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Krylov complexity, or K-complexity for short, has recently emerged as a new probe of chaos in quantum
systems. It is a measure of operator growth in Krylov space, which conjecturally bounds the operator
growth measured by the out of time ordered correlator (OTOC). We study Krylov complexity in conformal
field theories by considering arbitrary 2d CFTs, free field, and holographic models. We find that the bound
on OTOC provided by Krylov complexity reduces to bound on chaos of Maldacena, Shenker, and Stanford.
In all considered examples including free and rational CFTs Krylov complexity grows exponentially, in
stark violation of the expectation that exponential growth signifies chaos.
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Quantum chaos and complexity play increasingly impor-
tant role in understanding dynamical aspects of quantum
field theory and quantum gravity. The notion of quantum
chaos is difficult to define and there are different comple-
mentary approaches. The conventional approach in the
context of quantum many-body systems is rooted in
spectral statistics, eigenstate thermalization hypothesis
(ETH), and absence of integrability [1]. In the context of
field theory and large N models another well-studied
signature of chaos is the behavior of the out of time
ordered correlator (OTOC) [2]. These approaches focus on
different aspects of quantum dynamics and usually apply to
different systems. It is an outstanding problem to develop a
uniform approach to chaos which would connect and unite
them. Dynamics of quantum operators in Krylov space has
been recently proposed as a potential bridge connecting
dynamics of OTOC with the conventional signatures of
many-body chaos [3].
Krylov space is defined as the linear span of nested

commutators ½H…; ½H;O��, where H is the system’s
Hamiltonian and O is an operator in question.
Accordingly, time evolution OðtÞ can be described as
dynamics inKrylov space.Krylov complexityKOðtÞ defined
below in (6) is a measure of operator size growth in Krylov
space. For the chaotic systems it is expected to grow
exponentially [3], KOðtÞ ∝ eλKt. For systems with finite-
dimensional local Hilbert space, e.g., SYK model [4–6],

it has been shown that at infinite temperature λK bounds
Lypanunov exponent of OTOC

λ ≤ λK: ð1Þ

This inequality conjecturally applies at finite temperature
β > 0. From one side connection of Krylov complexity to
OTOC is not that surprising given that the latter measures
spatial operator growth [7]. From another side, dynamics in
Krylov space is fully determined in terms of thermal 2pt
function, see below. Hence, the bound on OTOC in terms of
KOðtÞ is the bound on thermal 4pt function in terms of
thermal 2pt function. In this sense it is similar to the proposals
of [8] and also [9], which derived the Maldacena-Shenker-
Stanford (MSS) bound on chaos [2]

λ ≤ 2π=β ð2Þ

from the ETH. From the effective field theory point of view
the 4pt function is independent from the2pt one, hence such a
bound could only be very general and apply universally. One
may not expect that a general theory would saturate the
bound, casting doubt on the proposal that the exponent λK of
Krylov complexity is indicative of the Lyapunov exponent λ.
Indeed,wewill see that in case ofCFTs the conjectural bound
(1) holds but reduces to MSS bound (2) such that λK would
remain finite evenwhen λwould approach zero ormaynot be
well defined.
To conclude the introductory part, we remark that

studying Krylov complexity should be seen in a broader
context of relating it to holographic complexity [10–12]
and studies of thermal 2pt function in holographic settings
with the goal of elucidating quantum gravity in the bulk
[13–20].
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To remind the reader, we briefly introduce the main
notions of Krylov space. More details can be found in
[3,21]. Starting from an operatorO one introduces iterative
relation

Onþ1 ¼ ½H;On� − b2n−1On−1; ð3Þ

where positive real Lanczos coefficientsbn are uniquely fixed
by the requirement that On are mutually orthogonal with
respect to scalar product Trðe−βH=2One−βH=2OmÞ ∝ δnm.
Lanczos coefficients depend on the choice of the system
Hamiltonian H, the operator O0 ¼ O, and inverse temper-
ature β. Time evolution of the operator can be represented in
terms of Krylov space,

OðtÞ≡ eiHtOe−iHt ¼
X∞
n¼0

φðtÞnOn; ð4Þ

where normalized “wave function”φnðtÞ satisfies discretized
“Schrödinger” equation

