
Bootstrapping the half-BPS line defect CFT in N = 4 supersymmetric
Yang-Mills theory at strong coupling

Pietro Ferrero 1,* and Carlo Meneghelli 2,3,†

1Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
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We consider the one-dimensional (1D) conformal field theory defined by the half-BPS Wilson line in
planarN ¼ 4 super Yang-Mills. Using analytic bootstrap methods we derive the four-point function of the
superdisplacement operator at fourth order in a strong coupling expansion. Via AdS/CFT, this corresponds
to the first three-loop correlator in anti–de Sitter ever computed. To do so we address the operator mixing
problem by considering a family of auxiliary correlators. We further extract the anomalous dimension of
the lightest nonprotected operator and find agreement with the integrability-based numerical result of
Grabner, Gromov, and Julius.
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I. INTRODUCTION

It is hard to overstate the fundamental role played by
symmetries and consistency conditions in quantum field
theory (QFT). This is especially true for conformal field
theories (CFTs) where the latter can be explicitly formu-
lated and used to give concrete predictions for observable
quantities. This strategy, called the conformal bootstrap,
has produced spectacular results over the past decade or so
(see, e.g., [1]).
Here, we focus on a one-parameter family of one-

dimensional (1D) CFTs [2] with extended supersymmetry,
namely ospð4�j4Þ, that admits two holographically dual
realizations: as a line defect in planar d ¼ 4, N ¼ 4 super
Yang-Mills, namely as a Wilson line in the fundamental
representation, or as a two-dimensional QFT in AdS2 [3].
This family of CFTs is parametrized by the ’t Hooft coupling
λ and each description is perturbative in opposite regimes.
The aim of this paper is to show that this 1D CFT can

be efficiently and systematically solved perturbatively at
strong coupling (large λ) using analytic bootstrap meth-
ods introduced in 1D in [4–6]. The power and success of
our procedure is established by the determination of the
scaling dimension of the lightest nonprotected scalar
operator to be [7]
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Excitingly, this formula agrees with the numerical result
obtained in [8] by the completely independent, integrability-
based, quantum spectral curve method. We extract (1) from
the four-point function of the so-called superdisplacement
operator, which we bootstrap up to the same order.
Its explicit expression is given in the Supplemental
Material [9]. With the current technology it would have
been impossible to determine this correlator directly from
Witten diagrams as it corresponds to a three-loop compu-
tation in anti–de Sitter (AdS).
The basic idea, applied in, e.g., [10–13], is to construct

an ansatz for the correlator and to impose consistency with
the operator product expansion and Bose symmetry. The
main obstacle in implementing this procedure is the
problem of operator mixing. This makes it necessary to
consider not just one, but a whole family of correlators that
is large enough depending on the specific CFT and on the
perturbative order one is interested in. An interesting
feature of this 1D CFT is that the degeneracies in the
spectrum of conformal dimensions at λ ¼ ∞ are unaffected
at the first perturbative order. Thus, mixing plays a
noticeable role in the determination of the four-point
function of the superdisplacement operator starting at
fourth order, when the square of the second order anoma-
lous dimension matrix first appears. Additionally, the
knowledge of all four-point functions of half-BPS operators
at second order, which will be presented in [14], is not
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enough to take into account this effect, and correlators
involving nonprotected external operators need to be
included. This goes fundamentally beyond what has been
done in previous works, for example [11,15,16].

