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The GRAVITY Collaboration achieved a remarkable detection of the orbital precession of the S2 star
around the Galactic Center supermassive black hole, providing yet another proof of the validity of general
relativity. The departure from the Schwarzschild precession is encoded in the parameter fSP, which
multiplies the predicted general relativistic precession. This parameter results in fSP ¼ 1.10� 0.19, which
is consistent with general relativity (fSP ¼ 1) at 1σ level. Nevertheless, this parameter may also hide an
effect of the modified theories of gravity. Thus, we consider the orbital precession due to the Yukawa-like
gravitational potential arising in the weak field limit of fðRÞ-gravity, and we use the current bound on the
fSP to constrain the strength and the scale length of the Yukawa-like potential. No deviations from general
relativity are revealed at the scale of λ < 6300 AU with the strength of the Yukawa potential restricted to
δ ¼ −0.01þ0.61

−0.14 .
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I. INTRODUCTION

Extensions of general relativity (GR) are a compelling
choice for providing an explanation to the ongoing accel-
erated expansion of the Universe, as well as the formation
of self-gravitating systems, without resorting to exotic and
still unknown fluids such as dark matter and dark energy
(for comprehensive reviews see [1,2] and [3,4], respec-
tively). These extensions can be obtained by replacing the
Hilbert-Einstein action with a more general Lagrangian,
which may include higher-order curvature invariants, such
as R2, RμνRμν, RμναβRμναβ, R□R, or R□kR, and minimally
or nonminimally coupled terms between scalar fields
and geometry, such as ϕ2R [5–7]. It is argued that extended
theories of gravity must reproduce GR in their weak
field limit [8]. Nevertheless, these theories represent a
large collection of models that can be developed on the
basis of the curvature invariants considered, and of the
coupling with matter (for a comprehensive review see for
instance [5,6]).
One appealing theory is fðRÞ-gravity, where the Hilbert-

Einstein action is replaced with a more general function of

the Ricci scalar [9]. Indeed, the cosmological constant may
be naturally explained as the effect of the higher order
curvature terms in the field equations, with the first attempt
of this type dated back in the 1980s [10], and followed by
other successful ones [11–17]. Another fascinating feature
of fðRÞ-gravity is that an R2-term gives rise to a Yukawa-
like correction to the Newtonian gravitational potential in
the weak field limit [18]. These corrections may affect the
astrophysical scales of galaxies and galaxy clusters (see for
instance Ref. [2] and references therein). However, there is
no statistical evidence favoring fðRÞ-gravity over GR
[19,20] and additionally, GR has been collecting a huge
amount of successful probes over the previous decades
[21]. It is important to remember, among others, the direct
detection of gravitational waves from a binary black hole
merger [22], and the subsequent direct detection of gravi-
tational waves from a binary neutron star merger [23].
While the first event served to show the effective existence
of a fundamental pillar of GR, the second event, that
was accompanied by an electromagnetic emission with a
time delay of ∼1.7 s with respect to the merger time,
was later associated with GRB 170817A [24], allowing a
probe of the equivalence principle and Lorentz invariance
[23], and also excluded several alternatives to theories of
gravity [25–29].
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Recently, Hees et al. (2017) [30] demonstrated the
effectiveness of short-period stars orbiting around the
supermassive black hole to constrain the strength and
the scale length of the Yukawa potential due to the fifth
force. They strongly restricted the parameter space using
astrometric and spectroscopic measurement of the S2 star,
obtaining an upper limit on the periastron advance
of ∼10−3 rad=yr.
Finally, the GRAVITY Collaboration made a pioneering

detection of the orbital precession of the star S2 orbiting
a compact and variable x-ray, infrared, and radio source
(Sgr A*) at the center of the Milky Way [31–33]. Sgr A* is
supposed to be the closest supermassive black hole. It is
surrounded by a cluster of stars orbiting around it, whose
characteristics, such as distribution and kinematics of
stars, have been obtained through radio and infrared
observations [33]. The analysis of the orbital motion of
those stars served to further confirm GR. The detection of
the orbital precession of the S2 star of about δϕ ≈ 120 per
orbital revolution has been used to constrain the parameter
fSP, which multiplies the general relativistic precession
and encodes any departure from the Schwarzschild metric
or from GR. Its best fit value is fSP ¼ 1.10� 0.19 [34],
where fSP ¼ 1 leads to GR, and fSP ¼ 0 reduces to
Newtonian theory.
Here we use the results obtained by De Laurentis,

de Martino, and Lazkoz [35], which computed analytically
the precession of a pointlike star orbiting a massive and
compact object under the Yukawa-like gravitational poten-
tial arising in fðRÞ-gravity, and obtain the first constraint on
the strength of the gravitational potential from the afore-
mentioned pioneering observations, as well as an upper
limit on the graviton mass.

