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We construct three-dimensional, N ¼ 1 off-shell supersymmetric massive Yang-Mills (YM) theory
whose YM equation is “third-way” consistent. This means that the field equations of this model do not
come from variation of a local action without additional fields, yet the gauge-covariant divergence of the
YM equation still vanishes on shell. To achieve this, we modify the massive Majorana spinor equation so
that its supersymmetry variation gives a modified YM equation whose bosonic part coincides with the
third-way consistent pure massive YM model.
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I. INTRODUCTION

In the absence of couplings to other fields, tensors that
constitute equations of motion of massless spin-1 and
spin-2 fields are conserved (i.e., have vanishing covariant
divergence), when they stem from an action. This ensures
that they can be consistently coupled to conserved charge/
energy currents. Usually, this conservation holds identi-
cally, by virtue of, e.g., Bianchi identities. In [1], a novel
mechanism was discovered, in which conservation of the
field equation only holds on shell, i.e., upon using the
equations of motion for the spin-1 or spin-2 fields them-
selves. This was dubbed “third-way consistency” (see [2]
for a review). Specifically, the theory of [1] is a three-
dimensional (3D) pure gravity theory, in which Einstein’s
field equation is modified by adding an extra curvature
squared interaction term. This extra term does not come
from variation of a local action for the metric alone and as a
consequence the covariant divergence of the modified field
equation does not vanish identically. Nevertheless, the
modified field equation still makes sense, since the covar-
iant divergence of the additional term vanishes if one uses
the field equation again. Other such 3D gravity models
were obtained in [3,4] and third-way consistent 3D massive
Yang-Mills (YM) theory [5], and interacting p-form
theories in general dimensions [6] have been found as well.
The importance of third-way consistent gravity stems

from the fact that it potentially forms a new class of unitary

3D gravity theories that can be used to study aspects of
quantum gravity. Three-dimensional gravity theories,
whose action contains higher-derivative/higher-curvature
terms, such as topologically massive gravity [7,8] or new
massive gravity [9], are often considered as toy models for
gravity that, unlike 3D Einstein gravity, contain propa-
gating (albeit massive) spin-2 degrees of freedom.
Typically however, in the presence of a negative cosmo-
logical constant, these theories exhibit negative-energy
black hole solutions, whenever the spectrum of perturbative
degrees of freedom is ghost-free. This phenomenon is
referred to as the “bulk-boundary clash” and it implies
nonunitarity of the theories under consideration. Third-way
consistent 3D gravity of [1] can evade this bulk-boundary
clash and thus lead to unitary 3D gravity models.
Constructing supersymmetric versions of third-way con-

sistent 3D gravities is clearly important if one wishes to
ameliorate their ultraviolet behavior or to study their
nonperturbative regime in a better-controlled setting. At
present however, supersymmetric versions of third-way
consistent theories have not been obtained yet. In this paper
we will improve on this by supersymmetrizing the third-
way consistent massive YM theory of [5]. The latter can
be viewed as a deformation of the well-known 3D topo-
logically massive Yang-Mills (TMYM) theory that was
constructed a long time ago [7,8,10]. TMYM is a spin-1
analog of topologically massive gravity, and supersym-
metric generalizations of it have been formulated; see, e.g.,
[11,12]. The model of [5] is obtained by adding an extra
term to the field equation of TMYM, which is quadratic in
the YM field strength and cannot be derived from an action
that only involves the YM field.
Here, we will supersymmetrize the model of [5], by

constructing a third-way consistent deformation of the
equations of motion of supersymmetric TMYM, such that
the resulting bosonic and fermionic equations are mapped
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to each other under supersymmetry. Since we will directly
supersymmetrize the equation of motion of [5], we will
work with an off-shell YM supermultiplet, for which the
supersymmetry algebra closes without using the field
equations, in order to avoid having to modify the super-
symmetry transformation rules. In this paper, we will
study the simplest possible choice, namely a single off-
shellN ¼ 1YM supermultiplet which only has a Majorana
spinor in addition to the YM gauge field.

