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We propose a relativistic quantum Otto cycle between an entangled state of two qubits and their
composite excited (or ground) state whose efficiency can be greater than the usual single qubit quantum
Otto engine. The hot and cold reservoirs are constructed by providing uniform accelerations to these qubits
along with the interaction between the background field and individual qubits. The efficiency, as measured
from one of the qubits’ frame, not only depends on the energy gap of the states but also the relative
acceleration between them. For lower acceleration of our observer’s qubit compared to the other one, the
cycle is more efficient than the single qubit quantum Otto engine. Furthermore, a complete protocol to
construct such a cycle is being provided.
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The combination of quantum mechanics (QM) and
relativity [appropriately defined through the language of
quantum field theory (QFT)] brings many surprising results
for us, like Hawking [1,2] and Unruh [3,4] effects and it is
expected to bring more in the future. Along with the efforts
of combining QM and relativity, continuous efforts have
been made to study the foundations of the thermodynamics
of the quantum systems [5]. If a quantum system, (e.g.,
qubits which we will be considering here) has Hamiltonian
H0ðtÞ and is described by density operator ρðtÞ, the energy
at any instant is determined by the expectation value
hEðtÞi ¼ Tr½ρðtÞH0ðtÞ�. The variation of it from time ti
to tf yields the definitions of heat transfer and work done
on the system as [5]

hQi ¼
Z

tf

ti

Tr

�
dρðtÞ
dt

H0

�
dt; ð1Þ

and

hWi ¼
Z

tf

ti

Tr

�
ρðtÞ dH0

dt

�
dt; ð2Þ

respectively. Within the area of thermodynamics of quan-
tum systems, intense focus is devoted to quantum heat
engines. Although the concept was introduced in the year
1959 [6], a lot of attention and interest have imparted after
works by Kieu [7,8] who proposed the single-qubit quantum
Otto engine (QOE). Similar to the classical Otto engine
(COE), QOE consists of two adiabatic and two isochoric
stages. The efficiency of this engine is given by

η0 ¼ 1 −
ω1

ω2

: ð3Þ

In contrast to COE, production of finite work in QOE is
possible provided we have the condition ω1TH > ω2TC,
where TH ðTCÞ is the temperature of hot (cold) reservoir and
ω1 (ω2) is the energy gap before (after) adiabatic process.
Recently in a relativistic setup, a QOE has been

introduced [9] in the light of the Unruh effect [called as
Unruh quantum Otto engine (UQOE)]. In the adiabatic
stages, the qubit is moving with a constant velocity. The hot
and cold reservoirs for the other two stages of the cyclic
process are being mimicked by allowing this qubit to
uniformly accelerate in addition to the interaction with the
background massless real scalar field. The pointlike qubit is
taken to be a monopole. Its behavior is identical to QOE.
The efficiency is again η0, and the condition for producing
work also comes out to be similar. The same analysis has
been extended in [10] for different background quantum
fields and interactions. Although the efficiency remains
unchanged, the work output comes out to be different for
different background fields and interactions. The UQOE
has also been constructed between the degenerate states
[11]. Another important phenomenon in QM is the quan-
tum entanglement. People have found that the entangle-
ment between two relativistic accelerating detectors has a
profound impact on the Unruh effect [12–15]. On the other
side, the entanglement between two states is relativistically
observer-dependent [16–18]—an accelerated observer will
see the degradation of entanglement. A similar conclusion
has also been drawn with localized field modes by trapping
them within a cavity [19]. Relativistic effects on quantum
teleportation with respect to a nonuniformly moving frame
have been investigated as well, and it has been observed
that the upper bound to the optimal fidelity is degraded due
to this motion [20]. The equivalence principle lays a
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profound path for understanding several features of gravity
through uniformly accelerated frames. Therefore, under-
standing the accelerated frame can enlighten few aspects
of gravity. Nevertheless, a direct encounter of gravity has
also been investigated in few instances. For example, it has
been shown that the gravity induces decoherence of sta-
tionary matter superposition states [21,22] (also see [23]).
Moreover, entanglement harvesting between two causally
disconnected detectors is possible under a relativistic setup
[24–29]. Within this relativistic setup, harvesting of coher-
ence in the initial state of the scalar field is possible as well
[30,31]. These findings provide robust evidences of
new understandings of our physical systems when combin-
ing quantum mechanics with relativity in terms of QFT
language.
Here, combining entanglement and relativity, we pro-

