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An action for the higher-derivative corrections to minimal gauged Euclidean supergravity in four
dimensions has been recently proposed. We demonstrate that the supersymmetric solutions of this model
are those of the two-derivative action, and investigate some of their properties. In particular, we prove a
formula for the renormalized on-shell action in terms of contributions from fixed points of a Uð1Þ action,
and confirm that it is invariant under deformations which preserve the boundary almost contact structure.
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I. INTRODUCTION

Driven by the technique of supersymmetric localization,
there are by now many examples of exact results for field
theory observables in diverse dimensions preserving differ-
ent amounts of supersymmetry. One particularly well-
studied case is that of three-dimensional N ¼ 2 field
theories on curved backgrounds. Rigid supersymmetry
requires that the background admits a transversely holo-
morphic foliation [1], and fixes the dependence of super-
symmetric observables on the background: in particular, the
partition function is independent of deformations preserv-
ing the choice of transversely holomorphic foliation [2].
Via the AdS/CFT correspondence, for those field theo-

ries which admit a holographic dual, a field theory
observable has a quantum gravity counterpart. Thus, given
an exact field theory observable computed via localization
there is a precise prediction for a computation on the
gravity side and vice versa. The simplest case is the field
theory partition function, which is dual to the holograph-
ically renormalized on-shell action of the bulk gravity
solution.
In practice, the situation under best computational

control is in the limit in which the field theory observable
is taken to be the leading contribution to the large N and
large ’t Hooft coupling expansion, and the gravity side is

classical supergravity. In order to explore the next-to-
leading order contributions to field theory, it is necessary
to look at higher-derivative corrections to the supergravity
action.
In this note, we focus on minimal gauged supergravity in

four dimensions, which describes interactions between
metric and electromagnetic field. By the AdS/CFT corre-
spondence, its solutions are dual to the dynamics of the
stress-energy tensor of a three-dimensional N ¼ 2 theory.
It is generically difficult to write down the higher-derivative
corrections to a supergravity theory. However, for the
theory of interest here, a four-derivative action has been
recently suggested [3,4]. We are going to take this as our
starting point, and we are going to focus on the solutions to
this theory that preserve supersymmetry.
A priori, there is no reason to believe that the two-

derivative solutions would be solutions to the four-
derivative equations of motion. However, remarkably this
holds for this specific theory [3]. In fact, we show that all
the supersymmetric solutions to the four-derivative theory
are the supersymmetric solutions of the two-derivative
theory. Starting from this, we find a formula for their
on-shell action including the four-derivative corrections,
extending the two-derivative case of [5], and proving a
conjecture in [4]. One feature of this formula is that it
suggests a localization theorem is at play: every super-
symmetric solution admits a Killing vector ξ, and the on-
shell action is expressed in terms of contributions from the
fixed point sets of ξ, whether isolated (nuts) or two-
dimensional (bolts).
The field-theoretic statement that rigid supersymmetry

fixes the dependence of the partition function on the
background is valid at finite N and consequently holds
at all orders in a largeN expansion. In the bulk gravity dual,

*pietro.benettigenolini@damtp.cam.ac.uk
†paul.richmond@kcl.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, L061902 (2021)
Letter

2470-0010=2021=104(6)=L061902(8) L061902-1 Published by the American Physical Society

https://orcid.org/0000-0002-2479-375X
https://orcid.org/0000-0001-6772-4044
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.L061902&domain=pdf&date_stamp=2021-09-08
https://doi.org/10.1103/PhysRevD.104.L061902
https://doi.org/10.1103/PhysRevD.104.L061902
https://doi.org/10.1103/PhysRevD.104.L061902
https://doi.org/10.1103/PhysRevD.104.L061902
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


this translates to the requirement that the renormalized on-
shell action should not depend on boundary variations that
leave the transversely holomorphic foliation intact. We
confirm that this holds for the four-derivative corrections
and counterterms required by holographic renormalization.
Indeed, demanding invariance may be a paradigm to
constrain the form of six- and higher-derivative terms.

