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The relation between the specific shear viscosity η=s and the dimensionless jet quenching parameter
q̂=T3 in perturbative QCD is explored at next-to-leading order in the coupling constant. It is shown that the
relation changes little, although both transport coefficients independently are subject to large modifications
at the next-to-leading order level. This finding confirms that the relationship is robust.
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The shear viscosity η and the so-called jet quenching
parameter q̂ are two important transport coefficients that
characterize the quark-gluon plasma [1]. In order to
eliminate the trivial temperature dependence of these
quantities, it is customary to consider the two dimension-
less quantities η=s, the ratio of the shear viscosity and the
entropy density, sometimes called the specific shear vis-
cosity, and q̂=T3, where T is the temperature. Both
dimensionless quantities are sensitive to the effective
coupling strength in the plasma. When the coupling is
weak, η=s is large and q̂=T3 is small; when the coupling is
strong, η=s is small and q̂=T3 is large. The fact that the
analysis of experimental data from relativistic heavy ion
collisions indicates that η=s ≈ 0.1–0.2 [2,3] and q̂=T3 ≈
3–4 [4,5] is generally taken as an indication that the quark-
gluon plasma produced in such collisions is strongly
coupled.
Some time ago, Majumder, Müller, and Wang (MMW)

argued that the two quantities are connected by a general
relation of the form [6]:

η

s
·
q̂
T3

≈ const: ð1Þ

in any perturbative gauge theory where small-angle scatter-
ing is dominated by the exchange of massless or low-mass
quanta. Using lowest-order QCD perturbation theory they
estimated the constant C to be of order unity and inde-
pendent of the gauge coupling g.
Since we are now in possession of experimentally

derived estimates for the two quantities, it makes sense
to revisit the MMW relation and explore to what extent it

remains valid at higher orders of perturbation theory.
This exploration is aided by recent calculations [7–9] of
the transport coefficients η and q̂ at next-to-leading order
(NLO) of hard-thermal loop (HTL thermal perturbation
theory [10–12].
Before presenting the details, it makes sense to revisit the

argument why the relation (1) should have rather general
validity. The argument assumes that the medium can be
described by quasiparticles and that the total scattering
cross section between quasiparticles is dominated by small-
angle scatterings as is generally the case when the inter-
actions among quasiparticles are mediated by massless or
low-mass quanta, such as in QCD.
The transport coefficient q̂ governing the radiative

energy loss of a propagating parton in SU(3)-color repre-
sentation R is given by [13]:

q̂R ¼ ρ̃

Z
d2q⊥q2⊥

dσR
d2q⊥

; ð2Þ

where dσ=d2q⊥ denotes the differential cross section of
elastic scattering for an energetic parton on medium
constituents and

ρ̃ ¼ ν

Z
d3k
ð2πÞ3 nðkÞ½1� nðkÞ� ð3Þ

is the final-state weighted density of quasiparticles in the
medium. ν denotes the quasiparticle degeneracy and
the sign distinguishes between bosons and fermions. The
lowest-order, next-to-leading-logarithmic (NLL) result (in
the terminology of [14]) for a quark-gluon plasma is [8]:

q̂ðNLLÞR ðqmaxÞ ¼
g2CRTm2

D

4π
ln
q2max

m2
D
; ð4Þ

where CR is the quadratic Casimir for the color represen-
tation of the fast parton that initiates the jet, mD is the
Debye screening mass in the plasma; and qmax is an
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ultraviolet cutoff (see [7]). Here we choose qmax ¼ μ with
μ=T ¼ 2.765 for the pure gauge theory and μ=T ¼ 2.957
for three-flavor QCD. This choice makes the logarithm
consistent with the one encountered in the calculation of
η=s. Other possible process-dependent choices are dis-
cussed in [7].
The shear viscosity η is defined as the coefficient of the

contribution to the stress tensor of the medium that is
proportional to the divergence-free part of the velocity
gradient. In the framework of kinetic theory based on a
quasiparticle picture, the shear viscosity is given in terms of
the mean-free path λfðpÞ of a constituent particle of
momentum p:

η ≈ κρhpiλf ; ð5Þ

where ρ is the density of medium constituents (gluons and
quarks) and κ ≈ 1=3 [15].
The relation between η and q̂ is derived from the

observation that the mean-free path is related to the average
transport cross section of a quasiparticle in the medium:
λf ¼ ðρ̃σtrÞ−1. When small-angle scattering is dominant, the
transport cross section is related to the differential elastic
scattering cross section by the relation [15]:

σtr ¼
Z

dΩ
dσ
dΩ

sin2 θ ≈
4

s

Z
d2q⊥q2⊥

dσ
d2q⊥

: ð6Þ

where
ffiffiffi
s

p
is the center-of-mass energy of the quasiparticle

collision. Comparing with (2) we find:

λf ≈
s
4q̂

: ð7Þ

For a thermal ensemble of light particles (gluons and light
quarks), hpi ≈ 3T and hsi ≈ 18T2, and thus:

η ≈ 13.5κ
ρT3

q̂
: ð8Þ

Applying the expression s ≈ 3.6ρ for the entropy density of
a gas of free gluons, a relation of the MMW type is obtained
(see Eq. (5) in [6]):

η

s
≈ 3.75κ

T3

q̂A
≈ 1.25

T3

q̂A
: ð9Þ

In the framework of kinetic theory, the shear viscosity η
is a measure of the diffusion of momentum carried by
quasiparticles. Equation (6) only accounts for diffusion
transverse to the momentum of the quasiparticle. In a
medium with dynamical scattering centers, there is also
longitudinal momentum diffusion characterized by the
transport coefficient q̂L which, at leading order, is given
by q̂L ¼ q̂=2 [8]. One thus expects the approximate result
(9) to receive corrections of the order of 50 percent [16].

This is borne out in the full calculation of η=s as seen
below.
The exact result for QCD at LL order in the QCD

coupling constant for a pure gluon gas is [17]:

ηg ¼
0.343T3

α2s lnð1=αsÞ
: ð10Þ

With the entropy density of a gas of free gluons given by
sg ¼ ð32π2=45ÞT3 the specific shear viscosity is:

ηg
sg

¼ 0.0489
α2s lnð1=αsÞ

: ð11Þ

Inserting the Debye mass for a gluon gas, m2
D ¼ 4παsT2,

into the lowest-order result for the jet quenching parameter
(4) for a gluon, one finds:

q̂A
T3

¼ 12πα2s lnð1=αsÞ; ð12Þ

giving the LL order MMW relation for a pure gluon gas:

ηg
sg

·
q̂A
T3

¼ 1.84: ð13Þ

As anticipated, the constant value for the double ratio for
the full LL result differs from the “naïve” value 1.25 of (9),
but lies within the expected range.
Repeating the calculation for a three-flavor (Nf ¼ 3)

quark-gluon plasma and a quark jet, one obtains [17]:

�
η

s

�
Nf¼3

¼ 0.06474
α2s lnð1=αsÞ

; ð14Þ

q̂F
T3

¼ 8πα2s lnð1=αsÞ; ð15Þ

Combining the two results, one finds:

�
η

s

�
Nf¼3

·
q̂F
T3

¼ 1.63: ð16Þ

Wenow turn to theMMWrelation at next-to-leading order
in the coupling constant, wherewe expect the constant on the
right-hand side of (16) to vary with the coupling strength.
Herewewill follow [9] and show the results as function of the
ratio mD=T, where the Debye mass is given by

m2
D ¼

�
1þ Nf

6

�
g2T2: ð17Þ

The perturbative expansion of the Debye screening massm2
D

encounters a nonperturbative contribution at order g3T2

[18,19]. A rigorous definition of the Debye mass can be
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obtained in the framework of effective field theory and
dimensional regularization [20–22]. The NLO correction in
this framework appears at order g4T2 and is small over the
entire range of couplings considered here (mD=T < 2.5
corresponding to 0 < αs < 1=π). Since the NLO contribu-
tions to η=s and q̂=T3 appear at order g relative to the lowest-
order results, it is consistent to ignore the NLO contribution
to the Debye mass.
The jet quenching parameter at NLO is given by [7,8]:

q̂ðNLOÞR ¼ q̂ðLOÞR þ δq̂R ð18Þ

with q̂ðLOÞR given by [23]:

