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We construct a semiholographic effective theory in which the electron of a two-dimensional band
hybridizes with a fermionic operator of a critical holographic sector, while also interacting with other bands
that preserve quasiparticle characteristics. Besides the scaling dimension ν of the fermionic operator in the
holographic sector, the effective theory has two dimensionless couplings α and γ determining the
holographic and Fermi-liquid-type contributions to the self-energy respectively. We find that irrespective of
the choice of the holographic critical sector, there exists a ratio of the effective couplings for which we
obtain linear-in-T resistivity for a wide range of temperatures. This scaling persists to arbitrarily low
temperatures when ν approaches unity in which limit we obtain a marginal Fermi liquid with a specific
temperature dependence of the self-energy.
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I. INTRODUCTION

The measurement of the spectral function via ARPES
has given us key insights into the nature of elementary
constituents in strongly correlated electronic systems
which do not admit quasiparticle description, and which
also demonstrate a rich variety of novel superconducting,
metallic and insulating phases [1–3]. Phenomenological
approaches to model strange metallic behavior have
considered spectral functions with the following proper-
ties: (i) particle-hole asymmetry, (ii) semilocality (i.e.,
very mild dependence on the momentum in the direction

normal to the Fermi surface), and (iii) nontrivial scaling
exponent with the frequency [4–6]. Such features are
extremely challenging to obtain from a first principle
approach.
It is quite remarkable that spectral functions with these

properties arise in holographic theories at finite density; the
infrared behavior is described by a Dirac fermion in the near-
horizon AdS2 × R2 geometry of the black brane dual to the
critical sector [7–12] concretely realizing the scenario of
deconfined criticality [13]. Although such theories are
essentially gauge theories and the microscopic description
is possibly not relevant for material physics, the infrared
fixed point with novel scaling behavior at finite density could
be universal in a suitable large N limit and thus could
provide a first principle realization of emergent non-Fermi
liquid behavior.
The holographic approach allows one to dispense with the

notion of quasiparticles, which are replaced by the modes of
the underlying (emergent) infrared conformal field theory,
and this can be very useful to provide a unified picture of
transport phenomena [14]. At the same time, this makes it
difficult to understand what are the effective microscopic
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degrees of freedom of the system. In [15–20] it has been
argued that in order to describe the strange metals, it is
crucial to consider the effects of intermediate scale physics,
especially that of the upper Hubbard band, on the critical
sector—necessitating an approach that is often called
Mottness. Such effects cannot be reliably modeled by a
purely holographic approach. Bottom-up models [21–28]
can holographically engineer a quantum critical sector that
can reproduce the scaling of resistivity, Hall angle, etc with
temperature but typically only in the low temperature regime
(unless further contrived [29]).
Based on the key insights provided by Faulkner and

Polchinski [30], a semiholographic effective theory was
proposed in [31] and further studied in [32]. The proposal of
Faulkner and Polchinski was to retain only the infrared part
of the holographic sector (i.e., the near horizon geometry)
and allow linear hybridization of some of the bands on the
lattice with the bulk holographic fermions; this results in a
Fermi surface with low frequency behavior determined by
the holographic critical sector, in particular by the scaling
exponent ν of the holographic fermion. In [31], it was shown
that if one introduces short-range interactions among the
lattice fermions and also more general mutual interactions
between the lattice fermions and the holographic fermions
with a specific form of large N scaling (see below), the low
frequency behavior at the Fermi surface remains unaffected
leading to the notion of a generalized quasiparticle. The
density-density correlations and the case of Coulombic
interactions was analyzed in [32]. In particular, it was found
that in presence of a frequency cutoff, the semiholographic
theory exhibits well-defined collective excitations within the
continuum above a certain momentum threshold and at
reasonably low frequencies. It was speculated that these
plasmonic excitations may provide a realization of the
midinfrared scenario for superconductivity proposed by
Leggett [33,34].
In this work, we address a key issue in this semiholo-

