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We study the probability distribution of the number of particle and antiparticle pairs produced via the
Schwinger effect when a uniform but time-dependent electric field is applied to noninteracting scalars or
spinors initially at a thermodynamic equilibrium. We derive the formula for the characteristic function by
employing techniques in mesoscopic physics, reflecting a close analogy between the Schwinger effect and
mesoscopic tunneling transports. In particular, we find that the pair production in a medium is enhanced
(suppressed) for scalars (spinors) due to the Bose stimulation (Pauli blocking). Furthermore, in addition to
the production of accelerated pairs by the electric field, the annihilation of decelerated pairs is found to take
place in a medium. Our formula allows us to extract the probability distributions in various situations, such
as those obeying the generalized trinomial statistics for spin-momentum resolved counting and the
bidirectional Poisson statistics for spin-momentum unresolved counting.
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I. INTRODUCTION

Together with earlier suggestions by Sauter, Heisenberg,
and Euler [1,2], Schwinger in 1951 predicted that pairs of
electron and positron are produced out of a vacuum
subjected to an external electric field [3]. This phenomenon
is now known as the Schwinger effect, which is a
manifestation of the fact that the quantum vacuum is no
longer a classical empty space but undergoes virtual pair
excitations, being the Copernican revolution of our view on
the vacuum.
Although the Schwinger effect constitutes one of the

most significant predictions of quantum electrodynamics,
its experimental observation has been elusive because the
mean number of produced pairs is exponentially sup-
pressed if the electric field is below the critical strength
set by the electron mass. However, new prospects to reach
and exceed the critical electric field have recently emerged
in high-intensity laser facilities [4], as well as in relativistic
heavy-ion collisions [5], which have reaccelerated research
into the Schwinger effect calling for further insights as a
realistic possibility [6].
The purpose of this paper is to study the probability

distribution of the number of produced pairs, going beyond
just the mean value usually considered. This is partly
motivated by an estimation that the mean number of
produced pairs is at best far from macroscopic [7,8], so

that its event-by-event fluctuations should be important. It
is also evident that the probability distribution brings out
much more information from the system, as concisely
phrased by “the noise is the signal” [9]. In fact, such a
probability distribution of the number of transmitted
charges is referred to as full counting statistics and has
been one of the main research streams in mesoscopic
physics [10,11]. Because the Schwinger effect can also be
viewed as a quantum tunneling phenomenon [12], common
techniques can be employed to derive the formula for full
counting statistics, which reflects a close analogy between
the Schwinger effect and mesoscopic tunneling transports.

II. SCHWINGER PAIR PRODUCTION

We consider noninteracting scalars (S ¼ 0) or spinors
(S ¼ 1=2) with mass m and charge q subjected to an
external electric field, which obey the Klein-Gordon or
Dirac equation, respectively. The time-dependent electric
field is assumed to be spatially uniform and turned off in the
infinite past and future, so that the gauge is chosen to be
AðtÞ ¼ R

∞
t dt0Eðt0Þ. We will set ℏ ¼ c ¼ k ¼ 1 throughout

this paper.
One convenient way to describe the Schwinger effect is

based on the canonical quantization of the single-particle
field operator Ψ̂ðxÞ [13–15]. Because its detailed accounts
are readily available, for example, in Refs. [6,16,17], we
only outline the basic ingredients needed for our following
discussions. The field operator can be expanded on a basis
of eigenfunctions of the Klein-Gordon or Dirac equation as

Ψ̂ðxÞ ¼
X
s;p

½âins;pψ inþ
s;p ðxÞ þ ĉin†−s;−pψ in−

s;p ðxÞ�; ð1Þ
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where s ¼ −S;−Sþ 1;…; S and p label spin and canonical
momentum, respectively, assuming the system in a periodic
box. By choosing the eigenfunctions so as to satisfy

limt→−∞ψ
in�
s;p ðxÞ ∼ eip·x∓i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ½p−qAð−∞Þ�2

p
t, âins;p and ĉin−s;−p

are identified as annihilation operators of particle and
antiparticle in the infinite past. On the other hand, the
same field operator can also be expanded on a different
basis as

