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We study the four-point function of the superconformal primary of the stress-tensor multiplet in four-
dimensional N ¼ 4 super Yang-Mills theory, at strong coupling and in a large-N expansion. This
observable is holographically dual to a four-graviton amplitude in type IIB supergravity on AdS5 × S5. We
construct the maximal transcendental weight piece of the correlator at order N−6 and compare it with the
flat-space limit of the corresponding two-loop amplitude. This allows us to conjecture structures of the
correlator/amplitude which should be present at any loop order.
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I. INTRODUCTION

Since the advent of the AdS=CFT correspondence, the
mapping between correlation functions of local gauge-
invariant operators and scattering amplitudes has been
in the spotlight. In this paper we address the study of
the four-point function of protected operators of dimension
two in four-dimensional N ¼ 4 super Yang-Mills theory
with SUðNÞ gauge group, at strong ’t Hooft coupling
λ ¼ g2N and as an expansion in inverse powers of N.
This quantity is holographically related to loop correc-
tions of four-point graviton scattering amplitudes in the
supergravity approximation in an AdS5 × S5 background.
Recently, there has been tremendous progress in under-
standing how to bootstrap such correlators at order N−4 by
gluing N−2 correlators, using the techniques of the analytic
conformal bootstrap [1,2] and the inversion formula [3].
These methods are very reminiscent of unitarity cuts in
amplitudes [4] and they allowed computing the correlator
to order N−4 completely [5–8], including also stringy
corrections [9–11]. At strong coupling and at leading
orders (up to N−2) the operators which acquire an anoma-
lous dimension and appear in the operator product expan-
sion (OPE) are double trace operators. These operators are
generically degenerate, and the associated mixing problem
has been resolved up to order N−2 in Refs. [5,6,12,13]. In
this paper we try to understand how much of the four-point

function is fixed at a given order N−2κ given this informa-
tion, namely once we know the OPE data at order N0 and
N−2. We express, as usual, the four-point correlator as a
function of the cross ratios U and V and focusing on the
case κ ¼ 3, we compute the function multiplying the
leading logarithmic singularity in U. In the same spirit
as Ref. [7] and in order to see how much of the dynamical
information we can recover only with this term, we take the
flat-space limit and we compare it with the two-loop four-
point supergravity amplitude in ten-dimensional flat space.
Quite surprisingly, we notice that the structure of the
functions multiplying the highest transcendental pieces
[14] in the amplitude is the same as the one obtained from
the conformal field theory (CFT) computation. More
precisely, we find a relation between the CFT flat-space
limit and iterated s-channel discontinuities of the ampli-
tude. We conjecture that this fact persists at any loop
order and that we can predict certain analytic properties of
ladder diagrams, using uniquely the constraints from
leading- and subleading-order OPE data. In particular we
conjecture that the same identification holds for the full
AdS5 × S5 space.

II. FOUR-POINT FUNCTION

The superconformal primary of the stress-tensor multi-
plet O2 is a scalar operator of protected dimension two,
transforming under the 200 representation of the SUð4ÞR
symmetry. The four-point function ofO2 has the schematic
form

hO2ðx1ÞO2ðx2ÞO2ðx3ÞO2ðx4Þi ¼
GðU;VÞ
x412x

4
34

ð1Þ
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where U, V are the cross ratios defined as

U ¼ x212x
2
34

x213x
2
24

¼ zz̄; V ¼ x214x
2
23

x213x
2
24

¼ ð1 − zÞð1 − z̄Þ

and we disregard SUð4ÞR indices for simplicity. By using
superconformal Ward identities and enforcing unitarity
[15–17], it is possible to disentangle the contribution to
the OPE of protected and nonprotected operators, and this
allows writing the four-point function as

Gðz; z̄Þ ¼ Gshortðz; z̄Þ þHðz; z̄Þ; ð2Þ

where Gshortðz; z̄Þ is a known and computable function
which repacks the contribution of protected operators,
while Hðz; z̄Þ is a coupling-dependent function and con-
tains information about nonprotected operators belonging
to long multiplets. The function Hðz; z̄Þ admits a decom-
position in superconformal blocks ðzz̄Þτ=2gτþ4;lðz; z̄Þ [18]