graphic approach by achieving a natural UV completion
that interpolates between non-Fermi liquid behavior at low
frequencies/temperatures and Fermi liquid behavior at high
frequencies/temperatures. The completion does not alter
the generalized quasiparticle on the Fermi surface and is
also insensitive to microscopic lattice effects. Such a
scenario leads to an effective theory sharing some features
with Mottness. Our construction is rather simple and is
based on the assumption that the two-dimensional band of
interest, in addition to hybridizing with the infrared critical
sector, also interacts with other bands which have conven-
tional quasiparticle behavior. We can engineer the inter-
actions in a way that involves only two effective couplings.
Because the theory is UV complete, observables are well
defined without the need of an ad hoc frequency cutoff as
employed in [32], however we do reproduce the results of
the latter work qualitatively and extend them to finite
temperatures.

In this letter we use the model described above to compute
the dc conductivity at finite temperature. Our main result is
that we observe a linear-in-T resistivity for a wide range of
temperatures when the scaling dimension ν > ∼0.67. For
ν ≈ 2=3, as for instance, this linear scaling regime extends
from 0.3EF to about 20–40EF when the couplings are small,
but when ν ≈ 1 it holds at arbitrary low temperatures also.
Crucially, in our semiholographic approach where we
include perturbative degrees of freedom, we are able to
obtain the linear-in-T resistivity irrespectively of the critical
sector (for a wide range of ν) as long as the ratio of the two
effective couplings is optimal. Although the range of
temperatures where this scaling is valid depends on ν, it
is typically very wide.

II. A SIMPLE EFFECTIVE THEORY

We propose a simple effective theory based on a single
band of electrons localized on a two-dimensional plane.
The starting point is the model studied in [31,32]. It

includes the creation and annihilation operators for the
electrons in the band c†ðkÞ, ðcðkÞÞ which are hybridized
linearly with a fermionic operator χCFTðkÞ (χ†CFTðkÞ) in the
critical sector described by a holographic AdS2 × R2 dual
geometry. Crucially this band has no direct self-interactions
because of a large-N limit discussed in [31] in which the
self-interactions of the bath critical sector [an infrared
conformal field theory (IR-CFT)] scale quadratically as N2

while the hybridization coefficient scales linearly with N.
The backreaction of the metric is suppressed in this limit
but the self-energy of the two-dimensional band receives an
OðN0Þ correction in the form of a holographic fermionic
proagator destroying its quasiparticle nature. It has been
shown in [31] that the leading low-frequency behavior at
the Fermi surface is unaltered as long as we introduce
further interactions like cχ3 which are linear in cðkÞ and
c†ðkÞ, and scale at most linearly with N. In this sense, the
semiholographic theory of this band creates a generalized
quasiparticle.
One major problem with this version of the semiholo-

graphic theory is that the UV behavior is not regular; one
manifestation of this is the fact that the real part of the
density-density correlation function (a.k.a the Lindhard
function) is negative for all frequencies, unless we impose
an artificial frequency cutoff as in [32]. However, we
expect the high energy behavior of the theory to be more
conventional with the real part of the Lindhard function
being positive definite at high frequencies. It is therefore
pertinent to look for a modification of this theory in which
we obtain this automatically without implying any spe-
cific UV completion.
Such a modification can be achieved if we assume that

the two-dimensional band couples linearly with other
bands which preserve their (Landau) quasiparticle char-
acteristics. Denoting the creation (annihilation) operators
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of one-particle states in these bands as f†i (fi) we allow
only interactions of the type cf3; cf5; � � �. We thus con-
sider the following Hamiltonian

