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Vector interactions inhibit quark-hadron mixed phases in neutron stars
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We investigate the surface tension ¢ and the curvature energy y of quark matter drops in the MIT bag
model with vector interactions. Finite size corrections to the density of states are implemented by using the
multiple reflection expansion (MRE) formalism. We find that ¢ and y are strongly enhanced by new terms
arising from vector interactions. With respect to the noninteracting case they are increased by a large factor,
which can be as high as ~10 when the vector coupling constant g varies within the range used in the
literature. This behavior may have major consequences for the hadron-quark mixed phase speculated to exist
at neutron star (NS) interiors, which may be totally suppressed or have its extension substantially reduced.
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I. INTRODUCTION

It has been speculated that hybrid stars may contain a
hadron-quark mixed phase in their interiors. In such a
phase, the electric charge is zero globally but not locally,
i.e., both the hadronic and the quark phases have net
charges, but the whole mixture is electrically neutral. The
mixed phase is usually studied in the Wigner-Seitz approxi-
mation, where the whole space is divided into equivalent
periodically repeating charge-neutral cells with given
geometrical symmetry, which may change from droplet
to rod, slab, tube, and bubble with increasing baryon
density [1]. Within each cell, a lump made of one phase
is embedded in the other one and both share a common
lepton background. Both phases are separated by a sharp
boundary at which it is required chemical, mechanical, and
thermal equilibrium between them.

The existence of the mixed phase depends crucially on
the amount of electrostatic and surface energy needed for
the formation of geometric structures along a wide range of
densities [2—4]. If the energy cost of Coulomb and surface
effects exceeds the gain in bulk energy, the mixed phase
turns out to be energetically disfavored with respect to a
simple sharp interface between locally neutral hadronic and
locally neutral quark matter.

Our goal in this work is to determine the surface tension
and curvature energy of quark drops in the mixed phase in
order to assess whether its existence is energetically
favored inside NSs. Several works in the literature have
used the surface tension as a free parameter to describe
the possible structure of mixed phases, and to evaluate
under which conditions it would be favored over a sharp
quark-hadron interface (see e.g., [2,4-9] and references
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therein). However, there are fewer works that have deter-
mined ¢ and y from microscopic calculations. Although
there are some works evaluating ¢ for vanishing chemical
potentials based on lattice QCD [10-14], such approach is
not possible for dense matter, where one depends on effec-
tive models. Calculations made within the MIT bag model
[15-19], the Nambu-Jona-Lasinio model [20,21], the linear
sigma model [22-24], the three-flavor Polyakov-quark-
meson model [25], the Dyson-Schwinger equation approach
[26], the nucleon-meson model [27], and the equivparticle
model [28], predict small values of the surface tension,
typically below 30 MeV/fm? Somewhat higher values,
in the range ¢ = 30-70 MeV/fm?, are obtained within
the quasiparticle model [29]. Significantly larger results
(6 = 145-165 MeV/fm?) arise within the Nambu-Jona-
Lasinio model when the MRE method is used model [30].

In the context of phenomenological models, interest in
repulsive vector interactions has reemerged in recent years
(see, e.g., [31-40] and references therein) because they help
explaining large observed NS masses [41-45]. To the best
of our knowledge, a detailed and self-consistent analysis of
the role of vector interactions in ¢ and y of astrophysical
quark matter has not been presented in the literature. In this
work we analyze this problem and identify new vector
contributions to the expressions for ¢ and y. We will show
that these quantities are strongly enhanced by vector
interactions, which has significant consequences for the
internal structure of NSs.

II. THE VECTOR MIT BAG MODEL IN BULK

Quark matter is described by the MIT bag model with
vector interactions, which are introduced by a vector-
isoscalar meson V¥, with coupling constants g,,y, coupling

© 2021 American Physical Society
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to all three quarks. The Lagrangian density of the model
reads [37,38,46]:

L= Z{U_/‘I (i 0y — mylwy — B}O(Wy,)
q
1
* quq‘/{lpq V] 10w, + Em%/VﬂV”
q

+ Zl/_/z}’ﬂ(ia” —mp)yy, (1)
7

where g runs over quarks (#, d and s), [ over leptons (e~
and v, ), the bag constant B represents the extra energy per
unit of volume required to create a region of perturbative
vacuum [47], and O is the Heaviside step function (® = 1
inside the bag; ® = 0 outside). For simplicity we adopt
here a universal coupling of the quark ¢ with the vector
field V¥, i.e., the coupling constants verify g,,v = G,uv =
Ggaav = ¢g. The mass of the vector field is taken to be
my = 780 MeV.