Hðz; z̄Þ ¼
X
τ;l

aτ;lðzz̄Þτ=2gτþ4;lðz; z̄Þ; ð3Þ

where τ and l are respectively the twist (dimension minus
spin) and the spin of the intermediate operators which are
long superconformal primaries transforming under the
singlet of SUð4ÞR, and aτ;l is the square of the OPE
coefficients. The four-point correlator can be expanded
around large central charge, c ¼ N2−1

4
, as

Hðz; z̄Þ ¼ Hð0Þðz; z̄Þ þ c−1Hð1Þðz; z̄Þ þ c−2Hð2Þðz; z̄Þ
þ c−3Hð3Þðz; z̄Þ þ… ð4Þ

In the strong-coupling regime we are considering, where
the ’t Hooft coupling constant λ is taken to infinity, the only
single trace operators appearing in the OPE and with finite
dimensionp are the protected operatorsOp [5,6]. In addition,
the set of long operators exchanged to order c−1 is only
made of double trace operators. They are represented
schematically as ½OpOp�n;l¼ðOp□

n∂μ1…∂μlOp− tracesÞ
with p ¼ 2; 3;…, and they have classical scaling dimension
Δ ¼ 2pþ 2nþ l. From this definition it is clear that several
operators, transforming in the same SUð4ÞR representation,
can have the same twist and spin and this fact leads tomixing
among ½O2O2�n;l; ½O3O3�n−1;l;…; ½Onþ2Onþ2�0;l. The
large-c expansion of their OPE data is indeed given by

τn;l ¼ 4þ 2nþ 1

c
γð1Þn;l þ

1

c2
γð2Þn;l þ

1

c3
γð3Þn;l þ…;

an;l ¼ að0Þn;l þ
1

c
að1Þn;l þ

1

c2
að2Þn;l þ

1

c3
að3Þn;l þ… ð5Þ

Quite remarkably, the mixing between the aforementioned
double trace operators has been partially solved, up to order

c−1, so that we eventually know all the að0ÞI;n;l and γð1ÞI;n;l
corresponding to each Ith eigenstate of theHamiltonian,with
I ¼ 1;…; nþ 1. The aim of this paper is to understand how
much we can reconstruct the four-point function at any order
c−κ with this information by contrasting this piece of the
answer with the corresponding flat-space amplitude.

A. Method

Let us review the method that we are going to use. We are
expanding the dynamical part of the four-point function
Hðz; z̄Þ in superconformal blocks as in Eq. (3). Both an;l
and τn;l are meant to be expanded around large c, so we
plug into the OPE decomposition the expressions (5). At
any arbitrary order c−κ, there will be a term, coming from
the ðzz̄Þτ=2 expansion, of the following form:

logκðzz̄Þ
X
n;l

Xnþ1

I¼1

að0ÞI;n;lðγð1ÞI;n;lÞκ
2κκ!

ðzz̄Þnþ2g8þ2n;lðz; z̄Þ

¼ logκðzz̄Þ ðzz̄Þ2
ðz − z̄Þα fðz; z̄Þ; ð6Þ

where fðz; z̄Þ contains functions of maximal transcendental
weight κ with polynomial coefficients. The power α
depends on the order of expansion

α ¼ 3κ þ 5ðκ − 1Þ þ 4 ð7Þ

and is determined by the large-n behavior of the sum.
Naively one would have expected only the 3κ term,
which would have reflected the fact that we are considering