II. A REVIEW OF 3D, N = 1 TOPOLOGICALLY
MASSIVE SUPER-YANG-MILLS

The N ¼ 1 supersymmetric version of the third-way
consistent massive 3DYM theory of [5] that we construct in
this paper corresponds to a deformation of N ¼ 1 super-
symmetric TMYM theory. Wewill therefore first review the
latter here. This section also introduces the notation and
conventions used in the rest of this paper (see also [13]).
Wewill consider YM theory for an arbitrary non-Abelian

gauge group G with structure constants fIJK (with I, J,
K ¼ 1;…; dimðGÞ). The off-shell N ¼ 1 YM supermul-
tiplet then consists of the gauge field AI

μ and a Majorana
spinor χI, both transforming in the adjoint of G. In our
conventions, the mass dimensions of AI

μ and χI are given by
1 and 3=2, respectively. The gauge-covariant field strength
FI
μν and covariant derivative DμXI of any object XI in the

adjoint representation of G are given by

FI
μν ¼ 2∂ ½μAI

ν� þ fIJKA
J
μAK

ν ;

DμXI ¼ ∂μXI þ fIJKA
J
μXK: ð1Þ

Note that the following Bianchi identity then holds:
D½μFI

νρ� ¼ 0.
The supersymmetry transformation rules of AI

μ and χI are
given by (see, e.g., [14])

δAI
μ ¼ −ϵ̄γμχI; δχI ¼ 1

8
γμνFI

μνϵ; ð2Þ

where the Majorana spinor ϵ denotes the supersymmetry
parameter. One can check that the supersymmetry algebra
then indeed closes off shell on the fields AI

μ and χI .
The equations of motion of N ¼ 1 off-shell supersym-

metric TMYM are given by

ψ I ¼ 0 and ξIμ ¼ 0 with ð3Þ
ψ I ≡ γμDμχ

I þ 2μχI and ð4Þ

ξIμ ≡DνFνμI þ μϵμνρFI
νρ þ 2fIKLχ̄

KγμχL; ð5Þ

where μ is a mass parameter. These equations of motion can
be derived from an action whose explicit expression we
refrain fromgiving here, as it will not be needed in this paper.
Note that the bosonic equation of motion ξIμ ¼ 0 consists of

two terms that only involve the spin-1 field AI
μ and a third

term that describes a coupling to a spin-1=2 source current
jIμ ¼ fIJK χ̄

Jγμχ
K . The covariant divergence of jIμ vanishes

upon using the fermionic equation of motion ψ I ¼ 0. For
consistency, the covariant divergence of the first two terms
of ξIμ should then also vanish and this holds identically.
The bosonic and fermionic equations of motion, given in

(3), (4), and (5), transform into each other under the
supersymmetry transformations (2), as

δψ I ¼ 1

4
ξIμγ

μϵ; δξIμ ¼ −ϵ̄γμνDνψ
I: ð6Þ

We will use the form of the first of these transformation
rules as our guiding principle in constructing the super-
symmetric version of the model of [5] in the next section.

III. THIRD-WAYCONSISTENT 3D,N = 1MASSIVE
SUPER-YANG-MILLS

Before addressing itsN ¼ 1 supersymmetric version, let
us first briefly review the third-way consistent massive YM
theory constructed in [5]. Its source free-field equation for
an arbitrary gauge group G is obtained by adding an extra
term to the equation of motion of TMYM [itself obtained
by setting χI to zero in (5)]:

ϵμ
νρDνF̃I

ρ þ 2μF̃I
μ þ

2

m
ϵμ

νρfIJKF̃
J
νF̃K

ρ ¼ 0; ð7Þ

where m is another mass parameter and we introduced the
dual-field strength F̃I

μ notation as

F̃I
μ ¼

1

2
ϵμ

νρFI
νρ ⇔ FI

μν ¼ −ϵμνρF̃I
ρ: ð8Þ

The special cases μ ¼ 0 and μ ¼ 2m of this model were
studied earlier in [15,16], respectively.
One can see that (7) cannot be the Euler-Lagrange

equation of a gauge-invariant local action for the YM
vector field alone [5] and hence its left-hand side is not
identically conserved. Indeed, if we apply a covariant
derivative Dμ to the left-hand side of (7), the first two
terms give zero identically whereas the interaction term
does not. The covariant divergence of this interaction term
is however found to vanish, if one uses (7) (along with the
Jacobi identity) again, which is the essence of the third-way
consistency mechanism. It is also possible to add a matter
current J I