Working in the mean field approximation (MFA) and
defining Gy = (g/my)?, the equation for the vector field
reads:

1/2
myVoy = GV (nu +ng+ ns)v (2)
where n, = (7,7 w,) is the quark number density.! The
grand thermodynamic potential per unit volume is [38]:

1
Q= ZQH—B—Em%V% (3)
i=q,l

where
o — _Ji / (fie + /1)
' 67 \/k2+m

being k the particle’s momentum and g; a degeneracy factor
(94 =16, g-- =2, g,, = 1). The Fermi-Dirac distribution
functions for particles and antiparticles are

K dk, (4)

1
L+ oxp (K + m2) 72 F i) /1]

fis = (5)

For quarks, the effective chemical potential reads:

Tn the MFA vector MIT model considered here, negative
values of Gy are not allowed. In fact, the vector terms are the
same as in the Walecka model [48] where the vector mean field
turns out to be repulsive. This is apparent from the dispersion
relation £, = (mg + k%)1/2 + gV [38], since the vector contri-
bution gV is posmve in the MFA. This is so because gV is given
by gV = (g/my)? >4 Ng» and the right-hand side of the equation
is positive definite. This means that not only Gy = (g/my)* > 0
but also G‘l/2 =g/my > 0.

/42 =Hg— G://ZmVVO + Qq|e¢| (6)

where we added the contribution of an -electrostatic
potential ¢, being e the electron’s electric charge, ¢, =
2/3,and g, = g, = —1/3. For e~ we have u; = u, — |eq).
u; is the chemical potential of the i-species. The particle
number density of each species is

gi ®
ni:27‘[2/0 ( i+

III. FINITE SIZE EFFECTS WITH VECTOR
INTERACTIONS

Effects due to the finite size of quark droplets will be
taken into account within the MRE framework [49-52].
The basic idea of the MRE, is that the propagation of a
particle in a cavity can occur either directly (as described by
the free space propagator S°), or via one or more reflections
at the surface, as can be seen in Fig. 1 of Ref. [53]. The
expansion for the time independent Green’s function reads

— )Rk (7)

S(r,r') = Sr,r') + ég do SO (r,a)K(a)S(a, 1)

+ ]{ do,dosS®(r,a)K (a)S° (e, B)K (B)S°(B.x')

0Q
+ ... (8)

being K a reflection kernel describing the interplay with the
surface due to the confining boundary conditions [54].

The density of states p is obtained replacing the latter
general form for S(r,r') in the trace formula p(w) =
F LImerS(w + ie)y° [55]:

1
p(w) =F — ImtrSO(a) + ie)y?

r'-r

/d3 ?{ do,limImS’(r, &,  + ie)
SO

(v, 0+ ie)y + - 9)

The first term gives the volume contribution to p, and
from the second one, terms proportional to the surface
area S and the extrinsic curvature C can be extracted. As a
consequence, for spherical drops one obtains:

1222
(k—]:)zfc‘i’ (10)

which is the same for quarks as for antiquarks. The volume
term is independent of the boundary condition and of the
type of field (scalar, spinor, vector, etc.), but the functions
fs and f depend on the boundary condition as well as on
the nature of the field. A detailed calculation of fg and f

672
pi(k) =1 +§fs,i +
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for quarks has never been published, but the result for f
was given in [15,56]:

Foill) = — ;<1-immm5> (11)

T m;

The coefficient f has not been calculated using the MRE
in the general case of massive quarks, but it was shown in
[50] that the expression

1 3k (= k
S D (A . 12
1271'2 |: 2m,- <2 arctan m,)] ( )

has the right limiting values for m — 0 and m — oo, and is
in excellent agreement with shell model calculations.

In the MRE framework, the thermodynamic integrals are
obtained from the bulk ones by means of the following
replacement [16,17]:

/00 kK*dk /°°
0 27? A

Since leptons form a uniform background, this prescription
applies only to quarks, which feel the strong interaction and
are confined within a finite region. The surface term for
gluons is zero, as it is for massless particles. To avoid
unphysical negative values of p;(k) at small momenta, an
infrared cutoff A; is introduced which is defined as the
largest solution of the equation p;(k) = 0 with respect to k.
A; depends on m; and R and its values are given in Table I
of Ref. [18].

The grand thermodynamic potential of the vector MIT
bag model including finite size effects reads:

fC,i(k) =

kK dk
2_71_2pi(k)- (13)

glV/OO(fl++f* )
i= ql6ﬂ A; \/k2

_ VZGV< MRE + nMRE + nMRE)Z’ (14)

QV =— k*p;dk + BV

being n)RE the particle number density in the MRE
formalism:

g © * *

=2 [P = fRe k. (15)
AL{

Replacing the MRE density of states given in Eq. (10)

into Eq. (15), and separating volume, surface and curvature
contributions we obtain:

S C
nyRE = p¥ +an+vng, (16)

being V =3$7R?, S = 47R?, C = 8zR, and:

XE / (for = fo- )P dE, (17)
ny :gq/ (fis = [4=)[sgkdk, (18)
ng =9y [\m(f:;-q— - f;;_)fchk (19)

The quantity n}; is always positive and represents the
volume contribution to the particle number density.
The surface contribution ng is always negative because
fs.¢ <0, which means that (for given T and ) finite size
effects reduce the particle number density with respect to
the bulk case’. The curvature contribution ng has a more
involved integrand but we have checked numerically that
nqC < 0 for all cases considered here.