II. BACKGROUND EQUATIONS
FROM F(R)-GRAVITY

The fðRÞ-gravity field equations are obtained by varying
the action with respect to the metric. The main steps are the
same, as in the case of the variation of the Einstein-Hilbert
action, but there are also some important differences. The
resulting field equations include terms containing deriva-
tives of fourth order in the metric, and therefore are more
complicated than GR field equations. The latter are second-
order partial differential equations and are recovered as the
special case when we set fðRÞ ¼ R (for more details see [6]
and references therein). Generally speaking, the fðRÞ-
Lagrangian must be specified to allow practical applica-
tions and constraints on the model. One way around that is
to require that it is an analytic Taylor-expandable function.
In such a case, one can straightforwardly perform the post-
Newtonian limit and obtain the solution of field equations.
Considering a general spherically symmetric metric,
De Laurentis, de Martino, and Lazkoz obtained [35]

ds2 ¼ ½1þΦðrÞ�dt2 − ½1 −ΦðrÞ�dr2 − r2dΩ; ð1Þ

where dΩ is the solid angle, and

ΦðrÞ ¼ −
2GM

ð1þ δÞrc2 ð1þ δe−
r
λÞ ð2Þ

is the Yukawa-like modification of the Newtonian gravi-
tational potential. Here G is the Newton gravitational
constant, M is the source mass, δ is a parameter of the
theory (Newton’s potential is recovered when it is turned
off), and it modulates the strength of the Yukawa-like
potential. Finally, λ is a scale length which naturally arises
in higher order theories of gravity [6].
Relativistic equations of motion for massive particles can

be obtained from the geodesic equations for timelike
geodesics of the metric in Eq. (1):

d2xμ

ds2
þ Γμ

νρ
dxν

ds
dxρ

ds
¼ 0: ð3Þ

These equations provide differential equations for the four
space-time components ftðsÞ; rðsÞ; θðsÞ;ϕðsÞg, where s is
an affine parameter (the proper time of the star, in our case),
that can be numerically integrated once the initial con-
ditions are specified. In order to calculate the periastron
shift of a pointlike particle of mass m around a massive
object of mass M, one may assume the spherically
symmetric metric in Eq. (1) and also thatm ≪ M to further
simplify the problem. Since the metric is symmetric about
θ ¼ π=2, any geodesic that begins moving in that plane will
remain there indefinitely (the plane is totally geodesic).
Therefore, the coordinate system may be oriented so that
the orbit of the particle lies in that plane, and fixes the θ
coordinate to be π=2.
Using the equations of the geodesics, De Laurentis,

de Martino, and Lazkoz [35,36] computed the equation of
orbital precession as

ΔϕYukawa ¼
ΔϕGR

ðδþ 1Þ
�
1þ 2δG2M2

3a2c3ð1 − e2Þ2

−
2πδG2M2

ac4ð1 − e2Þλ −
3δGM

ac4ð1 − e2Þ

−
δG2M2

6c4ðδþ 1Þλ2 þ
δGM
3λc2

�
; ð4Þ

where a is the semimajor axis and e is the eccentricity. The
GR contribution to the periastron advance is

ΔϕGR ¼ 6πGM
ac2ð1 − e2Þ : ð5Þ

Additionally, De Laurentis, de Martino, and Lazkoz [35,36]
showed, as an example case, that in the binary system
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composed by the S2 star and the supermassive black hole
Sgr A*, differences in the orbital precession between GR
and fðRÞ-gravity exist, but for a reasonable range of
parameters, do not exceed 10%.

