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We show that, in order to determine the equation of state of the inner crust of an accreting neutron star,
one should minimize not the Gibbs free energy, as it is generally assumed in the literature, but a different
thermodynamic potential Ψ, which tends to the minimum at fixed pressure and neutron chemical potential.
Once this potential is specified, one can calculate the heat-release distribution in the stellar crust due to
nonequilibrium nuclear reactions induced by accretion of matter onto the neutron-star surface. The results
are important for adequate modeling of the accreted crust and interpretation of the observations of accreting
neutron stars in low-mass X-ray binaries.

DOI: 10.1103/PhysRevD.104.L081301

I. INTRODUCTION

Observations of accreting neutron stars (NSs) may shed
light on the properties of superdense matter in their interiors
(e.g., [1–12]). To interpret the observations, one needs to
know the equation of state of accreted crust and the heat
release due to nonequilibrium nuclear reactions induced by
accretion.
Previously, the NS crust was studied within the so-called

traditional approach, which assumes that crustal matter
sinks deeper and deeper inside the star as a whole under the
weight of newly accreted material [13–23]. This approach
can be applied to the outer crust, consisting of atomic nuclei
and electrons. However, in the inner crust, where unbound
neutrons are additionally present, the approach is not
justified, since it leads to violation of hydrostatic (and
diffusion) equilibrium condition for neutrons [24] (here-
after, the nHD condition):

μ∞n ≡ μneνðrÞ=2 ¼ const; ð1Þ

where μn is the neutron chemical potential; eνðrÞ=2 is the
redshift factor; r is the radial coordinate. Here and below,
the superscript ∞ indicates that the corresponding quantity
(e.g., μn) is redshifted. In major part of the crust region,
where neutrons are superfluid, the nHD condition (1) is
required for hydrostatic equilibrium; in the narrow layer
≲5 m near the outer-inner crust interface (oi interface),
where neutrons can be nonsuperfluid, (1) is necessary for
establishing the neutron diffusion equilibrium (one can
check that neutron diffusion is very efficient in this layer of
the star [24]). One way or the other, unbound neutrons can
move independently of nuclei in order to decrease the
system energy, and the nHD condition represents this fact.
How does the condition (1) may affect calculations of the

inner crust structure for accreting NSs? Generally, to derive

the equation of state of the NS crust in the traditional
approach, one minimizes the Gibbs free energy (e.g., [14–
16,18–20,22,23]). But what thermodynamic potential
should be minimized in order to respect the condition
(1)? The paper aims to answer this question. As a by-
product of this work, we shall also demonstrate how to
calculate the distribution of the heat release in the accreting
crust for any given crustal equation of state.

II. THERMODYNAMICALLY CONSISTENT
ACCRETED CRUST

Combining the condition (1) with the hydrostatic equi-
librium equation,

dP
dr

¼ −
1

2
ðεþ PÞ dν

dr
; ð2Þ

yields [24]:

dμn
μn

¼ dP
εþ P

: ð3Þ

Here P and ε are the pressure and energy density,
respectively. Integrating (3) from the oi interface downward
to the stellar core, one gets

μn ¼ mn exp

�Z
P

Poi

dP̃=½εðP̃Þ þ P̃�
�
; ð4Þ

where Poi is the pressure at the oi interface and we took into
account that μn ¼ mn there (mn is the bare neutron mass;
here and below the speed of light c is set to unity).
Equation (4) is very important; it says that μn at any point
in the inner crust with the pressure P is uniquely deter-
mined once Poi and the function εðP̃Þ are specified
for Poi ≤ P̃ < P.
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It is easy to find the pressure Pcc at the crust-core
boundary by matching μn at the boundary, μnðPccÞ ¼
μn;coreðPccÞ, where μn;coreðPÞ is the neutron chemical
potential in the core, a known function of pressure.
In the course of accretion, the NS crust eventually enters

the regime, in which further accretion almost does not
affect the crustal equation of state [25]. We shall call such
crust “fully accreted” to distinguish it from the “partially
accreted” crust.
In what follows, when considering the fully accreted

