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We study nonminimal extensions of Einstein-Maxwell theory with exact electromagnetic duality
invariance. Any such theory involves an infinite tower of higher-derivative terms whose computation
usually represents a challenging problem. Despite that, we manage to obtain a closed form of the action for
all the theories with a quadratic dependence on the vector field strength. In these theories we find that the
Maxwell field couples to gravity through a curvature-dependent susceptibility tensor that takes a peculiar
form, reminiscent to that of Born-Infeld Lagrangians. We study the static and spherically symmetric black
hole solutions of the simplest of these models, showing that the corresponding equations of motion are
invariant under rotations of the electric and magnetic charges. We compute the perturbative corrections to
the Reissner-Nordström solution in this theory, and in the case of extremal black holes we determine
exactly the near-horizon geometry as well as the entropy. Remarkably, the entropy only possesses a
constant correction despite the action containing an infinite number of terms. In addition, we find there is a
lower bound for the charge and the mass of extremal black holes. When the sign of the coupling is such that
the weak gravity conjecture is satisfied, the area and the entropy of extremal black holes vanish at the
minimal charge.
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I. INTRODUCTION

Symmetries are a powerful guide to constrain the
possible corrections to low-energy effective actions. In
the case of Einstein-Maxwell (EM) theory, those sym-
metries include diffeomorphism and gauge invariance, but
the vacuum equations of motion are additionally invariant
under SO(2) duality rotations. Electromagnetic duality also
plays a prominent role in supergravity and string theory
[1–6], and it is expected to be preserved by the higher-
derivative terms that arise in these theories [4,7,8].
Therefore, seeking for modifications of EM theory that
respect duality is more than justified.
One aspect of electromagnetic duality that distinguishes

it from usual symmetries and that makes it particularly
interesting is the fact that it is nonlinear. This means that,
unlike in the case of linearly realized symmetries, one
cannot simply find a basis of duality-invariant operators

and add them to the action weighted by a set of arbitrary
couplings. Instead, any duality-invariant deformation of
EM theory implies an infinite series of terms.
To illustrate this, consider EM theory extended with

four-derivative terms:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p
fR − FμνFμν þ αΔLg; ð1Þ

where R is the Ricci scalar of the metric gμν, Fμν ¼ 2∂ ½μAν�
is the field strength of the vector Aμ, and the correction ΔL
is controlled by a constant α with dimensions of length2.
As shown in Ref. [9], there are two four-derivative
Lagrangians involving field strengths that are consistent
with SO(2) duality, namely,

ΔL1 ¼ TμνTμν;ΔL2 ¼ RμνTμν; ð2Þ

where Tμν ¼ FμαFν
α − 1

4
gμνF2 is the Maxwell stress-

energy tensor. However, such extensions only preserve
duality to leading order in α; in order to restore duality as an
exact symmetry one needs to include an infinite tower of
additional higher-derivative terms. In a way, we can say that
duality dictates how the theory should be completed,
although such completion is not unique, since at each
order one can introduce new independent terms that respect
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duality. In the case of the term TμνTμν, the simplest duality-
invariant completion corresponds to (Einstein-)Born-Infeld
theory [10–12], a model that has been known for a long
time and which is a paradigmatic example of a nonlinear
duality-invariant theory—see also [13–22] for other non-
linear models. On the other hand, to the best of our
knowledge, exactly invariant theories with nonminimal
couplings to gravity have not been studied so far.
Nonminimal couplings are nevertheless interesting as they
generically appear in stringy effective actions—see e.g.,
[23] for an explicit example. Thus, the goal of this paper is
to fill this gap, and we do so by studying the simplest
duality-invariant completion of the Lagrangian RμνTμν.