II. HIGHER-DERIVATIVE
SUPERGRAVITY THEORY

The bosonic field content of minimal four-dimensional
Euclidean supergravity is a metric gμν and a Uð1Þ gauge
field Aμ. We focus on their interactions governed by the
following action

SHD ¼ S2∂ þ ðα1 − α2ÞSW2 þ α2SGB; ð1Þ

where

S2∂ ¼ −
1

16πG4

Z
Y
½Rþ 6L−2 − FμνFμν�volg; ð2Þ

SW2 ¼
Z
Y
½WμνρσWμνρσ − 4L−2FμνFμν

þ 8FμνFνρFρσFσμ − 2FμνFμνFρσFρσ

− 8FμρFν
ρRμν þ 2FμνFμνR

þ 8∇μFμν∇ρFρ
ν�volg: ð3Þ

SGB ¼
Z
Y
½RμνρσRμνρσ − 4RμνRμν þ R2�volg: ð4Þ

Here −3L−2 is the cosmological constant, Wμνρσ is the
Weyl tensor which, as with the other curvature tensors, is
computed using g and F ¼ dA is the Uð1Þ curvature.
This action is made up of three parts: S2∂ , the two-

derivative action, SW2 is a supersymmetrized version of the
Weyl squared action, and SGB is the Gauss–Bonnet action
(which is topological in four dimensions). The constants α1
and α2 in front of the higher-derivative terms are arbitrary.
The action has been obtained in [3,4] starting from the

Weyl multiplet of four-dimensional off-shell N ¼ 2 con-
formal supergravity coupled to one vector multiplet and
one hypermultiplet (the latter two being compensator
multiplets). Then to begin to reduce to Poincaré super-
gravity, a number of the superconformal symmetries are
gauge-fixed. This leaves us with an action involving extra
superconformal fields, whose presence is required to ensure
matching of the off-shell degrees of freedom. The final step
is to eliminate these extra superconformal fields by solving
their equations of motion in terms of g, A. While some of
these equations of motion (which can be found in [4,
(2.29)–(2.32)]) are algebraic, and thus correspond to
auxiliary fields, the remaining ones are generically

differential equations if we include the higher-derivative
corrections (that is, we take α1 ≠ α2), and they are very
difficult to solve. There is an obvious solution, the “two-
derivative ansatz,” obtained by setting α1 ¼ α2 ¼ 0. Upon
choosing these values all the equations of motion for the
extra superconformal fields become algebraic and they can
be easily solved. An additional peculiarity of the system of
equations, though, is that the “two-derivative ansatz” is not
only a solution of the equations with α1 ¼ α2, but also of
the full system with arbitrary α1 ≠ α2. Thus, it is consistent
to substitute it, together with the gauge-fixing conditions,
in the conformal supergravity bosonic action, obtaining
SHD in (1).
Each term in (1) is separately constructed out of super-

conformal invariants. Therefore, each of them is independ-
ently invariant under the supersymmetry transformations of
conformal supergravity. Since the procedure of gauge-
fixing and eliminating the superconformal fields using
the two-derivative ansatz is consistent, we see that the
final action (1) is invariant under the supersymmetry
transformations obtained from the supersymmetry trans-
formations of conformal supergravity by gauge-fixing and
substituting the two-derivative ansatz. The only relevant
supersymmetry transformation for us is that of the grav-
itino, which is nothing but the corresponding transforma-
tions of the two-derivative minimal supergravity

δψμ ¼ 2

�
∇μϵ − iL−1Aμϵþ

L−1

2
Γμϵþ

i
4
FνρΓνρΓμϵ

�
: ð5Þ

The fact that the action (1) is invariant under the super-
symmetry transformations of two-derivative minimal
supergravity is enforced by construction: each term is
independently invariant under the supersymmetry trans-
formations, and the two-derivative ansatz takes the first
term to the two-derivative action (as the name suggests).
While the method just outlined leads to a supersymmetric
action that includes four-derivative corrections to S2∂ and
starts from the most general conformal supergravity action
consistent with physical assumptions [4], it would be
interesting to investigate whether this is the most general
form while remaining in Poincaré supergravity and impos-
ing a modified supersymmetry transformation. This is
beyond the scope of this note as it would take us outside
of the two-derivative ansatz, but we plan to return to this
question in the future [6].
The equations of motion coming from (1) have the form