III. DATA AND DATA MODELLING

The stellar cluster in the Galactic Center of the
Milky Way, orbiting around a central compact object, is
the most recent test bench for GR. There are multiple pieces
of evidence that such a compact object is a supermassive
black hole of mass M ≈ 4 × 106 M⊙ [32], some examples
being the stellar and/or gas kinematics [33,37–39]. This
allows us to approximate the orbiting stars to massive
pointlike objects, and also allows us to use Eq. (5) to
predict the orbital precession of a star in GR and Eq. (4) to
predict the orbital precession in the Yukawa-like potential
of Eq. (2).
After an observational campaign lasting about two

decades [40], the GRAVITY Collaboration has been able
to measure the orbital precession of the S2 star. They used
the equation of motion at first-order expansion in the post-
Newtonian limit [41,42], and parametrized the departure
from the Schwarzschild metric by introducing an ad hoc
factor fSP as follows:

Δϕper orbit ¼ fSP × ΔϕGR: ð6Þ

This factor may include the effect related to the spin of the
black hole as well as the departure from GR. Remarkably,
fSP ¼ 1.10� 0.19 [34], recovering GR within 1σ.
The analysis uses measurements of the positions and

spectra of the star S2 collected throughout several years,
and includes 118 measurements obtained with the Very
Large Telescope (VLT) infrared camera NACO between
2002 and 2019.7 of the position, 75 NACO and 54
GRAVITY measurements from 2003.3 to 2019.7 and from
2016.7 to 2019.7, respectively, of the direct S2-Sgr A*
separation with rms uncertainties of 1.7 and 0.65 mas [43],
respectively, 92 spectroscopic measurements of the
2.167 μm HI and the 2.11 μm HeI lines between 2003.3
and 2019.45 with the spectrometer SINFONI at the VLT
[44], 2 NACO spectroscopic measurements from 2003,
and 3 Keck-NIRC2 spectroscopic measurements between
2000 and 2002 [45]. For more details we refer to
Refs. [34,43,44,46,47]. The data have been processed with
a Monte Carlo Markov chain algorithm, and yield to
constrain the orbital parameters (see Table E.1 in [34])
and the orbital precession.
Here, we use Eq. (4) to predict the orbital motion and the

precession of the S2 star in the Yukawa-like potential of
Eq. (2), and fit the results into the data. More details on the
data and the data analysis are given in the Supplemental
Material (SM) [48]. First, we computed the equations of
motion (3) starting from the metric given in (1). Then,
initial conditions ftð0Þ; rð0Þ; θð0Þ;ϕð0Þg and numerical

values of the parameters fδ; λg were set to integrate the
aforementioned equations numerically. Since GRAVITY
data are not publicly available, we use the dataset published
in [49]. This dataset includes 145 astrometric measure-
ments [50–52] of the position of S2 relative to the Galactic
Centre (GC) infrared reference system, [53] and 44
spectroscopic measurements [31,54,55], which provide
radial velocity estimates for S2 in the local standard of
rest (LSR).
The predicted positions and velocities of S2 must be

corrected for some effects before being compared with the
data. Here, we correct our predicted orbits for the Rømer
delay and the frequency shift due to relativistic Doppler
effect. Other relativistic effects could potentially modify the
astrometric positions of the observed star, like the Shapiro
delay, the Lense-Thirring effect on both the orbit and the
photon (in the case of a rotating black hole), or the
gravitational lensing of the light rays emitted by the star.
Nevertheless, they are not detectable with the present
sensitivity [56].
Finally, the orbit is fully determined once the parameters

ðM•; R•; T; tp; a; e; i;Ω;ω; x0; vx;0; y0; vy;0; vLSR; δ; λÞ have
been assigned. The first two parameters, M• and R•,
describe the mass and the distance from Earth of the
source of the gravitational potential in which the star
moves. The seven Keplerian elements provide the initial
conditions for the numerical integration of the geodesic
equations, and with the Thiele-Innes elements necessary to
project the resulting orbit in the observer’s reference frame.
Five additional parameters, ðx0; vx;0; y0; vy;0; vLSRÞ, take
into account the zero-point offset and drift of the reference
frame with respect to the mass centroid, and the parameters
ðδ; λÞ select a particular metric (1) for fðRÞ-gravity. This
results in a total of 16 parameters whose priors are given
in Table I of SM, and whose posterior distributions are
sampled with a Markov chain Monte Carlo (MCMC)
algorithm. We estimated our log-likelihood as

logL ¼ logLPos þ logLVR þ logLPre; ð7Þ

where logLPos is the likelihood of the positional data

logLPos ¼ −
X
i

ðxiobs − xiorbÞ2
2ðκσix;obsÞ2

−
ðyiobs − yiorbÞ2
2ðκσiy;obsÞ2

; ð8Þ

TABLE I. Best fit values for the fðRÞ-gravity parameters using
only positional and radial velocity data from [49] (column 2)
and using the additional measurement of the orbital precession
from [34] (column 3).