II. SUPERCONFORMAL SYMMETRY

The symmetry of the 1D super-CFT (SCFT) we are
studying is ospð4�j4Þ. Its bosonic subalgebra is soð4�Þ ⊕
spð4Þ ≃ slð2Þ ⊕ suð2Þ ⊕ spð4Þ, where the first term cor-
responds to the 1D conformal group while the remaining
two can be thought of as R symmetries. The relevant
representations of ospð4�j4Þ are uniquely specified by the
scaling dimensions and R-symmetry representation ω ¼
fΔ; s; ½a; b�g [17] of the superconformal primary. Two
types of supermultiplets R will be relevant in this work:
(i) long multiplets LΔ

s;½a;b� where Δ is subject to the unitarity
bound, (ii) short multiplets Dk, with ω ¼ fk; 0; ½0; k�g. A
distinguished role is played by the superdisplacement
operator D1, which is ultrashort and whose decomposition
in irreducible representations of the bosonic symmetry is

D1∶ ϕΔ¼1
ð1;5Þ → ψΔ¼3=2

ð2;4Þ → fΔ¼2
ð3;1Þ; ð2Þ

where the arrow refers to the action of supersymmetry
generators, while ðm;nÞ denotes the dimensions of the
suð2Þ ⊕ spð4Þ representation. In the following we will
consider four-point functions of two types,

hD1D1DkDki; hD1D1D2L
Δext
0;½0;0�i: ð3Þ

The implications of superconformal symmetry on correla-
tion functions involving only short operators have been
analyzed in [5,18] using superspace. They not only imply
that the four-point functions of all the members of the short
supermultiplet are determined by one of the superprimaries,
but that the latter are subject to constraints. In the simplest
example of hD1D1D1D1i these can be solved in terms of a
constant and a single function of the bosonic cross ratio
χ ¼ t12t34

t13t24
, where t is a coordinate on the line and

tij ¼ ti − tj. The explicit parametrization is

hD1D1D1D1i
hD1D1ihD1D1i

¼ fXþ DfðχÞ; ð4Þ

where the superconformal invariant X and the differential
operator D are given in the Supplemental Material [9]. The
number f in (4) is a datum of the topological algebra
associated with any 1D CFT with ospð4�j4Þ symmetry by
the cohomological construction of [19,20]; see [18]. If the
1D CFT in question is a Wilson line in N ¼ 4 SYM, f can
be computed by supersymmetric localization [21–23]. See
[5] for more details.
To address the mixing problem we also consider corre-

lators of the second type in (3). Superconformal symmetry

implies that each of them is determined by a single function
FðχÞ; see the Supplemental Material [9,14].
Correlation functions of local operators admit a

decomposition in superconformal blocks, defined by
the ospð4�j4Þ Casimir equation supplemented with the
appropriate boundary conditions. We parametrize the
Casimir eigenvalues as

C2ðRÞ ¼ ΔðΔþ 3Þ þ sðsþ 2Þ
4

−
a2

2
− aðbþ 2Þ − bðbþ 3Þ; ð5Þ

with ωR ¼ fΔ; s; ½a; b�g. Explicit expressions of super-
conformal blocks are given in the Supplemental Material
[9], and their derivation will be presented in [14].
The conformal blocks decomposition of any four-point

function follows from the operator product expansion
(OPE) rules. In the case of D1 they take the form

D1 ×D1 ¼ I þD2 þ LΔ
0;½0;0�: ð6Þ

The OPE Dk ×Dk has the same form plus extra represen-
tations that are projected away in the correlator of interest.
It follows that the decomposition of (4) in superconformal
blocks is

fðχÞ ¼ fIðχÞ þ μ2D2
fD2

ðχÞ þ
X
O

μ2OfΔO
ðχÞ; ð7Þ

and f ¼ 1þ μ2D2
, where O are superconformal primaries of

type LΔ
0;½0;0�. We shall also use the OPE [24]

D2 × LΔext
0;½0;0� ¼ D2 þ LΔ

0;½0;0� þ � � � ; ð8Þ

where � � � indicates representations that do not contribute to
(3). The selection rules for the other channel can be found
in the Supplemental Material [9].