Using the same procedure in Eq. (14) we find:
QV =PV 4065+ 7yC

2
- ZlZn’GV <nsnc + ninf + Enfnf) . (20)

The coefficients of V, S and C in Eq. (20) are respectively
the total pressure P, total surface tension o and total
curvature energy y given by:

. 2
P= EI:P,. +5 (> G/nl)> - B. (21)
q. q

o= Za - ZGVn n]S, (22)

i=u.d,s
Jj=u.d.s

}/—qu ZGvn n -= ZGI/Z 52, (23)

i=u,d,s

i—uds
pr_ gi/ (fiy + i)
' 6n? o K+ m?

o (f* * k3
of = _& (f1+ +f,_)f5,,k dk ’ (25)

' 3 Ja \/kz—i-m%

being

K dk, (24)

*Notice that, although the form of f s, 1s model dependent, its
sign can be understood intuitively because, in a finite system, the
number of available states is reduced with respect to the bulk due
to quantization. This behavior is common to MRE, finite box
calculations and shell models, indicating that the effect encoded
in fg; is quite general.
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e 9 [® (fiy + fi)fcikdk

i 3 Ja \/kz-i—mi2

The expressions for P}, o7 and y; resemble respectively the
pressure, the surface tension and the curvature energy of a
non-interacting Fermi-Dirac gas, but they are calculated
using the distribution functions f7, instead of f;, (see [18]
for comparison3). Notice that ¢ and y contain a “free
particle” term which is the sum of the contribution of each
flavor, and new terms arising from vector interactions
where all flavors are mixed. The free particle terms of o
and y are positive because of the minus signs in Eqgs. (25)
and (26) and the behavior of f , and f¢ ;. The second term
in Eq. (22) increases ¢ because n}/ > 0, nf <0, Gy >0,
and there is an overall minus sign. The second term in
Eq. (23) increases y because njc < 0, but the third term
reduces it. Aside from these extra terms, vector interactions
have an influence in ¢ and y via the effective chemical
potentials y; that enter the Fermi-Dirac distribution func-
tions f7. [see Egs. (6) and (5)]. To determine uj, the
quantity myV, must be determined by solving self-
consistently the equation for the vector field:

(26)

myVy = /Gy (nMRE 4 p}RE 4 ;MRE) (27)

In the present model, ¢ and y are independent of the bag
constant because B is absorbed in the pressure P. Finally,
note that the terms in the last line of Eq. (20) are of order R°
or R~L, i.e.,, much smaller than the volume, surface and
curvature terms, having a negligible contribution to the
thermodynamic potential.

IV. RESULTS AND CONCLUSIONS

The mixed phase contains quark matter droplets in
chemical equilibrium under weak interactions, which
means that the chemical potentials of different species
(u, d, and s quarks, e~ and v,) are related by

Ha = Py + He =ty (28)

Hs = Ha- (29)

In a self consistent analysis of the mixed phase, the
electric charge density ny and the Coulomb potential ¢
should be determined at each position of the quark droplet
by solving the Poisson equation, as done for example in
Refs. [2,4-8]. However, to keep our analysis as general as
possible, we will consider n, and ¢ as free inputs in order
to assess the dependence of ¢ and y on that quantities. Since
o and y are determined by the state of quark matter at the

Unfortunately, there was a missing overall minus sign in front
of the integrals for ¢ and y in Egs. (10) and (11) of Ref. [18]. That
typo was not present in the calculations.

droplet’s inner boundary, we will focus on n, and ¢ in that
region.

The electron background in the mixed phase is uniform,
i.e., it is the same at the internal and the external side of
the drop’s boundary. Additionally, the hadronic component
is predominantly positive since it is constituted mainly of
neutrons and protons. Therefore, due to global charge
neutrality, the quark phase inside the drop has to be
negative (cf. Figs. 5 and 6 of Ref. [57]). Thus, n, must
be negative at the inner side of the drop:

2 1 1
ng = (§ nyRE — g”glRE - gnls\v/[RE - ”e) <0.  (30)

For convenience, we will write the charge density in terms
of the charge-per-baryon ratio:

(31)

e
1]
SIS

where np is the baryon number density and £ < 0. From our
calculations we learn that £ must be = — 2 for obtaining
nMRE > (. Thus, the expected values of ¢ are in the range
-2 <é<0.