−i
dφn

dt
¼ bnφnþ1 þ bn−1φn−1; ð5Þ

with the initial condition φnð0Þ ¼ δn;0. It describes hopping
of a quantum-mechanical “particle” on a one-dimensional
chain. Krylov complexity is defined as the averaged value of
an “operator” n̂ measured in the “state” φ, where for
convenience index n is shifted by 1,

KOðtÞ≡ ðOjn̂jOÞ ¼ 1þ
X∞
n¼0

njφnðtÞj2: ð6Þ

Lanczos coefficients, and hence KOðtÞ, are encoded in
thermal Wightman 2pt function

C0ðτÞ ¼ hOð−iðτ þ β=2ÞÞOð0Þiβ
∝ Trðe−ðβ2−τÞHOe−ð

β
2
þτÞHOÞ: ð7Þ

Precise relation evaluating b2n in terms of C0 and its
derivatives is discussed in Supplemental Material [22].
We only note here that b2n do not change under multipli-
cation of C0 by an overall constant.
In full generality for a physical system with local

interactions C0ðτÞ is analytic in the vicinity of τ ¼ 0.
This implies that power spectrum

f2ðωÞ ¼
Z

dt eiωtC0ðitÞ ð8Þ

decays at large ω at least exponentially,

f2ðωÞ ∼ e−τ
�ω; ω → ∞; ð9Þ

where τ� > 0 is the location of first singularity of C0ðτÞ
along the imaginary axis, if any. It was anticipated long ago
that the high frequency behavior of f2ðωÞ for a local
operator in many-body system can be used as a signature of
chaos. In particular exponential behavior (9) was proposed
as a signature of chaos in classical systems in [23]. An
equivalent formulation in terms of the singularity of C0ðτÞ
was proposed as a signature of chaos for quantum many-
body systems in [24] based on the rigorous bounds
constraining the magnitude of C0ðτÞ in the complex plane.
A further step had been taken in [3] who proposed the
universal operator growth hypothesis: in generic, i.e.,
chaotic quantum many-body systems Lanczos coefficients
b2n associated with a local O exhibit maximal growth rate
compatible with locality,

bn ≈
�

π

2τ�

�
nþ oðnÞ; n ≫ 1: ð10Þ

This is stronger than the exponential behavior (9), i.e., it
implies the latter, and reduces to it upon an additional
assumption that the behavior of b2n as a function of n is
sufficiently smooth for n → ∞. Modulo similar assumption
of smoothness of b2n Ref. [3] proved that in this case Krylov
complexity grows exponentially as

KOðtÞ ∝ eλKt; ð11Þ

where λK ¼ π=τ�.
In field theory Wightman thermal 2pt function of local

operators C0ðτÞ (7) necessarily has singularity at τ ¼ β=2,
implying exponential decay of the power spectrum (9) with
τ� ¼ β=2. Assuming sufficient smoothness of b2n, one
immediately arrives at (10) [25,26] (also see [3,24]), and
exponential growth of Krylov complexity with λK ¼ 2π=β.
Hence the conjectural bound on OTOC (1) reduces to the
MSS bound (2). This logic applies to any quantum field
theory, including free, integrable or rational CFT models.
Similarly, one can conclude that for field theories universal
operator growth hypothesis (10) trivially holds, but the
exponential behavior of Krylov complexity can not be
regarded as an indication of chaos. We stress, these
conclusions are premature as one needs to justify the
smoothness assumption by e.g., evaluating b2n explicitly.
Without this assumption asymptotic behavior of b2n is not
determined by the high frequency tail of f2ðωÞ, or the
singularity of C0ðτÞ, as is shown explicitly by a counter-
example in [24]. We justify the smoothness assumption
by considering several different CFT models placed on
flat space Rd−1 and evaluating corresponding Lanczos
coefficients.
(i) In case of 2d CFTs thermal 2pt function of primary

operators O is fixed by conformal invariance
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C0 ¼
1

cosðπτ=βÞ2Δ ; ð12Þ

where Δ is the dimension of O. This functional form of C0

has been thoroughly analyzed in [3] in the context of
SYK model. In particular they found b2n ¼ ðnþ 1Þðnþ
2ΔÞðπ=βÞ2 and KOðtÞ ¼ 1þ 2Δ sinh2ðπt=βÞ. In other
words b2n dependence on n is smooth and Krylov complex-
ity grows exponentially with λK ¼ 2π=β.
(ii) In case of free massless scalar in d dimensions, as

well as generalized free field of conformal dimension Δ
[18], thermal 2pt function is given by,