Ψ̂ðxÞ ¼
X
s;p

½âouts;pψ
outþ
s;p ðxÞ þ ĉout†−s;−pψout−

s;p ðxÞ�; ð2Þ

where limt→þ∞ψ
out�
s;p ðxÞ ∼ eip·x∓i

ffiffiffiffiffiffiffiffiffiffi
m2þp2

p
t so that âouts;p and

ĉout−s;−p are in turn annihilation operators of particle and
antiparticle in the infinite future. We note that, because of
Aðþ∞Þ ¼ 0 in our gauge choice, p coincides with the
kinetic momentum in the infinite future, which is accel-
erated from p − qAð−∞Þ being the kinetic momentum in
the infinite past.
Because each of ψ in�

s;p ðxÞ is a superposition of ψoutþ
s;p ðxÞ

and ψout−
s;p ðxÞ, âouts;p and ĉout†−s;−p can be expressed in terms of

âins;p and ĉin†−s;−p as

� âouts;p

ĉout†−s;−p

�
¼ Us;p

� âins;p

ĉin†−s;−p

�
: ð3Þ

Here it is assumed that the spin basis is chosen so that
different s sectors are decoupled. In order to preserve the
commutation (anticommutation) relations for bosons (fer-
mions) with λ ¼ ð−1Þ2S,

½âs;p; â†s;p�λ ≡ âs;pâ
†
s;p − λâ†s;pâs;p ¼ 1; ð4aÞ

½ĉ−s;−p; ĉ†−s;−p�λ ¼ 1; others ¼ 0; ð4bÞ

Us;p must be a 2 × 2 paraunitary (unitary) matrix satisfying

Us;p

�
1 0

0 −λ

�
U†

s;p ¼
�
1 0

0 −λ

�
: ð5Þ

Its general form is provided by

Us;p ¼ eiδs;p
�

αs;p γs;p

λγ�s;p α�s;p

�
ð6Þ

with jαs;pj2−λjγs;pj2¼1, which constitutes the Bogoliubov
transformation for bosons (fermions).
Suppose that the system is initially in the vacuum,

âins;pjvaci ¼ ĉin−s;−pjvaci ¼ 0, with no particles and antipar-
ticles present. After the electric field is applied, we however
find that pairs of particle and antiparticle are produced
according to hvacjâout†s;p âouts;p jvaci¼hvacjĉout†−s;−pĉout−s;−pjvaci¼
jγs;pj2. This is none other than the Schwinger effect.
The mean number of produced pairs with spins and

momenta of �ðs; pÞ for particle (upper sign) and anti-
particle (lower sign) is provided by the Bogoliubov
coefficient jγs;pj2, which is to be determined by solving
the Klein-Gordon or Dirac equation for a given electric
field. Such analyses were carried out for a variety of
solvable temporal profiles [18], including the constant
pulse EðtÞ ¼ E0θðT=2 − jtjÞ and the Sauter pulse EðtÞ ¼
E0=cosh2ð2t=TÞ [6,16,17]. In either case, T is the duration
of the applied electric field with qAð−∞Þ ¼ qE0T and the
long-time limit leads to

lim
T→∞

jγs;pj2 ¼ θðpkÞθðqE0T − pkÞ exp
�
−π

m2 þ p2⊥
qE0

�
ð7Þ

for jpkj, jpk − qE0Tj ≫ m [19], where pk and p⊥ are
momenta parallel and perpendicular to qE0, respectively.

III. CHARACTERISTIC FUNCTION

We now wish to determine the probability distribution of
the number of produced pairs instead of just the mean
value. For the sake of generality and comparison with
mesoscopic tunneling transports, we assume that the
system is initially at a thermodynamic equilibrium with
temperature β−1 and chemical potential μ. The joint
probability to produce Ns;p particles and N̄s;p antiparticles
for each spin and momentum (i.e., Ns;p ¼ Nout

s;p − Nin
s;p

being the particle number in the infinite future minus that
in the infinite past) is denoted by PðfNg; fN̄gÞ. It is rather
convenient to consider its Fourier series,