q̂ðLOÞR ¼ g4CRT3

2π3

��
6þ 3

2
Nf

�
ζð3Þ ln qmax

mD

þ ð6þ NfÞðζð2Þ − ζð3ÞÞ

×

�
θðT −mDÞ ln

T
mD

þ 1

2
− γE þ ln 2

�

−6σþ − 2Nfσ−

�
ð19Þ

and

δq̂R ¼ g4CRCAT2mD

32π2
ð3π2 þ 10 − 4 ln 2Þ: ð20Þ

Here CA ¼ Nc is the quadratic Casimir for the adjoint
representation.
Several comments are in order concerning the lowest-

order (LO) result (19). First, the leading logarithm contains
an ultraviolet cutoff qmax analogous to the cutoff in the LL
result (4). For a given process involving the transverse
momentum diffusion of an energetic parton, e.g., jet quench-
ing, it should be chosen at the boundary between multiple
scattering and isolated hard scatterings in the medium. Here
we will continue to set qmax ¼ μ; we will clarify this choice
explicitly by the notation q̂ðμÞ. When q̂ is deduced from
experimental data by model-data comparison, the empirical
value will need to be corrected for the specific choice of the
momentum transition between transverse diffusion and
Coulomb scattering made in the model calculation.
Strictly speaking, the validity of (19) requires qmax ≫ T;
in this respect, the choice qmax ¼ μ ≈ 3T is marginal.
A second comment concerns the term multiplied by a

step function. This term accounts for the difference in the
effective final-state density of medium particles after soft
scattering (q⊥ < T) and hard thermal scattering
(T < q⊥ < qmax). In the subthermal momentum transfer
domain final-state quantum effects (Bose enhancement or
Pauli blocking) must be taken into account; for epithermal
scatterings these quantum effects are negligible. When

mD > T, which occurs for g > 1, the low-momentum
domain does not contribute a logarithmic term. Although
the power counting is questionable in this range of
couplings, we bravely extrapolate into this domain here
in order to make contact with real-world quark-gluon
plasma conditions.
Figure 1 shows the ratio q̂ðNLOÞðμÞ=q̂ðNLLÞðμÞ as a

function of mD=T. Both here and in the following figures
we use the next-to-leading logarithmic result (4). The NLO
contribution is large and leads to an increase by a factor 15
at the upper end of the considered coupling constant range.
The (almost) NLO result for the shear viscosity was

derived in [9] within the effective kinetic theory framework
for thermal gauge theories developed byArnold, Moore, and
Yaffe [14] and its NLO extension by Ghiglieri, Moore, and
Teaney [8],whichwas also used for theNLOcalculationof q̂.
The NLO corrections to η occur at OðgÞ and derive from
diagrams that contain infrared enhancements from soft,
OðgTÞ, thermal interactions. Gluon-mediated contributions
have a physical interpretation as diffusion processes; quark-
mediated enhancements correspond to conversion processes
in which a thermal parton changes its flavor quantum
number. The soft interactions can be expressed in terms of
light-front correlators, q̂ being an example, which can be
resummed using Fokker-Planck equations. The calculation
[9] neglects certain NLO contributions to the momentum
gain terms (therefore “almost NLO”) which are deemed to be
small corrections.
The NLO calculation for η=s incorporates NLO correc-

tions to the transverse and longitudinal momentum diffu-
sion coefficients, q̂ and q̂L, the quark-gluon conversion
rate, and the collinear 1 ↔ 2 splitting processes. In
addition, one must carefully identify and correct for regions
in which the NLO diffusion coefficients become negative
or the assumption of strictly collinear splitting breaks
down. We refer to [9] for the intricate technical details
involved the calculation.
The NLO result for η does not have a simple analytical

representation. However, Ghiglieri, et al. [9] provided an
analytical fit to their result, which we are using here:

FIG. 1. The ratio of q̂ðNLOÞ=q̂ðNLLÞ as function of mD=T.
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ηfitNLO ¼
�

g4

η1T3

�
1

b
lnðaþ ðμ�=mDÞbÞ þ

d
ð1þmD=TÞ3

�

þ mD

ηδq̂ðcT þmDÞ
�
−1

ð21Þ

with numerical coefficients η1; μ�=T, a, b, c, d given in
Table I for Nf ¼ 0 and Nf ¼ 3 and