C0 ¼ cdðζð2Δ; 1=2þ τ=βÞ þ ζð2Δ; 1=2 − τ=βÞÞ: ð13Þ

Coefficient cd ensures canonical normalization in case of
free massless scalar and is not important in what follows. In
the latter case Δ ¼ d=2 − 1.
For (13) with general Δ explicit expression for Lanczos

coefficients is not known. In the special case of d ¼ 4, C0

reduces to (12) with Δ ¼ 1, and the rest applies. For d ¼ 6,
Δ ¼ 2, and Lanczos coefficients can be evaluated in terms
of special functions, see Supplemental Material [22]. In this
case b2n demonstrate “staggering” or “dimerization”—the
sequences of b2n for even and odd n can be combined into
two families, each approximately described by smooth
functions bn¼hnþð−1Þnh̃n, where hn ≈ ðπ=2τ�Þnþ oðnÞ
for n ≫ 1. This is shown in Fig. 1. Such a behavior was
analyzed in [27,28], where it was shown that for smooth
functions hn; h̃n in the large n region “Schrödinger equa-
tion” (5) reduces to continuous Dirac equation with the
space-dependent mass. In the case when asymptotically
h̃n → 0, mass eventually approaches zero for large x,
describing propagation of a quantum “particle” with the

speed of light xðtÞ ∼ t with respect to an auxiliary spatial
continuous coordinate x which is related to n via n ∝
ðeð2π=βÞx − 1Þ [28]. From this follows that for late times
Krylov complexity will grow exponentially

KOðtÞ ≈ e2π=βðt−t0Þ ð14Þ

where t0 is the characteristic time “quantum particle”
described by φnðtÞ will spend near the edge of the
Krylov space n ∼Oð1Þ. From the analytic expression for
KO in case of 2d CFTs we conclude that t0 is growing
negative for largeΔ, t0 ∼ − lnΔ. The only scenario to avoid
exponential growth of KO with t is for φnðtÞ to be localized
near the edge n ∼Oð1Þ, which would presumably require
erratic behavior of bn for small n.
Numerical simulation of KO for massless scalar in d ¼ 6

shown in Fig. 2 confirms exponential behavior (14) with t0
of order one. Thus, despite “staggering” Krylov complexity
for free massless scalar in d ¼ 6 behaves qualitatively
similar to d ¼ 4 case.
Next we numerically plot Lanczos coefficients for free

scalar in d ¼ 5 with Δ ¼ 3=2, see Fig. 1. Similarly to
d ¼ 6, bn’s exhibit staggering, which does not affect
asymptotic exponential behavior of KO, see Fig. 2.
For large Δ we analyze (13) by employing 1=Δ expan-

sion to find at small n

β2b2n¼
�
16Δ2þ8ð1þ3nÞΔþOðn2Þþ… n even;

16ð1þnÞΔþOðn2Þþ… n odd:
ð15Þ

Thus, staggering grows with Δ, but n dependence of bn for
odd and even n remain smooth.
For large n pole structure of C0 suggests, see

Supplemental Material [22],
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FIG. 1. Lanczos coefficients bn for free massless scalar ϕ in
d ¼ 4 (Δ ¼ 1, blue), d ¼ 5 (Δ ¼ 3=2, orange), d ¼ 6 (Δ ¼ 2,
green) dimensions, and for the composite operator ϕ2 in d ¼ 5
dimensions (Δ ¼ 3, red); dashed lines of the appropriate color
show asymptotic behavior of bn as given by (16).
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FIG. 2. Krylov complexity KO shown in logarithmic scale for
free scalar in d ¼ 4 (blue), d ¼ 5 (orange), d ¼ 6 (green)
dimensions and for generalized free field with Δ ¼ 10 (brown).
Blue curve is known analytically, lnð1þ 2 sinh2ðπt=βÞÞ. All four
curves exhibit an apparent linear growth of lnKO ∝ 2πt=β
at late times.
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βbn ≈ πðnþ Δþ 1=2Þ: ð16Þ