Ĥ ¼
X
k

ϵðkÞc†ðkÞcðkÞ þ N
X
k

ðgc†ðkÞχCFTðkÞ þ c:c:Þ

þ N2ĤIR−CFT þ
X
i;j;k

ðλijk;k1;k2;k3
c†ðk1Þfiðk2Þ

× f†jðk3Þfkðk1 − k2 þ k3Þ þ c:c:Þ þ � � � : ð1Þ

At leading order in the coupling λ, the c-fermions cannot
run in the loops. This leads to factorization of the self-
energy of the c–band into two parts, namely the contribu-
tion from the holographic propagator and a Fermi-liquid
type self-energy term (more details in the Supplemental
Material [35]).
In this effective theory the finite-temperature retarded

Green’s function of the c–band thus takes the form

Gðω;kÞ ¼
�
ωþ iγ̃ðω2 þ π2T2Þ þ α̃GðωÞ

−
�
k2

2m
−

k2F
2m

��
−1

ð2Þ

with γ̃ ¼ Oðλ2Þ being the coefficient of the Fermi-liquid
type self-energy term, α̃ ¼ Oðjgj2Þ and GðωÞ is the con-
tribution of the holographic sector on the Fermi surface
with the form [10,36]

Gðω; TÞ ¼ eiðϕþπν=2Þð2πTÞν Γð
1
2
þ ν

2
− i ω

2πTÞ
Γð1

2
− ν

2
− i ω

2πTÞ
: ð3Þ

at finite temperature. Note that the holographic contribu-
tion to the self-energy has both real and imaginary parts.
Furthermore, 0 < ν < 1 is the scaling dimension of the
IR-CFT fermionic operator χ which is related to the mass
of the dual bulk fermion. The restriction on ν is necessary
in order for the holographic contribution to be relevant at
low frequency. It is easy to check that the spectral function
ρ ¼ −2ImG is non-negative provided 0 < ϕ < πð1 − νÞ
and α̃; γ̃ > 0.
Note in the high frequency or zero temperature limit

Gðω; TÞ is eiϕων in agreement with the form studied in [32]
at zero temperature. In the low energy limit Gðω; TÞ ≈ Tν.
Crucially the limit ν → 1 yields a marginal Fermi liquid
with a ω logω term in the self-energy and with a specific
type of temperature dependence.
The model contains a single intrinsic scale, given by the

Fermi energy EF. It is useful to rewrite the propagator (2) in
terms of dimensionless variables x ≔ ω=EF and y ≔ k=kF
in the form

Gðx; yÞ ¼ E−1
F

�
xþ iγðx2 þ ðπxTÞ2Þ þ αeiðϕþπν=2Þ

× ð2πxTÞν
Γð1

2
þ ν

2
− i x

2πxT
Þ

Γð1
2
− ν

2
− i x

2πxT
Þ − ðy2 − 1Þ

�
−1

ð4Þ

with xT ≔ T=EF, α ¼ α̃E−ð1−νÞ
F and γ ¼ γ̃EF. Note α and γ

are dimensionless. Some plots of the spectral function are
shown in Fig. 1.
The density-density correlation functions [the Lindhard

function Lðq;ΩÞ] can be readily computed from the above
spectral function at finite temperature. We reproduce the
qualitative features of the zero temperature density-density
correlations computed earlier in [32]. Even at finite temper-
atures T ≈ 0.5EF, the edges of the continuum are still
prominent when α, γ ≪ 1 although the response has
sufficient support outside the continuum. Furthermore,
there exist well-defined plasmonic excitations for q <
2.5kF which have support inside the continuum when
≈2kF < q < ≈2.5kF. The dispersion relation of the plas-
monic modes is approximately linear. (See Supplemental
Material [35].) Furthermore, as noted in [32], it is important
to consider 1=2 < ν ≤ 1 to avoid ultraviolet issues that
destabilizes the infrared effective theory.
Finally we emphasize that it is necessary for γ to be

sufficiently small and also α < 1 for the effective theory to
be applicable at high frequencies and temperatures. If this is