crust we, to simplify the analysis, neglect small effects of
secular metric and NS radius variations associated with the
increasing mass of accreting NS [25]. In principle, these
effects can be accounted for explicitly [25]; they are,
however, quite small. In this approximation, the number
of atomic nuclei in the fully accreted crust does not change
with time. In other words, some mechanism of effective
nuclei disintegration should operate in the inner crust. As it
is shown in [24] for smoothed compressible liquid-drop
model (CLDM), such mechanism does exist and works
through the specific instability at the bottom of the inner
crust, which disintegrates nuclei into neutrons, so that the
total number of nuclei in the crust remains constant during
accretion. Note that the actual pressure Pinst at which the
instability sets in should not necessarily exactly coincide
with Pcc (as CLDM of [24] predicted), but can be smaller
[25]. If this is the case, there is a region near the crust-core
boundary, which is decoupled from the remaining crust: the
matter is not replaced by the accreted material in that region
in the regime when the crust is fully accreted.
Appearance of a large number of neutrons in the process

of nuclei disintegration and their subsequent redistribution
over the inner crust and core results in Poi not being equal
to the neutron drip pressure Pnd, at which neutrons would
drip out of nuclei in the traditional approach (e.g., [14,20]).
In particular, an excess of neutrons may spread across the
inner crust to the region, where P < Pnd [24], leading to the
inequality Poi < Pnd. As a result, it turns out to be
energetically favorable to capture neutrons for nuclei
crossing the oi interface from the outer crust side; this
process is accompanied by substantial energy release [25].
We come to the following picture of the evolution of a

volume element, moving along with the flow of atomic
nuclei in the accreted crust. Starting near the stellar surface,
the volume element sinks under the weight of newly
accreted material deeper and deeper inside the crust.
Compression induces nonequilibrium nuclear reactions in
the element, tending to bring it to equilibrium. In the outer
crust, the number of baryons in the volume element, Nb, is
conserved. Thus, at a given pressure, the resulting equation
of state can be determined by minimizing the Gibbs free
energy per baryon, ϕ ¼ ðεþ PÞ=nb, where nb is the
baryon number density ([12,14–16,18–20,22,23]; see the
next section for details). Once oi interface is reached and
we enter the inner crust, the situation changes dramatically

for two reasons. First, Nb is not conserved anymore, since
unbound neutrons can now freely escape from the volume
element. Second, nonequilibrium nuclear reactions induced
by the compression of the element must now bring it to
some “optimal” state, which is realized not only at fixed P
(as in the case of the outer crust), but also [in view of
Eq. (4)] at fixed μn. The composition of the volume element
in this state should be determined by minimizing some
thermodynamic potential (let us denote it by Ψ) at both P
and μn kept fixed. The question then arises, what is this
thermodynamic potential? The next section answers this
question.

III. THOUGHT EXPERIMENT AND
TEXTBOOK ARGUMENT

The results of this section are equally applicable to both
partially and fully accreted crust. Let us start with the well-
known thought experiment and put a piece of accreted crust
matter into a cylindrical vessel with a massless movable
piston at one of its sides. Assume, first, that the walls of the
vessel are impenetrable for matter particles (nuclei, elec-
trons, and unbound neutrons). This assumption is equiv-
alent to working within the traditional approach when
modeling the NS accreted crust.
The pressure in the medium outside the vessel is P, the

temperature is T. The whole system is assumed to be
always in mechanical and thermal equilibrium, so that the
pressure and temperature inside the vessel are also P and T,
respectively. Because, generally, the accreted crust matter is
not in the full thermodynamic equilibrium, nuclear reac-
tions inside the vessel may proceed, driving the system
toward equilibrium. As a result, the volume V occupied by
the matter in the vessel may vary (at constant P and T), and
this process may be accompanied by the heat release and
subsequent heat transfer. Let us calculate the transferred
heat δQ in a short period of time, during which V has been
changed by dV (δQ < 0 means that the matter in the vessel
transfer heat to the outside medium). According to the first
law of thermodynamics [26],

δQ ¼ δE − δR; ð5Þ

where δE is the change of internal energy E of the matter in
the vessel; and δR ¼ −PdV is the work done on the matter
by the surrounding medium. On the other hand, in view of
the second law of thermodynamics, δQ < TδS, where δS is
the change of entropy of matter, S. Combining these two
equations, we have