μ to (7) as

ϵμ
νρDνF̃I

ρ þ 2μF̃I
μ þ

2

m
ϵμ

νρfIJKF̃
J
νF̃K

ρ ¼ J I
μ; ð9Þ

provided that it satisfies

DμJ μI þ 4

m
fIJKF̃

J
μJ μK ¼ 0; ð10Þ

to maintain third-way consistency [5].
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We will now discuss theN ¼ 1 off-shell supersymmetric
extension of the field equation (7). Since (7) does not come
froman actionwithout extra auxiliary fields,wewill construct
this extension by applying the Noether procedure at the level
of equations of motion. The advantage of having off-shell
supersymmetry is then that the supersymmetry variations (2)
do not get modified during the procedure. Notice that (7) is
simply a deformation of the equation defined by (5) when
fermions are set to zero. Therefore, to achieve ourgoalwewill
start from the fermionic equation of motion (4) of theN ¼ 1
supersymmetric TMYM theory and modify it so that its
supersymmetry variation contains a term proportional to
ΞI
μγ

μϵ with the bosonic part of ΞI
μ ¼ 0 given by (7). As in

supersymmetric TMYM, the full ΞI
μ ¼ 0 equation will be

taken as the new bosonic field equation.Wewill then see that
the fermionic and bosonic field equations obtained transform
into each other under supersymmetry. In this case, the bosonic
field equation will be of the form (9) and we will thus also
have to check that the resulting fermionic currentJ I

μ satisfies
the third-way consistency condition (10).
Note that (7) contains ϵμνρfIJKF̃

J
νF̃K

ρ as an additional term
to (5), and the supersymmetry variation of the spinor (2)
immediately suggests adding a term of the form fIJKF̃

J
μγ

μχK

to the spinor field equation (4). However, the supersym-
metry variation of this term gives, in addition to what we
want, a term of the form fIJK χ̄

JγμDμχ
Kϵ. Due to the

modification of the spinor field equation this term is neither
zero on shell, nor does it have the gamma-matrix structure
that we want. Hence, we need to modify the spinor field
equation further to cancel this term, either identically or on
shell. The form of this unwanted piece indicates that on-
shell cancellation can be achieved by adding an extra term
that is cubic in χI . We thus consider the following
modification of (4) as a candidate equation of motion of χI:

ΨI ≡ γμDμχ
I þ 2μχI þ 2

m
fIJKF̃

J
μγ

μχK

þ afIJKf
K
MN χ̄

MγμχNγμχ
J ¼ 0; ð11Þ

where “a” is a constant to be determined. As mentioned
above, we determine a by requiring that the supersymmetry
transformation of ΨI is on-shell proportional to ΞI

μγ
μϵ.

After repeatedly using Fierz, Jacobi, and gamma-matrix
identities, we find that with the choice a ¼ 16