χðfθg; fθ̄gÞ≡X
fNg

X
fN̄g

PðfNg; fN̄gÞ

× ei
P

s;p
ðθs;pNs;pþθ̄s;pN̄s;pÞ; ð8Þ

defining the characteristic function. We note that the
cumulants are generated by a power series expansion of
ln χðfθg; fθ̄gÞ and the probability distribution is recovered
according to

PðfNg; fN̄gÞ ¼
�Y

s;p

ZZ
π

−π

dθs;pdθ̄s;p
ð2πÞ2

�
χðfθg; fθ̄gÞ

× e−i
P

s;p
ðNs;pθs;pþN̄s;pθ̄s;pÞ: ð9Þ

The characteristic function can be expressed in terms of
the creation and annihilation operators of particle and
antiparticle as

χðfθg; fθ̄gÞ ¼ 1

Z
Tr

�
e−βĤei

P
s;p
ðθs;pâout†s;p âouts;pþθ̄s;pĉ

out†
s;p ĉouts;pÞ

× e−i
P

s;p
ðθs;pâin†s;p â

in
s;pþθ̄s;pĉ

in†
s;p ĉ

in
s;pÞ
�
: ð10Þ
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Here Ĥ ¼ P
s;p½ðEp − μÞâin†s;p âins;p þ ðE−p þ μÞĉin†s;p ĉins;p� is

the initial Hamiltonian with the dispersion relation of

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ½p − qAð−∞Þ�2

q
; ð11Þ

Z ¼ Tr½e−βĤ� is the partition function, and the trace is taken
in the Fock space. We then introduce an operator of two
components by b̂s;p ¼ ðâins;p; ĉin†−s;−pÞT and its conjugate by
b̂⋆s;p ¼ ðâin†s;p ;−λĉin−s;−pÞ, so that their components obey
the commutation (anticommutation) relations for bosons
(fermions),

½b̂ir;p; b̂⋆js;q�λ ¼ δijδrsδpq ði; j ¼ 1; 2Þ; ð12aÞ

½b̂ir;p; b̂js;q�λ ¼ ½b̂⋆ir;p; b̂⋆js;q�λ ¼ 0: ð12bÞ

With the help of the Bogoliubov transformation in Eq. (3)
and U−1

s;p ¼ diagð1;−λÞU†
s;pdiagð1;−λÞ following from

Eq. (5), the characteristic function now reads

χðfθg; fθ̄gÞ ¼
Y
s;p

1

Zs;p
trs;p½e−βb̂⋆s;pHs;pb̂s;p

× eib̂
⋆
s;pU−1

s;pΘs;pUs;pb̂s;pe−ib̂
⋆
s;pΘs;pb̂s;p �; ð13Þ

where Θs;p ¼ diagðθs;p;−θ̄−s;−pÞ, Hs;p ¼ diagðEp − μ;

−Ep − μÞ, and Zs;p ¼ trs;p½e−βb̂⋆s;pHs;pb̂s;p � are introduced
and the lowercase trace is taken in a Fock space spanned
by ðb̂⋆1s;pÞnðb̂⋆2s;pÞn̄j0i with b̂1s;pj0i ¼ b̂2s;pj0i ¼ 0 for the given
set of ðs; pÞ.
Remarkably, the trace in the Fock space can be trans-

formed into the determinant in the single-particle Hilbert
space according to

tr½eÔðAÞeÔðBÞ � � � eÔðCÞ� ¼ det½1 − λeAeB � � � eC�−λ: ð14Þ
Here ÔðAÞ ¼ b̂⋆Ab̂ is a bilinear operator with an arbitrary
square matrix A and the above identity was proven with
½ÔðBÞ; ÔðCÞ� ¼ Ôð½B;C�Þ and the Baker-Campbell-
Hausdorff formula by Klich [20]. Its application to
Eq. (13) leads to Zs;p ¼ det ½1 − λe−βHs;p �−λ and

χðfθg; fθ̄gÞ

¼
Y
s;p

det

�
1 −

λ

eβHs;p − λ
ðU−1

s;peiΘs;pUs;pe−iΘs;p − 1Þ
�
−λ
:

ð15Þ
Finally, it is straightforward to manipulate the 2 × 2
matrices to obtain

ln χðfθg; fθ̄gÞ ¼ −λ
V

ð2πÞ3
X
s

Z
d3p ln½1 − λf1þ λfλðEp − μÞgf1þ λfλðEp þ μÞgjγs;pj2ðeiθs;pþiθ̄−s;−p − 1Þ

− λfλðEp − μÞfλðEp þ μÞjγs;pj2ðe−iθs;p−iθ̄−s;−p − 1Þ�: ð16Þ

Here the thermodynamic limit is taken with V being the
volume subjected to the electric field and fλðEp ∓ μÞ ¼
1=½eβðEp∓μÞ − λ� are the Bose-Einstein or Fermi-Dirac
distribution functions of particles (upper sign) and anti-
particles (lower sign).
The resulting formula for the characteristic function

constitutes the central outcome of this paper, from which
the probability distributions can be extracted in various
situations as discussed below for some specific cases. Here
we make general remarks. The term ∼eiθs;p (e−iθs;p) repre-
sents a process to add (remove) one particle with spin and
momentum of ðs; pÞ, whereas the term ∼eiθ̄−s;−p (e−iθ̄−s;−p)
represents a process to add (remove) one antiparticle with
ð−s;−pÞ. Because the characteristic function depends only
on the combinations of eiθs;pþiθ̄−s;−p and e−iθs;p−iθ̄−s;−p , par-
ticles and antiparticles are always produced or annihilated
in pairs.
The probability for pair production per mode is quanti-

fied by

Fλ
s;p ≡ ½1þ λfλðEp − μÞ�½1þ λfλðEp þ μÞ�jγs;pj2; ð17Þ

which in the medium is enhanced for bosons due to the
Bose stimulation but suppressed for fermions due to the
Pauli blocking. On the other hand, the probability for pair
annihilation per mode is quantified by

Gλ
s;p ≡ fλðEp − μÞfλðEp þ μÞjγs;pj2; ð18Þ

which is nonvanishing only in the medium because particles
and antiparticles must initially be present in order for a pair
to be annihilated. According to Eq. (7), produced particles
(antiparticles) tend to have final kinetic momenta in the
same (opposite) direction to qE0 so as to be accelerated by
the electric field, whereas annihilated particles (antipar-
ticles) tend to have initial kinetic momenta in the opposite
(same) direction to qE0 so as to be decelerated by the
electric field. The latter is actually the time-reversal process
of the former, solving the same equation of motion but
under different initial conditions. Although Fs;p=Gs;p ¼
e2βEp > 1 indicates that the pair production dominates over
the pair annihilation on average, it does not have to be the
case in individual events (see Fig. 2).
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Our formula is indeed parallel to the Levitov formula in
mesoscopic physics [21,22], where our particle and anti-
particle degrees of freedom correspond to left and right
reservoirs in mesoscopic tunneling transports [11].
However, the distribution functions appear differently in
our characteristic function, reflecting the fact that ours
involves pair production and annihilation instead of trans-
missions between two reservoirs.

IV. FULL COUNTING STATISTICS

A. Spin-momentum resolved counting

Let us first derive the probability distribution in the case
where the numbers of produced particles and antiparticles
are fully counted per spin and momentum. To this end, we
discretize the continuous momentum in Eq. (16) into a
bunch of sufficiently small bins so that the integrand is
regarded as constant in each bin. The substitution of
Eq. (16) into Eq. (9) then leads to

PðfNg; fN̄gÞ ¼
Y
s;p

Ps;pðNs;pÞδNs;pN̄−s;−p
; ð19Þ

where

Ps;pðNÞ ¼
Z

π

−π

dθ
2π

e−iNθ½1þ λFλ
s;p þ λGλ

s;p

− λFλ
s;peiθ − λGλ

s;pe−iθ�−λVΔp=ð2πÞ3 ð20Þ
is the marginal probability to produce N particles for
particular s and p in a bin volume of Δp. We can perform
the integration over θ with the help of the trinomial series to
obtain