0 ¼ E2∂
g − 16πG4ðα1 − α2ÞE4∂

g ;

0 ¼ E2∂
A − 16πG4ðα1 − α2ÞE4∂

A ; ð6Þ

where E2∂
g and E2∂

A are the contributions from S2∂ , and E4∂
g

and E4∂
A are the contributions from SW2 (SGB does not

contribute to the bulk equations of motion, being
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topological in four dimensions). Each of these terms is
written in the Appendix A.
It is possible to show by explicit substitution that a pair

ðg; AÞ for which E2∂
g and E2∂

A vanish also gives vanishing
E4∂
g and E4∂

A (see Appendix A) [4]. Therefore, any two-
derivative solution is also a four-derivative solution.
Nonetheless, a priori there could be additional solutions
of the theory SHD that are genuinely four-derivative
solutions.

III. SUPERSYMMETRIC SOLUTIONS

We are interested in the supersymmetric solutions of
SHD. That is, solutions ðg; AÞ together with a non-identi-
cally zero Dirac spinor satisfying the (generalized) Killing
spinor equation (5): δψμ ¼ 0. First, we recall that the latter
is consistent with the two-derivative equations of motion
and the Bianchi identity for the Uð1Þ gauge curvature: the
integrability condition Iρσ ∼ ½δψρ; δψσ� contracted with
Γμ

ρσ gives

0 ¼ Γμ
ρσIρσ

¼ ðE2∂
g ÞμνΓνϵþ 2iðE2∂

A Þμϵ: ð7Þ

Using standard spinor bilinears techniques, it is possible
to show that any supersymmetric configuration admits a
Killing vector ξ constructed from the spinor as ξ ¼
−iϵ†Γð1ÞΓ5ϵ. In fact, more is true, because the Killing
equation implies that ξ generates a symmetry of the full
configuration, namely LξF ¼ 0, provided the Bianchi
identity holds. At a generic point of the spacetime mani-
fold, a nonchiral Dirac spinor generates an orthonormal
frame fE1;E2;E3;E4g. One then derives from (5) a number
of differential equations relating the fields and the spinor
bilinears expressed in terms of Ea, as discussed in detail in
[5] (an earlier derivation using a different technique appears
in [7]). From these differential equations coming from the
Killing spinor equation, without using the equations of
motion, it is possible to construct the local form of the
metric and gauge field. The result is

ds2 ¼ S2sin2θη2 þ 1

y4S2sin2θ
ðdy2 þ 4eWdzdz̄Þ;

A ¼ ðS cos θ þ cφÞηþ
i
4
ð∂zWdz − ∂ z̄Wdz̄Þ: ð8Þ

Here S and θ are global functions on the spacetime, ψ is the
coordinate constructed along the orbits of ξ, η≡ hξ; ξi−1g ξ♭

is a one-form that is globally defined outside the fixed
points of ξ, y is the radial coordinate, z; z̄ are local complex
coordinates, Wðy; z; z̄Þ is a local real function, and cφ is a
real constant. There are also additional constraints among
the functions, which can be derived from the supersym-
metry condition

y
4
∂yW ¼ 1 −

1

ySsin2θ
; ð9Þ

dη ¼ 2ðS sin θÞ−3 �γ
�
2 cot θd

�
1

y

�
− Sdθ

�
; ð10Þ

∂2
zz̄W ¼ −eW

�
∂2
yyW þ 1

4
ð∂yWÞ2 þ 12cos2θ

y4S2sin4θ

�
ð11Þ

and γ is

γ ¼ 1

y4
ðdy2 þ 4eWdzdz̄Þ: ð12Þ

The crucial point of this analysis is that it does not require
the equations of motion, only the Killing spinor equation.
This is a consequence of the analysis in [5] or the reduction
of the theory considered in [8], where the necessity and
sufficiency had been shown (we expand on this in
Appendix B). A pair ðg; AÞ solves the two-derivatives
equations of motion (consistent with the integrability
equation (7). As already observed, every solution to the
two-derivative equations of motion also solves the four-
derivative equations of motion. Therefore, we conclude that
all the supersymmetric solutions of the higher-derivative
action (1) are the supersymmetric solutions of the two-
derivative action (2), and have the form (8). This is a feature
of the Euclidean theory considered here that is not shared
by the Lorentzian version.
It is important at this point to make a couple of remarks