3m2 one gets

δΨI ¼ 1

4
ΞI
μγ

μϵ −
4

m
fIJK χ̄

JϵΨK; ð12Þ

where

ΞI
μ ≡DνFI

νμ þ μϵμ
νρFI

νρ −
1

m
fIJKϵ

ρσνFJ
νμFK

ρσ

þ
�
2 −

16μ

m

�
fIJK χ̄

Jγμχ
K þ 8

m
ϵμ

νρfIJK χ̄
JγνDρχ

K

þ 16

m2
fIJKf

K
MN χ̄

MγνχNFJ
νμ

þ 32

m3
ϵμ

νρfIKLf
K
JOf

L
MN χ̄

Jγνχ
Oχ̄Mγρχ

N: ð13Þ

A lengthy computation then shows that the supersymmetry
variation of ΞI

μ is given by

δΞI
μ ¼ −ϵ̄γμνDνΨI þ 4

m
fIJK ϵ̄χ

KΞJ
μ

−
16

m2
fIJKf

K
MN χ̄

MγνχN ϵ̄γμνΨJ: ð14Þ

Together with (12), we thus see that ΨI and ΞI
μ transform

into each other under supersymmetry. We can then propose
ΨI ¼ 0 and ΞI

μ ¼ 0 as a supersymmetric set of equations of
motion. Since the bosonic part of ΞI

μ ¼ 0, i.e., the first three
terms in (13), coincides with that of the equation of motion
of pure third-way consistent massive YM theory [5] given in
(7), we see that ΨI ¼ 0 and ΞI

μ ¼ 0 can be identified as the
equations of motion of the N ¼ 1 supersymmetric version
of (7). Note however that in the presence of supersymmetry,
the equation of motion (7) of the pure theory gets modified
by extra terms that represent a coupling of the spin-1 gauge
vector AI

μ to the spin-1=2 gaugino χI .
Summarizing, we propose the following equations of

motion for the third-way consistent 3D, N ¼ 1 super-
symmetric massive Yang-Mills theory:

ϵμ
νρDνF̃I

ρ þ 2μF̃I
μ þ

2

m
ϵμ

νρfIJKF̃
J
νF̃K

ρ ¼ J I
μ;

γμDμχ
I þ 2μχI þ 2

m
fIJKF̃

J
μγ

μχK þ 16

3m2
fIJKf

K
MN χ̄

MγμχNγμχ
J ¼ 0;

with J I
μ ¼

�
16μ

m
− 2

�
jIμ þ

4

m
ϵμ

νρDνjIρ þ
16

m2
ϵμ

νρfIJKF̃
J
νjKρ −

32

m3
ϵμ

νρfIJKj
J
νjKρ ;

where jIμ ¼ fIJK χ̄
Jγμχ

K: ð15Þ
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We still need to verify that our YM equation is indeed third-way consistent. This will be done in the next subsection.

A. Third-way consistency

Note that our matter source J I
μ that appears in (15) is of the form

J I
μ ¼ c1jIμ þ c2ϵμνρDνjIρ þ c3ϵμνρfIJKF̃

J
νjKρ

þ c4ϵμνρfIJKj
J
νjKρ ; ð16Þ

where c1 ¼ 16μ
m − 2, c2 ¼ 4

m, c3 ¼ 16
m2, c4 ¼ − 32

m3. To have a third-way consistent system, J I
μ should satisfy (10) as we

discussed above. The form of the current J I
μ in terms of jIμ is the same as in [5]; however, unlike [5] we will not assume that

jIμ is conserved. Using (16), one can derive that on shell the following holds:

DμJ μI þ 4

m
fIJKF̃

μJJ K
μ ¼ c1DμjμI þ

�
c2 − 2μc3 þ

4

m
c1

�
fIJKF̃

J
μjμK þ ð2c4 þ c2c3ÞϵμνρfIJKDμjJνjKρ

þ
�
c23 þ

8

m
c4

�
ϵμνρfIJKf

J
MNF̃

M
μ jNν jKρ þ

�
c3 −

4

m
c2

�
ϵμνρfIJKDμjJνF̃K

ρ : ð17Þ

Note that in order to derive this result, we needed to use the
bosonic equation of motion (9). For our jIμ ¼ fIJK χ̄

Jγμχ
K,

we have that DμjμI ≠ 0; instead, an explicit computation
[using the fermionic equation of motion of (15)] gives
that

DμjμI ¼ −
2

m
fIJKF̃

μJjKμ : ð18Þ

We can thus replace DμjμI by − 2
m f

I
JKF̃

μJjKμ . Using this in
(17), it is easy to see that the coefficients of all terms on the
right-hand side of (17) vanish and hence the consistency
condition (10) is satisfied for our model.
It was realized in [6] that the model constructed in [5]

can be found starting from the flat connection equation
FI
μν ¼ 0 and then shifting the connection AM