δE − δR − TδS < 0: ð6Þ

Since the process occurs at constant P and T, one may
introduce the thermodynamic potential (Gibbs free energy)
Φ≡ Eþ PV − TS and rewrite Eq. (6) as
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δΦ < 0: ð7Þ

This is the well-known textbook result saying that irre-
versible processes at constant P and T are accompanied by
the decrease of Φ. Therefore, one should minimize Φ in
order to determine the final state of the matter in the vessel.
Note that, under conditions typical for accreted crust, an

approximation of vanishing temperature, T ¼ 0, is usually
well justified [1]. This approximation will be used in
what follows. In the limit T ¼ 0 the heat released in the
course of nonequilibrium nuclear reactions is simply [see
Eqs. (5)–(7)]:

δQ ¼ δΦ: ð8Þ

In the accreted crust studies within the traditional approach
one usually takes advantage of the fact that the total number
of baryons, Nb, in any volume element moving along with
the flow of atomic nuclei is conserved as the element sinks
toward the stellar center (in our situation, Nb is the total
number of baryons in the vessel). This means that it is
equally possible to use the Gibbs free energy per baryon,
ϕ≡Φ=Nb ¼ ðεþ PÞ=nb, instead of Φ in all calculations
(ε≡ E=V). It is the potential ϕ, which is usually minimized
in the traditional approach to the accreted crust modeling
[14–16,18–20,22,23].
Consider now the same thought experiment, but in a

slightly different setup, in which unbound neutrons are
present in both the vessel and outside medium and are
allowed to leak through the vessel’s walls. This assumption
is in line with the nHD approach [24], in which neutrons
can freely redistribute throughout the inner crust in order to
achieve the nHD equilibrium, Eq. (1). Assume that such
neutron “leakage” is fast enough for the matter inside the
vessel to be in diffusion equilibrium with respect to
exchange of neutrons with the outside medium (i.e., the
neutron chemical potential, μn, is the same in the vessel and
in the medium at all times). What thermodynamic potential
should be minimized in this situation?
To answer this question we note, first of all, that Eq. (5)

for the heat release is still applicable with the only
exception that now δR should account not only for the
work −PdV, but also for the change of the energy of matter
μndNb due to the leakage of neutrons from/to the vessel:
δR ¼ −PdV þ μndNb. With this redefinition of δR, Eq. (6)
also remains correct. Now, taking into account that non-
equilibrium nuclear reactions in the vessel proceed at
fixed P, T, and μn, and introducing new thermodynamic
potential,

Ψ ¼ Eþ PV − μnNb − TS; ð9Þ

we immediately find that Eq. (6) is equivalent to

δΨ < 0: ð10Þ

We come to the very important conclusion that irreversible
processes (nonequilibrium nuclear reactions) inside the
vessel, occurring at constant P, T, and μn, lead to decrease
of the thermodynamic potential Ψ.
Again, in analogy with the case of impenetrable walls

and the Gibbs potential Φ, the heat released in the vessel in
the limit of T ¼ 0 equals

δQ ¼ δΨ: ð11Þ

Equation (9) answers the question, posed in the end of
Sec. II about the form of the potential that should be
minimized in order to determine the equation of state of the
inner crust.

IV. THREE EXAMPLES

Below we consider three examples in which Ψ can be
calculated. We assume that T ¼ 0 in all these examples.
The first example is the ground-state crust. In this case,
Eq. (9) gives Ψ ¼ 0, because in the ground state one has
εþ P ¼ μnnb [1].
The second example is the smoothed CLDM described

in [24]. Using it, [24] constructed the first thermodynami-
cally consistent equation of state for an accreted crust,
satisfying the condition (1). In the smoothed CLDM the
atomic mass number A and charge number Z are treated as
continuous variables. Thus, at each pressure P, nuclei of
only one species ðA; ZÞ are present (no mixtures). The
energy density in CLDM depends on the two parameters,
nb and the number density of atomic nuclei, nN. The first
law of thermodynamics for this model reads

dε ¼ μndnb þ μNdnN; ð12Þ

where μN is the effective chemical potential describing the
energy change due to creation of additional nuclear cluster
in the system at fixed nb. In turn, the pressure P is given by
[cf. Eq. (18) below]: P ¼ −εþ μnnb þ μNnN. Using the
latter formula, one finds