These approximations accurately describe bn for small and
large n correspondingly, as is shown in the left panel of
Fig. 3. Numerical simulation of KOðtÞ forΔ ¼ 10 shown in
Fig. 2 confirms exponential behavior with λK ¼ 2π=β and
t0 of order − lnΔ. In other words staggering, exhibited by
bn in case of free scalar field, which grows with Δ, is not
affecting dynamics at late times: KO grows exponentially
with the exponent λK ¼ 2π=β, although dynamics at early
times becomes more complicated.
Finally, we discuss composite operators Om for some

integer m. By Wick theorem Wightman function simply
becomes C0 → Cm

0 with an unimportant overall coefficient.
In the case of 2d CFT or free massless scalar in d ¼ 4 we
again obtain C0 of the form (12). In other cases Lanczos
coefficients should be calculated numerically. We plot bn
forO ¼ ϕ2 in free massless scalar theory in d ¼ 5 in Fig. 1.
(iii) In case of free fermions in d dimensions,

CψðτÞ ¼ rd
X1
n;k¼0

ð−1Þnζ
�
2Δ;

1þ 2n
4

þ ð−1Þk τ

2β

�
; ð17Þ

where dimension of free fermion is Δ ¼ ðd − 1Þ=2. We
notice that Lanczos coefficients for free fermion in dimen-
sion d are very close to those for the free boson of the same
conformal dimension Δ, i.e., in dimension dþ 1. The same
applies for bn for the composite operators ψ̄ψ and ϕ2.
Corresponding comparison is delegated to Supplemental
Material [22].
(iv) In case of holographic CFT thermal two-point

function can be calculated by solving wave equation in
the bulk [15,16]. We perform this numerically in
Supplemental Material [22] to find that bn smoothly
depend on n. This is shown in the right panel of Fig. 3
where we superimposed bn for the holographic model with
Lanczos coefficients for the generalized free field of the

same effective dimension, determined by the singularity of
C0 near τ → β=2. Smooth behavior perfectly matches the
expectation that for holographic theories exhibiting maxi-
mal chaos, λ ¼ 2π=β, growth of Krylov complexity also
must be governed by the same exponent.
Conclusions. In this paper we studied Lanczos coeffi-

cients and operator growth in Krylov space for local
operators in various CFT models. For some models bn
were calculated analytically, while for others we had to
resort to numerical analysis. We also found asymptotic
behavior of bn for large n (16). One of the main goals was
to study if Krylov complexity is sensitive to the underlying
chaos. A general argument presented in the introduction
dictates that so far asymptotic behavior of bn as a function
of n is sufficiently smooth, Lanczos coefficients exhibit
universal operator growth hypothesis (10) and Krylov
complexity grows exponentially (14). The only possible
caveat is the possibility that for large n different subse-
quences of bn would have different asymptotic, for exam-
ple bn for even and odd n would grow as na with different
aeven ≠ aodd. Another hypothetical possibility, which will
not affect (10) but may affect (14), is that erratic behavior of
bn for small n will cause approximate or complete
localization of the operator “wave function” φn, leading
to large or infinite t0. We did not see any behavior of this
sort in any model we considered, including arbitrary 2d
CFTs, free bosons and fermions, composite operators,
generalized free field of arbitrary dimension, and a holo-
graphic model in d ¼ 4. On the contrary we observed linear
growth of bn at large n in full agreement with (16) and
exponential growth of Krylov complexity with λK ¼ 2π=β.
In other words for considered models universal operator
growth hypothesis of [3] trivially holds, and the conjectural
bound (1) on of OTOC at finite temperature in terms of
growth of Krylov complexity reduces to MSS bound [2]. At
the same time exponential growth of KO is not a signature
of chaos as it grows with the same exponent λK ¼ 2π=β for
maximally chaotic holographic CFTs as well as for rational
2d CFTs and free field theories, for which Lypanunov
exponent may not be even properly defined [29–31].
It would be interesting to extend our analysis for massive
an interacting models, especially those exhibiting non-
maximal chaos [32–35]. Nevertheless we expect a con-
tinuous deformation not to change the asymptotic behavior
of bn and our results to remain valid in the case of general
interacting quantum field theory.
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FIG. 3. Left panel. Lanczos coefficients bn for generalized free
field (13) with Δ ¼ 10 (blue) vs approximation for small n (15)
(orange) and asymptotic behavior for large n (16) (red line). Right
panel. Lanczos coefficients bn for generalized free field (13) of
dimension Δ ¼ 8.5 (blue) and for holographic operator O ¼R
d3xO of effective dimension Δ ¼ 8.5, while O has dimension

Δ ¼ 10 (orange). The same effective dimension means both
sequences have the same asymptotic behavior bn ≈ πðnþ 9Þ.
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