ηδq̂ ¼ ð2πÞ4T6

945

�
2ðN2

c − 1Þ
δq̂A

þ 31NfNc

8δq̂F

�
; ð22Þ

where δq̂R is given by (20).
Figure 2 shows the ratio ηNLO=ηLL for a three-flavor

(Nf ¼ 3) quark-gluon plasma as a function of mD=T. The
NLO contribution is again large, but here it leads to a strong
suppression by more than a factor 10 at the upper end of the
considered coupling constant range.
NLO corrections to the entropy density s appear only at

order g2. For consistency we therefore follow Ghiglieri,
et al. [9] and do not consider those correction when
calculating η=s at next-to-leading order. In Fig. 3 we show
ðη=sÞNLO (solid line) and ðη=sÞLL (dashed line) separately
as function of mD=T. At the upper end of the range of
coupling constants considered here, the NLO result is
comparable to the range 0.1 < η=s < 0.2 deduced from
experimental data [2].

The large difference between the LL results and NLO
results for both transport coefficients naturally raises the
question of the range of coupling constants over which the
hard-thermal loop (HTL) improved perturbative series
converges. For values of the coupling constant realized
in the quark-gluon plasma (αs ≈ 0.3) the NLO results differ
from the LL results by more than a factor 10. The NNLO
correction might result in an even larger change. While
only an explicit calculation can answer this question with
certainty, there are reasons to believe that the large relative
size of the NLO correction is an artifact of the exceptionally
small (large) leading order result for q̂ (η).
In order to understand the reason for this, it is useful to

consider the difference between the LO and NLO expres-
sions for the two-body collision kernel Cðq⊥Þ (see Fig 1 in
[7]). Figure 4 shows the momentum transfer-weighted
collision kernel q3⊥=ðg4CRT2ÞCðq⊥Þ as a function of
q⊥=T for mD=T ¼ 2.35 (αs ≈ 0.28). The LO result is

TABLE I. Numerical constants in the analytical fit (21) to the
NLO shear viscosity for a pure gluon plasma (Nf ¼ 0) and a
three-flavor quark-gluon plasma (Nf ¼ 3) [9].

Nf ¼ 0 Nf ¼ 3

η1 27.126 106.664
μ�=T 2.765 2.957
a 8.5176 4.45096
b 1.38936 1.2732
c 1.66144 1.91568
d −0.100421 −0.0777985

FIG. 2. The ratio of ηNLO=ηLL for a three-flavor quark-gluon
plasma as function of mD=T.

FIG. 3. The specific shear viscosity η=s at next-to-leading order
(solid line) and leading-logarithmic order (dashed line) for a
three-flavor quark-gluon plasma as function of mD=T.

FIG. 4. The momentum transfer-weighted collision kernel
q3⊥=ðg4CRT2ÞCðq⊥Þ as a function of q⊥=T for a quark jet in a
three-flavor quark-gluon plasma for mD=T ¼ 2.35. The lowest-
order result is shown as a dashed line; the solid curve shows the
NLO result. The dotted curve indicates the unscreened collision
kernel.
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shown as a dashed line; the solid curve shows the NLO
result. The large increase in the value of q̂ arises at small
values of q⊥=T. While q3⊥Cðq⊥Þ tends to zero for q⊥ → 0

in lowest order, it assumes a sizable finite value at next-to-
leading order. This indicates that the infrared suppression
of elastic two-body scattering is overestimated in the
screening corrected LO calculation.
We note that the lowest-order result for q3⊥Cðq⊥Þ in the

absence of thermal screening, shown by the dotted curve in
Fig. 4, diverges as 1=q⊥ at small q⊥, while the screened LO
result tends to zero. Seen from this perspective, the NLO
result, which incorporates the full dynamical screening of
the one-gluon exchange process (diagram (b) in Fig. 3 of
[7]), just corrects for the unphysically large suppression in
the infrared limit caused by static screening. This physical
effect first appears at NLO and leads to a large change in the
value of the transport coefficients. Put differently, the NLL
result for q̂ is unphysically small, because the suppression
of the collision kernel near q⊥ → 0 is quadratic in q⊥ when
it should only be linear in q⊥. Whether this argument is,
indeed, correct can only be answered by a NNLO calcu-
lation of the collision kernel, which is challenging because
of the proliferation of Feynman diagrams but does not
appear to be impractical. It is also worth mentioning that the
NLO contributions to q̂ and q̂L have opposite sign. Thus
transverse momentum diffusion becomes more dominant at
next-to-leading order, motivating the expectation that the
relationship (1) can survive large NLO corrections.
Finally, we are ready to evaluate the double ratio