III. FREE THEORY

The free 1D CFT from which we start the perturbation
is easy to describe. Its local operators are built by
taking normal ordered products of the fundamental fields
Φ ¼ ðϕIðtÞ;ψA

αðtÞ; fαβðtÞÞ, with I ¼ 1;…; 5, A ¼ 1;…; 4,
α, β ¼ 1, 2 [see (2)], and their derivatives. Correlation
functions are defined and computed by Wick contractions
using the two-point function of Φ. By the state-operator
correspondence we can think in terms of the space of
states

H ¼ ⨁
L
HL; HL ¼ ðVΦ ⊗ … ⊗ VΦÞSL ; ð9Þ

where VΦ ≃D1, the symbol SL indicates that the tensor
products are totally graded-symmetrized and the integer
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L corresponds to the length of composite operators. Each
factor HL decomposes into irreducible representations of
ospð4�j4Þ as

HL ¼ ⨁
R
dLðRÞ ⊗ R; ð10Þ

where dLðRÞ are multiplicity spaces. Their dimensions
can be obtained by expanding the partition function that
counts the words made of Φ and its derivatives in
characters of ospð4�j4Þ (see [5]). For length two, the
decomposition (10) is multiplicity free and contains only
the multiplets D2 and LΔ

0;½0;0� with Δ ¼ 2; 4;…. After
turning on the perturbation, the corresponding operators
will mix with operators in the same representation in
HL>2. At the perturbative order considered in this work a
fundamental role will be played by length four operators
in such representations; their number is given by

dimðd4ðΔÞÞ ¼ Floor
��

Δ
4

�
2
�
; Δ ¼ 4; 6;…; ð11Þ

where we introduced the notation dLðΔÞ ≔ dLðLΔ
0;½0;0�Þ.

While this counting gives valuable information, for our
purposes we will need to construct the length four
operators explicitly.
The finite dimensional multiplicity spaces dLðRÞ are

equipped with an inner product g, which is determined by
the two-point functions in the free theory and does not mix
operators of different lengths. Additionally, three-point
functions provide trilinear maps

Cð0Þ∶ dL1
ðR1Þ × dL2

ðR2Þ × dL3
ðR3Þ → C#; ð12Þ

where # denotes the number of invariant structures of type
hR1R2R3i. Only situations with # ¼ 1 will be relevant in
this work.

IV. THE BOOTSTRAP PROBLEM

A. The mixing problem

Consider the conformal block decomposition (7) and
expand the CFT data in a small parameter 1=

ffiffiffi
λ

p
, for

example,

ΔO ¼ Δð0Þ
O þ 1ffiffiffi

λ
p γð1ÞO þ 1

λ
γð2ÞO þ � � � ; ð13Þ

and similarly for the OPE coefficients. This produces
logarithms in the small χ expansion of the correlation
function. More precisely, the correlator at order l has the
structure

fðlÞðχÞ ¼
Xl
k¼0

fðlÞ
logk

ðχÞðlog χÞk; ð14Þ

where fðlÞ
logk

ðχÞ are analytic at χ ¼ 0. Their explicit expres-

sion in terms of CFT data is given in the Supplemental
Material [9]. The functions that multiply higher powers of
the logarithms (those with k > 1) are expressed in terms of
CFT data at lower order. What makes the bootstrap problem
more complicated, but also more interesting, is that, in
general, due to degeneracies in the spectrum of the free
theory, these CFT data cannot be obtained from the
correlator (4) alone.
From the knowledge of fð0ÞðχÞ and fð1ÞðχÞ one can

extract, via the decomposition (7), the combinations

hað0ÞΔ i ≔
X

OjΔð0Þ
O ¼Δ

ðμð0ÞO Þ2; ð15Þ

hað0ÞΔ γð1ÞΔ i ≔
X

OjΔð0Þ
O ¼Δ

ðμð0ÞO Þ2γð1ÞO ; ð16Þ

where Δ ¼ 2; 4; 6;…. To reconstruct the highest logarithm

at the next order, namely fð2Þ
log2

ðχÞ, one needs to know the

quantity hað0ÞΔ ðγð1ÞΔ Þ2i, but these “averaged moments” can-
not be extracted from (15) and (16) when operators are
degenerate. The 1D SCFT analyzed here has the following
interesting property: at first order, the anomalous dimen-
sion of any operator is proportional to the eigenvalue of the
quadratic Casimir of ospð4�j4Þ (5):