on the geometry of the solution. First, notice that a solution
of the Killing spinor equation has charge one under the
Uð1Þ gauge field, so it generically defines a global spinc

spinor. Therefore, there is no restriction on the topology of
the underlying spacetime manifold, since all four-dimen-
sional manifolds are spinc. Secondly, the orbits of the
Killing vector ξ may close, in which case it defines a well-
defined Uð1Þ isometry and we can write the four-manifold
Y as a circle fibration over a base Bwith metric γ. However,
it is also possible that not all orbits close, in which case we
assume that the closure of the orbits of ξ in the isometry
group of Y is a compact group, which guarantees at least a
Uð1Þ2 isometry and we can approximate ξ by a sequence of
Killing vectors. Finally, we notice that the orthonormal
frame Ea constructed from the Killing spinor could
degenerate on subspaces of Y, where the spinor vanishes
or becomes chiral. This happens precisely at the fixed
points of the Killing vector ξ. These loci will be crucial in
the next section for the evaluation of the on-shell action of
the solutions.

IV. ON-SHELL ACTION

The supersymmetric solutions (8) are asymptotically
locally anti–de Sitter, and 1=y has the rôle of a radial
coordinate with fy ¼ 0g being the boundary of the
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spacetime. We then develop an expansion in y assuming
that the objects admit an analytic expansion in y near the
boundary [9]. To leading order in y, the result is

ds2 ¼ dy2

y2
þ 1

y2
½η2ð0Þ þ 4eWð0Þdzdz̄�;

A ¼ −θð1Þηð0Þ þ
i
4
ð∂zWð0Þdz − ∂ z̄Wð0Þdz̄Þ; ð13Þ

where Wð0Þ, θð1Þ are functions on the boundary, and ηð0Þ is
the restriction of η to ∂Y.
The value of the gravitational on-shell action generically

diverges, but for asymptotically locally anti–de Sitter
spacetime we regularize it using holographic renormaliza-
tion which involves considering a cut-off spacetime Yδ

where y ≥ δ, adding local counterterms constructed using
the induced geometry on ∂Yδ with induced metric hij, and
finally taking the limit δ → 0.
For the standard action S2∂ in (2), this procedure is well-

known [10], and the local counterterms include the
Gibbons–Hawking–York term that imposes the Einstein
equations in the bulk [11]

IGHY ¼ −
1

8πG4

Z
∂Yδ

Kvolh;

I2∂;ct ¼ þ 1

8πG4

Z
∂Yδ

�
2

L
þ L

2
R

�
volh: ð14Þ

Here, Kij is the extrinsic curvature of ∂Yδ. Together with
the on-shell action evaluated on the cutoff spacetime, which
we denote by I2∂;bulk, these give a finite quantity.
The supersymmetrized Weyl squared term SW2 in (3) is

more difficult to deal with. However, following [4], we
observe that for a two-derivative solution, its on-shell value
is greatly simplified. In fact, it can be expressed in terms of
the on-shell I2∂;bulk and IGB;bulk

IW2;bulk ¼ −64πG4L−2I2∂;bulk þ IGB;bulk: ð15Þ

Therefore, its evaluation is reduced to the evaluation of the
other two terms.
Finally, the last term is a topological term in four

dimensions that for a closed four-manifold would be
proportional to the Euler characteristic, the index of the
de Rham complex. Here we are instead considering its
value IGB;bulk on a manifold with a boundary Yδ, in which
case the index of a complex generically receives a correc-
tion from a Chern–Simons-type form on the boundary ∂Yδ,
and a correction proportional to the η invariant of an
operator on the boundary [12]. For the de Rham complex,
though, the η invariant is not relevant, and we can define the
Euler characteristic by summing to IGB;bulk the following
boundary term