γð1Þn;l to the power κ and hγð1Þn;li → n3 as n → ∞. However
this counting is modified by the existence of mixing, which
arises from the presence of an R symmetry and reflects the
degrees of freedom of the internal manifold. In this way α
encloses a contribution from the AdS5 loops and another
one coming from the S5. Finally notice that the expression
in Eq. (6) represents the leading logarithmic term of the
correlator and it is fully fixed by the leading and the first
subleading OPE data, extracted respectively at order c0

and c−1.
In general it is possible to use the information obtained

at a certain order in the perturbative expansion to get
powerful constraints at the next order. In particular, thanks
to the Lorentzian inversion formula [3], it is possible to
reconstruct the full correlation function at any loop order κ
from its double discontinuity (dDisc). This can be com-
puted using crossing symmetry and depends on the
information from all the OPE data up to order κ − 1, or
equivalently all the functions of U and V in front of
logκðzz̄Þ; logκ−1ðzz̄Þ… log2ðzz̄Þ. This method has been
successful at one loop (κ ¼ 2) [5,6], where dDisc does
depend only on the κ ¼ 0 and κ ¼ 1 OPE data of double
trace operators, for which the mixing has been completely
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solved. However already at two loops, it is not possible to
fully reconstruct the four-point function due to two
obstacles. The first one comes from the appearance of
multitrace operators in the OPE, and consequently in
dDisc, already at order c−2; the second is the presence
of mixing which needs to be solved order by order in
inverse powers of c. Even if we will not be able to get the

full correlator, the knowledge of að0ÞI;n;l and γð1ÞI;n;l is still
enough to completely fix the terms in Eq. (6) for any κ. In
particular in Ref. [19] it has been shown that by rephrasing
the problem in terms of ten-dimensional blocks and by
acting with a differential operator on them, it is possible to
derive a closed form for this quantity at any order. In this
paper we will mainly focus on the case κ ¼ 3 and towards
the end we will try to draw some general conclusions valid
for any κ.
At two loops the leading logarithmic term is given by

Hð3Þ
log3 zz̄

¼ ðzz̄Þ2
ðz − z̄Þ23 ½ðR1H001ðzÞ þ R2H101ðzÞ þ R3H011ðzÞ

þ R4H01ðzÞ þ R5H11ðzÞ þ R6H1ðzÞ
− ðz ↔ z̄ÞÞ þ R7�; ð8Þ

where Ri ≡ Riðz; z̄Þ are polynomials of degree 30
in z; z̄ and HaðbÞ are harmonic polylogarithms (see the
Supplemental Material [20] for their definition). Notice that
this is only a part of the dDisc, since at this order the
correlation function also contains a term proportional to
log2ðzz̄Þ, which does contribute to dDisc but that we cannot
reconstruct for the reasons listed before.

B. Flat space

To further study the expression in Eq. (8), we want to
make use of the relation, introduced in Ref. [7], between the
flat-space limit of the four-point function and the four-
graviton scattering amplitude in Minkowski spacetime. In
particular we want to understand how much of the full
dynamical information we can infer from the knowledge of
the highest transcendental weight piece in both sides. The
key relation between CFT and gravity is given by

lim
n→∞

hae−iπγin;l
hað0Þin;l

¼ blðsÞ; L
ffiffiffi
s

p ¼ 2n ð9Þ

where blðsÞ are the coefficients of the partial-wave
expansion of the gravity amplitude and L represents the
anti–de Sitter radius. The expression on the lhs depends on
the OPE data in Eq. (5) and can be determined by
computing the double discontinuity and then by taking
its flat-space limit.
The double discontinuity is defined as the difference

between the Euclidean correlator and its two possible
analytic continuations around z̄ ¼ 1

dDiscHðz; z̄Þ≡Hðz; z̄Þ − 1

2
ðH↺ðz; z̄Þ þH↻ðz; z̄ÞÞ:

It is useful to apply crossing symmetry and pass to the t
channel, where dDisc acts trivially. In our setting, only two
terms contribute:

dDisc½log2ð1 − z̄Þ� ¼ 4π2; ð10Þ

dDisc½log3ð1 − z̄Þ� ¼ 12π2 logð1 − z̄Þ: ð11Þ

Notice that with the knowledge of Eq. (8) we only have
access to the part of the double discontinuity coming
from Eq. (11).
The average hae−iπγi as a function of dDisc admits a

large-c expansion [20], which in the large-n limit takes the
form [7]

hae−iπγin;l
hað0Þin;l

⟶
n≫1

1þ iπn3c−1

2ðlþ 1Þ þ
c−κ

n2ðlþ 1Þ
Z
C

dx
2πi

e−2nx

×
Z

1

0

dz̄
z̄2

�
1−

ffiffiffiffiffiffiffiffiffiffi
1− z̄

p

1þ ffiffiffiffiffiffiffiffiffiffi
1− z̄

p
�lþ1

×
dDisc½zz̄ðz̄− zÞHðκÞðz↻; z̄�

4π2
ð12Þ

where z↻ stands for z → ze−2πi and a sum over all κ ≥ 2 is
understood. The integral over x, where the contour C
encircles the origin clockwise, originates from introducing
the flat-space limit z ¼ z̄þ 2xz̄

ffiffiffiffiffiffiffiffiffiffi
1 − z̄

p
with x → 0. The

powers of n [and consequently of L
ffiffiffi
s

p
according to

Eq. (9)] produced by this integration are determined by
the divergences in HðκÞ as z → z̄, and as shown in Eq. (6)
this singular behavior is completely controlled by the
power α defined in Eq. (7). For κ ¼ 3 and restricting to
Eq. (11), we get

dDisc½zz̄ðz̄ − zÞHð3Þðz↻; z̄Þ�
4π2

→ 2πi
Γð22Þ
ð2xÞ22

H1ðz̄Þ
210ð15Þ3 r3ðz̄Þ; ð13Þ

where

r3ðz̄Þ ¼
60ð1 − z̄Þ6

z̄6

�
pðaÞ
4 − pðbÞ

4

2
H1ðz̄Þ2 − pðbÞ

4 H0ðz̄ÞH1ðz̄Þ

þ ðpðaÞ
4 þ pðbÞ

4 ÞH01ðz̄Þ

þ
�
pðaÞ
3 − pðbÞ

3

60
þ iπpðbÞ

4

�
H1ðz̄Þ

−
pðbÞ
3

60
H0ðz̄Þ þ

iπpðbÞ
3

60
þ π2pðaÞ

4

6
þ q2ðz̄Þ

�
: ð14Þ
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The explicit expressions for the polynomials pi; q2 can be found in the Supplemental Material [20].
Let us conclude by mentioning that it is possible to construct the polynomials analogous to p4 and p3 at any loop order,

we leave this result to Ref. [21].

III. AMPLITUDE

As we have seen in the flat-space limit of AdS5 × S5 we obtain ten-dimensional supergravity. The four-point function we
consider in Eq. (1) is dual to the ten-dimensional amplitude of four gravitons. Up to two loops, this schematically takes the
form [22]

Asugra
10 ¼ K̂

�
8πGN

stu
þ ð8πGNÞ2ðIboxðs; tÞ þ Iboxðt; sÞ þ Iboxðt; uÞÞ þ ð8πGNÞ3ðs2ðIpldbðs; tÞ þ Inpdbðs; tÞ þ t ↔ uÞ

þ t2ðIpldbðt; sÞ þ Inpdbðt; sÞ þ s ↔ uÞ þ u2ðIpldbðu; sÞ þ Inpdbðu; sÞ þ s ↔ tÞÞ þOðG4
NÞ
�

ð15Þ

≡ðπLÞ5s4
�
L3f1ðxÞ
s3c

þ L11sf2ðxÞ
c2

þ L19s5f3ðxÞ
c3

�
þOðc−4Þ ð16Þ

where Ibox; I
pl
db and I

np
db represent respectively the single and

planar/nonplanar double box. In the third line we have used
the identification 8πGN ¼ π5L8c−1. K̂ is a dimension-eight
kinematic factor, depending on graviton polarization and
fixed to be s4 in this case.
In order to evaluate Ipldb [22–24] we have first com-