II. QUADRATIC THEORIES

Since the correction RμνTμν is quadratic in the field
strength, we can find completions that respect this property,
and hence we stick to theories of the form

S ¼ 1

16π

Z
d4x

ffiffiffiffiffi
jgj

p
fR − χμν ρσFμνFρσg; ð3Þ

where χμν ρσ is the susceptibility tensor, which is built out of
the metric and the curvature. It was shown in Ref. [9] that,
in order for this theory to preserve duality, the susceptibility
tensor must satisfy the identity ð⋆χÞμναβð⋆χÞαβρσ ¼
−δ½μ½ρδν�σ�, where ð⋆χÞαβρσ ¼ 1

2
ϵαβμνχ

μν ρσ . To find tensors
with this property, it proves useful to expand χ in powers
of α:

χμν
ρσ ¼ δ½μ½ρδν�σ� þ

X∞
n¼1

αnχðnÞμνρσ: ð4Þ

so that one recovers Einstein-Maxwell theory when α → 0,
and where each term χðnÞμνρσ contains n powers of the
curvature. The four-derivative term should match ΔL2, and
therefore we must choose

χð1Þμνρσ ¼ −R̂½μ½ρδν�σ�; ð5Þ

where R̂μ
ρ ¼ Rμ

ρ − 1
4
Rδμρ is the traceless part of the Ricci

tensor. Then, the simplest completion to an exactly duality-
invariant theory can be obtained by choosing the rest of the
terms as

χðnþ1Þ
μν

ρσ ¼ 1

2

Xn
p¼1

ð⋆χðpÞÞμναβð⋆χðnþ1−pÞÞαβρσ: ð6Þ

This result is obtained from Eq. (4.31) of [9] after noticing

the following identity, valid for tensors Qð1Þ
μν ρσ and Qð2Þ

μν ρσ

which are antisymmetric in the indices fμνg and fρσg but
symmetric in the exchange of these pairs of indices [24]:

ð⋆QÞð1Þμναβð⋆QÞð2Þαβρσ ¼ −6Qð1Þ½αβαβQð2Þ
μν�ρσ: ð7Þ

The recursive relations (6) allow us to write the Lagrangian
at arbitrary orders in the curvature. In fact, all the previous
terms χðnÞμνρσ can be explicitly summed to yield a fully
nonperturbative duality-invariant theory. For that we
first note the following results, obtained through direct
computation:

ϵμναβχ
ð1Þαβ

ρσ ¼ −χð1Þμναβϵαβρσ; ð8Þ

χð2Þμνρσ ¼
1

2
χð1Þμναβχð1Þαβρσ: ð9Þ

Now let bn denote the nth coefficient of the Taylor seriesffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
¼ P∞

n¼0 bnx
2n. We have that b0 ¼ 1, b1 ¼ 1=2

and

bn ¼ ð−1Þnþ1
ð2n − 3Þ!

n!ðn − 2Þ!22n−2 ; n > 1: ð10Þ

We note that these coefficients satisfy the property

bnþ1 ¼ −1=2
Xn
p¼1

bpbnþ1−p; ð11Þ

which we will need later. We are going to prove that for
n > 1

χð2nÞμνρσ ¼ bnðχð1ÞÞ2nμνρσ; ð12Þ

χð2nþ1Þ
μν

ρσ ¼ 0; ð13Þ

where we have defined

ðχð1ÞÞkμνρσ ¼ χð1Þμνα1β1χð1Þα1β1
α2β2 � � �

� � � χð1Þαk−1βk−1ρσ; k > 1: ð14Þ

The proof for (12) can be done by induction. First, we
notice that (9) guarantees that (12) is true for n ¼ 1. Next
assume that it is valid for generic n. For m;p ∈ 2N such
that mþ p ¼ 2nþ 2 we find that

ð⋆χðpÞÞμναβð⋆χðmÞÞαβρσ ¼ bpbmð⋆χð1ÞÞμνλγðχð1ÞÞp−1λγαβð⋆χð1ÞÞαβηκðχð1ÞÞm−1
ηκ

ρσ

¼ −bpbmðχð1ÞÞ2nþ2
μν

ρσ; ð15Þ
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where we have exploited Eq. (8) to get rid of the Hodge star operators appropriately. Now, taking into account (11), by
virtue of (6) we observe that (12) is indeed satisfied for nþ 1 as well. On the other hand, in order to see that (13) holds, it
suffices to check that it satisfies the recursive relations (6). However, after noticing that