Ps;pðNÞ ¼
X∞
n¼0

½−λVΔp=ð2πÞ3�Nþ2n

ðN þ nÞ!n!
× ð1þ λFλ

s;p þ λGλ
s;pÞ−λVΔp=ð2πÞ3−N−2n

× ð−λFλ
s;pÞNþnð−λGλ

s;pÞn; ð21Þ
where ½z�n ≡ zðz − 1Þ � � � ðz − nþ 1Þ is the falling facto-
rial. This is, so to say, a generalized trinomial distribution
with the positive (negative) exponent −λVΔp=ð2πÞ3 for
fermions (bosons) [23]. Its probability distribution is
extended to N < 0 if and only if Gλ

s;p ≠ 0, which is a
consequence of the pair annihilation by applying the
electric field to the medium.
On the other hand, when the electric field is applied to

the vacuum with β−1 ¼ μ ¼ 0, the pair annihilation is
prohibited because of Fλ

s;p ¼ jγs;pj2 and Gλ
s;p ¼ 0. The

above probability distribution is then reduced to the
(negative) binomial distribution for fermions (bosons)
generalized to the nonintegral exponent. In particular, its
special case with VΔp=ð2πÞ3 ¼ 1 is the Bernoulli distri-
bution for fermions or the geometric distribution for
bosons [17].

B. Spin-momentum unresolved counting

Let us turn to the probability distribution in the case
where only the total numbers of produced particles and
antiparticles are counted without resolving their spins and
momenta. The probability to produce N particles and N̄
antiparticles is provided by

PðN; N̄Þ ¼
ZZ

π

−π

dθdθ̄
ð2πÞ2 χðθ; θ̄Þe

−iNθ−iN̄θ̄; ð22Þ

where χðθ; θ̄Þ is obtained by setting θs;p → θ and θ̄s;p → θ̄
in Eq. (16). The cumulants are generated by a power series
expansion of ln χðθ; θ̄Þ and can be expressed in terms of
Fλ
s;p and Gλ

s;p. In particular, the mean value reads
hNi ¼ hN̄i ¼ X − Y, where

X ≡ V
ð2πÞ3

X
s

Z
d3pFλ

s;p; ð23aÞ

Y ≡ V
ð2πÞ3

X
s

Z
d3pGλ

s;p ð23bÞ

are constants representing the mean numbers of pro-
duced and annihilated pairs, respectively. We note that
the mean value per mode, Fλ

s;p−Gλ
s;p¼½1þλfλðEp−μÞ þ

λfλðEpþμÞ�jγs;pj2, is consistent with Refs. [25–28].
In order to proceed further without numerics, some

simplification is needed and it is reasonable to assume
jγs;pj2 ≪ 1 because it is exponentially suppressed if the
electric field is below the critical strength [see Eq. (7)]. The
expansion of Eq. (16) up to Oðjγs;pj2Þ leads to

ln χðθ; θ̄Þ ≃ Xðeiθþiθ̄ − 1Þ þ Yðe−iθ−iθ̄ − 1Þ; ð24Þ
which is the so-called bidirectional Poisson distribution with
its nth cumulant provided by X þ ð−1ÞnY [29–31]. We can
then perform the integrations over θ, θ̄ in Eq. (22) to obtain

PðN; N̄Þ ≃ e−X−Y
�
X
Y

�
N=2

IjNjð2
ffiffiffiffiffiffiffi
XY

p
ÞδNN̄; ð25Þ

where InðzÞ is the modified Bessel function of the first kind.
The resulting probability distribution is extended toN < 0 if
and only if Y ≠ 0, which is again a consequence of the pair
annihilation by applying the electric field to the medium.
Finally, we demonstrate the probability distribution of the

number of produced pairs, PN ≡ PðN;NÞ, by performing
the integrations in Eqs. (16), (22) numerically. To this end,
we specify the Bogoliubov coefficient jγs;pj2 to be the form
of Eq. (7) with the transient effects neglected. We also set
qE0 ¼ m2=2 and T ¼ V1=3 ¼ 50=m, so that the mean
number of produced pairs in the vacuum corresponds to

hNi0
2Sþ 1

¼ ðqE0Þ2TV
ð2πÞ3 exp

�
−
πm2

qE0

�
≈ 11.8: ð26Þ
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The resulting PN for scalars (S ¼ 0) and spinors (S ¼ 1=2)
are shown in Figs. 1 and 2, respectively, at three different
temperatures and vanishing chemical potential. We indeed
find that the pair production is enhanced (suppressed) for
scalars (spinors) with increasing the temperature due to the
Bose stimulation (Pauli blocking) [28]. Furthermore, the
probability distribution allows us to extract much more
information than just the mean value. For example, it is
evident that the event-by-event fluctuation becomes more
significant for scalars at higher temperatures and the pair
annihilation becomes more probable for spinors as a
consequence of the suppressed pair production.
We also note that, because of jγs;pj2≤exp½−πm2=ðqE0Þ�≈