ðη=sÞðq̂ðμÞ=T3Þ at next-to-leading order. The results are
shown as solid lines in Fig. 5 for a three-flavor quark-gluon
plasma (Nf ¼ 3) and a quark-jet, and in Fig. 6 for a pure
gluon plasma and a gluon jet. The dashed lines in both
figures show the coupling constant-independent result at
LL order. The figures show that the large NLO corrections
to the two dimensionless ratios, η=s and q̂=T3, cancel to a
large extent. At realistic couplings (mD=T ∼ 2–2.5) the
NLO result for the double ratio differs from the LL result

only by a factor ∼1.6 and is weakly dependent on the
coupling strength.
The results shown in Figs. 5 and 6 confirm the expect-

ation that the MMW relation (1) is rather robust against

FIG. 5. The double ratio ðη=sÞðq̂ðμÞ=T3Þ for a three-flavor
quark-gluon plasma and a quark jet as function of mD=T. The
NLO result is shown as the solid line; the leading-logarithmic
result (16) is shown by the dashed line.

FIG. 6. The double ratio ðη=sÞðq̂ðμÞ=T3Þ for a pure gluon
plasma and a gluon jet as function of mD=T. The NLO result is
shown as the solid line; the leading-logarithmic result (13) is
shown by the dashed line.

FIG. 7. Upper panel: dependence of q̂ðNLLÞðqmaxÞ=T3 at lead-
ing-logarithmic order on the high-momentum cutoff qmax as
function of qmax=T (solid line) together with the result (4) for
qmax=T ¼ μ=T ¼ 2.975 (dashed line). The dotted line shows the
cutoff dependence when the running of the coupling constant is
taken into account (see (2.8) in [23]). Lower panel: dependence of
q̂ðNLOÞðqmaxÞ=T3 at next-to-leading order on the high-momentum
cutoff qmax as function of qmax=T (solid line) together with the
NLO result (18) for qmax=T ¼ μ=T ¼ 2.975 (dashed line).
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next-to-leading order corrections to the transport coeffi-
cients η and q̂. This expectation was based on the generic
argument that such a relation arises in any theory in which
transport processes are carried by quasiparticles and soft
interactions dominate the total scattering cross section.
One issue we have so far largely ignored is that the value

of q̂ depends on the ultraviolet cutoff qmax. The upper panel
of Fig. 7 shows the cutoff dependence of the next-to-
leading-log result q̂ðNLLÞðqmaxÞ=T3 as function of qmax=T
(solid line) together with the result (4) for qmax ¼ μ (dashed
line). The figure shows that the value for q̂ depends
strongly on the chosen value of the momentum cutoff
qmax. The dotted line shows the cutoff dependence of
q̂ðNLLÞðqmaxÞ=T3 when the running of the coupling constant
is taken into account (see Eq. (2.8) in [23]). Since the NLO
correction is large and independent of a high-momentum
cutoff, the relative magnitude of the cutoff dependence at
next-to-leading order is much weaker, as shown in the
lower panel of Fig. 7, even without the running coupling
modification. This demonstrates that the NLO result for the

double ratio ðη=sÞðq̂=T3Þ is much more robust against the
choice of the high-momentum cutoff qmax than the lowest-
order (NLL or LO) result.
In conclusion, the double ratio of quark-gluon plasma

transport coefficients, ðη=sÞðq̂ðμÞ=T3Þ, has been shown to be
robust against higher-order corrections to the individual
transport coefficients, which are large. At next-to-leading
order, the double ratio is much less sensitive to the high-
momentum cutoff of the jet quenching parameter q̂ than at
lowest order. Our result provides compellingmotivation for a
simultaneous extraction of both, η=s and q̂=T3, from exper-
imental data by a state-of-the-art model-data comparison.
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