γð1ÞO ¼ −
1

2
C2ðROÞ: ð17Þ

This implies that the degeneracy is not lifted at first order,

and hence any factor of γð1ÞO in averages of the type (16) can
be replaced by (17) and pulled out of the sum. A simple
proof of (17) based on the properties of the dilatation
operator, which can be derived from Witten diagram
considerations or directly from the bootstrap, is presented
in the Supplemental Material [9]. More details will be
presented in [14].
Let us move to higher orders in the perturbative

expansion. By looking at the expression of fðlÞ
logk

ðχÞ entering
(14) in terms of CFT data, it is not hard to realize that the
first time an unknown combination of CFT data appears for
the higher logarithms k > 1 is at fourth order. Specifically,

fð4Þ
log2

ðχÞ contains terms of the form

hað0ÞΔ ðγð2ÞΔ Þ2i ≔
X

OjΔð0Þ
O ¼Δ

ðμð0ÞO Þ2ðγð2ÞO Þ2: ð18Þ

The main obstacle to bootstrap the correlator (4) at this
order is to determine (18). Luckily, to do this we do not

need to find the eigenvalues γð2ÞO and eigenvectors O of the
second order dilatation operator. In fact, we can work in an
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arbitrary (nonorthogonal) basis for the exchanged oper-
ators. It is convenient to use a basis in which the length
L is a good quantum number, which implies two sim-
plifications. The first is obvious: the three-point function

Cð0Þ
D1D1− [see (12)] is nonvanishing only if the third

operator has length two—these are nondegenerate, and

we denote the corresponding OPE coefficient by Cð0Þ
11Δ.

The second concerns the anomalous dimension matrix

Γð2Þ
Δ : its components are nonvanishing only among oper-

ators of the same length or whose lengths differ by two
units [25]. We denote the corresponding building blocks

by Γð2Þ
Δ;L→L and Γð2Þ

Δ;L→Lþ2, with

Γð2Þ
Δ;L1→L2

∈ dL1
ðΔÞ × dL2

ðΔÞ; ð19Þ
where the degeneracy spaces dLðΔÞ were defined in (10).
In the Supplemental Material [9] we give explicit exam-
ples for Δ ¼ 4, 6. We conclude that in this basis, after
normalizing the length-two operators, the expression (18)
takes the form

hað0ÞΔ ðγð2ÞΔ Þ2i ¼ hað0ÞΔ i½ðΓð2Þ
Δ;2→2Þ2 þ δΓð2Þ

sqðΔÞ�; ð20Þ

where

δΓð2Þ
sqðΔÞ ≔ Γð2Þ

Δ;2→4 · g4 · Γ
ð2Þ
Δ;2→4; ð21Þ

and g4 is the metric in the space (11). While the number

Γð2Þ
Δ;2→2 is obtained from fð2ÞðχÞ, to extract the vector

Γð2Þ
Δ;2→4 one has to consider a family of correlators at

second order. A natural choice is given by

hD1D1D2Oexti; ð22Þ

with Oext either of type D2 or LΔext
0;½0;0�. From the super-

conformal block decomposition of the correlator (22) in
the channel (6) and (8) we can extract

hað0ÞΔ γð2ÞΔ i112Oext
¼ hað0ÞΔ i112Oext

Γð2Þ
Δ;2→2 þ Cð0Þ

11ΔXΔ;Oext
;

ð23Þ

where [26]

XΔ;Oext
≔ Γð2Þ

Δ;2→4 · C
ð0Þ
D2Oext

: ð24Þ

The subscript in h� � �i112Oext
entering (23) indicates that

the average in question is determined by the correlator
(22), in contrast with all the averages h� � �i encountered so
far which correspond to the four-point function (4).
To extract Γð2Þ