ð⋆χð1ÞÞμναβð⋆χð2nÞÞαβρσ ¼ bnð⋆χð1ÞÞμναβð⋆χð1ÞÞαβλγðχð1ÞÞ2n−1λγρσ
¼ −bnð⋆χð1ÞÞμναβðχð1ÞÞ2n−1αβλγð⋆χð1ÞÞλγρσ ¼ −ð⋆χð2nÞÞμναβð⋆χð1ÞÞαβρσ; ð16Þ

where we have made a wide use of Eq. (8), we realize that
the recursive relations are identically satisfied. Hence (12)
and (13) are the solution to the recursive relations (6). Since
the bn are the coefficients of the Taylor series of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
,

one can explicitly sum all tensors χðnÞμνρσ to obtain

χμν
ρσ ¼ αχð1Þμνρσ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ½μ½ρδν�σ� þ α2ðχð1ÞÞ2μνρσ

q
: ð17Þ

By taking (17) into (3), we find a fully nonperturbative and
exactly duality-invariant theory with nonminimal couplings
between gravity and electromagnetism. To the best of
our knowledge, this is very first instance of such a theory
and, interestingly enough, we observe that it possesses a
high grade of resemblance with the usual (Einstein)Born-
Infeld theories, as the Lagrangian involves the square root
of certain quantity. We also find that, in this case, the
susceptibility tensor χμνρσ is only a function of the (trace-
less) Ricci tensor R̂μν. However, we note that replacing R̂μν

by any other symmetric and traceless tensor in (5) would
not alter the algebraic properties of χμνρσ , which would still
respect duality. Therefore, we can generate any quadratic
duality-invariant theory [25] by using (17) with

χð1Þμνρσ ¼ T ½μ½ρδν�σ�; ð18Þ

where T μν is an arbitrary symmetric and traceless tensor
built out of the curvature. For the sake of concreteness,
in the rest of the paper we focus on the theory generated
by (5).

III. STATIC AND SPHERICALLY SYMMETRIC
CONFIGURATIONS

Once we have obtained an exactly duality-invariant fully
nonperturbative theory, our next objective will be to try to
understand some features about its solutions. More con-
cretely, we are going to focus on static and spherically
symmetric (SSS) configurations, since they possess enough
symmetry to be amenable to computations but still they are
physically meaningful. They can in general be written in
terms of the following ansatz:

ds2 ¼ −NðrÞ2fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ;

ð19Þ

F ¼ −A0
tðrÞdt ∧ drþ p sin θdθ ∧ dϕ: ð20Þ

Here the metric depends on two functions fðrÞ and NðrÞ,
while AtðrÞ is the electrostatic potential and p is a constant
that represents the magnetic charge in Planck units.
In order to compute the explicit form of the susceptibility

tensor, note first that the traceless part of the Ricci tensor
for an SSS metric reads

R̂α
β ¼ ðX þ YÞταβ þ ðX − YÞραβ − Xσαβ; ð21Þ

where

X ¼ Nð2f − 2 − r2f00Þ − rð3rf0N0 þ 2frN00Þ
4r2N

; ð22Þ

Y ¼ −
fN0

rN
ð23Þ

and where τ, ρ and σ are the orthogonal projectors

ταβ ¼ δαtδ
t
β; ραβ ¼ δαrδ

r
β; σαβ ¼

X
i¼θ;ϕ

δαiδ
i
β: ð24Þ

On the other hand, static and spherical symmetry force χ
(and a fortiori all the different χðnÞ) to take the form