Ψ ¼ μNNN; ð13Þ

where NN is the total number of nuclei in a given volume
element moving along with the nuclei. As follows from the
results of [24], NN remains constant as the volume element
sinks toward the crust-core boundary. Moreover, it can be
shown [24] that Eqs. (1) and (2) imply that the redshifted
μN should be constant throughout the inner crust,
μ∞N ¼ const. Combining these two properties, one finds

Ψ∞ ¼ const or ψ∞ ¼ const; ð14Þ

where in the right formula we introduced the potential Ψ
per nucleus: ψ ≡Ψ=NN. Equation (14) does not, in fact,
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rely on a particular nuclear model (CLDM, in our case) and
is quite general, as is shown below in this section.
In the third example, let us assume that the crust matter is

composed of a mixture of nuclei of different species j and,
possibly, unbound neutrons (for simplicity, we ignore
unbound protons, which could be present near the crust-
core transition [27]). The first law of thermodynamics for
the mixture can then be written, in analogy to Eq. (12), as

dε ¼ μndnb þ
X
j

μðjÞN dnðjÞN ; ð15Þ

where nðjÞN and μðjÞN are, respectively, the number density

and effective chemical potential for nucleus species j (μðjÞN
is analogous to μN from the previous example). Introducing

the total number density nN of nuclei, the fraction xðjÞN of

nucleus species j (
P

j x
ðjÞ
N ¼ 1), and the average chemical

potential μN,

nN ≡X
j

nðjÞN ; xðjÞN ≡ nðjÞN

nN
; μN ≡X

j

μðjÞN xðjÞN ; ð16Þ

Eq. (15) can be represented in the form

dε ¼ μndnb þ μNdnN þ
X
j

μðjÞN nNdx
ðjÞ
N : ð17Þ

The pressure is defined in a standard way,

P ¼ −
∂ðεVÞ
∂V ¼ −εþ μnnb þ μNnN; ð18Þ

where the partial derivative is taken at fixed NðjÞ
N ¼ nðjÞN V

and Nb ¼ nbV (j runs over all nucleus species). It is
clear from (9) and (18) that the thermodynamic potential Ψ
for the mixture is given by the same expression (13)
as in the CLDM, but with μN defined by Eq. (16)

and NN ¼ P
j N

ðjÞ
N .

Now, let us assume that the crust is fully accreted and
there are no nuclear reactions in some region of the inner

crust. This means that NN ¼ const and xðjÞN ¼ const in an
arbitrary chosen volume element, moving downward with
the nuclei in that region. Consequently, Eq. (17) reduces to
(12). Then, using the nHD condition (1), as well as Eqs. (2),
(12), and (18) it is straightforward to demonstrate (see also
[24]) that there must be μ∞N ¼ const, and hence (because
NN ¼ const), Ψ∞ ¼ const. We come to the conclusion that
Eq. (14) is satisfied in the region of the inner crust, in which
there are no nuclear reactions. Very similar arguments can
be applied to the outer crust and thermodynamic potential
Φ. Namely, it can be shown (see also Supplemental
Material in [25]) that

Φ∞ ¼ const or ϕ∞ ¼ const ð19Þ

in those regions of the outer crust, in which nuclear
composition is fixed. To derive (19) it should be noted
that in the outer crust nb ¼ hAinN, where hAi is the average
atomic mass number in the mixture.
The consideration above can also be applied to a region

of partially accreted crust, for which xðjÞN ¼ const for all
types of nuclei. For example, if the region is situated in the
inner crust, then it follows from Eqs. (1), (2), (12), and (18)
that it must be μ∞N ¼ ψ∞ ¼ const in that region. In the
outer crust the latter condition should be replaced with
ϕ∞ ¼ const.