Δ;2→4 from (24) we need to consider enough

external operators such that the vectors Cð0Þ
D2Oext

span, upon
varying Oext, the whole degeneracy space d4ðΔÞ. As their

dimension grows quadratically with Δ [27] [see (11)], the
number of auxiliary correlators (22) that we consider
should grow accordingly. This is achieved by taking as
external operator D2 together with all the L ¼ 2 and L ¼ 4

operators of type LΔext
0;½0;0� where Δext ¼ 2; 4;…, up to some

maximum depending on the value of Δ in Γð2Þ
Δ;2→4 [28]. The

three-point functions in (24) are a crucial input for this
procedure. We compute them in the free theory after
constructing the operators explicitly using a new method
described in [14]. Notice that Dk ×Dk probes the same
direction in d4ðΔÞ for any k > 1, so half-BPS external
operators are insufficient to take mixing into account.

B. The ansatz

To bootstrap perturbative correlators we follow and
develop the strategy introduced in [5] and extended to
higher orders in [6] (see also [29–31]), which uses a basis
of harmonic polylogarithms. In [4,6] it was argued that the
correct basis for 1D CFTs contains the “words” that can be
built using the symbol map [32] from the two “letters” χ
and 1 − χ. The use of such a basis requires an external
input, namely the maximal transcendental weight t of the
harmonic polylogarithms. Because of the structure of the
perturbative OPE and the polynomiality in Δ of the first-
order anomalous dimensions, the correct choice of basis at
the lth perturbative order has t ¼ l. An explicit basis is
given in the Supplemental Material [9] up to t ¼ 4; its
dimension is

P
l
t¼0 2

t ¼ 2lþ1 − 1. For a generic lth order
correlator GðlÞðχÞ, we make the ansatz

GðlÞðχÞ ¼
X2lþ1−1

i¼1

riðχÞT iðχÞ; ð25Þ

where riðχÞ are polynomials in χ divided by powers of χ
and (1 − χ) [6], while T iðχÞ form our basis of harmonic
polylogarithms for transcendentality up to t ¼ l.
The bootstrap problem is then reduced to that of fixing
the rational functions riðχÞ appearing in (25). In the
following we describe the strategy for the two types of
correlators introduced in (3).
We can fix the correlator hD1D1D1D1i completely up to

fourth order using the ansatz described above, with the
following constraints:
(a) Crossing symmetry, which for the reduced correlator

fðχÞ appearing in (4) reads

ð1 − χÞ2fðχÞ þ χ2fð1 − χÞ ¼ 0: ð26Þ

(b) As discussed, at every order the highest powers of
log χ [those with k > 1 in Eq. (14)] in the χ → 0 limit
can be obtained from previous order data.

(c) The invariance of the free theory under χ → χ
χ−1

is “weakly” broken by perturbative corrections,
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but it still constrains correlators at each order,
see [5,6].

(d) As discussed in Sec. II, the quantity μ2D2
is known from

localization. The first orders read

μ2D2
¼ 2 −

3

λ1=2
þ 45

8λ3=2
þ 45

4λ2
þ � � � : ð27Þ

This provides the definition of the coupling λ.
This fixes fðχÞ at each order up to polynomial ambiguities
in the anomalous dimensions, of degree 6; 10; 14;… in Δ,
which we fix by requiring that, at each order, the average
anomalous dimension has the mildest possible growth at
large Δ:

hγðlÞΔ i ≔ hað0ÞΔ γðlÞΔ i
hað0ÞΔ i

∼ Δlþ1; 1 ≤ l ≤ 4: ð28Þ

We now move to correlators (22), with Oext ¼ LΔext
0;½0;0�.