0.00187≪1 in our parameter choice, the probability dis-
tributions shown in Figs. 1 and 2 are practically indistin-
guishable from the bidirectional Poisson distribution in
Eq. (25). Its two parameters in the low-temperature limit
β → ∞ are

X → hNi0 þOðe−βm�βμÞ; Y → Oðe−2βmÞ ð27Þ

both for scalars and for spinors, whereas those in the high-
temperature limit β → 0 are

X − Y → Oðβ−1Þ; X þ Y → Oðβ−2Þ ð28Þ

for scalars but

X − Y → OðβÞ; X þ Y →
hNi0
2

þOðβ2Þ ð29Þ

for spinors. Recalling that the mean value and the standard
deviation are provided by X − Y and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ Y

p
, respectively,

the numerical results are qualitatively understandable from
the above asymptotic behaviors.

V. SUMMARY

In summary, we studied the probability distribution of
the number of particle and antiparticle pairs produced via
the Schwinger effect when a uniform but time-dependent
electric field is applied to noninteracting scalars or spinors
initially at a thermodynamic equilibrium. The central
outcome of this paper is the formula for the characteristic
function presented in Eq. (16), from which the probability
distributions as well as their cumulants can be extracted in
various situations. In particular, when the numbers of
produced pairs are fully counted per spin and momentum,
the probability distribution obeys the generalized trinomial
statistics [Eq. (21)]. On the other hand, when only the total
number of produced pairs is counted without resolving
their spins and momenta, the probability distribution obeys
the bidirectional Poisson statistics under an approximation
reasonable to the Schwinger effect [Eq. (25)].
Physically, we found that the Schwinger pair production

in a medium is enhanced for scalars due to the Bose
stimulation but suppressed for spinors due to the Pauli
blocking. Furthermore, in addition to the production of
accelerated pairs by the electric field, the annihilation of
decelerated pairs was found to take place in a medium. We
hereby propose to refer to the latter phenomenon as
“Schwinger pair annihilation.” The Schwinger pair anni-
hilation becomes more probable for spinors at higher
temperatures as a consequence of the suppressed pair
production (Fig. 2). We also found that the event-by-event
fluctuation becomes more significant for scalars at higher
temperatures (Fig. 1).
Because only the Bogoliubov coefficients are needed as

input parameters for Eq. (16), it is applicable to a variety of
time-dependent electric fields such as shaped laser pulses
[32,33] and pulse sequences [34]. Hopefully, by linking the
Schwinger pair production and annihilation in high-energy
physics with the full counting statistics in mesoscopic
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FIG. 1. Probability distribution of the number of produced pairs
for scalars at three different temperatures β−1=m ¼ 0 (left), 5
(middle), 10 (right), and μ ¼ 0 with the electric field fixed as
described in the text. Themeanvalue increases as hNi ≈ 11.8, 22.3,
38.5 with increasing the temperature due to the Bose stimulation.
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FIG. 2. Probability distribution of the number of produced pairs
for spinors at three different temperatures β−1=m ¼ 0 (right), 10
(middle), 100 (left), and μ ¼ 0 with the electric field fixed as
described in the text. The mean value decreases as hNi ≈ 23.5,
12.1, 1.48 with increasing the temperature due to the Pauli
blocking. The cumulative probability for pair annihilation readsP

N<0 PN ≈ 0.281 for β−1=m ¼ 100.
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physics, our formula may provide useful insights into
future experimental data from high-intensity laser facilities
as well as from relativistic heavy-ion collisions. In par-
ticular, the latter are capable of creating high-temperature
media at the same time as strong electric fields in principle.
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