IGB;ct ¼
Z
∂Yδ

½−2KijGij þ J�volh: ð16Þ

Here, as in (14), the curvature tensors have been computed
using the induced metric hij on ∂Yδ, Gij is the Einstein
tensor and

Jij ¼
1

3
ð2KKikKk

j þ KklKklKij

− 2KikKklKlj − K2KijÞ;
J ¼ hijJij: ð17Þ

Since Kij is a symmetric tensor on a three-dimensional
space, it is easy to check that

3Jij ¼ Jhij ¼ −6 detðKijÞhij: ð18Þ

This counterterm also guarantees that we have a well-
defined boundary problem, in the sense that in the bulk it
enforces the Einstein equations of motion, in the same way
as the Gibbons–Hawking–York term does for the two-
derivative action [13,14]. Therefore, we have

χðYÞ≡ 32π2lim
δ→0

½IGB;bulk þ IGB;ct�: ð19Þ

Overall, we conclude that the on-shell action for all
supersymmetric solutions to the higher-derivative theory
can be written as

IHD¼ lim
δ→0

½ð1−ðα1−α2Þ64πG4L−2ÞðI2∂;bulkþIGHYþI2∂;ctÞ
þα1ðIGB;bulkþIGB;ctÞ�
¼ð1−ðα1−α2Þ64πG4L−2ÞI2∂þ32π2α1χðYÞ: ð20Þ

The holographically renormalized on-shell action I2∂ of
a supersymmetric solution can be written solely using
geometrical data [5]. More precisely, it can be expressed in
terms of contributions from the fixed loci of the Killing
vector field ξ constructed from the supersymmetry spinor.
There are two families of those: either they are zero-
dimensional nuts or two-dimensional bolts [15]. As men-
tioned, the fixed points of ξ are those where the super-
symmetry spinor ϵ becomes chiral, so they are also labeled
by a sign � representing the chirality of the spinor there.
The resulting expression is

I2∂ ¼ πL2

2G4

�X
nuts∓

� ðb1 � b2Þ2
4b1b2

þ
X

bolts Σ�

Z
Σ�

�
1

2
c1ðTΣ�Þ ∓ 1

4
c1ðNΣ�Þ

��
; ð21Þ

where b1, b2 are the weights of the rotations generated by ξ
on the orthogonal planes in the tangent space to the isolated
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nut fixed point; TΣ� and NΣ� are the tangent and normal
bundle to the bolt Σ� and c1 is the first Chern class of these
line bundles.
The holographically renormalized on-shell action IHD of

a supersymmetric solution is expressed in terms of I2∂ and
the Euler characteristic. The crucial property of the Euler
characteristic for us is that there are a number of theorems
that express it in terms of contributions from fixed point
sets of actions on the manifold. In particular, the Euler
characteristic of a closed manifold with an isometry is
given by the sum of the Euler characteristics of each fixed

point set. This still holds in the case of a manifold with a
boundary, provided that the Killing vector is everywhere
tangent to the boundary, as is for us (or if it is everywhere
normal) [15]. Therefore, we conclude that

χðYÞ ¼
X
fixed
points

χ ¼
X
nuts

1þ
X
bolts Σ

Z
Σ
c1ðTΣÞ; ð22Þ

using the Gauss–Bonnet theorem for surfaces. Inserting this
in (20), we find the result