χμν
ρσ ¼ Bτ½μ½ρρν�σ� þ Cτ½μ½ρσν�σ�

þDρ½μ½ρσν�σ� þ Eσ½μ½ρσν�σ�; ð25Þ

where B, C, D, and E are functions of r. Taking into
account that

δ½μ½ρδν�σ� ¼ 2τ½μ½ρρν�σ� þ 2τ½μ½ρσν�σ�

þ 2ρ½μ½ρσν�σ� þ σ½μ½ρσν�σ�; ð26Þ

χð1Þμνρσ ¼ −2Xτ½μ½ρρν�σ� − Yτ½μ½ρσν�σ�

þ Yρ½μ½ρσν�σ� þ Xσ½μ½ρσν�σ� ð27Þ

and that the projectors τ, ρ and σ are mutually orthogonal, it
is not difficult to obtain the coefficients B,C,D, and E from
(17). These take the following simple values:

B ¼ −2αX þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2X2

p
; ð28Þ
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C ¼ −αY þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2Y2

4

r
; ð29Þ

E ¼ 2

B
¼ αX þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2X2

p
; ð30Þ

D ¼ 4

C
¼ αY þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2Y2

4

r
: ð31Þ

Consequently, we have been able to find the exact form of
the susceptibility tensor. This allows us to evaluate the
reduced Lagrangian for the SSS ansatz given by (19) and
(20), which takes the form

L ¼
Z

dθdϕ
ffiffiffiffiffi
jgj

p
LjSSS

¼ 1

4

�
Nr2RjSSS − 2p2

NE
r2

þ 2ðA0
tÞ2

r2

NE

�
: ð32Þ

Then we can find the equations of motion by varying this
Lagrangian with respect to At, f and N [26]. The variation
with respect to At yields

δL
δAt

¼ −
d
dr

�
A0
tr2

NE

�
¼ 0; ð33Þ

from where it follows that

A0
t ¼

qNE
r2

; ð34Þ

where the integration constant q represents the electric
charge in Planck units. On the other hand, taking the
variation with respect to f and N and using the previous
result, we find that the equations for the metric functions
can be expressed as

f − 1þ rf0 ¼ −ðp2 þ q2Þ δ

δN

�
NE
r2

�
; ð35Þ

rN0 ¼ðp2 þ q2Þ δ

δf

�
NE
r2

�
: ð36Þ

Therefore, they are manifestly invariant under a rotation of
the charges q and p, and it follows that the metric only
depends on the combination p2 þ q2 ≡Q2. Due to the
complicated form of E in (29), these are highly nonlinear
fourth-order equations for N and f, whose solution cannot
be obtained analytically. However, for small α one can
obtain the solution as a power series in this parameter.
To order α2 it reads

f ¼ 1 −
2M
r

þQ2

r2
−
ð7Q4 þ 5Q2rð2r − 3MÞÞα

10r6

þ ð5012Q6 þ 15Q4rð408r − 721MÞÞα2
1680r10

þOðα3Þ;

N ¼ 1þQ2α

4r4
−
41Q4α2

32r8
þOðα3Þ; ð37Þ

where M is the mass. We can see this solution is a
deformation of the Reissner-Nordström one. However,
the perturbative expansion in α is only valid as long as
the corrections are small and hence we cannot see what
happens to black holes when α ∼Q2. In that regime, one
would need to resort to numeric methods to solve the
equations of motion.

IV. EXTREMAL BLACK HOLES AND
NEAR-HORIZON GEOMETRIES

Fortunately, the situation improves if we are interested in
extremal black holes. In that case, it is possible to obtain the
near-horizon metric as well as the black hole entropy by
using Sen’s method [28,29]. This method essentially
consists in evaluating the Lagrangian on an AdS2 × S2

geometry. The near-horizon solution is then obtained by
extremizing the action, while the entropy is given by the
Legendre transform of the Lagrangian with respect to the
electric field. We follow this process in detail next.
We start by considering the following AdS2 × S2 ansatz

for the metric and the field strength:

ds2 ¼ a

�
−ρ2dt2 þ 1

ρ2
dρ2

�
þ bðdθ2 þ sin2 θdφ2Þ; ð38Þ

F ¼ −edt ∧ dρþ p sin θdθ ∧ dφ: ð39Þ

Here a ¼ R2
Ads2

and b ¼ R2
S2 are the radii squared of the

AdS2 factor and of the black hole horizon, respectively, p is
the magnetic charge and e will be related to the electric
charge. This geometry can be obtained from the general
SSS ansatz in Eqs. (19) and (20) by setting r ¼ ffiffiffi

b
p þ ρ,

f ¼ ρ2=a, N ¼ a, and A0
t ¼ e and keeping the leading

terms in the expansion around ρ → 0. Thus, the reduced
Lagrangian reads in this case

Lða; b; e; pÞ ¼ 1

2

�
a − b − p2Êþ e2

1

Ê

�
; ð40Þ

where

Ê ¼ −α
aþ b
2b2

þ a
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

ðaþ bÞ2
4a2b2

s
: ð41Þ

The entropy function Eða; b; e; q; pÞ is then defined as
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Eða; b; e; q; pÞ ¼ 2πðeq − Lða; b; e; pÞÞ; ð42Þ

where q is the electric charge of the configuration.
Extremizing the entropy function with respect to a, b
and e yields the equations satisfied by a and b as well as the
relation between the electric charge and e. Indeed, the
equation ∂E=∂e ¼ 0 yields

e ¼ Êq: ð43Þ

On the other hand, by deriving with respect to a and b and
using this result we obtain the following sets of equations
for a and b:

1

π

∂E
∂a ¼ −1þ ðp2 þ q2Þ ∂Ê∂a ¼ 0; ð44Þ

1

π

∂E
∂b ¼ 1þ ðp2 þ q2Þ ∂Ê∂b ¼ 0: ð45Þ

We observe again that the equations are invariant under a
rotation of the electric and magnetic charges. Notice also
that these equations are highly nonlinear—in fact, they are
not even polynomial—due to the form of Ê given above. In
spite of this, these equations can be solved in full generality
and we observe that they admit four different solutions.
However, there is only one solution with a, b > 0, and it is
given by

a ¼ 1

2

�
p2 þ q2 þ αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ2 − α2

q �
; ð46Þ

b ¼ 1

2

�
p2 þ q2 − αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þ q2Þ2 − α2

q �
: ð47Þ

Interestingly, this implies that Ê ¼ 1 and hence e ¼ q.
Finally, substituting these values for a, b, and e in the
entropy function (42) we arrive to the following result for
the entropy of these extremal black holes:

S ¼ πðp2 þ q2 − αÞ: ð48Þ

Surprisingly enough, we find that there is only a constant
correction to the entropy with respect to the Einstein-
Maxwell value—we remark that this is the exact value of
the entropy and not just an approximation. Notice that, even
when one adds only a finite number of higher-order terms
in the action, the entropy (and the rest of the quantities) will
be typicallymodified by an infinite tower ofα terms.Herewe
observe the opposite: the action contains an infinite number
of higher-order terms as dictated by duality invariance, but in
turn the entropy only has a correction of order α.
Let us take a closer look at this solution. While the

entropy is finite and real for any value of the charges, we
see that this is not the case for a and b. In fact, for any sign
of α we see that these extremal geometries only exist for

p2 þ q2 ≥ jαj: ð49Þ

Therefore, there is a minimum amount of charge needed to
produce an extremal black hole, implying that all black
holes with p2 þ q2 < jαj must be necessarily nonextremal.
On the other hand, the properties of these black holes near
the minimal charge are quite different depending on the
sign of α. When α > 0, the radius of the AdS2 tends to
the constant value a ¼ α as p2 þ q2 → α, while the area of
the horizon and the entropy vanish in this limit. In the case
of α < 0 we observe the contrary: the radius of AdS2 goes
to zero, while both the entropy and the area tend to a con-
stant value, namely, S ¼ A=2 ¼ 2πjαj, as p2 þ q2 → jαj.
In order to determine the sign of α, one may use the so-

