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We present a field theoretical description of quarkyonic matter consisting of quark, nucleon, and ghost
fields coupling to mesonic degrees of freedom. The ghosts are present to cancel overcounting of nucleon
states that are Pauli blocked by the quark Fermi sea. Such a theory becomes an effective field theory of
nucleons at low baryon density and as such will reproduce nucleonic matter phenomenology. This theory
can accommodate chiral symmetry restoration and the dynamical generation of a shell of nucleons at the
Fermi surface. It is valid for finite temperature and density. In such a theory, quark-nucleon duality is
accomplished by inclusion of ghost fields so that the nucleons extra degrees of freedom, that are beyond
those of quarks, are compensated by the ghost fields.
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I. INTRODUCTION: ESSENTIAL INGREDIENTS
OF QUARKYONIC MATTER

The concept of quarkyonic matter [1] was introduced to
explain a remarkable feature of QCD in the limit of a large
number of colors, Nc [2,3]. In this limit, fermion loops are
suppressed by a factor of 1=Nc. This means that deconfine-
ment at finite density cannot occur until a quark chemical
potential reaches a value μQ ∼

ffiffiffiffiffiffi
Nc

p
ΛQCD. This scale can

be parametrically large compared to the QCD scale. For
degrees of freedom deep within a Fermi sea, interactions
are controlled by exchange interactions, which are at a hard
momentum scale, and the effect of these interactions should
be phenomenologically accounted for by an effectively
deconfined quark Fermi sea. At the Fermi surface, inter-
actions at small angles and small momentum transfers are
allowed because there are states not Fermi blocked above
the Fermi surface, and one can scatter into these states. The
effects of confinement are therefore important near the
Fermi surface, and the particle degrees of freedom in this
region should be thought of as confined nucleons and
mesons.
At finite temperature T ≤ ΛQCD, for baryon chemical

potentials less than the nucleon mass MN , nucleonic
degrees of freedom are exponentially suppressed in large
Nc by a factor of e−βðMN−μNÞ, where μN is the nucleon
chemical potential, and β is the inverse of the temperature.
This means that there are three distinct regions of strongly
interacting matter at finite temperature and density. There is
a low temperature and density phase with no baryons that is

confined. There is a high density and low temperature
phase that is quarkyonic. There is a phase at high temper-
ature, or low temperature and ultrahigh density that is
deconfined.
The picture of zero temperature high density quarkyonic

matter is thought of as a Fermi sea of quarks surrounded by
a Fermi shell of nucleons. There are now models con-
structed that have this feature arising dynamically [4–6]. At
low densities it is energetically favorable to have nucleons.
To see this is very simple. The pressure of a nonrelativistic
nucleon gas is

PN ¼ κNN
d:o:f:

ðkNF Þ5
MN

; ð1Þ

where κ is a numerical factor, which is equal to 4 for an
isospin symmetric system, and the nucleon Fermi momen-
tum is defined as kNF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2N −M2

N

p
, where μN is the

nucleon chemical potential. For a nonrelativistic gas of
quarks,

PQ ¼ κNcN
Q
d:o:f:

ðkQF Þ5
MQ

; ð2Þ

where kQF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2Q −M2

Q

q
. For the quarks, the chemical

potential is μQ ¼ μN=Nc, and in the additive quark-nucleon
model, the constituent quark mass is MQ ¼ MN=Nc. This

means that kNF ¼ Nck
Q
F and that the ratio of pressure of

quarks to that of baryons is

PN

PQ ¼ N3
c: ð3Þ

Therefore, when the system is a dilute gas of quarks, and
the interaction energy is weak, then the system is entirely in
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nucleons. At nuclear matter densities kNF ∼ ΛQCD, so that
the associated quark Fermi momenta are quite small. One
can also verify that the preferred phase at low density is
nucleonic by computing the energy per baryon for the same
baryon number density of quarks and of nucleons. One
finds that the energy per baryons of a free gas of constituent
quarks always exceed that of nucleons.
As the density increases, hard-core nucleon interactions

may make the nucleon phase disfavored. This is because
hard-core nucleon interactions are of strength Nc, and the
Fermi energy of a nucleon can shift by of order of the
nucleon mass. This would naively need to be associated
with a huge shift in the density of the baryons,
ρN ∼ ðkNF Þ3 ∼M3