V. HEAT RELEASE IN THE CRUST

The results obtained above can be utilized for calculation
of the heat release (and its distribution) in the fully accreted
crust in the course of accretion. Let us consider two points,
I and II, with the pressure PI and PII, located close to each
other in the inner crust of an NS. Consider now a small
volume element in point I, which moves with the nuclei.
The thermodynamic potential of this element is Ψ ¼ ΨI.
After a while, the element will shift to point II, whereΨwill
be equal to ΨII. What is the value of the heat released in
such process?
The heat will be generated by nonequilibrium nuclear

reactions, which can occur in the volume element due to the
variation of pressure from PI to PII. To calculate the heat,
let us assume that the process takes place in two steps:
(i) first, the volume element moves from point I to point II
with frozen composition (no heat is generated); (ii) then, in
point II, all the required nuclear reactions occur and nuclear
composition modifies.1 In view of Eq. (14), we can write
for the step (i):

ΨIeνI=2 ¼ ΨII;0eνII=2; ð20Þ

where eνI=2 and eνII=2 are the redshifts at points I and II,
respectively; ΨII;0 is the thermodynamic potential of the
volume element at point II before nuclear reactions were
initiated. At the step (ii) the nonequilibrium nuclear
reactions change Ψ from ΨII;0 to ΨII at constant P and
μn. Because of (11), the heat δQ released in the system,
equals2: δQ ¼ ΨII;0 −ΨII [the sign differs from that
adopted in Eq. (11), because in (11) the emitted heat is,
by definition, negative, which is not convenient for us in
what follows]. Accounting for (20), the redshifted heat
release is presented as

1In this picture, the smooth variation of matter composition in
the crust is approximated as an infinite set of infinitely small
phase transitions at which the composition changes in a step-wise
manner.

2Part of this energy can be carried away from the star by
neutrinos, see, e.g., [17].
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δQ∞ ¼ ðΨII;0 − ΨIIÞeνII=2 ¼ Ψ∞
I − Ψ∞

II : ð21Þ

If points I and II are infinitely close to each other, the heat
released in the inner crust equals:

δQ∞ ¼ −
dΨ∞

dP
dP; ð22Þ

where we parametrize Ψ∞ in the fully accreted crust as a
function of P. A similar formula can be derived for the heat
release in the outer crust,

δQ∞ ¼ −
dΦ∞

dP
dP; ð23Þ

with the potential Φ instead of Ψ.3 Eqs. (22) and (23) give
the distribution of the redshifted heat generated in the fully
accreted crust of an NS. The total redshifted heat release,
Q∞, in the fully accreted crust can be obtained by
integrating δQ∞ over the whole crustal volume, where
the heat is generated, i.e., from P ¼ Pash to P ¼ Pinst (Pash
is the pressure near the stellar surface, at which the accreted
material has already fused into heavy nuclei). When doing
this, one should be careful with the evaluation of the
redshifted heat release ΔQ∞

oi and ΔQ∞
inst at, respectively, the

oi interface and the bottom of the crust (P ¼ Pinst), where
nuclei disintegrate into neutrons. All in all, one can write:

Q∞ ¼ −
Z

Poi

Pash

dΦ∞

dP
dPþ ΔQ∞

oi −
Z

Pinst

Poi

dΨ∞

dP
dPþ ΔQ∞

inst

¼ Φ∞ðPashÞ −Φ∞ðPoiÞ þ ΔQ∞
oi

þ Ψ∞ðPoiÞ −Ψ∞ðPinstÞ þ ΔQ∞
inst: ð24Þ

Let us first calculate the heat releaseΔQ∞
inst due to complete

disintegration of atomic nuclei at the bottom of the crust.
Because disintegration is complete (all nuclei from the
given volume element disintegrate, hence Ψ∞ ¼ 0 in the
final state) and occurs at fixed P ¼ Pinst and μn, the heat
release is given, in accordance with Eqs. (11) and (13), by
the formula: ΔQ∞

inst ¼ Ψ∞ðPinstÞ.
To calculate ΔQ∞

oi , let us consider a volume element
attached to nuclei and initially situated near the oi interface
on the outer crust side. Its redshifted Gibbs free energy
equals Φ∞ ¼ Φ∞ðPoiÞ. After crossing the oi interface,
the element enters the inner crust, where unbound neutrons
with the chemical potential μn;oi ¼ mn are present. This
will initiate the neutron capture reactions, mentioned in
Sec. II (see also [12,25]), which will lead to the heat
release ΔQ∞

oi . According to Eq. (11), it equals ΔQ∞
oi ¼

Ψ∞
0 ðPoiÞ − Ψ∞ðPoiÞ, where Ψ∞

0 ðPoiÞ is the redshifted
thermodynamic potential Ψ∞ of the volume element,
immediately after it crosses the oi interface; and