puted the integral in four dimensions using the differ-
ential equation method proposed in Refs. [25–27], and
then we have uplifted the result to 10 − 2ϵ via the
dimensional recurrence relation [28,29]. The final expres-
sion can be found in the Supplemental Material [20]. It is
important to remark that Inpdb has lower maximal tran-
scendental weight and as so it will not contribute to our
computation [30].
The quantity that enters Eq. (9), through its partial-wave

expansion, is not directly Asugra
10 but A5, i.e., the first one

divided by the volume of S5. The partial-wave expansion
then reads

iA5ðs; tÞ ¼
128πffiffiffi

s
p

X
l

ðlþ 1Þ2blðsÞPlðcos θÞ ð17Þ

where Pl are Legendre polynomials. The bl admits a form
similar to Eq. (12)

blðsÞ ¼ 1þ
�
L

ffiffiffi
s

p
2

�
3 iπc−1

2ðlþ 1Þ þ
Z

1

0

dz̄
z̄2

�
1−

ffiffiffiffiffiffiffiffiffiffi
1− z̄

p

1þ ffiffiffiffiffiffiffiffiffiffi
1− z̄

p
�lþ1

×
2πi
lþ 1

ðdisct þ ð−1ÞldiscuÞ
ffiffiffi
s

p
A5ðc; s; cosθÞ

64π2

ð18Þ

where we have introduced a dispersion relation for the
amplitude [3,7]. The similarity between this expression

and Eq. (12) motivates the identification in Eq. (9) and
allows comparing directly dDisc and discontinuities.
Notice that in our case disctAðs; t; uÞ ¼ discuAðs; t; uÞ ¼
−discsAðs; t; uÞ so we can further simplify Eq. (18).
At two loops, we see from Eq. (15) that the amplitude

is constructed from the sum over the three different
channels, s, t and u. To compare with our results for the
CFT dDisc in Eq. (13), it is enough to study the t-channel
contribution to the discontinuity in t, which we can
compute as

disctAt ¼ K̂ð8πGNÞ3t2disctðIpldbðt; sÞ þ s ↔ uÞ: ð19Þ

To have a better interpretation of this discontinuity, it can be
useful to construct discyI

pl
db diagrammatically. This is done

by summing over all possible cuts in which y is the generic
momentum flowing. A given cut diagram, in turn, can be
constructed from the integral representation of the diagram
by putting the cut propagators on shell [31]. As in our case
the discontinuities in the different channels are related we
can focus on discs:

With this approach, it is evident that we have the
contribution of two different types of cuts: a double one
(c1) and a triple one (c2). A way to extract these is to
construct and solve a system of differential equations on c1
and c2 [32]. To solve it, some input boundary conditions
are needed, and these can be fixed in such a way that we
get [21]
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discsI
pl
db ¼ 2πiðIpldbjc1 þ Ipldbjc2Þ with

Ipldbjc1 ¼
s4ð60p4ðs; tÞH−100ðxÞ þ p3ðs; tÞH00ðxÞ � � �Þ

25ð15Þ3t2 ;

Ipldbjc2 ¼
s4

25ð15Þ3t2 ð60p4ðs; tÞð−H−100ðxÞ þH−1−10ðxÞÞ

þ p3ðs; tÞð−H00ðxÞ þH−10ðxÞÞ � � �Þ ð20Þ

where x ¼ t
s. This pictorial representation of the disconti-

nuity suggests that the two cuts should have different CFT
counterparts. In particular, in the same light of Ref. [4], we
interpret c1 as an exchange of only double trace operators,
while c2 is an exchange of triple trace ones. Given this
insight and considering that Eq. (8) only includes double
trace contributions, we construct a similar object in the
amplitude. Graphically, this corresponds to

This double s-channel cut can be computed by means of
differential equations and it reads

Ipldbjdc ¼
χs4ð60p4ðs; tÞH−10ðxÞ þ p3ðs; tÞH0ðxÞ þ � � �Þ

26ð15Þ3t2
ð21Þ

where χ is a normalization constant we cannot fully fix.