FIG. 1. Top: the dimensionless spectral function EFρðωÞ is
plotted for various values of k=kF at T ¼ 0.5EF, ν ¼ 0.7, ϕ ¼
0.2π and α ¼ 0.016 with the solid lines corresponding to γ ¼
0.001 and the dashed lines corresponding to γ ¼ 0. Note that the
effects of nonvanishing γ is significant only for k away from kF.
Bottom: here the dimensionless spectral function is plotted for
T ¼ 0.1EF, ν ¼ 0.7, γ ¼ 0.001, α ¼ 0.016 and various values of
ϕ between the allowed range 0 and ð1 − νÞπ ¼ 0.3π (see text) at
k ¼ kF. Note that when ϕ ≈ 0.15π ¼ πð1 − νÞ=2, the spectral
function at the Fermi surface is nearly even in ω.
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not the case, the effects of c–fermion running in loops will
spoil the separation of the self-energy into holographic and
Fermi-liquid terms. Since both of these effective couplings
are irrelevant on the Fermi surface [31], our assumption is
consistent.

III. DC CONDUCTIVITY

The dc conductivity can be computed readily from the
simple formula

σdc ≈
e2

2ℏ

Z
dω
2π

Z
d2k
4π2

k2ρðω;k; TÞ2
�
−
∂nFðω; TÞ

∂ω
�
: ð5Þ

Above nFðω; TÞ denotes the Fermi-Dirac distribution
function. Here we have used the exact bare vertices for
the coupling with the photon and not simply its value on the
Fermi surface which give the k2 term in the integrand. We
do not impose any cutoff in the integrations.
It is quite easy to see that the low temperature behavior of

the conductivity should be determined by the holographic
critical sector so that σdcðTÞ ≈ T−ν for T ≪ 0.1EF. For
T > 0.1EF, the Fermi liquid contribution to the self-energy
is influential when 0.001 ≤ γ ≤ 0.01. At high temperatures
T ≫ EF, the dc conductivity becomes almost independent
of the holographic critical sector and therefore does not
depend on α, ν and ϕ. In this regime the scaling exponent
decays rapidly implying that the rate of decay of the dc
conductivity with temperatures slows down. We find that a
scaling regime where σdc ≈ T−ν̃ with ν̃ ≠ ν and approx-
imately independent of the temperature emerges for ν >
∼0.67 to a very good approximation at intermediate
temperatures. Interestingly, ν̃ ≈ 1 implying linear-in-T
resistivity in this mid-temperature regime which stretches
to arbitrary small values of temperatures when ν
approaches 1 where we obtain a marginal Fermi liquid
with a specific temperature-dependent self-energy. (Note
we restrict ourselves to 1=2 < ν < 1 for reasons men-
tioned above.)
Furthermore, we also find that the best approximation

to the scaling in midtemperature regime is obtained when
the phase ϕ in Eq. (2) takes its value around πð1 − νÞ=2
(the midpoint of the allowed range of values). We there-
fore choose ϕ to be around this value for the rest of this
paper. We observe that in this case the spectral function at
the Fermi surface is approximately even in ω as shown
in Fig. 1.
Case 1 (0.5 < ν < ∼0.8): It is useful to first study the

representative case of ν ¼ 2=3 plotted in Fig. 2 where
the independence of the high temperature behavior on
the holographic sector is manifest. In the intermediate
temperature regime, the scaling exponent d log σdc=d logT
is nonmonotonic. However, crucially we observe that
when α ≈ 13γ, there is a scaling regime in which the
scaling exponent is temperature independent for both γ ¼
0.01 and γ ¼ 0.001 and furthermore it is approximately

