], it has been conjectured [13] that 2D
field theory duals of 3D flat space are governed by the 3D
BMSalgebra, which turns out to be Eq. (1) again, with cL ¼ 0
and cM ¼ 3=G, whereG is the 3DNewton constant [43]. This
means we can check our field theory results in a flat space
holographic context.
The zero modes of the most general solutions compatible

with BMS boundary conditions are flat space cosmologies
(FSCs) [44,45]. They describe toy model universes with a
contracting and an expanding phase given by the metric

ds2 ¼ −
dτ2

fðτÞ þ fðτÞdx2 þ τ2ðdϕ − NϕðτÞdxÞ2; ð17Þ

where fðτÞ ¼ τ2þðτ2 − τ20Þ=τ2 and NϕðτÞ ¼ τ0τþ=τ2. FSCs
have cosmological horizons at τ ¼ τ0. The parameters τþ ¼ffiffiffiffi
m

p
and τ0 ¼ jjj= ffiffiffiffi

m
p

determine the FSC mass M ¼ m
8G

and angular momentum J ¼ j
4G. In flat holography, FSCs

are dual to thermal states in 2D CCFT. Below, inspired by
[14,17,46–48], we perform an analysis of a shock wave in the
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FSC geometry to compute the Lyapunov exponent holo-
graphically, validating our field theory result (16).

VII. NULL GEODESICS ON FSC BACKGROUNDS

A general null geodesic moving on the background (17)
satisfies

−
_τ2

fðτÞ þ fðτÞ_x2 þ τ2ð _ϕ − NϕðτÞ_xÞ2 ¼ 0; ð18Þ

where dots denote derivatives with respect to an affine
parameter. The first integrals of the geodesic equations

m_x − j _ϕ ¼ P; τ2 _ϕ − j_x ¼ L ð19Þ

yield constants of motion P and L corresponding to the
Killing vectors ∂x and ∂ϕ, respectively. For the sake of
simplicity, we set L ¼ 0 [49]. The above equations can be
solved to get

_τ¼�P; _x¼ Pτ2

τ2þðτ2 − τ20Þ
; _ϕ¼ Pτ0

τþðτ2 − τ20Þ
; ð20Þ

permitting us to express x and ϕ as functions of τ,

dx ¼ � dτ
fðτÞ ; dϕ ¼ �NϕðτÞdτ

fðτÞ : ð21Þ

Here the plus sign corresponds to right-moving and
counterclockwise rotating rays with respect to x and ϕ.
The separation of comoving spatial coordinates between
two events ðxi; τi;ϕiÞ and ðxj; τj;ϕjÞ along a null geodesic
is obtained by integrating Eq. (21),

xj − xi ¼ �Hðτi; τjÞ; ϕj − ϕi ¼ �Gðτi; τjÞ; ð22Þ

whereH¼
Z

τj

τi

τ2dτ
τ2þðτ2−τ20Þ

; G¼ τ0
τþ

Z
τj

τi

dτ
ðτ2−τ20Þ

: ð23Þ

VIII. SPATIAL SHIFTS AND
COSMOLOGICAL CHAOS

We now consider a left-moving, massless probe sent out
from past null infinity (I −). It crosses the cosmological
horizon of the contracting region, adding a tiny amount of
energy δM ≪ M and angular momentum δJ ≪ J to the
background geometry. The probe gets reflected at the
timelike causal singularity τ ¼ 0 [45] and enters the expand-
ing region from the past cosmological horizon. See Fig. 1.
An observer O located in the expanding region of the FSC
receives this left-moving signal at a time τc and at a point
B ¼ ðx1; τc;ϕ1Þ and eventually sees it moving toward future
null infinity (Iþ). Due to the infinite blueshift at the past
cosmological horizon the perturbation ðδM; δJÞ effectively

causes the formation of a shock-wave geometry in a FSC
background. A right-moving null signal crosses the world-
line of the probe very close to the horizon at a point
A ¼ ðxϵ; τϵ;ϕϵÞ, where τϵ ¼ τ0ð1þ ϵÞ for 1 ≫ ϵ > 0,
and intersects the τ ¼ τc surface at C ¼ ðx2; τc;ϕ2Þ in the
unperturbed geometry where we place a second observerO0.
Due to the backreaction of the probe this observer gets
shifted to a different spatial point ðx̃2; ϕ̃2Þ on the constant
τc surface. Below we show that the comoving distance by
which the observer O0 is shifted due to the backreaction
of the shock wave grows exponentially with the initial
comoving distance between the observers O and O0, with
a numerical prefactor corresponding to the holographic
Lyapunov exponent.
Applying Eq. (22) to the spatial separation of comoving

coordinates between the events A and B [x1 − xϵ ¼
−Hðτϵ; τcÞ, ϕ1 − ϕϵ ¼ −Gðτϵ; τcÞ] and between the events
A and C [x2 − xϵ ¼ Hðτϵ; τcÞ, ϕ2 − ϕϵ ¼ Gðτϵ; τcÞ] yields

Δx ¼ x2 − x1 ¼ 2Hðτϵ; τcÞ; Δϕ ¼ 2Gðτϵ; τcÞ: ð24Þ

Solving the integrals (23) for e−τc=τ0 ≫ ϵ > δτ0=τ0 and
τc ≫ τ0 gives the leading order behavior of the separation