The Coulomb potential ¢ at the inner side of the drop’s
surface is determined by the charge enclosed within it.
Since this charge is negative, the resulting electrostatic
interaction is repulsive on the electrons and d, s quarks and
attractive on u quarks. Calculations show that ¢ is in fact
negative and takes values between 0 and —50 MeV at the
drop’s boundary (see, e.g., Fig. 4 of Ref. [4]). However,
notice that Eqs. (27)—(30), are invariant by the change of
variables u; — u; + q,le¢|. As a consequence, o and y
are independent of the value of ¢, as can be checked
numerically.

We focus here in thermodynamic conditions that are
representative of the following astrophysical scenarios:

(1) Cold deleptonized NSs (CNS), characterized by very
low temperatures (below ~1 MeV) and no trapped
neutrinos. We adopt here 7 = 1 MeV and g, = 0.

(2) Hot lepton rich proto NSs (PNS), with temperatures
up to ~40 MeV and a large amount of trapped
neutrinos. As a representative case we consider here
T =30 MeV and p,, = 100 MeV [58,59].

(3) Postmerger NSs (PMNS) According to numerical
simulations, the just merged compact object may
attain temperatures up to 100 MeV [60-63], and
huge neutrino trapping can be expected. As a limit-
ing case we adopt 7=100MeV and p, =200MeV.

In Fig. 1 we show ¢ and y as functions of Gy for five
values of ng, namely 2n,, 4n,, 61y, 8ny and 10n,, being
no = 0.16 fm~> the nuclear saturation density. As a general
feature for all astrophysical scenarios, ¢ and y grow linearly
with Gy and the slope increases with the baryon number
density. The resulting effect is an increase of ¢ and y by a
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Surface tension and curvature energy as a function of Gy, for different values of ny/n,. Each panel represents an astrophysical

scenario introduced in Sec. IV. Solid and dashed lines correspond to ¢ = 0 and & = —0.5 respectively.

factor of ~10 when Gy, grows from 0 to 1 fm? (same range
of values as in [35,38]). Negatively charged droplets have
larger o and smaller y than charge neutral ones, their
difference being around 10% for £ = —0.5 as taken here.
More negative values of £ do not affect significantly o and
y. Notice that for the particular case of Gy =0, ¢ and y
grow considerably with np as shown in previous works for
a variety of astrophysical conditions [16—18]. The density
dependence is more pronounced when vector interactions
are turned on, since they also raise with ng. Finally, the
combined effect of large temperatures and neutrino trap-
ping produces a decrease of ¢ and y as seen in Figs. 1(c)
and 1(f).

In Fig. 2 we show the ratio yC/(oS) = 2y/(Ro) between
the surface and curvature terms in the grand thermody-
namic potential [see Eq. (20)] to evaluate the relative

weight of each contribution. Curves are quite horizontal
indicating that the ratio is insensitive to Gy. The relative
importance of curvature with respect to surface effects
depends mostly on the droplet’s radius, being around 10%
for 10 fm and around 50% for 3 fm. The ratio is larger for
smaller densities, and smaller when droplets are negatively
charged. The range of values of the ratio is wider for
smaller radii and when temperatures and neutrino trapping
are increased.

The main new conclusion of the above results is that o
and y are strongly enhanced by vector interactions. Within
the noninteracting MIT bag model, we find typically ¢ ~
2-25 MeV fm~2 and y ~ 2-12 MeV fm~'. When repulsive
vector interactions are turned on these values are increased
by a large factor, that can be as large as 10 for ngp = 10n,
and Gy = 1 fm?. The effect of vector interactions on ¢

FIG. 2. Ratio of the curvature and the surface terms in the grand thermodynamic potential as a function of Gy for different values of
ng. Colors and lines have the same meaning as in Fig. 1. Within each type of curve, np increases from top to bottom.
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and y can be understood qualitatively as follows. Surface
tension in the MRE formalism is a quantum effect arising
from the smaller number of states available in a finite
system with respect to the bulk case. As a consequence, for
a given number of particles, higher energy levels are
occupied in a finite region than in the bulk, and the extra
energy is interpreted as being stored in the surface and the
curvature. Vector interactions shift the energy levels
to even higher values, as seen from the dispersion relation
E, = (m2+k*)!/2 + gV° (notice that gV° > 0), increas-
ing not only the pressure but also ¢ and y. As a result,
the here found effect of vector interactions on ¢ and y
is fairly model independent. This behavior has strong
consequences on the internal structure of hybrid stars.
With such large o and y, the energy cost of surface and
curvature makes more difficult to compensate the energy

gain of global charge neutrality. As a consequence, we
expect as a general feature that vector repulsive interactions
will decrease the range of densities where the mixed phase
is energetically favored, specially at large densities. In
the extreme cases considered here a sharp interface
could occur.
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