−1 implying linear-in-T resistivity. Remarkably, the range
of temperatures where this occurs is quite wide extending
from about 0.3EF to nearly 10EF when γ ¼ 0.01 and
nearly 20EF when γ ¼ 0.001.
Such a scaling regime at intermediate temperature regime

does not arise for ν < ∼0.67. In Fig. 3, we report the
dependence of the scaling exponent on the temperature at
various values of ν ranging between 0.5 and 1 for γ ¼ 0.001
and for those values of αwherewe get the best approximation
to linear scaling of the dc resistivity with the temperature.
Clearly, for ν ¼ 0.55, there is no scaling regime for
T > 0.1EF. The best approximation to the linear-in-T
resisitivity in the temperature range that includes EF is
obtained when ν ¼ 0.73 and α ¼ 0.017 (see inset plot of
Fig 3 where it shows that the scaling exponent varies between
0.98 and 1.02 for 0.3EF < T < 30EF).
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FIG. 2. The temperature dependence of the scaling of the
conductivity with the temperature for ν ¼ 2=3 is shown
for various values of α when γ ¼ 0.01 (on left) and γ ¼
0.001 (on right). The upper horizontal dashed lines in both
plots indicate that the scaling at very low T is −2=3. The linear-
in-T scaling of resistivity appears in mid-temperature regime
when α ≈ 13γ.
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FIG. 3. The scaling exponent of the dc conductivity is plotted
for various values of ν between 0.5 and 1 at γ ¼ 0.001. Above α
has been optimally fine-tuned. The inset plot shows that the best
linear-in-T scaling is obtained for ν ¼ 0.73, α ¼ 0.017.
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Thus we obtain linear-in-T resistivity to a remarkable
approximation in the midtemperature regime Tmin < T <
Tmax with EF included in this range for ∼0.67 < ν < ∼0.8
if we choose the optimal ratio α=γ for each ν while setting
ϕ near πð1 − νÞ=2 as mentioned above.The higher end of
this scaling regime (Tmax) strongly depends on γ but the
lower end (Tmin) depends only mildly on γ and the
parameters of the holographic sector.
Case 2 (∼0.8 < ν ≤ 1): For higher values of ν we can

still obtain the linear-in-T resistivity in the midtemperature
regime including T ≈ EF by tuning α=γ for each choice of ν
as shown in Fig. 3. However, the scaling is less accurate,
i.e., −1� 0.1 percent instead of −1� 0.05. In the case of
ν ¼ 0.85, as for instance, we get an excellent linear-in-T
resistivity only at higher range of temperatures between
3EF and 30EF. However, if we allow for 10 percent
variation of the scaling exponent, then the scaling regime
stretches to arbitrarily low temperatures as illustrated in the
case of ν ¼ 0.95 in Fig. 4. This continues to hold as we
approach the marginal Fermi liquid ν ≈ 1.
Thus our effective field theory approach that is justified

by the Wilsonian renormalization group shows that we can
achieve the linear-in-T resistivity for ν > ∼0.67 at

intermediate temperatures just by fine tuning the ratio of
the two effective dimensionless couplings.

IV. DISCUSSION

Our effective semiholographic approach, that shares
common features with Mottness, produces the linear-in-
T resistivity over a very wide range of temperatures
irrespectively of the holographic critical sector provided
ν > ∼0.67 when we tune the ratio of the two couplings
optimally. Although the Fermi energy provides the unique
energy scale of our model, in order to match it with a
material we should probably use a lower scale, e.g., where
the self-energy becomes strongly k-dependent. In any case,
the model is just the first step to a more viable theory
applicable to real-world strange metals.
It is useful to compare our approach to some recently

discussed models involving a lattice of (complex) SYK
quantum dots exchanging fermions via hopping [37–43]
which also can reproduce linear-in-T resistivity (see also
[44]). A heuristic connection with our approach readily
emerges from the observation that (nearly) AdS2 holog-
raphy can capture many aspects of SYK systems [45].
Thus a lattice of AdS2 throats representing a fragmented
AdS2 × R2 geometry recently proposed as a model for
quantum black hole microstates [46] could be actually
also relevant for our approach. Aided via DMFT methods
in which the Anderson impurity atom is replaced by a
single AdS2 throat (without any compact/noncompact
tensor part), we aim to understand the thermodynamic
reason for why a certain ratio of the couplings can be
preferred. We also plan to explore magneto-transport and
the superconducting instability.
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