Given the knowledge of (17), the free theory and first-order
results do not present any conceptual novelty. At second
order, it is important to realize that not all the correlator is
necessary to extract the averages (23). Rather, it is enough
to bootstrap the part of the correlator that produces a log χ
in the OPE around χ ¼ 0, where those averages first

appear: we shall refer to this as Fð2Þ
logðχÞ. Once the terms

of transcendentality 2 in the ansatz are fixed by lower-order

data and property (c), Fð2Þ
logðχÞ is known up to a finite

number of undetermined coefficients, which we fix with the
following recursive procedure.

Imagine knowing all Fð2Þ
logðχÞ up to Δext ¼ Δ̂ − 2: these

allow one to extract Γð2Þ
Δ;2→4 at least for Δ ¼ 2;…; Δ̂þ 2.

We use the latter to compute the combination (23) for the
same values of Δ, but now averaged over each correlator

with Δext ¼ Δ̂, which in turn fixes Fð2Þ
logðχÞ completely for

Δext ¼ Δ̂. Once that is known, we can compute new

entries of Γð2Þ
Δ;2→4 that we use for the following recursive

step. The starting point of the recursion is Δext ¼ 2,
which can be fixed by using the averages computed
from hD1D1DkDki.

C. Results

Our first important intermediate result is the computation
of the average (20), which is necessary to bootstrap fð4ÞðχÞ.
While Γð2Þ

Δ;2→2 can be found in Eq. (6.24) of [5], the newly
computed contribution due to mixing is

δΓð2Þ
sqðΔÞ ¼ j2Δ

�ðj2Δ − 2Þ
2

S−2ðΔÞ þ
3j2Δ − 4

8
H2

Δ

�

−
p1ðΔÞ

ðΔþ 1ÞðΔþ 2ÞHΔ þ p2ðΔÞ
ðΔþ 2Þ ; ð29Þ

where j2Δ ¼ ΔðΔþ 3Þ, S−2ðΔÞ ¼
PΔ

n¼1
ð−1Þn
n2 ,Hn is the nth

harmonic number, and p1;2ðΔÞ are polynomials given in the
Supplemental Material [9].
Our main result is the determination of fðχÞ up to fourth

order at large λ. The explicit expressions are contained in
the Supplemental Material [9]. From this correlator we
extract the conformal dimension [see (1)] and squared OPE
coefficient of the lightest nonprotected operator ϕ2

μ2
ϕ2 ¼ 2

5
−

43

30
ffiffiffi
λ

p þ 5

6λ
þ
�
11195

1728
þ 4ζð3Þ

�
1

λ3=2

−
�
1705

96
þ 1613

24
ζð3Þ

�
1

λ2
þ � � � : ð30Þ

More averaged CFT data extracted from this correlator are
given in the Supplemental Material [9].

V. DISCUSSION

In this paper we have shown how to bootstrap corre-
lation functions in perturbation theory for a special 1D
SCFT from the knowledge of the unperturbed theory,
symmetries, consistency conditions and some extra physi-
cal input. To implement this program we put forward a
new strategy to take into account operator degeneracies
which we believe can be applied more broadly, e.g., for
holographic CFTs [11,15,16] at higher orders and for the ϵ
expansion in [12,33]. There are several interesting open
questions for the future.
The first direction is to consider higher orders [34] in the

perturbative expansion. This is technically more challenging
since additional operators will participate in the mixing, but
also involves new conceptual problems related to additional
ambiguities and the uniqueness of the theory; see discussion
above (28). To address this question it will be useful to study
the 1D SCFT defined by theWilson linewith different gauge
groups, still at large rank, and in different representations;
see, e.g., [35,36].
The theory we are considering is supposed to be inte-

grable [37–39]. In this work we used the integrability-based
results of [8] only as a check of our procedure. It would be
interesting to numerically determine the conformal dimen-
sion of other operators in addition to (1) as a function of the
coupling using the method of [8] and compare to our
findings. How to directly incorporate integrability into the
bootstrap remains a crucial open question; see [40] for
explorations in this direction.
Finally, the 1D SCFT considered in this work is also an

excellent playground to test and use the so-called inversion
formula of [41].
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