pose an Otto engine composed of two qubits. We construct
the Otto cycle between their composite entangled and the
excited (or ground) states. The steps of the cycle are similar
to those of UQOE (we refer to [9] for details of the four
stages of UQOE cycle), and therefore we name it as
entangled Unruh quantum Otto engine (EUQOE). The
description of these stages is discussed later. Surprisingly,
the efficiency ηE, measured from the frame of one of the
qubits, can be larger than η0 by tuning the accelerations of
the two qubits. If the engine is initially in the maximally
entangled state and our frame of reference is not accel-
erating, then ηE ¼ 2η0. We find that this enhancement
arises as a result of both entanglement and relativity. A
protocol for building a EUQOE with ηE > η0 is being
provided at the end. We also show in our protocol that in
any case, ηE is less than unity.
Our system is composed of double two-level identical

qubits (sometimes we call them detectors). Their proper
times are denoted by τ1 and τ2, respectively. The total
internal free Hamiltonian of the detectors, following
[12,32], is chosen to be

H0 ¼
ωðτÞ
2

�
dτ1
dτ

Sz1 ⊗ I2 þ
dτ2
dτ

I1 ⊗ Sz2

�
; ð4Þ

where Szi ¼ ðjejihejj − jgjihgjjÞwith jgji and jeji represent
ground and excited states of jth detector, respectively. ω is
the energy difference between the levels of each qubit.
Here, jgii has energy −ω=2 while jeii corresponds to
energy eigenvalue ω=2 and Ij denotes identity operator for
jth detector. τ denotes the proper time of the detector from
which all the measurements will be done. In other words, τ
is the proper time for the observer, who is analyzing the
process. For our present purpose, we choose this to be τ ¼
τ1 as everything will be measured from the first detector’s
frame. Hence, we will substitute dτ1=dτ ¼ 1. On the other
hand τ1 and τ2 are not the same when the two detectors
move with different velocities or accelerations; i.e., in a
general case dτ2=dτ ≠ 1. They are shown to be related

through the relation τ2 ¼ ατ1, where α is the Lorentz factor
corresponding to the relative velocity between them during
their constant velocity motions while α is the ratio of
accelerations of the detectors during their uniform accel-
erated motions (see [14] for details. We have also pre-
sented an analysis in the Supplemental Material [33]). If the
qubits are moving with different velocities or accelerations
then α ≠ 1.
Here, the two-qubit system has the following four

normalized eigenstates:

Ee ¼ ω; jei ¼ je1ije2i;

Es ¼ 0; jsi ¼ 1ffiffiffi
2

p ðje1ijg2i þ jg1ije2iÞ;

Ea ¼ 0; jai ¼ 1ffiffiffi
2

p ðje1ijg2i − jg1ije2iÞ;

Eg ¼ −ω; jgi ¼ jg1ijg2i: ð5Þ

We consider each detector as a monopole and it interacts
with the background massless real scalar field through
linear coupling of the form μiκðτiÞmiΦðXiðτiÞÞ (i.e., Unruh
De-Witt type) [34]. Here ΦðXÞ is the massless real scalar
field and κðτiÞ denotes the switching function which
decides whether the interaction is on or off. This is unity
during the interaction and vanishes otherwise. mi repre-
sents the monopole operator for the ith detector, given by

mi ¼ jgiiheij þ jeiihgij; ð6Þ

and τi is the proper time of this detector. If our observer’s
proper time is τ then the interaction term for the evolu-
tion process can be represented as

R
dτiμiκðτiÞmiΦðXiðτiÞÞ

where, since τi is a function of τ, we have to use dτi ¼
ðdτi=dτÞdτ. Therefore, the total interaction Hamiltonian for
the two qubits-massless real scalar field system is chosen as

Hint ¼
X
i¼1;2

μiκðτiÞmiΦðXiðτiÞÞ
dτi
dτ

: ð7Þ

Similar argument has been considered in [35,36] for the
derivative coupling case (for monopole coupling cases see
[15,26,27,29]). As the detectors are identical, we keep the
coupling constants as μ1 ¼ μ2 ¼ μ. The above introduction
of the scalar field Φ brings the role of QFT in our analysis,
which we shall encounter later.
This two-qubits system has four eigenstates [see Eq. (5)].