N ∼ N3
cΛ3

QCD. This huge increase in density
is not realized in quarkyonic matter because the nucleons
sit on a shell of decreasing thickness as the Fermi energy of
the nucleons increase. The density of the nucleons should
be expected to saturate at the density of matter correspond-
ing to the hard cores of nucleons, which is of order
ρhard core ≡ n0 ∼ Λ3

QCD. Nucleonic matter sits on a shell
and generates a density of nuclear matter that is approach-
ing the hard-core density. As this density is approached, the
baryon number density increases by increasing the quark
density. Until the quark Fermi momentum is of order
kQF ∼ ΛQCD, this increase associated with the quarks is quite
small. As the baryon density associated with quarks slowly
increases, the quark and nucleon Fermi energies rapidly rise
until there is a quark Fermi sea with a Fermi energy of order
EF
Q ∼ ΛQCD, and the nucleons become relativistic in the

Fermi shell with EF
N ∼ NcΛQCD ∼MN . Different from the

models that exhibit a first-order phase transition, quar-
kyonic matter generates a soft equation of state for small
densities, while the rapid increase in the Fermi energies at a
slowly varying density leads to a hard equation of state with
sound velocities of order one at moderate densities. This is
particularly suitable for the neutron star phenomenology
[4,5,7].
The central problem to deal with in constructing a field

theoretical description of quarkyonic matter is that one
needs to have both nucleonic and quark degrees of freedom
[8,9]. An effective field theoretical description of nucleons
can only describe matter near the Fermi surface. The
nucleonic degrees of freedom should not be important
inside the Fermi sea of quarks as a consequence of the Pauli
blocking. Inside a Fermi sea, the low momentum states are
occupied by quarks. A nucleon is composed of quarks
and therefore cannot propagate when its momentum is
kN < NckQ.
It is useful to have a field theoretical description of

quarkyonic matter that is also valid at finite temperature
[10]. This involves including pion degrees of freedom and,
at least phenomenologically, the effect of meson nucleon
interactions. Such a theory should reduce to a theory of
nucleons and mesons at low densities and evolve to quarks

at high density and temperature. It should allow for the
possibility of quarkyonic matter.
It is the purpose of this paper to outline a possible

solution to this problem. The central issue that needs to be
resolved is the duality between nucleonic and quark
descriptions. The nucleon can be thought of as a nucleonic
state or as an ensemble of quarks. This means that if quarks
occupy low momentum states, then the quarks composing a
nucleon cannot occupy these same states. Therefore, if we
have a field theoretical model, then we can have a field that
corresponds to a nucleon, and a field that corresponds to
quarks, so long as it is constrained so that the quark fields
associated with these states do not overlap the same states
as are occupied by the quarks. This can be accomplished by
an unconstrained nucleon field, an unconstrained quark
field, and a negative metric nucleon ghost field that fill
precisely the same state as the quarks, and whose only
purpose is to cancel away the degrees of freedom of the
unconstrained nucleon field, whose quark states occupy
states already occupied by quarks.
In the paper below, we first argue how such a theory is

constructed for free quarks and nucleons. We then argue
how such a theory might be generalized to include
interactions with meson fields or in a model where nucleon
interactions may be phenomenologically accounted for by
an excluded volume. Such a theory may provide a model
where one can simultaneously study the onset of quar-
kyonic matter and the restoration of chiral symmetry.

II. GHOST AND REMOVING
UNPHYSICAL STATES

If there is a Fermi sea of quarks with a chemical potential
μQ, then the nucleon cannot overlap a color singlet state
with the quantum number of the nucleon which is com-
posed of quarks. Such states cannot exist in the quark Fermi
sea up to a chemical potential μG ∼ NcμQ. The density of
such states is

ρG ¼ 1

1þ eβðNCEQ−μGÞ −
1

1þ eβðNCEQþμGÞ : ð4Þ

In the additive quark model, EN ¼ NcEQ, and if we also
think about this color singlet state embedded in the quark
Fermi sea as a nucleon, then the energy of this Nc quark
state should be thought of as a nucleon energy. Therefore,

ρG ¼ 1

1þ eβðEN−μGÞ −
1

1þ eβðENþμGÞ : ð5Þ

For a noninteracting gas of quarks and nucleons, the
density of quarks is

ρQ ¼ 1

1þ eβðEQ−μQÞ −
1

1þ eβðEQþμQÞ ; ð6Þ
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and the density of nucleons, constrained not to propagate in
the quark Fermi sea, and ignoring what will turn out to
be very small contributions from antinucleons and anti-
ghosts is