IHD ¼ πL2

2G4

X
nuts∓

� ðb1 � b2Þ2
4b1b2

þ 32π2
X
nuts∓

�
�α2

ðb1 � b2Þ2
4b1b2

∓ α1
ðb1 ∓ b2Þ2

4b1b2

�

þ πL2

2G4

X
bolts Σ�

Z
Σ�

�
1

2
c1ðTΣ�Þ ∓ 1

4
c1ðNΣ�Þ

�
þ 32π2

X
bolts Σ�

Z
Σ�

�
α1 þ α2

2
c1ðTΣ�Þ �

α1 − α2
4

c1ðNΣ�Þ
�
; ð23Þ

thus confirming the conjectures in [4] based on a clever
study of the examples. Notice that the renormalized on-
shell action for a supersymmetric solution only depends on
data of the isometry action of ξ, suggesting some sort of
equivariant localization theorem.
This formula can not only be applied to the known

examples to compute the corrections to the on-shell action
due to higher derivatives, but it can also predict the value of
the observable for other topologies, assuming that the
solution exists. A number of examples can be found
in [4,5].

V. SUPERSYMMETRY AT THE BOUNDARY

Asymptotically locally anti–de Sitter supersymmetric
solutions ðY; g; AÞ induce on their conformal boundary
ðM3;g; AðRÞÞ a supersymmetric structure [16]. As predicted
by the AdS/CFT correspondence, this structure is the same
as the rigid supersymmetry constructed by coupling to
nondynamical new minimal supergravity in three dimen-
sions [1]. Specifically, we identify from (13) the metric on
the boundary and the Uð1ÞR background gauge field

ds23 ¼ η2ð0Þ þ 4eWð0Þdzdz̄;

AðRÞ ¼ −θð1Þηð0Þ þ
i
4
ð∂zWð0Þdz − ∂ z̄Wð0Þdz̄Þ: ð24Þ

Geometrically, three-dimensional rigid supersymmetric
backgrounds admitting two supercharges with opposite
R charge are manifolds with a transversely holomorphic
foliation with a compatible metric, and the vector generat-
ing the foliation is Killing. Concretely, the restriction of the
Killing vector field ξ ¼ ∂ψ to the boundary is the Reeb
vector field associated to the foliation, z, z̄ are the
coordinates on the complex leaf. In the formulation in

terms of almost contact structure, the global almost contact
one-form is ηð0Þ and the expansion of (10) to the boundary
leads to the constraint

dηð0Þ ¼ 4ieWð0Þθð1Þdz ∧ dz̄: ð25Þ

We shall now assume that it is possible to consistently
truncate eleven-dimensional supergravity (with its higher-
derivative corrections) on a seven-manifold X7 in order to
obtain SHD in (1). For the two-derivative action (2), this
assumption has been proved by generalizing the Freund–
Rubin background and X7 being a Sasaki–Einstein mani-
fold (see [17] for the local uplift, and [18,19] for a careful
analysis of global issues). This procedure would also fix the
coefficients α1, α2.
Once we make this assumption, the AdS/CFT dictionary

tells us that SHD captures universal features of three-
dimensional N ¼ 2 SCFTs admitting a gravity dual,
namely the dynamics of their stress-energy tensor super-
multiplet. The main statement is that the partition function
of the SCFT on the supersymmetric background
ðM3;g; AðRÞÞ is equal (in the large N limit) to minus the
logarithm of the on-shell action of the gravity dual bulk. It
is known that the partition function of any three-dimen-
sional N ¼ 2 SCFT formulated on a rigid supersymmetric
background as above depends on the geometry of the
background only via the choice of transversely holo-
morphic foliation [2]. That is, it is invariant under defor-
mations Wð0Þ → Wð0Þ þ δWð0Þ, θð1Þ → θð1Þ þ δθð1Þ, where
δWð0Þðz; z̄Þ and δθð1Þðz; z̄Þ are arbitrary global smooth
functions on M3 invariant under ∂ψ. Thanks to AdS/
CFT, this leads to an equivalent statement for the holo-
graphically renormalized on-shell action, which should be
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invariant under the same variations of the boundary
structure.
This was proved in [9] for I2∂, and here we shall consider

the higher-derivative corrections. As we saw in (20), the
higher-derivative corrections considered here (namely (1)
are such that for supersymmetric solutions the on-shell
action is simply a combination of the two-derivative on-
shell action and the Euler characteristic of the bulk.
Therefore, given the results of [9], the conclusion seems
to follow immediately. However, to err on the safe side, we
shall now consider this explicitly.
A variation of the boundary data corresponds to a