So several Otto cycles can be constructed between any of
the two eigenstates. It is already known from earlier
analysis [15] that if the detectors are in uniform accel-
eration then the transition only from symmetric (i.e., jsi) or
antisymmetric (i.e., jai) to excited (i.e., jei) or ground (i.e.,
jgi) states is possible whereas from jgi to jei is not possible.
Moreover, the transition rate for jsi → jgi is same as that of
jsi → jei. Similarly, transition rates between jai → jgi and
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jai → jei are also equal. Motivated by these facts we
choose our Otto cycle between jsi and jei (or jgi). The
other choice can be between jai and jei (or jgi). Note that
jsi and jai are maximally entangled states. To keep our
discussion general, we choose our Otto cycle between the
entangled state

jχi ¼ b1je1ijg2i þ b2jg1ije2i; ð8Þ

and jei (consideration of jgi does not change the final
conclusion). The coefficients b1 and b2 satisfy jb1j2 þ
jb2j2 ¼ 1 in order to make jχi a normalized state. Here the
values of b1 and b2 can be chosen to be b1 ¼ 1=

ffiffiffi
2

p ¼ b2
for jsi and b1 ¼ 1=

ffiffiffi
2

p
, b2 ¼ −1=

ffiffiffi
2

p
for jai. For the

moment we keep them in general form and at the end
we will consider these specific values. Therefore our initial
density matrix for the two-qubits system is

ρA0
¼ pjeihej þ qjχihχj; ð9Þ

where, q ¼ 1 − p. Initially, the energy gap between jei and
jχi is ω ¼ ω1. For the two-qubits plus the scalar field
system we choose the density matrix as ρI0 ¼ ρA0

⊗ ρf0 ,
where ρf0 ¼ j0Mih0Mj by considering the field initially is in
Minkowski vacuum j0Mi. In our analysis, since we are
interested only to qubits system, all the relevant quantities
will be evaluated by taking trace over field states.
Let us now describe the four stages of our EUQOE. As

mentioned earlier, we aim to calculate work and heat in the
frame of detector 1. For this, we require the duration of
interaction in terms of proper time τ1. This duration is
calculated by analysing the kinematics of the entire process
in reference to a fixed inertial frame associated with
Minkowski coordinates ðT; XÞ. The steps in the cycle
are similar to those proposed in UQOE [9] for the
single-qubit system. (1) The first phase is the adiabatic
phase, where no heat is exchanged with the environment. In
this phase, two detectors move with the constant velocities
−v1 and −v2, respectively, and the switching function in
Eq. (7) is chosen to be κðτiÞ ¼ 0. The velocities are
measured with reference to the fixed inertial frame as
mentioned above. The time intervals for this stage are Δτ11
and Δτ12. In this process, ω1 changes to ω2 at the cost of
work being done on the system. (2) Once the energy
difference changes to ω2, the qubits start to accelerate
uniformly with proper accelerations aH1 and aH2, respec-
tively. In this stage, the interaction with the background
scalar field is on; i.e., κðτiÞ ¼ 1. This process continues till
they reach the velocities þv1 and þv2 from −v1 and −v2.
The time duration of this stage with respect to individual
detectors are Δτ21 and Δτ22, respectively. The general
relations between the Minkowski coordinates and the
proper time of a uniformly accelerated detector, moving
along the Minkowski X-axis, are

T ¼ 1

a
sinhðaτÞ; X ¼ 1

a
coshðaτÞ: ð10Þ

From (10) we find the proper time τ at which the velocity is
v as v ¼ tanhðaτÞ. Therefore the time at which the velocity
is −v is −τ. So the total duration for changing from −v to v
is 2τ. This yields