μ with an
arbitrary linear combination of F̃M

μ and jMμ . After this, it is
possible to add a multiple of F̃M

μ and jMμ to this equation
provided that either DμjMμ ¼ 0 as in [5] or DμjMμ is on-shell
proportional to one of the terms on the right-hand side of
(17) as in (18) without spoiling the third-way consistency.
This also shows that J I

μ will always have the structure
given in (16) in terms of jIμ. It is remarkable that this
mechanism works for the spinor equation in our model as
well. Indeed, a comparison of the spinor field equation of
the topologically massive super-Yang-Mills theory (4) with
ours (11) shows that the latter can be obtained from the
former by shifting AM

μ as

AM
μ → AM

μ þ αF̃M
μ þ βjMμ ; ð19Þ

where constants are fixed uniquely as α ¼ 2
m and β ¼ − 16

3m2

by requiring the supersymmetry.

IV. CONCLUSION

The theory presented in (15), which gives the first
example of a supersymmetric third-way consistent model,
is the main result of this paper. Its equations of motion
cannot be derived from a local action, with the field content
considered in this paper. Note however that, in case μ ≠ m,
an action for the bosonic part of our model can be
constructed upon introducing an auxiliary vector field
[5]. This action takes the form of the difference of two
Chern-Simons terms with an interaction term. This sug-
gests that (in case μ ≠ m) an action for our results that
involves bosonic and fermionic auxiliary fields can be
obtained by supersymmetrizing the bosonic action of [5]. It
would be interesting to investigate this further. This could
for instance be done by considering a superspace Chern-
Simons action for two vector supermultiplets and studying
whether a suitable interaction term can be written in
superspace. Note that the fact that a possible action
formulation should include an extra fermionic auxiliary
field is already suggested by how the fermionic equation of
motion appears in its own supersymmetry transformation
[see (12)] [17]. There are also various extensions of our
model to consider such as coupling with N ¼ 1 super-
symmetric scalar or gravity multiplets and constructing
N > 1 supersymmetric versions. In [6] it was shown that
one can obtain higher derivative extensions of [5] by
shifting the connection (19) with further terms which are
not necessarily conserved. It would be interesting to see
whether a supersymmetric extension would still be possible
for such deformations.
We hope that our construction will provide some insight

for finding supersymmetric versions of the third-way
consistent gravity [1,3,4] and p-form theories [6]. As we
saw in (19) the extra terms that appear in our model can be

NIHAT SADIK DEGER and JAN ROSSEEL PHYS. REV. D 104, L081701 (2021)

L081701-4



understood as coming from shifting the gauge connection
AI
μ with bosonic and fermionic current 1-forms of the initial

theory. We expect this to be a key feature of all such
models. In 3D gravity examples [1,3,4] the shift occurs in
the spin connection in their first-order formulation and we
anticipate this to be supplemented with appropriate fer-
mionic current terms in the supersymmetric case. Observe
that the supersymmetry variation of our spinor field
equation involves not only the YM field equation but also
contains a term proportional to itself [see (12)] and a similar
conclusion holds for the YM field equation [see (14)]. This
could be a generic feature of third-way consistent super-
symmetric theories.
The model of [5] exhibits a Higgs mechanism [15,16]

and is also related to multi M2-branes of 11D supergravity
[18]. Moreover, the presence of higher derivative terms in
the bosonic third-way consistent models can be understood
as spontaneous breaking of a local symmetry as was
illustrated for [1] in [19]. It would be desirable to clarify
these connections for our supersymmetric model too.

Finally, third-way consistent gravity models already
found an important application as possible toy models
for 3D quantum gravity [2]. The fact that we were able to
supersymmetrize [5] can be taken as a further indication
that generic third-way consistent models physically make
sense (at least at the classical level). It could then be
interesting to study whether the novel 3D YM theory
considered here finds applications in low-dimensional (e.g.,
condensed- matter) physics.
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