ρNconst ¼ ρn ¼ 1

1þ eβðEN−μNÞ −
1

1þ eβðEN−μGÞ : ð7Þ

This equation is almost trivial since it places the nucleon in
a shell of momenta above that of the quark sea, where they
will not be Pauli blocked. In the above equations, the
contributions from antinucleons and antighosts can almost
always be ignored because they are suppressed by a factor
of e−MN=T , which is small at the temperatures usually
considered.
We now wish to generalize this description to a field

theoretical model. We have an unconstrained nucleon field
with chemical potential μN and mass MN , a ghost nucleon
field with chemical potential μG ∼ NcμQ and massMN , and
quark field with mass mQ ¼ MN=Nc and chemical poten-
tial μQ. The nucleon field will be denoted by N, the quark
field will be Q, and the ghost field will be G. The ghost
field will have the same Lorentz structure as the nucleonic
field. It will satisfy antiperiodic boundary conditions in
imaginary time, like the nucleons. It will, however, be a
commuting and not an anticommuting field. In a path
integral, it will be represented by a c-number integration
variable rather than a Grassmann algebra variable. The
action for such a theory in Euclidean time is

SE ¼
Z

β

0

dt
Z
V
d3x

�
N̄

�
1

i
γ · ∂ − iμNγ0 þMN

�
N

þ Ḡ

�
1

i
γ · ∂ − iμGγ0 þMN

�
G

þ Q̄

�
1

i
γ · ∂ − iγ0μQ þMQ

�
Q

�
: ð8Þ

It is useful to define the propagator

SðμN;MÞ ¼ 1
1
i γ · ∂ − iμNγ0 þMN

: ð9Þ

Now if we integrate over a Grassmann variable, then the
path integral for the partition function will give

ZN ¼ det−1 SðμN;MNÞ; ð10Þ

where the integration over the ghost c-number field yields,

ZG ¼ det SðμG;MNÞ: ð11Þ

The formula for the grand potential is obtained from

Ω ¼ g
1

βV
TrflnðSðμN;MNÞÞ þ Nc lnðSðμQ;MQÞÞ

− lnðSðμG;MNÞÞg: ð12Þ

The factor of Nc for the quarks comes from the fact that
there are Nc quark fields. If our quarks and nucleons are
isodoublets, then the degeneracy factor is g ¼ 2. As
expected, the ghost contribution to the action has the
opposite sign from that of the nucleons and is present to
cancel out precisely the contribution of modes of the
nucleon, where the quark states of the nucleon are already
occupied by quark states. It is straightforward to evaluate
these determinants of the various propagators by standard
methods of diagonalizing in momentum space and per-
forming a contour integral representation for the Matsubara
frequency sum. The grand potential is obtained as

Ω ¼ −gT
Z

d3p
ð2πÞ3 fln ½1þ e−βðENðp⃗Þ−μNÞ�

− ln ½1þ e−βðENðp⃗Þ−μGÞ�
þ Nc ln ½1þ e−βðEQðp⃗Þ−μQÞ� þ ðμ → −μÞg; ð13Þ

where one can notice that the ghosts are present to subtract
the contribution of the pressure of the nucleons due to Pauli
blocking. Since the entropy and number density follow by
the ordinary thermodynamic relations term by term in the
expression above, except for an overall minus sign for the
ghost contribution, all of the expressions for the pressure,
energy density, entropy, and number density are simply the
nucleon and quark contributions minus that of the ghost
nucleons.
There is a contribution from the vacuum that we ignore

in the above expression since it is μ and T independent.
Moreover, the contributions from the ghosts and nucleons
cancel in the vacuum contribution leaving only the effects
of quarks. While this is trivial in the free theory, when
interactions are included, one may need to include the
vacuum contribution when finding the proper minimum
with respect to expectation values of fields. In the interact-
ing vacuum, the effects of nucleons and ghosts still cancel
completely since for each nucleon loop there is a contri-
bution from a ghost loop of the opposite sign. The vacuum
energy is entirely determined by the quarks and their
interactions. This removes any problem associated with
over counting when one includes both quarks and ghosts in
a theory.
When interactions are included, one can explore various