Δτ21 ¼
2

aH1

arctanhðv1Þ; Δτ22 ¼
2

aH2

arctanhðv2Þ: ð11Þ

The relation between these time intervals during the
accelerated stage, following [33], is

aH1Δτ21 ¼ aH2Δτ22: ð12Þ

This implies that we can take the velocities of both the
detectors to be same; i.e., v1 ¼ v2 ¼ v (say). Therefore in
stage 1 they are moving with the same velocity −v and at
the end of stage 2 their velocity changes toþv. Since in this
stage they are at different proper accelerations, the dura-
tions of interaction with the background scalar field are
different. Due to their accelerations, the interaction with
scalar fields yields transition between the energy levels in
the individual detectors and each qubit feels the Minkowski
vacuum as thermal bath [3,4]. Our observer (the frame of
first qubit) will then see himself in a thermal bath and then
the Otto engine will absorb heat from the environment.
(3) In this stage, the detectors stop accelerating and they
move with constant velocity þv. The interaction is also
turned off. Now, again this is an adiabatic phase with time
durations Δτ31 and Δτ32, where ω2 changes to ω1. Similar to
stage 1, the engine will perform work without any heat
exchange with the environment. (4) Finally, in the last part,
similar to the second step, both the detectors decelerate
with aC1

and aC2
from velocity þv to −v. We again switch

on the interaction between the detectors and the scalar field
for durations Δτ41 and Δτ42. The two detectors will see cold
reservoirs, and due to similar reasons, as discussed in stage
2, they will reach the same velocity but with different
durations. Here our observer will find the background as a
cold bath, and hence the Otto engine will reject heat to the
environment. For future purpose denote αaH ¼ aH1

=aH2

and αaC ¼ aC1
=aC2

.
In step 2, the density matrix will change from ρA0

→
ρA0

þ δρH. In step 4, it will change from ρA0
þ δρH →

ρA0
þ δρH þ δρC. Hence, for the cyclic process, we impose

a constraint:

δρH þ δρC ¼ 0: ð13Þ

H and C stand for heating and cooling, respectively. Using
the definitions (1) and (2) we will now find the amount of
work and heat transfer in each stage. To calculate them, we
need to know how the density operator changes with time.
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The results, till second-order perturbation, are derived
using the standard procedure [33].
In the adiabatic process (i.e., in stage 1 and stage 3), the

work is done on or done by the engine without any heat
exchange with the environment. The quantum definition of
work is given by (2). The internal free Hamiltonian for the
two qubit system is (4), which for our chosen basis (i.e.,
fje1; e2i; je1; g2i; jg1; e2i; jg1; g2ig), has a matrix represen-
tation as follows:

H0 ¼
ω

2

0
BBB@

ð1þ αÞ 0 0 0

0 ð1 − αÞ 0 0

0 0 ð−1þ αÞ 0

0 0 0 ð−1 − αÞ

1
CCCA

≡ ωhα: ð14Þ

hα denotes the matrix whose explicit form has been
obtained through τ2 ¼ ατ1 [33] with the choice τ ¼ τ1.
We put α in the subscript which will be denoted as αv
during the motions with constant velocity while it will be
αa during the motions with uniform accelerations. In
stages, 1 and 3, both the detectors move with a constant
velocity and only the separation between the energy levels
changes. Whereas, the population of the energy levels
remains the same. So ω is a function of time while other
quantities remain fixed. Hence, work done in stage 1 is

hWi1 ¼ ðω2 − ω1ÞTrðρA0
hαvÞ; ð15Þ

and the same in stage 3 is

hWi3 ¼ ðω1 − ω2ÞTrððρA0
þ δρHÞhαvÞ: ð16Þ

The total work done on the system is then

hWitot ¼ hWi1 þ hWi3 ¼ ðω1 − ω2ÞTrðδρHhαvÞ; ð17Þ

which depends on the change of density matrix during the
heating process in stage 2.
Heat exchange between the system and the environment