IV. COMPARISON

With the main ingredients for the κ ¼ 3 computa-
tion in hand, we can now compare the partial result
from the CFT side with the flat-space amplitude. First
of all we need to map the results of Eqs. (20) and (21)
to the CFT notation by using the following redefini-
tion: x ¼ 1−z̄

z̄ [9]. Plugging the CFT results [20] into
Eq. (9), we get

hae−iπγin;l
hað0Þin;l

→ 1þ iπn3

2cðlþ 1Þ þ
iπ

lþ 1

Z
1

0

dz̄
z̄2

�
1 −

ffiffiffiffiffiffiffiffiffiffi
1 − z̄

p

1þ ffiffiffiffiffiffiffiffiffiffi
1 − z̄

p
�lþ1

�
n11

c2
g2ðz̄Þ þ

n19

c3

�
1 − z̄
z̄

�
6

ðpðaÞ
4 − pðbÞ

4 ÞH1ðz̄Þ3 þ � � �
�
;

ð22Þ

where g2ðz̄Þ is defined as [7]

g2ðz̄Þ ¼
ð1 − z̄Þ2
960z̄4

ð2ð1 − z̄5ÞH1ðz̄Þ − 2z̄5H0ðz̄Þ
þ 2iπz̄5 þ z̄ð2z̄3 þ z̄2 − z̄ − 2ÞÞ: ð23Þ

At order c−3 we have reported only the highest log piece of
the dDisc of the correlator, which appears in the amplitude
discontinuity as well. It is possible to show that, given
Eq. (20), this term can only come from the c1 type of cut. If
we restrict to just the c1 contribution, constructed from
Eqs. (19) and (20), the amplitude discontinuity can be
written as

Atjc1 ∝
ð1 − z̄Þ6

z̄6

�
pðaÞ
4 − pðbÞ

4

2
H1ðz̄Þ3 −

3

2
pðbÞ
4 H0ðz̄ÞH1ðz̄Þ2

þ
�
pðaÞ
3 − pðbÞ

3

20
þ 3iπpðbÞ

4

�
H1ðz̄Þ2

−
pðbÞ
3

20
H1ðz̄ÞH0ðz̄Þ

�
: ð24Þ

We notice that it exactly reproduces the functional form of
Eq. (14). These results further support our interpretation of
the cuts in terms of multitrace operator exchange. The
mismatch in the numerical prefactors that we see is due to

the fact that ideally Atjc1 should reproduce the full
contribution of double trace operators to the dDisc of
the correlator and Eq. (13) is only part of it. The unknown
log2U piece of the CFT correlator should thus have a very
specific form in order to solve these discrepancies.
Given this insight and the fact that the term Hð3Þ in

Eq. (8) is constructed from ðγð1ÞÞ3, we argue that to extract
the same contribution in the amplitude one has to consider
the double cut Atjdc in Eq. (21). And indeed we find

Atjdc ¼ 32s5r3; ð25Þ
so that the amplitude and the CFT computations match per-
fectly once we have factored out a logarithm as in Eq. (13).
Given these results we can now make some general

considerations:
(1) We conjecture that at all loops the highest logU

contributions can be extracted from the saturated
(κ − 1) s-channel cuts

and moreover this contribution should show a log factori-
zation as gκ ¼ H1ðz̄Þκ−2½fl�, where fl is a function of
maximum weight l at any l loop order, l ¼ κ − 1.
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(2) Since the leading log contribution is obtained from
tree-level data we can make some predictions on the
powers of logn U logk V appearing at higher orders.
A heuristic argument can be made by considering
two particle cuts and how they, depending on the
momentum being cut, will contribute to a log ofU or
V times a lower loop diagram. With this in mind we
conjecture that the highest log contribution in the
correlation function is of the form logκ U log2 V.
Subleading log contributions can be extracted from
generalized ladder integrals in a similar fashion; for
example for κ ¼ 4 we conjecture the following
behavior:

(3) We strongly believe that the identification of the
iterated s cut of the ladder diagram with the piece of
the correlator in Eq. (6) also persists in curved space
and to all loops.
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