Parameter Fit w/o precession Fit with precession

δ ≳ − 0, 07 −0.01þ0.61
−0.14

λ (AU) λ ≳ 9540 ≳6300
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logLVR is the likelihood of the radial velocities

logLVR ¼ −
X
i

ðVRi
obs − VRi

orbÞ2
2ðκσiVR;obsÞ2

; ð9Þ

and logLPre is the log-likelihood of the orbital precession
given by

logLPre ¼ −
ðfSP;obs − fSP;thÞ2

2ðκσfSP;obsÞ2
; ð10Þ

where fSP;th ≡ ΔϕYukawa=ΔϕGR and κ is an auxiliary
parameter that either takes the value κ ¼ 1, when LPre is
set to 0 (i.e., when the precession is not taken into account
in our analysis), or κ ¼ ffiffiffi

2
p

, otherwise. This is done in order
not to double-count astrometric and radial velocity data
points that we implicitly assume appear twice in the log-
likelihood when considering the measurement of the orbital
precession (this has been done using the same dataset as
we did).

IV. RESULTS AND DISCUSSIONS

We carried out two MCMC analyses. In the first run,
we only used orbital positions and velocities, while we
introduced the precession measurement in a second run.
Here, we focus on the impact of our results on fðRÞ-gravity
(we remand to SM for the full details). Fig. 1 depicts the
68%, 95%, and 99% confidence intervals. The upper and
lower panels illustrate the results obtained, excluding and
including the measurement of the orbital precession, i.e.,
results in the upper panel are obtained using only mea-
surements of position and velocities given in [49], while in
the lower panels results were obtained including the
measurement of the orbital precession by GRAVITY
Collaboration [34]. The constraints on the fðRÞ-gravity
parameters fδ; λg are shown in Table I.
The additional information about the orbital precession

of the S2 star provided much tighter constraints on both δ
and λ, resulting in a narrower confidence region on the
ðδ; λÞ plane (see Fig. 1). Indeed, while the analysis without
the precession was not able to place an upper limit
on neither δ nor λ, in the latter analysis we were able to
fully constrain the parameter δ, taking advantage of the
greater constraining power of the orbital precession. Our
analysis, thus, provides the first constraint on the strength
of the Yukawa-like potential at the Galactic Centre:
δ ¼ −0.01þ0.61

−0.14 . While looking at the two dimensional
contours, we only obtain a lower bound on the scale length
of the Yukawa-like potential: λ≳ 6300 AU at 1σ. This is
rather expected, because this parameter is better con-
strained on a larger astrophysical scale [2], and further
confirms the results in [35,36]. The 95% confidence con-
tours from our analysis are fully consistent with the
exclusion regions on the fifth force determined by Hees

et al. (2017) [30] in the region of the parameter space that
we have analyzed (λ > 100 AU).
We compared our results with existing constraints on

fðRÞ-gravity coming from analyses at both astrophysical
and cosmological scales. Specifically, note the following:

(i) Many constraints are available at scales of the Solar
System for several different fðRÞ-Lagrangians,
e.g., [57,58], but they are not directly comparable
with our results. On the other hand, in [59], the orbit
of the S2 star is used to constrain the Yukawa-
like potential, and strongly positive values of δ
are favoured. It is not clear whether in [59], all

FIG. 1. 68%, 95%, and 99% confidence levels of the posterior
probability density distributions for the two fðRÞ-gravity param-
eters fδ; λg. Top: posterior distributions are based only on data
from [49]. Bottom: data include also the measurement of the
precession provided by GRAVITY Collaboration [34]. This is an
inset of the whole corner plot presented in Fig. 5 in the SM.
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observational and relativistic effects were taken into
account. Moreover, orbits were predicted using
Newton’s law instead of integrating the geodesic
equations. On the contrary, we do not detect any
deviation from GR; we take into account all observa-
tional and relativistic effects, and we compute the
orbits using the geodesic equations. Additionally, we
converted our results in the constraints on first and
second derivatives of the fðRÞ Lagrangian. Thus, we
obtainf0ðRÞ ¼ 0.98þ0.26

−0.13 .On theother hand, theupper
limit on the scale length represents improvements of a
factor ∼100 with respect to similar analysis in [60].