takes place in stages 2 and 4 as there is population change
of the energy levels. The quantum heat is defined by (1).
Since here H0 is constant of time, no work is done on or by
the system. In stage 2, the amount of heat absorbed by the
engine is

hQi2 ¼ ω2TrðδρHhαaH Þ; ð18Þ
and the heat transferred to the environment in stage 4 turns
out to be

hQi4 ¼ ω1TrðδρChαaC Þ ¼ −ω1TrðδρHhαaC Þ: ð19Þ
In the last step (13) has been used. Therefore net heat
absorbed by our engine is

hQitot ¼ hQi2 þ hQi4 ¼ ω2TrðδρHhαaH Þ − ω1TrðδρHhαaC Þ:
ð20Þ

An important difference between the single-qubit system
and our present two-qubits system is as follows. Usually,
for the cyclic process the condition to be imposed is given
by (13). Note that it appears both in single-qubit and in our
system. But in present engine we have additional constraint
to be imposed in order to maintain the conservation of
energy in the cyclic process; i.e., hWitot þ hQitot ¼ 0. This
is trivially satisfied in single qubit system, but here we need
to impose the following relation

ω2TrðδρHhαaH Þ − ω1TrðδρHhαaC Þ ¼ ðω2 − ω1ÞTrðδρHhαvÞ:
ð21Þ

We will comeback to these conditions later.
The efficiency of a cyclic system is the ratio between the

total work done by the system and heat absorbed by the
same system; i.e., ηE ¼ −hWitot=hQi2. Therefore, for our
Otto cycle it turns out to be

ηE ¼
�
1 −

ω1

ω2

�
TrðδρHhαvÞ
TrðδρHhαaH Þ

¼ η0
TrðδρHhαvÞ
TrðδρHhαaH Þ

; ð22Þ

where η0 is given by (3). This is quite a general expression
that depends on the chosen states to construct the Otto
cycle. For our case, this is given by (9). Now we aim to find
ηE for our specific configuration.
To evaluate (22) it is now sufficient to calculate

Trðδραhα0 Þ in which at the end we will choose α0 ¼αv¼1
and α0 ¼ αaH with α ¼ αaH to get explicit forms of numer-
ator and denominator. As we are interested only in the two-
qubits system, this term appeared after tracing over field
states. Therefore, the trace operation in this term (denoted by
“Tr” here), which is to be evaluated to calculate the
efficiency, is over the basis of two-qubits system. During
the heating stage, ρ is changing and velocity changes from
−v at −τ to v at τ. Therefore we choose the interval of τ1 for
interaction as ½−τa; τa�. With this we find [33] for jχi ¼ jsi
and p ¼ 0 (i.e., initially the system is in jχi and so q ¼ 1)

Trðδραhα0 Þ ¼ iμ2αð1þ α0Þ½eiωðα−1Þτa þ e−iωðα−1Þτa �

×
Z

τa

−τa

Z
τa

−τa
sinðωðατ01 − τ001ÞÞ

×G12ðτ001; τ02ðτ01ÞÞdτ001dτ01: ð23Þ

In the above we denote Gijðτ0i; τ00j Þ ¼ hΦiðτ0iÞΦjðτ00j Þi which
is the positive frequency Wightman function for real mass-
less scalar field. The final form, as we are measuring from
the frame of first detector, is achieved by expressing second
detector’s proper time in terms of that of the first one. Then
(22) gives us the measure of efficiency as
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ηE ¼ η0

�
2

1þ αaH

�
: ð24Þ

The same can also be obtained for choosing antisymmetric
entangled state as the initial one, i.e., for jχi ¼ jai.
The result (24) implies that the efficiency can be greater

than η0 if one chooses αaH < 1; i.e., if aH1
< aH2

; or in
other words the second qubit must accelerate more than the
first one. It implies that the second detector must be closer
to X ¼ �T null surface than the other one. By increasing
the difference between the accelerations with the above
condition, we can have a more efficient Otto engine.
Otherwise, the efficiency of our entangled system is less
than that of the single-qubit system. Suppose, in the second
stage, the first detector is not accelerating (i.e., it is either at
rest or in uniform velocity) while the second one is
accelerating. In this case we have αaH ¼ ðaH1=aH2Þ ¼ 0.
Note that although aH1