variation of the on-shell action that is necessarily a
boundary term, provided the absence of boundaries or
singularities in the interior. The variation δI2∂ resulting

from the relevant variation of gij and AðRÞ
i vanishes, being

exact on the base of the three-dimensional fibration. So we
should simply consider the variation of χ. The variation of
IGB;bulk þ IGB;ct gives a vanishing bulk term proportional to
the Lovelock tensor, and a boundary contribution that in a
generic dimension has the form [20]

TGB
ij ¼ −

2ffiffiffi
g

p δIGB
δgij

¼ lim
δ→0

4

δ
ð3Jij − Jhij þ 2PikljKklÞ: ð26Þ

Here, Jij is defined as in (17), whereas Pijkl, the diver-
gence-free part of the Riemann tensor, is

Pijkl ¼ Rijkl þ 2Rj½khl�i − 2Ri½khl�j þ Rhi½khl�j ð27Þ

and everything is computed using the induced metric hij on
∂Yδ. However, in three dimensions TGB

ij ≡ 0: the first terms
vanish because of (18), and Pijkl coincides with the Weyl
tensor, which vanishes in three dimensions. This confirms
that the on-shell action with higher-derivative corrections is
invariant under the variations of the boundary that we are
concerned with. More interestingly, notice that we may turn
the argument on its head and argue that the requirement of
invariance under specific variations of the boundary data
imposes constraints on the form of the higher-derivative
corrections.
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APPENDIX A: EQUATIONS OF MOTION

The equations of motion coming from (1) can be written as (6), where each term is