Ψ∞ðPoiÞ is the corresponding potential after all reactions
in the volume element proceed [it coincides with Ψ∞ðPoiÞ
in Eq. (24)]. In view of the definition of Φ and Eq. (9), one
can write: Ψ∞

0 ðPoiÞ ¼ Φ∞ðPoiÞ − μ∞n;oiNb, where Nb is the
number of baryons in this element before it crossed the oi
interface. Collecting the above equations, we get

ΔQ∞
oi ¼ Φ∞ðPoiÞ − μ∞n;oiNb −Ψ∞ðPoiÞ: ð25Þ

Note that, due to the condition (1), μ∞n;oi equals μ
∞
n at any

point of the inner crust and core. On the other hand, in
the core μn coincides with the baryon chemical potential,
μb;core [1] (we assume that the matter in the core is in beta-
equilibrium). Thus, μ∞n;oi ¼ μ∞b;core. Using this formula
together with the expressions ΔQ∞

inst ¼ Ψ∞ðPinstÞ and
(25), one can rewrite (24) as (see also [25])

Q∞ ¼ Φ∞ðPashÞ − μ∞b;coreNb: ð26Þ

In the fully accreted crust, neglecting small secular metric
and radius variations, the number of accreted baryons per
unit time equals the number of baryons crossing the oi
interface per unit time [25]. Thus, dividing (26) by Nb, and
using the fact that Φ∞ðPashÞ ≈ m̄b;ashNbeνs=2, where m̄b;ash

is the average mass of ashes per baryon and eνs=2 is the
redshift factor at the stellar surface, we arrive at the final
formula for the redshifted heat release q∞ per accreted
baryon:

q∞ ¼ m̄b;asheνs=2 − μ∞b;core: ð27Þ

This formula coincides with the similar formula (3) from
[25] derived using a different method.

VI. CONCLUSION

We find the thermodynamic potential Ψ [Eq. (9)], that
should be minimized in order to derive the equation of state
for the inner crust of accreting NS. This potential differs
from the Gibbs thermodynamic potential Φ, adopted in the
previous studies (e.g., [14–16,18–20,22,23]), which were
carried out in the traditional approach, ignoring the con-
dition (1). If the total number of atomic nuclei NN in a
volume element moving along with the nuclei in some
region of the inner crust is conserved, it is sufficient to
minimize the potential Ψ per one nucleus, ψ ¼ Ψ=NN ¼
ðεþ P − μnnbÞ=nN, where nN is the total number density of
nuclei.
We also show how to find the heat release distribution

due to nonequilibrium reactions in the fully accreted
crust as a function of P, once the potential Ψ in the inner
crust (or Φ in the outer crust) is known [see Sec. V,
particularly, Eqs. (22) and (23)]. This allows us to derive
the formula (27) for the total heat release per baryon, which

3In the case of strong phase transitions with a finite amount of
heat release, the derivatives in Eqs. (22) and (23) equal the
corresponding delta-functions with the weights Ψ∞

I − Ψ∞
II and

Φ∞
I −Φ∞

II , respectively.
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coincides with the similar formula derived in a completely
different way in [25] (their formula 3).
The results obtained in this paper provide a theoretical

basis for the adequate description of the accreted NS crust.
We believe that the approach developed here may prove to
be especially useful in applications to the partially accreted
crust, when the crustal equation of state changes with time.
Finally, we emphasize that the potential Ψ introduced in
this paper can (and should) be used in other problems,

dealing with particle mixtures at fixed pressure and
chemical potential of one of the particle species.
Generalization of Ψ to the case when a few chemical
potentials are kept fixed simultaneously, is straightforward.
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