¼ 0, still the whole system will see
the background as a thermal bath since the other qubit is in
acceleration and the initial state is an entangled one. Then
the efficiency is given by ηE ¼ 2η0.
In the analytical analysis done so far, we have seen that

different variables affect the process. They appear in δρH

and hence finally appear in the expression for efficiency.
We now aim to provide a protocol that will allow one to
find an Otto cycle with ηE > η0 for appropriate choices of
various variables. We first list the variables we have to
investigate and the conditions those are required. The
variables are αaH ; τa; αaC and the conditions to satisfy are
as follows. (i) Cyclic condition (13) along with the energy
conservation, given by (21): A sufficient (not necessary)
condition for simultaneous satisfaction of these two is
ω2hαaH − ω1hαaC ¼ ðω2 − ω1Þhαv ; i.e.,

αaHω2 − ω2 þ ω1

ω1

¼ αaC; ð25Þ

with αaC > 0. (ii) In order to have positive work done by
the system and also positivity of heat absorbed and heat
transferred, impose TrðδρHhα0 Þ> 0 with α0 ¼ αv, α0 ¼αaH
and α0 ¼ αaC for these three different quantities. Second
condition together with (21) then implies that ðω2 − ω1Þ×
TrðδρHhαvÞ < ω2TrðδρHhαaH Þ. Then, since η0 < 1, by (22)
we have ηE < 1. As αaC > 0, (25) implies η0 < αaH . Now,
since we want ηE > η0, then according to earlier discussion
one has αaH < 1. Therefore 0 < η0 < 1 implies that for our
process we need to choose αaH such that

0 < η0 < αaH < 1: ð26Þ

Consequently if we choose αaH from Eq. (26) then from
Eq (25) we get that,

0 < αaC < αaH : ð27Þ

The argument is as follows. Let αaC > αaH , then (25)
implies αaH > 1 which violates (26). Hence this is not
possible, so we have at most αaC ≤ αaH . If αaC ¼ αaH , then
(25) implies they must be equal to unity, which is again
in contrary to (26). Therefore, we must have (27). Let us
come back to the second condition again. For the present
case one finds

TrðδρHhα0 Þ ¼ �2ð1þ α0ÞI1: ð28Þ

Positive sign is for jsi while the negative sign is for jai. In
general I1 is a function of αaH ;ω2 and τa (for explicit
expressions in (1þ 1) and (1þ 3) spacetime dimensions,
refer to [33]). Now for a choice of αaH ;ω2, satisfying (26)
and (27), we have to choose τa, the half time duration of
acceleration of first detector during heating, such that the
cyclic condition along with condition (ii) is being satisfied.
If one chooses τa such that I1 > 0, then initial state must be
jsi in order to satisfy condition (ii). Whereas if I1 < 0 for a
τa, then one needs to consider jχi ¼ jai. This describes a
complete protocol to build a cycle for ηE > η0 with ηE < 1.
To summarize, here we proposed a quantum Otto engine

using two qubits in the lights of quantum entanglement
and relativity. We found that entanglement and relativity
together might be useful to get enhanced efficiency. The
efficiency becomes double to that of QOE when the qubits
initially are in a maximally entangled state, and the frame of
measurement is not accelerating during the heating process.
If the acceleration of the frame of reference is less than that
of the other qubit, then one has ηE > η0. We also provided a
detailed protocol to choose the available parameters in
order to obtain enhancement of efficiency.
This analysis shows a possibility of building a QOE with

greater efficiency and in turn may suggest an indirect
approach for verifying the Unruh effect. Therefore, if an
experimental setup for EUQOE can be built, then by
measuring the efficiency, one may investigate the properties
of Unruh radiation. Moreover, the dependence of efficiency
on the accelerations of the qubits can be helpful to set up an
apparatus for indirect experimental verification of the
Unruh effect. The investigation in this direction is kept
as a future goal.
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