(ii) Our results contrast with the ones obtained for
elliptical galaxies [61] that pointed out a severe
departure from GR constraining δ ∼ −0.8 and
λ ≥ 10 kpc. Also, their errors are at a level of
10%, making them impossible to reconcile with
GR, while we do not detect any departure from GR.

(iii) Our results reach the same precision as the results
obtained using a cluster of galaxies [62], but contrast
with [63], where authors find a value of f00 not
compatible with unity and a values of f000 weakly
compatible with zero (which would mean GR). On
the other hand, it is more difficult to directly
compare our results with other constraints at the
scale of galaxy clusters since the fðRÞ-Lagrangian is
different, e.g., Hu-Sawicki model, Rn, among others.

It is worth noting that there are also other constraints
based on Parametrized Post-Newtonian (PPN) parameters
and pulsar timing, which are at least 5–6 orders of
magnitude more accurate in the parameter δ than our
results [64]. Nevertheless, our analysis is fully comple-
mentary to the other ones and can potentially reach, in the
near future, the required accuracy to be competitive with
PPN constraints.

V. CONCLUSIONS

The study of the star cluster orbiting around Sgr A* serves
to improve our knowledge on the supermassive black hole at
the center of our Galaxy, and to probe GR. Knowledge of
complete orbits helps to improve the modeling of the black
hole itself, which is invisible in the infrared band, measuring
both spin andmass of SgrA*. Currently, the stars’motion can
bemodeledusingNewtonianphysics andKepler’s lawswith a
high degree of accuracy, but a more detailed analysis reveals
new deviations from Newtonian motion [34,44]. The ever-
changing motion of the S2 star provides another piece of
evidence toward Einstein’s theory. The rosette effect of a star
around a supermassive black hole, known as Schwarzschild
precession, has been measured for the first time [34], testing
GR in a new regimewhere gravity is stronger than in the Solar
System (and even in binary pulsar systems, which provide
someof thebest strong-gravity tests rightnow) [65–67].TheS2
star has been studied for decades [31–34,40,43,44,46,47,68],
and its unusual orbit was actually one of the first compelling

pieces of evidence that there is a supermassive black hole at
the center of the Milky Way [40]. Since it is the closest
approaching star toSgrA*, it plays an important role for testing
gravitational theories.
Here, we have computed the orbital precession in the

Yukawa-like gravitational potential arising in fðRÞ-gravity,
which is given in Eq. (4). Following the same approach as
the GRAVITY Collaboration [34], we have a set of 14
parameters that fully describe the orbital motion (they are
accurately described in the SM). These parameters also
serve to account for observational effects, such as the offset
and drift of the reference frame and the Rømer time delay,
and relativistic effects, such as the gravitational and
Doppler redshift. Then we have two additional parameters,
i.e., the strength and the scale length of the gravitational
potential, δ and λ respectively, which determine a possible
departure from GR. Using the remarkable measurement of
the precession of the S2 star [34], we have constrained the
strength δ ¼ −0.01þ0.61

−0.14 , while setting a lower limit on the
scale length λ > 6300 AU, as shown in Fig. 1. The latter is
fully consistent with the prediction and sensitivity analysis
made in Hees et al. [30], which means no deviations from
GR are measured up to this scale.
Indeed, other stars and the interstellar medium that

populates the Galactic centre affect observations [69].
Additionally, other problemsare related toEarth’s atmosphere
[70], turbulence, and absorption or refraction effects [71].
Nevertheless, at infrared wavelengths, photons may pass
through the dust clouds unimpeded and the motion of
individual stars may be detected [33,72]. The outcomes of
these observations include themeasurement of themass of the
Milky Way’s central black hole: approximately 4 million
times the mass of the Sun [32,68]. The next horizon, quite
literally, should come from the Event Horizon Telescope
[73,74], a separate effort now straining to resolve space-time
around theMilkyWay’s central black hole. Joint observations
in different bands, i.e., radio and infrared, are the only avenue
towards thedetectionof effects related tohigher order theories
of gravity. Finally, we note that the future is particularly
promising, with higher precision radio observatories, such as
SKA [75] and next-generation EventHorizon Telescope [76],
and the next generation of telescopes like the Thirty Meter
Telescope, which will offer greatly improved statistics for
improving our constraints.
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