theories to see if one can obtain a reasonable shell structure
for quarkyonic matter. As one can find in Eq. (13), the
pressure is obtained in terms of the chemical potentials μi,
which determine the quasiparticle number densities ni.
Since this quarkyonic matter concept is the theory about the
quasifree quarks and confined quarks (baryon) at the given
total baryon number density, the pressure itself is not
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always the suitable quantity for determination of the matter
configurations. For example, if presumed chemical poten-
tials are given, then the number densities of the particles
(thickness of the shell structure) and subsequent bulk
properties can be obtained by extremization of the pressure.
On the other hand, if the total baryon number density is
given and the chemical potential depends on the particle
density [μiðniÞ] via the interaction Lagrangian, then the
shell-like configuration can be determined by extremization
of the free energy density (F=V ≡ f ¼ ϵ − Ts ¼ −pþ μn,
where ϵ and s denotes the energy and entropy density,
respectively).

III. DETERMINING THE PARAMETERS OF THE
QUARKYONIC THEORY

The theory we have considered so far is free field theory.
Interactions can be included in various ways. For example,
we could imagine a field theory with nucleons and quarks
interacting with mesons. The ghost and the nucleons would
need to be constrained to have identical interactions with
mesons in order to guarantee the precise cancellation of
ghosts and nucleons in the region of occupied quark states.
For the quarks, there are various possibilities. One can
imagine a theory of quarks interacting with a pion and
sigma field in order to generate phenomenological quark
masses. Alternatively, one can treat the quarks fully in QCD
interacting with a gluon field. The issue one would need to
deal with ultimately is how to treat the interactions of the
quarks with the nucleons. In an effective field theory with
pions and sigma meson, this can be done; however, within
QCD this is less easy to treat when vector mesons are
brought into the problem. For now, we leave the problem of
a specific effective theory for quark and nucleon inter-
actions as an open problem.
Nevertheless, we see that our theory with a quark, ghost,

and nucleon chemical potential can be defined. We need to
ask how the three chemical potentials are determined.
We first need a relationship between the chemical potential
of ghosts and quarks. The simplest possibility is for a
constituent quark model, where NcMQ ¼ MN . In this
case the choice μG ¼ NcμQ is reasonable. If there
are small deviations from constituent quark scaling, ΔM ¼
MQ −MN=Nc, then we clearly want to begin having ghost
states only when the first quark states appear. In this case,
one should shift the chemical potentials by their threshold
masses,

μG ¼ NcðμQ − ΔMÞ: ð14Þ

Another case is when a vector mean field is present. In
this case, the effect of a vector mean field is to shift the
energy by a constant and does not affect wave functions. If
we have no mean field, then the above criteria of Nc scaling
should account for the orthogonality of quark and nucleon
wave functions when the quark states are occupied.

Shifting the energies by a constant, the mean field energy
per nucleon or quark, should not affect this orthogonality.
Therefore, the relationship between chemical potential,
with the effect of the mean field constant shift in energies
subtracted away, should satisfy Nc scaling. Inclusion of
different kinds of interactions would require a more
exhaustive analysis, and it is work for the near future that
will be reported elsewhere.
Although it will involve some careful thinking to

establish the relationship between ghost chemical potential
and that of quarks in various theoretical models, one can
assume that some relationship is properly determined. Then
the theory has only two independent parameters: the quark
and nucleon chemical potentials, or alternatively the
nucleon density nN, and the quark baryon density nBQ ¼
nQ=Nc because the ghost density is determined by that
of the quarks. In terms of the total baryon density,
nB ¼ nN − nGðnBQÞ þ nBQ, the configuration that minimizes
the energy density is

dϵ ¼ ∂ϵ
∂nN dnN −

∂ϵ
∂nGðnBQÞ dnGðn

B
QÞ þ

∂ϵ
∂nBQ dnBQ: ð15Þ

Using dnB ¼ dnN þ ð1 − dnGðnBQÞ=dnBQÞdnBQ and the
relations

∂
∂ni ϵ ¼ μi; ð16Þ

at zero temperature, we can find the proper extremization
condition for the energy density at fixed total baryon
density,

dϵ ¼ −μN
�
1 −

dnGðnBQÞ
dnBQ

�
dnBQ

þ
�
μBQ − μG

dnGðnBQÞ
dnBQ

�
dnBQ ¼ 0; ð17Þ

which leads to following relation:

μN ¼ ðμN − μGÞ
dnGðnBQÞ
dnBQ

þ μBQ; ð18Þ

where μBQ ≃ NcμQ and dnGðnBQÞ=dnBQ ≃ N3
c in the weakly

interacting quasiquark sea approximation.1 Under this
extremization constraint, the variation of the energy density
can be expressed as

1In the most simple case where MQ ¼ MN=Nc and no
interactions are considered, we have μBQ ¼ NcμQ and
dnGðnBQÞ=dnBQ ¼ N3

c.
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dϵ ¼ μNdnN þ
�
μBQ þ ðμN − μGÞ

dnGðnBQÞ
dnBQ

�
dnBQ

− μNdnGðnBQÞ
¼ μNdnB; ð19Þ

and this implies that there is a relationship between the
chemical potential of baryons and nucleons,

μB ¼ dϵ
dnB

¼ μN: ð20Þ

This relation will allow the study of all the thermody-
namics of the system, as well as the determination of the
thickness of the shell Δ ¼ kNF − kGF . The minimization of
the energy density as described here is a general procedure,
which is independent of the interactions that may be
included on both nucleons and quark sectors. However,
it is worth to mention that the ghost Fermi momentum kGF
may depend on the interactions included in the quark sector
and on the confinement mechanism of the constituent
quarks.

IV. VARIOUS MODELS

It is useful to put this note into the context of previous
computations. In Ref. [4], a shell-like structure was
proposed for quarkyonic matter. The thickness of the shell
was determined by fixing the nucleon density associated
with the shell. No attempt was made to determine the
thickness of the shell from an underlying theory. In Ref. [5],
the thickness of the shell was determined in an excluded
volume model of nuclear matter [11,12]. In such a theory,
the thickness of the shell is dynamically determined. The
problem with this theory is that the quarks and nucleons are
treated as freely interacting quasiparticles, with the nucleon
propagating freely in a volume that does not include the
nuclear core size. Such a model is difficult to tie to more
first principles theories of nuclear matter and quarks, and it
is difficult to compute effects, due to chiral symmetry
restoration. While the model demonstrates that the under-
lying effect of nuclear repulsion may be responsible for the
formation of a nucleon shell, an underlying field theoretical
treatment is lacking.
In Ref. [10], the effects of finite temperature are

attempted to be included by a method similar to what is
used in this paper, except that it is assumed that the
underlying quark distribution fully occupies the phase
space below some value of momentum. As such, thermal
fluctuations of the contributions of quarks cannot be
included, and the applicability of the theory is only for
very low temperatures. There is not a connection with an

underlying field theoretical description that will naturally
allow thermal fluctuations of the quarks.
In Ref. [13], an attempt was made to provide an under-

lying field theoretical treatment of quarkyonic matter. This
was done in the context of specific models of nucleon and
quark interactions, and the considerations were specific to
those models. A momentum scale that separates quarks
and nucleons was proposed, but there was no attempt to
determine this momentum scale.
The AdS-CFT correspondence was used in Ref. [14] to

construct a string theory model of quarkyonic matter. This
paper is closest in spirit to what we do here. It is argued that
a separation of a quarkyonic phase, a nucleon phase, and a
quark phase arises dynamically and that in the quarkyonic
phase the various fraction of quarks and nucleons can be
dynamically determined. These considerations generalize
to finite temperature. A phase diagram in the μB − T plane
was found. The computations are in the context of string
theory, and what we do in this paper is set up this same
problem dynamically within field theory.

V. SUMMARY AND CONCLUSIONS

The quarkyonic model above allows for a dynamical
study of the formation of a Fermi shell of nucleons. One
simply computes the pressure, requires that the total baryon
number is fixed, and then searches for an extremum as a
function of the quark chemical potential. It is known that in
an excluded volume model, such an extremum exists, and
there is good reason to expect this in generic field theory
models of nucleon interactions. Nevertheless, this needs to
be carefully investigated.
There are many theoretical questions which may now be

addressed. How does chiral symmetry restoration affect the
formation of quarkyonic matter? How does one include the
effects of nucleon interactions to make a viable model of
nuclear matter that properly matches on to known physics
at nuclear matter density and below? How does quarkyonic
matter appear in the T; μB plane? How does confinement
appear within this phase diagram? What form of nucleonic
interactions can generate a phenomenologically successful
theory of quarkyonic matter? Answers to these questions
are currently being pursued.
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