called mild form [30,31] of the weak gravity conjecture
[32]. This states that the corrections to the mass of extremal
black holes must be nonpositive, so that the decay of an
extremal black hole into a set of smaller black holes is
possible. The near-horizon geometry does not allow one to
obtain the mass of the black hole, but we can obtain it from
the perturbative solution (37). Imposing the extremality
condition fðrþÞ ¼ f0ðrþÞ ¼ 0, we find that

Mext ¼ Q −
α

10Q
−

α2

84Q3
þOðα3Þ; ð50Þ

while the extremal radius rþ agrees exactly with the expan-
sion of

ffiffiffi
b

p
in (47). We have checked that the α expansion

of the mass converges very rapidly and the expression
above turns out to be very accurate even for Q ¼ ffiffiffiffiffiffijαjp

.
We see that in order for the corrections to the mass to be
nonpositive we must have α ≥ 0. Then, at the minimal
charge Qmin ¼ ffiffiffi

α
p

the mass becomes Mmin
ext ≈ 0.88

ffiffiffi
α

p
and

the entropy and area of extremal black holes vanish.

V. DISCUSSION

Duality-invariant modifications of Einstein-Maxwell
theory are interesting and well-motivated theories, but they
are highly nonlinear and often one cannot perform exact
computations. In this paper we have provided the first
example of exactly duality-invariant theories with non-
minimal couplings. Namely, we have shown that, in the
case of a quadratic dependence on the field strength, these
theories have the form given by (3), (17) and (18). It would
also be interesting to look for more general nonminimal
duality-preserving theories, i.e., including as well higher
powers of the Maxwell field strength, but this is a
challenging problem which will be treated elsewhere.
Focusing on the simplest of these theories, we have

studied its static and spherically symmetric solutions. As
we have shown, the equations of motion satisfied by the
metric in the latter theory are invariant under rotations
of the electric and magnetic charges, but due to their
complexity they can only be solved analytically in the
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perturbative regime—see (37). However, we found that the
near-horizon geometry of extremal black holes can be
obtained exactly.
A remarkable aspect about these extremal black holes

is that their entropy only receives a constant correction,
which is striking since the action is modified in a very
nonlinear way. A similar result is observed in the case
of Einstein-Born-Infeld theory, which suggests that duality
somehow simplifies the corrections to the entropy. It would
be interesting to explore other theories to understand
this possible connection better, but we do not have as of
this moment a simple explanation for this observation.
In addition, these extremal black holes possess a minimal

charge below which no solutions exist. Thus, it would
follow that any black hole with a charge below this
minimum value must be nonextremal—no matter how
small the mass is. We have also shown that the weak
gravity conjecture imposes the coupling constant α to be
positive, which led us to the conclusion that, at the minimal
charge, the area and entropy of extremal black hole vanish.
This is an intriguing behavior, and it is tantalizing to
assume that this minimal charge coincides precisely with
the elementary electric charge. An extremal black hole with
the charge of an electron is trivially the one with the lowest
(nonzero) charge, and one could argue that its entropy
would vanish because it would contain only one microstate.
However, we note that the entropy can always be shifted by
the introduction of a topological Gauss-Bonnet term in the

action, so the entropy of the minimal extremal black hole
can be changed.
These issues could be better understood by trying to

embed this theory in string theory, in whose case, a precise
entropy counting is available, e.g., [29,33–36]. In fact, we
have checked that our solution (37) coincides with the
α0-corrected Reissner-Nordström black hole of Ref. [37],
upon the identification α ¼ α0=8 [38]. This shows that our
theory (3) captures some of the stringy α0 corrections, at least
in the situations where the additional degrees of freedom
besides the metric and the electromagnetic field can be
neglected.
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