Δx ¼ β

2π
log

1

ϵ
þ…; Δϕ ¼ μβ

2π
log

1

ϵ
þ…; ð25Þ

FIG. 1. Penrose diagram depicting the shock-wave FSC geom-
etry. Here the lower (upper) part of the diagram corresponds to a
contracting (expanding) universe. The probe is sent out from
I − and after a reflection at the singularity emerges from the
cosmological horizon where it intersects with the signal very close
to the horizon at point A and with the surface τ ¼ τc at point B.
Without backreaction the signal intersects the surface τ ¼ τc at the
point C. With backreaction the observerO0 gets shifted to the point
D in order to still be able to receive the signal at τ ¼ τc.
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expressed in terms of inverse Hawking temperature
β ¼ 2πτ0=τ2þ and angular velocity μ ¼ τþ=τ0. To leading
order, Δϕ ¼ μΔx and therefore, in what follows we
display only Δx.
A key aspect of Eq. (25) is that the spatial intervals are

dominated by the redshift factor ϵ. Holographically, chaos
is a consequence of this redshift factor and backreaction
effects from the shock wave, which together produce an
exponential dependence on the separation Δx, the prefactor
of which is the Lyapunov exponent. To determine this
exponent, we consider backreactions.

IX. BACKREACTION AND HOLOGRAPHIC
LYAPUNOV EXPONENT

Backreactions of the shock wave on the FSC background
are included by modifying the original FSC parameters
m and j to m̃ ¼ mþ δm and j̃ ¼ jþ δj. As a consequence,
the location of the event horizon also changes to
τ0 → τ0 þ δτ0, where δτ0 ¼ β

2π ðμδj − 1
2
δmÞ. This is the first

law of thermodynamics for the FSC geometry,

−TδS ¼ δM − μδJ; δS ≔
δðareaÞ
4G

¼ πδτ0
2G

; ð26Þ

featuring a well-documented sign [31,34]. The entropy
change δS concurs with the Bekenstein-Hawking area law.
Due to the backreaction of the shock wave on the FSC

geometry the spatial interval Δx ¼ xj − xi changes,

x̃j − x̃i ¼ �
Z

τj

τi

dτ

f̃ðτÞ ≔ �H̃ðτi; τjÞ: ð27Þ

Here f̃ðτÞ ¼ fðτÞjm→m̃;j→j̃. To linear order in ðδm; δjÞ

H̃ðτi; τjÞ ¼ H − δm
Z

τj

τi

dτ
fðτÞ2 þ 2jδj

Z
τj

τi

dτ
τ2fðτÞ2 : ð28Þ

The above is valid for general probes carrying energy and
angular momentum. Probes without angular momentum,
i.e., null geodesics with L ¼ 0, do not change the total
angular momentum of the FSC and thus we have δj ¼ 0
and an expanding cosmological horizon in the expanding
Universe, as depicted in Fig. 1.
The results (27) and (28) yield the interval

x̃2 − xϵ ¼ H̃ðτϵ; τcÞ ¼ x2 − xϵ − δm
Z

τc

τϵ

dτ
fðτÞ2 : ð29Þ

Shifting x2 → x̃2 takes care of the necessary shift of O0 so
that the signal is still received at τc. The crossing point xϵ
remains the same as before since the correction to this point
is subleading in perturbation parameters. Evaluating
Eq. (29), the leading order contribution to the spatial shift
of the observer,

x̃2 − x2 ≈
βδτ0
4πτ0ϵ

¼ β

4π
ðδ log SÞe2π

β ðx2−x1Þ; ð30Þ

contains the entropy change δS given in Eq. (26). The
results above can also be expressed in a coordinate-
independent way in terms of proper distances [50], but
we choose a simplified route to match with our field
theory answers.
The expression (30) has the same functional form as the

field theoretic amplitude (14). To connect these results we
first take τc to be large, thereby placing the observersO and
O0 close to Iþ, where the holographic CCFT is encoded.
Since Eq. (30) does not explicitly depend on τc, this
expression also holds close to Iþ. The inverse Hawking
temperature β can also be interpreted as the periodicity of
the Euclidean time circle and hence the (inverse) temper-
ature that an observer in the dual field theory measures.
Thus, we find the holographic Lyapunov exponent

λL ¼ 2π

β
; ð31Þ

in precise agreement with Eq. (16).

X. OUTLOOK

Our results in this Letter moved us into uncharted
territories. We generalized 2D CFT results of chaos to
non-Lorentzian settings. By studying spatial displacements
in cosmological shock-wave solutions, we obtained a
holographic Lyapunov exponent matching our field theory
results. We shall address further aspects and generalizations
of this Letter in [50].
Our results (suitably generalized for higher dimensions)

have potentially very diverse applications. They are central
to the understanding of chaos in all NR systems in general,
including applications in the NR sector of electrodynamics,
used e.g., in electrical networks under certain approxima-
tions [51] and also in NR quantum chromodynamics [52],
which has long been an area of interest for the particle
physics community. The d ¼ 2 Carrollian result is relevant
for black hole physics. Black hole event horizons in any
dimension carry Carrollian structure [53] and for generic
nonextremal black holes, 2D conformal Carrollian structures
can be used to understand black hole entropy [54]. We thus
expect our results to be useful in the context of thermal-
ization in black holes. Further areas of interest include flat
holography and nonrelativistic holography, in the form
advocated in [2]. Finally, these symmetries also arise as
residual gauge symmetries on the world sheet of tensionless
strings [55,56]. Chaotic scattering of highly excited strings
have been recently studied in a bid to understand chaos in the
S matrix of string theory [57]. Since the tensionless sector is
also the very-high-energy regime, our results should be
significant to high-energy string scattering.
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We close with an important future direction. Chaos
is related to the spreading of entanglement [58,59].
Entanglement in Galilean and Carrollian CFTs was
studied extensively in [23,39,60–63]. We would like to
understand how our results can help clarify the spread of
entanglement and the speed of entanglement (dubbed
“butterfly velocity” in these non-Lorentzian theories.
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