ðE2∂
g Þμν ¼ Rμν −

1

2
Rgμν − 3L−2gμν − 2

�
FμρF

ρ
ν −

1

4
gμνFρσFρσ

�
; ðA1Þ

ðE2∂
A Þν ¼ ∇μFμν; ðA2Þ

ðE4∂
g Þμν ¼ −2Bμν − 8L−2

�
FμρFν

ρ −
1

4
gμνFρσFρσ

�
− 8

�
FμτFν

τFρσFρσ −
1

8
gμνðFρσFρσÞ2

�

þ 32

�
Fμ

τFν
ρFτ

σFρσ −
1

8
gμνFλρFλ

σFρ
τFστ

�
þ 4FμρFν

ρRþ 2

�
Rμν −

1

2
gμνR

�
FρσFρσ þ 2gμν∇2½FρσFρσ�

− 2∇μ∇ν½FρσFρσ� þ 4gμνFρ
τFστRρσ − 8FρμFσνRρσ þ 16FσðμFρσRνÞρ − 4∇2½Fμ

ρFνρ�
− 4gμν∇ρ∇σ½FρτFσ

τ� þ 8∇σ∇ðμ½FνÞρFσ
ρ� − 4gμν∇ρFρτ∇σFσ

τ þ 16∇ðμFνÞσ∇ρFρσ

þ 8∇ρFρμ∇σFσν − 8gμν∇ρ½Fρτ∇σFσ
τ� − 16∇ðμ½FνÞσ∇ρFρ

σ� − 16∇σ½Fðμσ∇ρFνÞρ�

¼ 4ðE2∂
g ÞμρðE2∂

g Þνρ − gμνðE2∂
g ÞρσðE2∂

g Þρσ − 8

3
ðE2∂

g ÞμνðE2∂
g Þρρ þ

2

3
gμνðE2∂

g ÞρρðE2∂
g Þσσ − 8L−2ðE2∂

g Þμν

þ 2L−2gμνðE2∂
g Þρρ þ

8

3
Fμ

ρFνρðE2∂
g Þσσ − 8FμρFνσðE2∂

g Þρσ − 2FρσFρσðE2∂
g Þμν þ

1

3
gμνFρσFρσðE2∂

g Þττ

þ 2∇2ðE2∂
g Þμν −

2

3
gμν∇2ðE2∂

g Þρρ − 4∇ρ∇ðμðE2∂
g ÞνÞρ þ

2

3
∇μ∇νðE2∂

g Þρρ þ 2gμν∇ρ∇σðE2∂
g Þρσ þ 8gμν∇σ½FστðE2∂

A Þτ�
− 16∇ðμ½FνÞσðE2∂

A Þσ� þ 16∇σ½FðμσðE2∂
A ÞνÞ� − 4gμνðE2∂

A ÞτðE2∂
A Þτ þ 16∇ðμFνÞτðE2∂

A Þτ þ 8ðE2∂
A ÞμðE2∂

A Þν ðA3Þ
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ðE4∂
A Þν ¼ ∇μ½4L−2Fμν þ 16FμρFρσFσν þ 4F2Fμν þ 8Rρ½μFρ

ν� − 2RFμν þ 8∇½μ∇ρFjρjν��
¼ 16L−2ðE2∂

A Þν þ 8∇μ½4ðE2∂
g Þρ½μFρ

ν� − FμνðE2∂
g Þρρ þ 4∇½μðE2∂

A Þν��: ðA4Þ

Here, we have introduced the Bach tensor coming from the variation of the Weyl-squared term

Bμν ¼ −2RμρRν
ρ þ 2

3
RRμν þ

1

2
gμνRρσRρσ −

1

6
gμνR2 −

2

3
∇μ∇νR −∇2Rμν þ

1

6
gμν∇2Rþ 2∇ρ∇ðμRνÞρ: ðA5Þ

It is clear from the rewriting that if ðE2∂
g Þ and ðE2∂

A Þ vanish,
then so do ðE4∂

g Þ and ðE4∂
A Þ.

APPENDIX B: BILINEARS AND EQUATIONS
OF MOTION

A supergravity solution is supersymmetric if there exists
a Dirac spinor ϵ for which the gravitino variation (5)
vanishes (here we set L ¼ 1):

∇μϵ − iAμϵþ
1

2
Γμϵþ

i
4
FνρΓνρΓμϵ ¼ 0: ðB1Þ

At a generic point on Y, ϵ defines an identity structure, and
we can choose to align the Killing vector ξ to one of the
basis vector. As pointed out in [5], it is then possible to
show from the bilinear equations that

ξ ⌟ d � F ¼ 0; ðB2Þ

which means that the Maxwell equation along the base of
the fibration induced by ξ is identically satisfied, that is,
hEi; E2∂

A i ¼ 0 where Ei is any of the basis vectors orthogo-
nal to ξ. It is also possible to check from the bilinear
equations that ðE2∂

g Þμνξν ¼ 0. This may also be seen from
the integrability condition for the Killing spinor equation (7)

as follows. Multiply by ϵ†Γ5 to obtain (assuming the
Bianchi identity)

0 ¼ −ðE2∂
g Þμνξν þ 2ðE2∂

A Þμϵ†Γ5ϵ: ðB3Þ
If we project this equation on the directions orthogonal to ξ,
say along Kμ ¼ ϵ†Γμϵ, then the Maxwell part vanishes, and
we are left with ðE2∂

g ÞμνKμξν ¼ 0.
Consider now an analogous case: multiply the integra-

bility by ϵ†

0 ¼ ðE2∂
g ÞμνKν þ 2iðE2∂

A Þμϵ†ϵ ðB4Þ
and now project along ξ. As long as ϵ†ϵ ≠ 0, then we
conclude that the full Maxwell equation is implied by the
supersymmetry.
From this, we can use a standard analysis (see, e.g.,

[21]): the integrability equation is now

0 ¼ ðE2∂
g ÞμνΓνϵ: ðB5Þ

Multiply this by ðE2∂
g ÞμρΓρ to obtain

0 ¼ ðE2∂
g ÞμνðE2∂

g Þμν ⇒ 0 ¼ ðE2∂
g ÞijðE2∂

g Þij: ðB6Þ
Because of the Euclidean signature, then each ðE2∂gÞij ¼ 0

(note that there is no sum on i).
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